
Evaluation of Trace Reduction
Techniques for Online Trace

Visualization Utilizing Kieker

Master’s Thesis

B.Sc. Björn Weißenfels

May 12, 2014

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring

M.Sc. Florian Fittkau

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

ii

Abstract

Software landscapes are becoming increasingly complex. Knowledge about the communi-
cation between the applications in the software landscape is often lost. The comprehension
of such software systems can usually not be solved by static code analysis. The use of
dynamic analysis in this process, e.g., with Kieker, leads rapidly to a large amount of trace
data. For several purposes like storage or live trace visualization, e.g., with ExplorViz,
these data must be reduced.

This thesis addresses this issue by presenting 12 different trace reduction techniques.
These techniques are based on summarization, metric-based filtering, or removing utility
methods. We evaluate all techniques based on our assessment criteria, and implement the
most promising techniques as filters for ExplorViz. We also experiment with 6 execution
traces of different object-oriented systems and study the gain attained by these reduction
techniques.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Document Structure . 2

2 Foundations and Technologies 5
2.1 Foundations . 5
2.2 Used Technologies . 6

3 Trace Reduction Techniques 11
3.1 Summarization . 11
3.2 Metrics-Based Filtering . 19
3.3 Language-Based Filtering . 25
3.4 Ad Hoc . 30
3.5 Own Approach . 31

4 Assessment Criteria for Trace Reduction Techniques in Respect to Online Trace
Visualization 33
4.1 Reduction Rate . 33
4.2 Information Preservation . 33
4.3 Parallelizability . 35
4.4 Performance . 35

5 Theoretical Evaluation of Trace Reduction Techniques 37
5.1 Summarization . 38
5.2 Metrics-Based Filtering . 42
5.3 Language-Based Filtering . 44
5.4 Ad Hoc . 48
5.5 Own Approach . 50
5.6 Overall Result . 50

6 Implementation 53
6.1 Selection . 53
6.2 Design . 53

v

Contents

7 Practical Evaluation of Trace Reduction Techniques 57
7.1 Scenarios . 57
7.2 Experimental Setup . 57
7.3 Results . 59
7.4 Discussion of the Results . 64
7.5 Threats to Validity . 67

8 Related Work 69

9 Conclusions and Future Work 71
9.1 Conclusions . 71
9.2 Future Work . 71

Bibliography 73

vi

Chapter 1

Introduction

Section 1.1 gives a motivation why trace reduction techniques are needed in online trace
visualization. In Section 1.2 we describe the goals of this thesis in detail. Afterwards, the
thesis’ remaining structure is outlined in Section 1.3.

1.1 Motivation

Software landscapes in companies are becoming increasingly complex. Knowledge about
the communication between the applications in the software landscape is often lost due
to lack of documentation. Knowledge about the communication within the applications
themselves can also be lost. This knowledge usually can not be recovered through static
code analysis due to the complexity of such systems. Furthermore, the gap between
a program’s static specification and its dynamic behavior is particularly large in object-
oriented programs.

Online trace visualization, i.e., displaying of program executions in the software land-
scape at run time, can recover the understanding of the software environment and applica-
tions.
The observed methods provide a very large amount of data, since each call ends in monitor-
ing records. These entries are then combined to traces. These traces still form a very large
amount of data that must be reduced for visualization. This must be conducted efficiently
and with a minimum loss of information.

In the proposed thesis several trace reduction techniques are compared and rated for
the use in ExplorViz, a tool for online trace visualization of large software landscapes.

1.2 Goals

This section describes our two aimed goals and their subgoals.

G1: Theoretical Evaluation of Trace Reduction Techniques

The first goal is a theoretical evaluation of trace reduction techniques. We divide this goal
into the following three subgoals.

1

1. Introduction

G1.1: Description of Trace Reduction Techniques

In Cornelissen et al. [2008], an assessment methodology for trace reduction techniques is
described. The paper presents 14 techniques, which are assigned to 4 categories. In the
proposed thesis, we will describe these categories and techniques in detail.

G1.2: Definition of Evaluation Criteria

Since the evaluation criteria by Cornelissen et al. [2008] do not fully comply our require-
ments, we will define the four evaluation criteria: reduction rate, performance, paralleliz-
ability, and information preservation. Furthermore, we will define the metrics by which
they are measured.

G1.3: Theoretical Evaluation Regarding to the Criteria defined in G1.2

We will evaluate all of the described trace reduction techniques regarding to the criteria
defined in G1.2. This theoretical evaluation will be partially based on estimated values.

G2: Practical Evaluation of Trace Reduction Techniques

The second goal is a practical evaluation of some of the previously described trace reduction
techniques. We divide this goal into the following two subgoals.

G2.1: Implementation of Filters for Kieker

We will choose at least the four most promising techniques for the use in ExplorViz
based on the theoretical evaluation and in collusion with the advisor. Afterwards, we will
implement these selected techniques as filters in the high-throughput tuned version of
Kieker.

G2.2: Practical Evaluation Regarding to the Criteria in G1.2

For the practical evaluation, we will use the sample applications described in Section 2.2 to
generate different traces. In addition, we will use the sample traces of Cornelissen et al.
[2008]. Thus, the filters will be tested with different traces and a comparison with the
results of Cornelissen et al. [2008] will be possible.
We will evaluate the chosen trace reduction techniques regarding to the criteria defined in
G1.2.

1.3 Document Structure

The remainder of this thesis is structured as follows:

2

1.3. Document Structure

� Chapter 2 introduces the foundations of this thesis in Section 2.1 and the used technolo-
gies in Section 2.2.

� Chapter 3 presents the trace eduction techniques investigated in this thesis. This chapter
address the goal G1.1, as described in Section 1.2.

� Chapter 4 defines the criteria for the assessment of trace reduction techniques. This
chapter address the goal G1.2.

� Chapter 5 starts with an overview of the evaluation of the investigated techniques.
Subsequently, the ratings are explained in detail. The chapter concludes with an overall
ranking in Section 5.6. This chapter address the goal G1.3.

� Chapter 6 establishes a selection of techniques that are implemented in Section 6.1.
Afterwards the design of the implementation is described in Section 6.2. This chapter
address the goal G2.1.

� Chapter 7 contains the results of the experimental evaluation. This chapter address the
goal G2.2.

� Chapter 8 presents related work of this thesis.

� Chapter 9 concludes the thesis. It gives a summary of the presented approach and its
evaluation in Section 9.1. In the end, Section 9.2 presents the chances for future work.

3

Chapter 2

Foundations and Technologies

This chapter describes the foundations and technologies that will be used in the following
chapters. Section 2.1 describes what can be imagined under dynamic analysis and how a
benchmarking of a Java application should be done. Section 2.2 describes the technologies
used in this thesis.

2.1 Foundations

Dynamic analysis, and in this context the normal ExplorViz records, and Java benchmarking
are described in this section.

2.1.1 Dynamic Analysis

Dynamic analysis is the testing and evaluation of an application during its runtime. For
instance, Kieker and ExplorViz are tools for the dynamic analysis of software systems and
are described in the following.

Salah and Mancoridis [2004] defines a trace as a sequence of runtime events, that
describe the dynamic behavior of a running program. In this thesis two runtime events
are considered, the BeforeOperationEventRecord and the AfterOperationEventRecord build by
ExplorViz.

Figure 2.1 illustrates the structure of the used records, while Table 2.1 describes the
meanings of the attributes occur in this class diagram.

2.1.2 Java Benchmarking

Java performance is difficult to benchmark because factors such as the Java application,
the virtual machine, the garbage collector, and the heap size exert influence. Georges
et al. [2007] compares Java performance evaluations and develops a statistically rigorous
methodology for startup and steady-state performance.
For startup performance, multiple VM invocations executing a single benchmark iteration
are run and subsequently compute confidence intervals.
For steady-state performance, multiple VM invocations are run, each executing multiple
benchmark iterations. Then, a confidence interval is computed based on the benchmark

5

2. Foundations and Technologies

BeforeOperationExecutionRecord AfterOperationExecutionRecord

-objectId : int
-operationSignature : String

AbstractBeforeEventRecord

-count : int
-sum : double
-sqaredSum : double

RuntimeStatisticInformation

-timestamp : long
-traceId : long
-orderIndex : int

AbstractEventRecord

-hostname : String
-application : String

HostApplicationMetaDataRecord

<<Interface>>
ISerilizableRecord

<<Interface>>
Comparable

AbstractAfterEventRecord

<<Interface>>
IRecord

Figure 2.1. Structure of the used records with the regarded attributes

iterations across the various VM invocations once performance variability drops below a
given threshold.

2.2 Used Technologies

This section gives a short description of Kieker and a more detailed of ExplorViz. Further-
more, the four sample applications are briefly introduced.

2.2.1 ExplorViz

ExplorViz is a tool for live trace visualization to support system and program compre-
hension in large software landscapes. It allows, for example, the discovery of the real
communication between the components and the amount of usage for each component.
Furthermore, it is an interactive approach for the live, explorable visualization of moni-

6

2.2. Used Technologies

Table 2.1. Description of the attributes from Figure 2.1

Name Description
timestamp A timestamp in nanoseconds, when the operation was invoked.
traceId A unique numerical value to identify the related records.
orderIndex A numerical value, to bring the records into the correct order.
hostname The name of the host the application is running on.
application A name of the application under observation.
objectId An identifier for the object which provides the operation.
operationSignature A full qualified name of the operation.
count Number of summarized records.
sum Sum of the response times counted in this statistic information.
sqaredSum Sum of squares of the response times counted in this statistic information.

toring traces. Therefore, perspectives for the software landscape and the system level are
combined. The landscape level visualization is based on a mix of UML deployment and
activity diagram elements, the system level view uses the city metaphor for each software
system [Fittkau et al. 2013a]. Figure 2.2 shows an example of the landscape level view,
which depicts the communication between applications in the PubFlow software landscape.

Figure 2.2. Macro view on landscape level showing the communication between applications in the
PubFlow (http://pubflow.de) software landscape

Figure 2.3 shows the system level perspective of the JPetStore[MyBatis JPetStore] appli-
cation for demonstrating the exploration concept. On the left side the package structure of
JPetStore and the communication between these packages can be seen. On the right side
the service component is opened, so one can see the deeper level components, in this case
the classes of the service component.

Figure 2.4 provides an overview of the activities of ExplorViz. The first activity (A1) is to
monitor the applications in the software landscape, e.g., with Kieker. The next activity (A2)
is the preprocessing of the collected monitoring data. The incoming monitoring records

7

2. Foundations and Technologies

(a) Macro view visualizing four components
of jPetStore

(b) Relationship view with opened service
component

Figure 2.3. Mockup of system level perspective on the example of jPetStore[MyBatis JPetStore] for
demonstrating the exploration concept

are consolidated into traces, which then can be reduced through the reduction techniques
described in this thesis. To handle a large amount of monitoring data, this activity can be
parallelized. The third activity (A3) creates and updates the landscape model. The fourth
activity (A4) transforms the landscape model into a visualization model, while the last
activity (A5) is the navigation between the described perspectives.

Legend
A1: Monitoring
A2: Preprocessing
A3: Aggregation
A4: Transformation
A5: Navigation

Existing
Application

Existing
Application

A1

A4

Landscape ModelAggregated TracesPreprocessed Traces

132743373;CartBean;addItem;52.168
132416973;CartBean;addItem;58.163
132419877;CartBean;addItem;52.188
132419877;CartBean;addItem;52.188

…

Monitoring Data

Visualization

Landscape Level Perspective System Level Perspective

A5

A2 A3

Figure 2.4. Activities in our ExplorViz approach for live trace visualization of large software land-
scapes

2.2.2 Kieker

Kieker is an extensible framework for continuous monitoring and analyzing the runtime
behavior of software systems [van Hoorn et al. 2012]. It monitors the response times

8

2.2. Used Technologies

and control-flow for selected operations [Rohr et al. 2008]. The framework provides an
extensible architecture and supports the construction of additional monitoring record types,
probes, analyses, and visualizations [van Hoorn et al. 2009]. Configurable readers and
writers allow Kieker to be used in different scenarios, like writing on the file system, or via
TCP for online analysis.

High-throughput tuned Kieker

In order to meet the real time requirements of ExplorViz, a variant of Kieker was designed
with special emphasis on providing high-throughput for the monitoring data. Both the
monitoring and the analysis components were revised for this project. [Fittkau et al. 2013b]

2.2.3 PubFlow

PubFlow is a workflow oriented data publication framework. It is built to provide the tools
and the infrastructure, which is needed by scientists and data managers to get the research
data out of the institutional data repositories into the publicly available data centers [Brauer
and Hasselbring 2013].

2.2.4 Checkstyle

Checkstyle is a medium-size Java source code validation tool. It can be used from command
line, but it can also be integrated in the build process or a development environment. Thus
it automates the process of checking Java code against a coding standard.

2.2.5 JPacman

JPacman-Framework is a small application used for teaching testing purposes at Delft
University of Technology. The program is an implementation of the well-known Pacman
game in which the player can move around on a graphical map while eating food and
evading monsters.

2.2.6 JHotDraw

JHotDraw is a medium-size open source Java graphics framework for structured drawing
editors. It was developed as a showcase for design pattern usage and is acknowledged
to be well-designed. It provides a GUI that offers various graphical features such as the
insertion of figures and drawings.

9

Chapter 3

Trace Reduction Techniques

Since monitoring of large software landscapes produces a large amount of execution
traces, techniques for reducing these data are needed. Cornelissen et al. [2008] grouped
trace reduction techniques into the four categories summarization, metrics-based filtering,
language-based filtering, and ad hoc, and named techniques for each of these categories.
Based on the references of Cornelissen, these techniques are described below.

3.1 Summarization

Summarization techniques try to shorten a trace by replacing part of its contents by more
concise notations. Typical summarization targets include recurrent patterns. The four inves-
tigated techniques in this category are execution pattern notation, pattern summarization,
object and event clustering, and monotone subsequence summarization.

3.1.1 Execution Pattern Notation

The execution pattern notation described by De Pauw et al. [1998], is a visualization of
execution traces at varied levels of abstraction. It is inspired by Jacobson’s interaction
diagrams [Jacobson 1992]. An example of a simple interaction diagram is shown in
Figure 3.1. A vertical line represents a class with the class name on top. An instance of
this class is displayed as a rectangle on that line. Arrows represent method calls. Time is
shown on the vertical axis, the first method call is on top and the latest on the bottom.

Furthermore, it shows a call trace where object A calls a method m1 from object B, then
object B calls a method m2 on object C. After that object B calls a method m3 on object A
and finally object A calls a method m4 on object D.

However, there are ambiguities. The order of classes along the horizontal axis is
undefined. Furthermore, it’s unclear whether the method from A to D is called within the
method m3.

The execution pattern notation described in De Pauw et al. [1998] counteracts these
ambiguities by utilizing a tree structure. The diagram is read from top left to bottom right.
Objects are represented as colored rectangles. Method calls are displayed as labeled arrows
between these rectangles. The label shows the name of the invoked method. The legend

11

3. Trace Reduction Techniques

B CA D

m1()

m2()

m3()

m4()

Figure 3.1. Example of a simple interaction diagram based on [De Pauw et al. 1998]

on the right shows which color represents which class. Each object contains a numerical
identifier (ID).

For example, Figure 3.2 shows the same call trace as Figure 3.1 in the execution pattern
notation. First an instance of class A with the ID 1 calls the method m1 on an instance
of class B with the ID 2. Then, this object calls the method m2 on an instance of class C
with the ID 3, and then the method m3 on the object with ID 1. After that, method m4 is
called. In contrast to the interaction diagram, m4 is unambiguously not called within the
method m3.

1 2 3

1

4

A

B

C

D

m1() m2()

m3()

m4()

Figure 3.2. Example of the execution pattern notation based on [De Pauw et al. 1998]

Figure 3.3 shows the possibility to hide some information and simplify the pattern for
easier understanding. The black border around the blue rectangle indicates that there is at
least one hidden method call from this object.

Figure 3.4 shows a more complex execution pattern. There is one object of class A, B

12

3.1. Summarization

1 2

4

A

B

D

m1()

m4()

Figure 3.3. Example of a collapsed execution pattern based on [De Pauw et al. 1998]

and C, and three objects of class B. The objects with the ID 5 and 6 have a black border,
meaning they are collapsed. One can recognize a repeating pattern. Alternately, method m1
of class B and method m4 of class D are called.

1 2 3

1

4

A

B

C

D

m1() m2()

m3()

m4()

5m1()

4
m4()

6m1()

4
m4()

3m5()

Figure 3.4. Example of a repetition pattern based on [De Pauw et al. 1998]

As shown in Figure 3.5, the above repetition can also be collapsed. A black border
around the repeated methods and their receiving objects represents the repeated unit. The

13

3. Trace Reduction Techniques

number of repetitions is shown in the lower left corner. To sum up different objects of the
same class, their IDs are omitted in this view.

1 A

B

C

D

3m5()

4
m4()

m1()

3x

Figure 3.5. Example of a collapsed repetition pattern based on [De Pauw et al. 1998]

De Pauw et al. [1998] designates eight criteria when patterns can be regarded as
equivalent. These are:

Identity - Patterns match with respect to identity, if they have the same graph structure,
and every object and every message in the patterns are identical.

Class Identity - In contrast to Identity, objects no longer need to be identical but only
descended from the same class.

Message Structure - Two patterns are equivalent, if their message (method) structure is
identical and there is a nontrivial color substitution from one’s coloring to the other.

Depth-Limiting - Limiting the depth of the trace means ignoring methods beyond a given
depth. This will shorten the trace and can also lead to more pattern matches.

Repetition - Repetition can be divided in iteration and recursion. In the execution pattern
view, an iteration, such as a loop, would appear as a repeated structure along the vertical
dimension. A repeated structure in the horizontal direction would be a recursion. Two
patterns match with respect to repetition, if they have the same graph structure after
collapsing the repetitions.

Polymorphism - Two patterns match with respect to polymorphism, if they only differ in
one or more classes, each having the same base class. In the collapsed view these classes
are substituted through their base classes.

Associativity - Associativity of objects means ignoring self invocation on class level. Two
patterns match with respect to associativity, if their structure is the same after removing
all self invocations. As an example, Figure 3.6 shows on the left side a pattern with self
invocations and on the right side the same pattern after removing the self invocations.

14

3.1. Summarization

A A C

A

E

D

A C

E

D

Figure 3.6. Example of equivalent pattern regarding associativity based on [De Pauw et al. 1998]

Commutativity - Commutativity with respect to method calls, means ignoring the order
of the calls. The only difference between the left and the right pattern in Figure 3.7 is
the order of the method calls m1 to m3. This is an example of two patterns which will
match with respect to commutativity.

A C

E

D

m3()

m2()

m1()
A E

C

D

m3()

m2()

m1()

Figure 3.7. Example of equivalent pattern regarding commutativity based on [De Pauw et al. 1998]

3.1.2 Pattern Summarization

Safyallah and Sartipi [2006] defines an execution pattern as a contiguous part of an
execution trace, that is contained by a minimum number of execution traces, where the
minimum is defined by the user. Figure 3.8 shows the dynamic analysis framework to
identify feature functionality in the source code proposed by Safyallah and Sartipi [2006].
For every considered feature a scenario-set is built in the pattern repository. The execution
patterns are divided in three categories. Intra-scenario-set common patterns are patterns that
are typical for a specific feature. Hence they occur in the majority of the scenario-set traces
of a specific scenario-set. Inter-scenario-set common patterns are patterns that occur in the
majority of all traces. The third category is noise patterns, which are patterns that do not
contribute to a major system functionality.

Hamou-Lhadj and Lethbridge [2002] describe two lossless trace compression techniques.
The first one is to detect and replace sequences. A sequence is a contiguous part of the

15

3. Trace Reduction Techniques

Figure 3.8. Dynamic analysis framework to identify feature functionality in the source code. Taken
from [Safyallah and Sartipi 2006]

trace, which occurs several times in succession. These redundant calls caused by loops and
recursion can be summarized as shown in Figure 3.9. In more detail, this figure shows on
the left side an execution trace, where the events B and C occur alternately three times. On
the right side of Figure 3.9, the same trace is shown in a compressed way. The repeated
occurrences of B and C are summarized.

A A
├─ B │
├─ C ├─ Sequence (3)
├─ B │ ├─ B
├─ C │ └─ C
├─ B ├─ D
├─ C └─ E
├─ D
└─ E

a) b)

Figure 3.9. A contiguous sequence replaced with the number of its occurrences. Taken from [Hamou-
Lhadj and Lethbridge 2002]

Hamou-Lhadj and Lethbridge [2002] presents also an algorithm to summarize non-

16

3.1. Summarization

overlapping sequences in traces as shown in Figure 3.9. The algorithm uses a user specified
threshold d for the maximum size of a repeated sequence. If n is the size of the trace, the
algorithm takes O(dn) time. Assuming that d is substantially smaller than n, the algorithm
runs in linear time. To sum up also nested sequences, the algorithm only needs to be
executed multiple times, once for each nesting level. Since the nesting levels of sequences
should also be substantially smaller than n, the algorithm further runs in linear time.
Figure 3.10 shows an example trace and the results after passing one and two times the
algorithm.

Trace Pass 1 Pass 2

A A A
│ │ │
├─ B ├─ B └─ Sequence (2)
├─ C ├─ C ├─ B
├─ D ├─ D ├─ C
│ ├─ E │ └─ Sequence (2) └─ D
│ ├─ F │ ├─ E └─Sequence (2)
│ ├─ E │ └─ F ├─ E
│ └─ F ├─ B └─ F
├─ B ├─ C
├─ C └─ D
└─ D └─ Sequence (2)
├─ E ├─ E
├─ F └─ F
├─ E
└─ F

Figure 3.10. An example of detection and replacement of nested sequences. Taken from [Hamou-
Lhadj and Lethbridge 2002]

The algorithm does not recognize recursions and also not all loops. Hamou-Lhadj and
Lethbridge [2002] uses this technique only as preprocessing for their second compression
technique, the common subexpression algorithm. This algorithm transforms a rooted tree
to an acyclic graph, so that all the isomorphic subtrees are represented only once. This
will remove all redundancies. Reiss and Renieris [2001] present an algorithm to transform
a dynamic call tree to a directed acyclic graph. Figure 3.11 shows an example of a tree
representation of a trace and its corresponding directed acyclic graph. In this example the
number of nodes is reduced from 9 to 5, and the number of edges from 8 to 6.

3.1.3 Object and Event Clustering

Gargiulo and Mancoridis [2001] describe their tool Gadget for extracting the structure of
Java programs. Since a static analysis of the source code is often not sufficient to determine
the structure of object-oriented programs, Gadget collects runtime data of the examined
program. Filtering and abstraction techniques help to select classes of interest. The resulting
traces are shown in a dynamic dependency graph. To make the large dynamic structures

17

3. Trace Reduction Techniques

A

A

CB

E

C

CB

A

1 2

3 2 2 1

3 4

5

A E A C B
1 2 3 4 5

Figure 3.11. An example of a tree representation of a trace and the corresponding directed acyclic
graph based on [Hamou-Lhadj and Lethbridge 2002]

more modular and easier to understand, a clustering tool, called Bunch, is used to partition
the graph.

Figure 3.12 shows a dependency graph of a file system as an example of an input for
Bunch. Figure 3.13 shows the corresponding output, an automatically produced high-level
system organization of the same file system.

Bunch is a clustering tool, that decomposes the structure of software systems into
meaningful subsystems [Mancoridis et al. 1999]. A software system is seen as a graph of
modules and dependencies. This graph is partitioned so that modules within a partition
have many dependencies, and modules in different partitions as few dependencies as
possible. To find a good partition, clustering algorithms based on hill-climbing optimization
techniques and genetic algorithms are used [Mancoridis et al. 1998].

This technique doesn’t reduce the trace. However, based on this partitioning, other
techniques like Package Filtering can be used.

3.1.4 Monotone Subsequence Summarization

Kuhn and Greevy [2006] describe a technique to present traces as signals in time and
reduce the size of the visualization through the monotone subsequence summarization.

Figure 3.14 illustrates the procedure. In the upper part an example trace is shown. In
the middle part this trace is divided into its monotone subsequences. That is, the trace is
divided between each two consecutive events, where the nesting level decreases. In the
lower part, each subsequence is compressed into one method-call-chain. As can be seen,
this representation is space saving.

For a larger reduction the trace can be divided between each two consecutive events,
where the nesting level decreases by a given threshold.

Cornelissen et al. [2008] extended this approach to a reduction technique by representing
each subsequence only by its first event. Figure 3.15 shows the result of this extension on
the previous example.

18

3.2. Metrics-Based Filtering

pwdgrp.c

pwdgrp.h

oosfs.h

fids.h

oosfs.c

nosfs.h

nos.h

sysd.h

fids.c fork.c

fcall.c

log.c

oosfid.c

nosfs.c

serv.c

errlst.c

Figure 3.12. Example of module dependency graph of a file system taken from [Mancoridis et al.
1998]

3.2 Metrics-Based Filtering

Metrics-based filtering is centered around the use of certain metrics. The four investi-
gated techniques in this category are Frequency Spectrum Analysis, Utilityhood Measure,
Webmining and Stack Depth Limitation.

3.2.1 Frequency Spectrum Analysis

A program profile is a table with program entities and their total frequencies in a program
execution. The frequency spectrum analysis is to analyze this profile with respect to the
absolute frequencies and equal frequencies. Ball [1999] calls three tasks in which frequency
spectrum analysis is useful.

19

3. Trace Reduction Techniques

1.1

0.2

0.4
1.2

0.3

0.1

pwdgrp.c

pwdgrp.h

oosfs.h

fids.h

oosfs.c

nosfs.h

nos.h

sysd.h

fids.cfork.c

fcall.c

log.c

oosfid.c

nosfs.c

serv.cerrlst.c

A u t o m a t i c a l l y P r o d u c e d H i g h - L e v e l S y s t e m O r g a n i z a t i o n o f t h e S a m e F i l e S y s t e m

Figure 3.13. Example of an automatically produced high-level system organization of the same file
system taken from [Mancoridis et al. 1998]

The first task is to partition the program by levels of abstraction. Methods implementing
a high-level architectural pattern will be called fewer times, than methods implementing
the guts of an algorithm. A high frequency indicates, that a method is involved in a
repetitive computation.

The second task is to find related computations. If two methods are called with the
same frequency, it is likely that they are related. Reasons for the same frequency could be,
that one method invokes the other, or that they are called together. Methods with the same
frequency form so-called frequency clusters.

The third task is to find computations related to specific attributes of a program’s
input or output. If you know something about the input or the output, like the size, you
can compare the frequencies of the methods with such additional information. With this
technique one can identify the parts of a program responsible for input or output.

Zaidman and Demeyer [2004] describe a heuristical clustering process based on the
execution frequency analysis of Ball [1999]. They start with removing irrelevant events from
the trace, like low-level method calls. In the next step the events are counted and every
event gets annotated with its absolute frequency. With these frequencies a dissimilarity
measure is computed for every n consecutive events. Zaidman and Demeyer [2004] uses
the Euclidian distance

d =

√√√√w�1

∑
j=1

(f j�1 � f j)2

with window size w and events f j. The last step is to identify near-zero regions and

20

3.2. Metrics-Based Filtering

A
B
C

C
C

B
C

C
C

C
C

C
C C

C C
C

D
E

F
G

A
B
C

C
C

B
C

C
C

C
C

C
C C

C C
C

D
E

F
G

A B
C

C

D F saved space

Figure 3.14. Example of monotone subsequence summarization based on [Kuhn and Greevy 2006]

A
B
C C

D F

Figure 3.15. Example of Cornelissen’s monotone subsequence summarization

21

3. Trace Reduction Techniques

frequency patterns.

3.2.2 Utilityhood Measure

To recover high-level behavioral models, Hamou-Lhadj et al. [2005] describe how to identify
utility components, to separate them from the high-level components. Hamou-Lhadj et al.
[2005] define a utility as: "Any element of a program designed for the convenience of the designer
and implementer and intended to be accessed from multiple places within a certain scope of the
program."

To detect the utilities, a dependency graph is built from static analysis. Figure 3.16
shows an example with 7 components and a few dependencies between each other. Let
S be the set of components considered in the analysis, and IN be the subset of S, that
consists of the components that depend on a given component C. The utilityhood metric,
U, of the component C is then defined as:

U =
|IN|
|S|� 1

U is between 0 and 1, where U = 0 means that no other component calls C, and U = 1
means that every other component calls C. The last case indicates, that C is an utility
component.

C1

C2 C4

C5

C6

C7

C3

Figure 3.16. Example of a dependency graph taken from [Hamou-Lhadj et al. 2005]

Ui is computed for each Ci, with i from 1 to 7. To make the differences between the
components significantly, the mean µ and standard deviation σ is calculated from U and
thus determines the so-called z-score:

Z =
U� µ

σ
, µ =

1
n

n

∑
i=1

Ui , σ =

√
1

n� 1

n

∑
i=1

(Ui � µ)

22

3.2. Metrics-Based Filtering

Table 3.1 shows the values for |IN|, U and Z for the above example, and the mean and
standard deviation for U and Z. After these values are determined, a threshold D is set, so
that every component Ci with Ui ¡ D is identified as utility.

Table 3.1. Example of applying fan-in analysis taken from [Hamou-Lhadj et al. 2005]

|IN| U Z
C1 0 0.00 -1.00
C2 6 1.00 2.00
C3 1 0.17 -0.50
C4 1 0.17 -0.50
C5 3 0.50 0.50
C6 2 0.33 0.00
C7 1 0.17 -0.50

MEAN 0.33 0
STDEV 0.33 1

After identifying the utility components, the methods within these components can be
removed from the traces to reduce the size and make them easier to understand.

3.2.3 Webmining

Zaidman et al. [2005] describes a technique for an easier system comprehension, based on
a heuristic to find key classes. The goal is to provide a list of key classes or a visualization
of these key classes and their immediately collaborating classes. The software engineer can
then use these key classes as starting point for system comprehension.

The technique is split in four steps. The first step is to define an execution scenario,
which at least contains the part of the system which is of interest. The next step is a
non-selective profiling, which means that all method calls during the execution of the
scenario are logged. The resulting traces can become very large, even for small software
systems and precisely defined execution scenarios. The third step is to create a compacted
call graph from these traces and compute the hubiness and authority for each node of the
graph. This process is based on a webmining-algorithm called HITS, which is explained
below. The last step is to interpret the results and identify the key classes.

Figure 3.17 shows an example of a directed graph with five nodes and seven directed
edges. Such graphs are the input of the webmining-algorithm described below.

Kleinberg [1999] introduces the concepts of hub and authority. An authority is a page that
contains important information. A hub is a page that points to good authorities. Therefore,
a good authority is pointed to by good hubs. Based on this relation, the HITS algorithm has
been developed.

23

3. Trace Reduction Techniques

1 2

4

3

5

Figure 3.17. Example web-graph taken from [Zaidman et al. 2005]

For every node Ni two values are computed, the hubiness hi and the authority ai:

hi = ∑
iÑj

w[i, j] � aj aj = ∑
iÑj

w[i, j] � hi

where i Ñ j denotes that there is an edge from i to j and w[i, j] is the weight of the edge
i Ñ j. In the example graph illustrated in Figure 3.17, the weights are all 1. For this graph
the hubiness and authority values converge to the following:

h1 = 64 h2 = 48 h3 = 0 h4 = 100 h5 = 100
a1 = 0 a2 = 100 a3 = 94 a4 = 24 a5 = 0

From these values it can be concluded, that the nodes N4 and N5 are good hubs and the
nodes N2 and N3 are good authorities. While this webmining-algorithm uses only the links
between webpages and not their content, it can be used on any directed graph to identify
hubs and authorities. In our domain hubs correspond to classes with coordinating tasks and
authorities correspond to utilities, as they are used by many other classes. Hence, the hubs
are the key classes.

A reduction with this technique is possible through slicing, i.e., removing everything
from the trace except the method calls from key classes and their immediately collaborating
classes.

3.2.4 Stack Depth Limitation

Cornelissen et al. [2007] describes two variants of stack depth limitation. The first variant is
a maximum stack depth limitation, where all events that occur above a given stack depth
threshold dmax are omitted. This will remove the detailed utility methods. The second
variant is a minimum stack depth limitation, where all events below a given threshold
dmin are omitted. This will remove high-level events. This variant of the technique can split
the trace into smaller ones. Figure 3.18 shows an example trace with six objects and seven
nested method calls, hence the depth of this trace is seven. Figure 3.19 shows on the left
side the result for filtering this trace with a maximum stack depth limitation dmax = 4, and
on the right side the filtered trace with a minimum stack depth limitation dmin = 3.

24

3.3. Language-Based Filtering

LifeLine6LifeLine5LifeLine4LifeLine3LifeLine2LifeLine

7
6

5

4

3

2
1

Figure 3.18. Example trace with depth seven

LifeLine4LifeLine3LifeLine2LifeLine

4

3

2
1

LifeLine6LifeLine5LifeLine4LifeLine3

5
4

3

2

1

Figure 3.19. Filtered trace with threshold dmax = 4 on the left and dmin = 3 on the right

3.3 Language-Based Filtering

Language-based filtering techniques are targeted at the omission of constructs such as
getters and setters, private methods, and so forth. The four investigated techniques in this
category are Package Filtering, Visibility Specifiers, Getters and Setters and Constructor
Hiding.

Figure 3.20 shows a class diagram with five classes grouped in two packages. The
package application.service includes the class ServiceClazzA, which provides a public method
start, and the class ServiceClazzB, which provides the public method computeXY. The package
application.common includes the class CommonClazz with an attribute rate with public getter
and setter methods, a public constructor, and another public and two private methods.
Furthermore, the package includes two entity classes each with a public constructor, an
attribute and public getter and setter for this attribute.

25

3. Trace Reduction Techniques

application.service

application.common

-rate : double

+CommonClazz()
-initialize() : void
-calculate() : double
+getRate() : double
+setRate(rate : double) : void
+complexOp() : double

CommonClazz

+start() : void

ServiceClazzA

+computeXY() : void

ServiceClazzB

-count : int

+EntityA()
+getCount() : int
+setCount(count : int) : void

EntityA

-prize : double

+EntityB()
+getPrize() : double
+setPrize(prize : double) : void

EntityB

Figure 3.20. Class diagram of an example application

Figure 3.21 shows a possible execution trace as sequence diagram, build on the classes of
diagram 3.20. The trace can be divided in two regions. The first region starts with the start
method of the class ServiceClazzA and describes an initialization phase with constructor
calls. The second region starts with the computeXY method of the class ServiceClassB and
describes an ordinary control flow with public and private methods and getters and setters.
Based on this trace, the language based filtering techniques are described in the following.

3.3.1 Package Filtering

Package filtering means selecting the packages to be included in the analysis [Gargiulo and
Mancoridis 2001]. With this technique one can restrict the runtime data of a program
on a desired feature. Figure 3.22 shows the trace from Figure 3.21 restricted to the
package application.service. The most methods are omitted here, only the methods start and
computeXY are left. The trace was reduced from 12 to 2 events.

26

3.3. Language-Based Filtering

ServiceClazzB

EntityB

CommonClazz

EntityA

Actor

ServiceClazzA

12: setRate()

11: getPrize()

10: getCount()

9: calculate()

8: getRate()

7: complexOP()

6: computeXY()

5: EntityB()

4: EntityA()

3: initialize()

2: CommonClazz()
1: start()

void
double

double

int

void

Figure 3.21. Example of an execution trace

3.3.2 Visibility Specifiers

This technique removes method calls with a specific visibility, like private or protected
methods [Cornelissen et al. 2008]. Figure 3.23 shows the example trace from Figure 3.21,
where the private methods initialize and calculate are omitted. The trace was reduced from
12 to 10 events.

27

3. Trace Reduction Techniques

ServiceClazzBServiceClazzA

Actor

void

void

2: computeXY()

1: start()

Figure 3.22. Example of package filtering

EntityB

ServiceClazzB

EntityA

CommonClazz

ServiceClazzA

Actor

void
double

double

int

void

9: getPrize()

10: setRate()

4: EntityB()

6: complexOP()

5: computeXY()

8: getCount()

3: EntityA()

7: getRate()

2: CommonClazz()
1: start()

Figure 3.23. Example of visibility specifiers filtering

28

3.3. Language-Based Filtering

3.3.3 Getters and Setters

This technique removes the getter and setter methods of the trace. According to Cornelissen
et al. [2007] the omission of getters and setters can be applied without loss of essential
information. Figure 3.24 shows the example trace without getters and setters. The trace
was reduced from 12 to 8 events.

ServiceClazzB

EntityB

EntityA

CommonClazz

ServiceClazzA

Actor

void
double

void

7: complexOP()

6: computeXY()

5: EntityB()

4: EntityA()

8: calculate()

3: initialize()

2: CommonClazz()
1: start()

Figure 3.24. Example of getters and setters filtering

3.3.4 Constructor Hiding

This technique removes the constructors and their control flows [Cornelissen et al. 2008].
Such implementation details are not essential for program comprehension [Hamou-Lhadj
and Lethbridge 2006]. A refinement of this technique is a selective constructor hiding,
where only irrelevant constructors are omitted, like those pertaining to objects that are
never used. Figure 3.25 shows this technique applied to the example trace from Figure 3.21.
The constructors and their control flows are omitted and the trace was reduced from 12 to
9 events.

29

3. Trace Reduction Techniques

ServiceClazzB EntityBEntityACommonClazzServiceClazzA

Actor

void
double

double

int

void

2: initialize()

4: complexOP()

3: computeXY()

8: getPrize()

7: getCount()

9: setRate()

6: calculate()

5: getRate()

1: start()

Figure 3.25. Example of constructor hiding

3.4 Ad Hoc

Ad hoc approaches concern the use of ’black-box’ techniques that do not consider the trace
contents. The two investigated techniques in this category are Sampling and Fragment
Selection.

3.4.1 Sampling

Chan et al. [2003] describe six sampling variants, three memory and three control flow
variants. The first one for memory events, like object allocation or deallocation, is to take
every n-th memory event. The second one is to take the first memory event that occurs
during or after every n-th timestamp. The third one is to do the first or the second one, and
snapshot the call stack before each sampled memory event. Consecutive snapshots are then
compared to determine which methods have been entered or exited, thereby providing
control-flow context for the memory events. For control-flow events, the first variant is to

30

3.5. Own Approach

take every n-th control-flow event, like method entry or method exit. The second variant is
to take a snapshot of the call stack every n-th event, and compare consecutive snapshots to
determine which methods have been entered or exited. The third variant is the same as
before, except that the snapshots are taken every n-th timestamp. Cornelissen et al. [2008]
uses the first of the control flow variants for their experiments.

3.4.2 Fragment Selection

The goal of fragment selection is to locate the code relevant to a particular feature [Wong
et al. 1999]. Fragments of a trace can be selected in various ways. Vasconcelos et al.
[2005] use use-case scenarios and message depth level to slice a trace. Hamou-Lhadj and
Lethbridge [2004] mention a slicing technique where all activation paths of an object or a
method are kept, while the rest of the trace is removed.

3.5 Own Approach

Since the landscape model of ExplorViz is not using the complete information of a trace,
we developed a reduction technique for ExplorViz, where only the necessary informations
are preserved. This technique, which we call Tree Summarization, is described in this section.

3.5.1 Tree Summarization

On the lowest, most detailed level, ExplorViz shows the involved classes and the method
calls as connections between them. To extract these connections, we consider a trace as
a tree, i.e., as a special graph. Now we extract each occurring edge, which is a pair of a
caller and a callee. Edges that occur more than once are combined, through merging the
callee statistics. From this collection of edges a new trace is built. Since inner class method
calls are not shown, edges with caller equal to callee are removed. Figure 3.26 shows an
example trace on the left, the resulting extracted edges in the middle, and the reduced trace
on the right. This technique covers the criteria Identity, Object Identity, Message Structure,
Repetition, Associativity and Commutativity from Execution Pattern Notation.

31

3. Trace Reduction Techniques

A
B

C
C

C

C
B

C
C

C
C

C
C
C

C
C

C
D

E
F
G

A
B

C
D

E
F
G

A
BA
CB
DA
ED
FA
GF

BA

Figure 3.26. Example of an execution trace and its reduction through tree summarization.

32

Chapter 4

Assessment Criteria for Trace Reduction
Techniques in Respect to Online Trace

Visualization

In this chapter, we describe four assessment criteria for trace reduction techniques with
respect to online trace visualization. The four criteria are reduction rate, information
preservation, parallelizability and performance.

4.1 Reduction Rate

The reduction rate is the percentage by which the initial trace has been reduced. The size
of a trace is measured by the number of records it includes. Let N be the size of the trace
before filtering and M the size of the trace after filtering. The reduction rate R is then
defined as

R = 1�
M
N

(4.1)

Since M should be smaller than N, R is between 0 and 1, where 0 is no reduction and 1 is
complete reduction, which means nothing is left.

4.2 Information Preservation

Information preservation is the percentage to which information from the original trace
are preserved after reduction. To take account to the context of online trace visualization
with ExplorViz, we introduce weightings for different information.

A trace T consists of a list of records R1, R2, . . . , Rn. Since the records have different
importance for the online trace visualization, we define βi as a weighting of the importance
of Ri. Each β is between 0 and 1, where 1 means very important and 0 means unimportant.
A record Ri consists of a list of attributes Ai1, Ai2 . . . Ai10 explained in Section 2.1. The
attributes of a record also differ in their importance, so we define αij as a weighting of
the importance of Aij. As shown in Table 4.1a, we distinguish between important and
less important attributes. An important attribute has a 10 times higher weighting than an
unimportant. The traceId and the orderIndex are only necessary for the reconstruction of

33

4. Assessment Criteria for Trace Reduction Techniques in Respect to Online Trace
Visualization

the trace. The timestamp is necessary for calculating the response times. This calculation is
done during the reconstruction. Since the reduction takes place after the reconstruction,
these three attributes are less important. The objectIds are collected during the reduction in
the objectSet. Hence, the objectId also is less important. The other attributes are important
because they are necessary for the visualization. To simplify the computation of the

information value, we set
11

∑
j=1

αij = 1, if all attributes are present.

For our monitoring records(see Figure 2.1) the weightings are listed in Table 4.1b. For
getters and setters we set β = 0.2 because they do not significantly contribute to program
comprehension and furthermore generally do not include complex calculations. For non
public methods we set β = 0.3 because in most cases they only cover implementation
details. For methods where the caller is equal to the callee, i.e., a method call within a
class, we set β = 0.1 because such calls are not visualized in ExplorViz. For constructors
we set β = 0.5 because object instantiation is usually not that important for program
comprehension. For all other methods we set β = 1.0. The information I of a trace is then
measured as follows:

I =
n

∑
i=1

βi � count �
11

∑
j=1

αij (4.2)

Let Ibe f ore be the information of the original trace and Ia f ter the information of the reduced
trace. The information preservation IP is then computed by

IP =
Ia f ter

Ibe f ore
(4.3)

Table 4.1. Overview of the weightings of the attributes and the event types

Index Name Weighting
1 timestamp less important
2 traceId less important
3 orderIndex less important
4 hostname important
5 application important
6 objectId less important
7 operationSignature important
8 count important
9 sumResponsetime important

10 sqaredSum important
11 objectSet important
(a) Indexes and weightings of the attributes

Type Weighting
caller = callee 0.1
getter & setter 0.2
non-public 0.3
constructor 0.5
rest 1.0

(b) Weightings of the event types

34

4.3. Parallelizability

4.3 Parallelizability

Parallelizability is a measure of the ability to parallelize a technique. It is not only
dependent on the reduction technique but also on the data structure of the trace. Therefore,
we divide the trace into subtraces. In our context, a subtrace is a part of a trace forming
also a valid trace, i.e., for each BeforeRecord, the corresponding AfterRecord is included.
In addition the caller method of the first event should be included. Figure 4.1 shows an
example trace and a possible division into seven subtraces.

time

ca
lls
ta
ck

1 2 3 4 5 6 4 7 3 1

Figure 4.1. Example trace divided in subtraces

Since the division of the trace can influence the reduction rate, we assign an estimated
value between 0 and 1 as a measure for parallelizability. 0 means a parallelization is
impossible. 1 means a parallelization is possible and won’t have an influence on the
reduction rate. A value between 0 and 1 means a parallelization is possible but the stronger
the effect on the reduction rate, the lower the value.

4.4 Performance

To measure the performance of a reduction technique in the context of ExplorViz, we define
performance as the ration of the processing time without reduction to the processing time
using a reduction. Therefore , a value greater than 1 represents an acceleration, while a
value less than 1 describes a slowdown.

35

Chapter 5

Theoretical Evaluation of Trace
Reduction Techniques

In this chapter the trace reduction techniques from Chapter 3 are evaluated based on the
criteria from Chapter 4 and an example trace from PubFlow. Table 5.1 gives an overview
of our theoretical evaluation results. For each trace reduction technique the reduction
rate, the information preservation, and the parallelizability is indicated. The order is not
judgmental.

Table 5.1. Overview of our theoretical evaluation results

Techniques Reduction Rate Inf. Preservation Parallelizability
Iteration 0.05 1.00 0.7
Associativity 0.40 0.87 1.0
Pattern Summarization 0.37 0.94 0.5
Object and Event Clustering 0 1 0
Monotone Subsequence Sum. 0.78 0.28 1.0
Frequency Spectrum Analysis 0 1 0
Utilityhood Measure 0 1 0
Webmining 0 1 0
Stack Depth Limitation 0.36 0.65 0.0
Package Filtering 0.59 0.58 1.0
Visibility Specifiers 0.51 0.69 1.0
Getters and Setters 0.42 0.84 1.0
Constructor Hiding 0.11 0.90 1.0
Sampling 0.80 0.25 1.0
Fragment Selection 0.68 0.12 1.0
Tree Summarization 0.93 0.99 0.9

Before reducing the trace, all attributes are present and the count attribute is always 1.

37

5. Theoretical Evaluation of Trace Reduction Techniques

The computation of the information value simplifies to

I =
n

∑
i=1

βi � count �
11

∑
j=1

αij =
n

∑
i=1

βi

The example trace consists of N = 3124 events. For 1249 of these events the caller and callee
classes are the same. 631 of the remaining 1875 events are getters and setters. 667 of the
remaining 1244 events are not public. The remaining 577 events include 112 constructors.
This leads to the following information value for this trace:

Ibe f ore = 1249 � 0.1 + 631 � 0.2 + 667 � 0.3 + 112 � 0.5 + 465 � 972.2

This value is used for the information preservation calculation in each technique.

5.1 Summarization

The eight criteria for equivalent patterns from Execution Pattern Notation lead to a few
reduction techniques. The criteria Identity, Class Identity, Message Structure, Recursion, and
Commutativity are covered by Pattern Summarization and Tree Summarization. Depth-
Limiting is treated in Stack Depth Limitation. Polymorphism is not covered, since the
necessary information for this purpose are not included in the trace data. Instead of
Execution Pattern Notation, Iteration, the second part of Repetition, and Associativity are
evaluated in this section. Furthermore, the techniques pattern summarization, object and
event clustering, and monotone subsequence summarization are evaluated in this section.

5.1.1 Iteration

For this technique we only consider simple iterations, i.e., directly consecutive methods
with the same signature.

Reduction Rate

Applying this technique to the example trace, 193 of the 3124 events are summed up to
52 events. Hence, the reduced trace consists of M = 3124� 193 + 52 = 2983 events. This
leads to the following reduction rate:

R = 1�
M
N

= 1�
2983
3124

� 0.05

Information Preservation

145 events, where the caller and the callee classes are the same, are summed up to 35
events. 28 getter and setter methods are summed up to 10 events. 12 non-public methods

38

5.1. Summarization

are summed up to 3 events. 2 constructors are summed up to 1. 6 uncategorized methods
are summed up to 3 events.

When summarizing methods with the same signature within a trace, the three attributes
timestamp, orderIndex, and objectId are lost. Since these attributes are less important, it is

11

∑
j=1

αij =
71
74

The information value of the reduced trace is then calculated as follows:

Ia f ter =(1104 + 145 �
71
74

) � 0.1 + (603 + 28 �
71
74

) � 0.2 + (655 + 12 �
71
74

) � 0.3 (5.1)

+ (110 + 2 �
71
74

) � 0.5 + (459 + 6 �
71
74

) � 968.2 (5.2)

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

968.2
972.2

� 1.00

Parallelizability

We rate the parallelizability with 0.7 because iterations inside a subtrace can be summarized,
so a parallelization is possible. However, there is a possibility that iterations are separated,
when dividing the trace. Hence, the smaller the subtraces, the lower the reduction rate of
this technique.

5.1.2 Associativity

This technique removes all method calls, which are called within a class, i.e., where the
caller class is equal to the callee class.

Reduction Rate

Applying this technique to the example trace, 1249 method and constructor calls are
removed. Hence, the reduced trace consists of M = 3124� 1249 = 1875 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
1875
3124

� 0.40

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated

39

5. Theoretical Evaluation of Trace Reduction Techniques

as follows:

Ia f ter = 0 � 0.1 + 631 � 0.2 + 667 � 0.3 + 112 � 0.5 + 465 � 847.3

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

847.3
972.2

� 0.87

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation.

5.1.3 Pattern Summarization

This technique has two parameters, distance and nesting level, which can affect the degree
of reduction. The larger the both values, the greater the reduction can be. However, both
parameters are multipliers for the running time, i.e. the distance is doubled, the running
time is doubled.

Table 5.2 shows rates of reduction and information preservation for different distances
and nesting levels applied to the example trace. Distance 310 and nesting level 3 leads in
our example trace to the highest reduction. This distance corresponds to about 5% of the
trace length. As seen in the table, shorter distances already provide good results. Distance
and nesting level can thus be kept constant and small, which is important for the running
time of the algorithm.

Reduction Rate

Applying this technique to the example trace, 1558 of the 3124 events are summed up to
395 events. Hence, the reduced trace consists of M = 3124� 1558 + 395 = 1961 events.
This leads to the following reduction rate:

R = 1�
M
N

= 1�
1961
3124

� 0.37

Information Preservation

713 events, where the caller and the callee classes are the same, are summed up to 150
events. 297 getter and setter methods are summed up to 96 events. 353 non-public methods
are summed up to 89 events. 42 constructors are summed up to 12. 153 uncategorized
methods are summed up to 48 events.

40

5.1. Summarization

Table 5.2. Information preservation and reduction rate for the example trace using pattern
summarization with different values for distance and nesting level

Distance Nesting Level Reduction Rate Inf. Preservation
310 3 0.37 0.94
310 2 0.37 0.94
310 1 0.34 0.94
110 3 0.23 0.95
110 2 0.22 0.95
110 1 0.19 0.95
40 2 0.14 0.96
40 1 0.13 0.97
20 2 0.11 0.97
20 1 0.10 0.97
10 2 0.09 0.98
10 1 0.09 0.98

Such as in the technique Iteration methods with the same signature within a trace are
summarized. Hence, here also holds

11

∑
j=1

αij =
71
74

The information value of the reduced trace is then calculated as follows:

Ia f ter =(536 + 713 �
71
74

) � 0.1 + (334 + 297 �
71
74

) � 0.2 + (314 + 353 �
71
74

) � 0.3

+ (70 + 42 �
71
74

) � 0.5 + (312 + 153 �
71
74

) � 913.8

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

913.8
972.2

� 0.94

Parallelizability

We rate the parallelizability with 0.5 because patterns inside a subtrace can be summarized,
so a parallelization is possible. However, there is a possibility that patterns or their
repetitions are separated, when dividing the trace. Hence, the smaller the subtraces, the
lower the reduction rate of this technique. Especially, because the points at which the trace
can be divided into subtraces are also possible points for repetitions. For example the
subtraces 5 and 6 of the example in Figure 4.1 could match the same pattern.

41

5. Theoretical Evaluation of Trace Reduction Techniques

5.1.4 Object and Event Clustering

Object and event clustering is no reduction technique, so we rate the reduction rate
with R = 0 and the information preservation with IP = 1. Furthermore, we rate the
parallelizability with 0 because there is nothing to parallelize.

5.1.5 Monotone Subsequence Summarization

Reduction Rate

Applying this technique to the example trace, 2429 method and constructor calls are
removed. Hence, the reduced trace consists of M = 3124� 2429 = 695 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
695
3124

� 0.78

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated
as follows:

Ia f ter = 105 � 0.1 + 264 � 0.2 + 138 � 0.3 + 33 � 0.5 + 155 � 276.2

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

276.2
972.2

� 0.28

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation. Whether the first record must be removed, can be determined via
its index and the index of the caller.

5.2 Metrics-Based Filtering

In this section the four techniques frequency spectrum analysis, utilityhood measure,
webmining, and stack depth limitation are evaluated.

5.2.1 Frequency Spectrum Analysis

Frequency spectrum analysis is no reduction technique, so we rate the reduction rate
with R = 0 and the information preservation with IP = 1. Furthermore, we rate the

42

5.2. Metrics-Based Filtering

parallelizability with 0 because there is nothing to parallelize.

5.2.2 Utilityhood Measure

Utilityhood Measure is no reduction technique, so we rate the reduction rate with R = 0
and the information preservation with IP = 1. Furthermore, we rate the parallelizability
with 0 because there is nothing to parallelize.

5.2.3 Webmining

Webmining is no reduction technique, so we rate the reduction rate with R = 0 and the
information preservation with IP = 1. Furthermore, we rate the parallelizability with 0
because there is nothing to parallelize.

5.2.4 Stack Depth Limitation

We choose the maximum stack depth limitation variant for this evaluation. The example
trace has a maximum stack depth of 22. Table 5.3 shows the reduction rate and the
information preservation for different thresholds. We choose a stack depth of 11 for the
evaluation because the information preservation of the reduced trace is relatively high,
while the size is significantly reduced.

Table 5.3. Information preservation and reduction rate for the example trace using stack
depth limitation with different values for the stack depth

Stack Depth Reduction Rate Inf. Preservation
5 0.99 0.02
8 0.85 0.15

10 0.61 0.45
11 0.36 0.65
12 0.23 0.75
14 0.09 0.92
17 0.04 0.98

Reduction Rate

Applying this technique to the example trace, 1139 method and constructor calls are
removed. Hence, the reduced trace consists of M = 3124� 1139 = 1985 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
1985
3124

� 0.36

43

5. Theoretical Evaluation of Trace Reduction Techniques

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated
as follows:

Ia f ter = 673 � 0.1 + 473 � 0.2 + 468 � 0.3 + 87 � 0.5 + 284 � 629.8

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

629.8
972.2

� 0.65

Parallelizability

We rate the parallelizability with 0.0 because this technique needs the stack depth of the
original trace, which is not detectable in a subtrace. It is imaginable to enrich the subtraces
with this information, this would lead to a parallelizability value of 1.0.

5.3 Language-Based Filtering

In this section the four techniques package filtering, visibility specifiers, getters and setters,
and constructor hiding are evaluated.

5.3.1 Package Filtering

Table 5.4 shows the reduction rate and the information preservation for almost each package
in the example trace. It is difficult to decide automatically which package is important and
which is not. For the evaluation we choose the package org.apache.xerces.dom because it has
the largest sum of reduction rate and information preservation in this example.

Reduction Rate

Applying this technique to the example trace, 1832 method and constructor calls are
removed. Hence, the reduced trace consists of M = 3124� 1832 = 1292 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
1292
3124

� 0.59

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated

44

5.3. Language-Based Filtering

Table 5.4. Information preservation and reduction rate for each package in the example trace

Packagenames Reduction Rate Inf. Preservation
de.pubflow 0.00 0.99
de.pubflow.common.persistence 0.00 1.00
de.pubflow.common.properties 0.00 1.00
org 1.00 0.00
org.apache 0.82 0.18
org.apache.log4j 0.18 0.71
org.apache.log4j.config 0.01 1.00
org.apache.log4j.helpers 0.08 0.85
org.apache.log4j.or 0.00 1.00
org.apache.log4j.spi 0.06 0.90
org.apache.xerces 0.65 0.47
org.apache.xerces.dom 0.59 0.58
org.apache.xerces.impl.dtd 0.04 0.95
org.apache.xerces.impl.dtd.models 0.04 0.95
org.apache.xerces.jaxp 0.00 1.00
org.apache.xerces.parsers 0.02 0.94
org.hsqldb 0.16 0.84
org.hsqldb.lib 0.01 0.97
org.hsqldb.lib.java 0.00 1.00
org.hsqldb.map 0.09 0.90
org.hsqldb.persist 0.01 0.99
org.hsqldb.resources 0.00 1.00
org.hsqldb.server 0.04 0.98
org.postgresql 0.00 1.00
org.slf4j 0.02 0.98
org.slf4j.helpers 0.00 1.00
org.slf4j.impl 0.01 0.99

as follows:

Ia f ter = 379 � 0.1 + 316 � 0.2 + 130 � 0.3 + 92 � 0.5 + 375 � 561.1

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

561.1
972.2

� 0.58

45

5. Theoretical Evaluation of Trace Reduction Techniques

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation.

5.3.2 Visibility Specifiers

Table 5.5 shows the reduction rate and the information preservation of the reduced trace,
after removing one of the four visibility modifiers private, protected, package, or public, or a
combination of the first three, named nonpublic. For the evaluation we choose the last one
because we regard public method calls as a more important part of the trace than the non
public method calls.

Table 5.5. Information preservation and reduction rate for each visibility modifier of the example
trace

Removed Visibility Reduction Rate Inf. Preservation
private 0.17 0.94
protected 0.14 0.91
package 0.19 0.84
public 0.49 0.38
nonpublic 0.51 0.69

Reduction Rate

Applying this technique to the example trace, 1602 method and constructor calls are
removed. Hence, the reduced trace consists of M = 3124� 1602 = 1522 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
1522
3124

� 0.51

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated
as follows:

Ia f ter = 366 � 0.1 + 578 � 0.2 + 0 � 0.3 + 112 � 0.5 + 466 � 674.2

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

674.2
972.2

� 0.69

46

5.3. Language-Based Filtering

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation.

5.3.3 Getters and Setters

Reduction Rate

Applying this technique to the example trace, the 1299 getter and setter method calls are
removed. Hence, the reduced trace consists of M = 3124� 1299 = 1825 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
1825
3124

� 0.42

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated
as follows:

Ia f ter = 424 � 0.1 + 0 � 0.2 + 811 � 0.3 + 114 � 0.5 + 476 � 818.7

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

818.7
972.2

� 0.84

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation.

5.3.4 Constructor Hiding

Reduction Rate

Applying this technique to the example trace, the 340 constructor calls are removed. Hence,
the reduced trace consists of M = 3124� 340 = 2784 events. This leads to the following
reduction rate:

R = 1�
M
N

= 1�
2784
3124

� 0.11

47

5. Theoretical Evaluation of Trace Reduction Techniques

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated
as follows:

Ia f ter = 1190 � 0.1 + 631 � 0.2 + 448 � 0.3 + 0 � 0.5 + 495 � 880.6

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

880.6
972.2

� 0.91

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation.

5.4 Ad Hoc

In this section the two techniques sampling and fragment selection are evaluated.

5.4.1 Sampling

Like Cornelissen et al. [2008], we choose the simplest of the described variants, and take
every n-th control flow event. Table 5.6 shows the reduction rate and the information
preservation for the example trace for a few sampling distances.

Table 5.6. Information preservation and reduction rate for a few sampling distances

Dinstance Reduction Rate Inf. Preservation
5 0.80 0.25

10 0.90 0.12
20 0.95 0.06

100 0.99 0.01

Reduction Rate

Applying this technique to the example trace, 2499 method and constructor calls are
removed. Hence, the reduced trace consists of M = 3124� 2499 = 625 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
625
3124

� 0.80

48

5.4. Ad Hoc

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated
as follows:

Ia f ter = 44 � 0.1 + 211 � 0.2 + 237 � 0.3 + 18 � 0.5 + 115 � 241.7

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

241.7
972.2

� 0.25

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation. The records can be chosen based on the index.

5.4.2 Fragment Selection

For this technique we choose the most frequented object of the example trace and remove
the rest of the trace.

Reduction Rate

Applying this technique to the example trace, 2117 method and constructor calls are
removed. Hence, the reduced trace consists of M = 3124� 2117 = 1007 events. This leads
to the following reduction rate:

R = 1�
M
N

= 1�
1007
3124

� 0.68

Information Preservation

The events in the reduced trace are not changed by this technique, so only the information
of the removed events are lost. The information value of the reduced trace is then calculated
as follows:

Ia f ter = 890 � 0.1 + 89 � 0.2 + 22 � 0.3 + 3 � 0.5 + 3 � 117.9

This leads to the following information preservation value:

IP =
Ia f ter

Ibe f ore
�

117.9
972.2

� 0.12

49

5. Theoretical Evaluation of Trace Reduction Techniques

Parallelizability

We rate the parallelizability with 1.0 because this technique can be applied to subtraces
without any limitation.

5.5 Own Approach

In this section we evaluate the tree summarization.

5.5.1 Tree Summarization

Reduction Rate

Applying this technique to the example trace, the 1249 method and constructor calls, where
the caller and callee classes are equal, are removed. Furthermore, 1813 events are summed
up to 153 events. Hence, the reduced trace consists of M = 3124� 1249� 1813 + 153 = 215
events. This leads to the following reduction rate:

R = 1�
M
N

= 1�
215
3124

� 0.93

Information Preservation

The information preservation for this technique is ambiguous. Depending on how the
methods are combined, the information preservation value for the example trace differs
from 0.60 to 1.37. For the evaluation we choose the means of these values. This leads to the
following information preservation value:

IP =
Ia f ter

Ibe f ore
� 0.99

Parallelizability

We rate the parallelizability with 0.9. There are two possibilities to parallelize this technique.
The fist is to apply the technique unmodified to the subtraces. The resulting reduction
is considerably reduced. The second way is to divide the technique into two parts. The
first part forms in parallel collections of edges from the subtraces. The second part merges
these collection and builds the resulting trace.

5.6 Overall Result

To compare the techniques we form an overall measure OM of the reduction rate R, the
information preservation IP and the parallelizability P. We have weighted these values to

50

5.6. Overall Result

express their difference importance. We then determined their Euclidean norm.

OM =
√
(0.8 � R)2 + IP2 + (0.4 � P)2 (5.3)

Table 5.7 shows an ordered list of the evaluated reduction techniques with R ¡ 0.

Table 5.7. Overall Result

Place Technique Overall Measure
1. Tree Summarization 1.29
2. Iteration 1.04
3. Associativity 1.01
4. Pattern Summarization 1.01
5. Getters and Setters 0.99
6. Constructor Hiding 0.99
7. Visibility Specifiers 0.90
8. Package Filtering 0.85
9. Sampling 0.80

10. Monotone Subsequence Summarization 0.79
11. Fragment Selection 0.69
12. Stack Depth Limitation 0.62

51

Chapter 6

Implementation

In this Chapter we give an overview of the implemented software artifacts.

6.1 Selection

For our practical evaluation we choose Tree Summarization, Iteration, Associativity, Pattern
Summarization, Getters and Setters, and Constructor Hiding. Thus, we choose the top six
reduction techniques from our theoretical evaluation.

6.2 Design

Figure 6.1 gives an overview of the new implemented classes and the package structure
in the worker component. The gray-shaded classes illustrate the dependencies to existing
classes.

We also implement the other six reduction techniques for testing purposes, they are in
the package filter.reduction.evaluation which is not illustrated here.

Figure 6.2 shows the new classes of the external-monitoring-logs-adapter component.
The class CornelissenImportMain includes a main method to start reading a trace, and the
filenames of the available traces, which are stored in the examples directory in this project.

53

6. Implementation

ex
pl
or
vi
z.
liv
e_
tr
a
ce
_p
ro
ce
ss
in
g.
fil
te
r.
re
du
ct
io
n

P
ac
ka
g
e

<
<
in
te
rf
ac
e>
>

IT
ra
ce
R
ed
u
ct
io
n

<
<
ab
st
ra
ct
>
>

A
b
st
ra
c
tR
ed
u
ct
io
n
F
ilt
e
r

<
<
ab
st
ra
ct
>
>

A
b
st
ra
c
tF
ilt
er

su
m
m
ar
iz
at
io
n P
ac
ka
g
e

T
re
eS
u
m
m
ar
iz
at
io
n
F
ilt
er

E
d
g
e

It
er
at
io
n
F
ilt
er

A
ss
o
ci
at
iv
it
yF
ilt
er

P
at
te
rn
S
u
m
m
ar
iz
at
io
n
F
ilt
er

la
ng
ua
ge
_b
as
e
d P
ac
ka
g
e

<
<
ab
st
ra
ct
>
>

A
b
st
ra
c
tL
an
g
u
ag
eB
a
se
d
F
ilt
er

R
em
o
ve
G
et
te
rs
A
n
d
S
et
te
rs
F
ilt
er

R
em
o
ve
C
o
n
st
ru
ct
o
rs
F
ilt
er

Figure 6.1. Class diagram of the new classes in the worker component

54

6.2. Design

explorviz.live_trace_processing.nonjava

Package

cornelissen

Package

CornelissenImportMain

CornelissenTraceToExplorVizTransformFilter

CornelissenRecord

Figure 6.2. Class diagram of the new classes in the external-monitoring-logs-adapter component

55

Chapter 7

Practical Evaluation of Trace Reduction
Techniques

In this chapter we evaluate the chosen trace reduction techniques with practical examples.
In Section 7.1 we describe the example traces which we use for our evaluation. In Section7.2
we present our experimental setup which leads to the results in Section 7.3. Section 7.4
discusses the results, while Section 7.5 shows the limits of the experiment.

7.1 Scenarios

For our practical evaluation we build a test set that consists of six different execution
traces from four different Java systems. We take three example traces from the test set of
Cornelissen et al. [2008], the example trace from our theoretical evaluation, and two more
traces from PubFlow.

� pubflow-1 is the smallest trace with 1341 method calls.

� pubflow-2 is the example of our theoretical evaluation and consists of 3124 method
calls.

� pubflow-3 is the largest example trace from PubFlow with 8912 method calls.

� The processing of a small input file of 50 lines of commented Java code with Checkstyle
lead to the checkstyle trace with 31237 method calls.

� The pacman trace with 139582 method calls reflects the start of a game, several player
and monster movements, player death, start of a new game, and quit.

� The jhotdraw trace consists of 161088 method calls and was build by the creation of a
new drawing in which five different figures were inserted, after which the drawing was
closed. This process was repeated two times.

7.2 Experimental Setup

Figure 7.1 shows a part of the data flow in ExplorViz. A trace is reconstructed from
monitoring data, then this trace is reduced by one of the reduction techniques described in

57

7. Practical Evaluation of Trace Reduction Techniques

this thesis. The reduced trace updates the landscape model. To evaluate the effectiveness of
our chosen trace reduction techniques, we set four measuring points. With these measuring
points we define three phases. The first phase, between measuring point 1 and measuring
point 2, measures the processing time of reducing the trace, and is called reduction. The
next phase, between measuring point 2 and measuring point 3, we call transfer. The last
phase, between measuring point 3 and measuring point 4, we call model update. The
difference between measuring point 4 and measuring point 1 is the total duration.

Monitoring
Data

Trace
Reconstruction

Trace
Reduction

Landscape Model
Update

measuring point 1

measuring point 2

measuring point 3

measuring point 4

Figure 7.1. Measuring points for performance evaluation

The experiment: For each trace, ExplorViz was started in a Tomcat locally, and the trace
was sent to ExplorViz 50 times in a row with a few seconds apart.

The following performance measurements are executed on a contemporary commercial
off-the-shelf desktop computer (AMD FX(tm)-4100 Quad-Core, 4 cores at 3.60 GHz, 8 GB
RAM, Windows 7 Professional, Java HotSpot(TM) 64-Bit Server VM 1.7).

58

7.3. Results

7.3 Results

In this section the measurement results are presented for the six chosen techniques Tree
Summarization, Iteration, Associativity, Pattern Summarization, Getters and Setters, and Con-
structor Hiding. From the 50 measured values we have always only taken the last 30 into
account in order to exclude external influences as much as possible.

Table 7.1 shows the average processing time in milliseconds of each trace in each phase
without any reduction. For measuring the reduction phase in this case we implement a
filter that passes the trace unchanged to the next receiver. These values are used as initial
values for the calculation of the performance. In this and the following tables, the traces
are ordered by their size from small to large.

Table 7.1. The processing time (in ms) of the traces in the different phases without reduction

Traces Reduction Transfer Model Update Total #calls
pubflow-1 1.29 ms 45.06 ms 4.99 ms 51.34 ms 1341
pubflow-2 1.03 ms 0.89 ms 13.75 ms 15.67 ms 3124
pubflow-3 1.53 ms 4.00 ms 42.72 ms 48.25 ms 8912
checkstyle 0.73 ms 1.16 ms 123.70 ms 125.60 ms 31237
pacman 0.79 ms 1.51 ms 392.00 ms 394.30 ms 139582
jhotdraw 0.75 ms 1.71 ms 722.40 ms 724.80 ms 161088

7.3.1 Tree Summarization

Table 7.2 shows the processing time in milliseconds of each trace in each phase with
usage of Tree Summarization, and the number of method calls left after reduction. Tree
Summarization is the technique with the highest reduction rate, thus the reduced traces are
very small. The number of method calls after the reduction ranges between 108 and 706,
wherein the reduced size does not depend on the starting size. The total processing time is
highly dependent on the processing time of the reduction phase, which ranges between
34.7 milliseconds and 14.37 seconds.

Table 7.3 shows the performance of Tree Summarization for the six example traces in the
different phases. The performance values for the reduction phase are close to zero, on the
other hand the performance values for the model update phase are very high. For the two
largest traces the model update phase is a hundred times faster than without reduction.
Unfortunately, the total performance values show that this technique in general leads to a
slowdown of the processing time of a trace.

59

7. Practical Evaluation of Trace Reduction Techniques

Table 7.2. The processing time (in ms) of the traces in the different phases with Tree Summarization

Traces Reduction Transfer Model Update Total Reduced Size
pubflow-1 34.70 ms 4.06 ms 1.12 ms 39.88 ms 204
pubflow-2 138.20 ms 1.52 ms 5.56 ms 145.30 ms 430
pubflow-3 665.90 ms 36.90 ms 2.13 ms 704.90 ms 600
checkstyle 1195.00 ms 1.42 ms 5.26 ms 1202.00 ms 488
pacman 875.10 ms 2.51 ms 3.96 ms 881.60 ms 108
jhotdraw 14370.00 ms 1.99 ms 7.14 ms 14370.00 ms 706

Table 7.3. The performance of Tree Summarization in the different phases

Traces Reduction Transfer Model Update Total Reduction Rate
pubflow-1 0.04 11.10 4.45 1.29 92.4%
pubflow-2 0.01 0.58 2.47 0.11 93.1%
pubflow-3 0.00 0.11 20.09 0.07 96.6%
checkstyle 0.00 0.82 23.51 0.10 99.2%
pacman 0.00 0.60 99.09 0.45 99.9%
jhotdraw 0.00 0.86 101.11 0.05 99.8%

7.3.2 Iteration

Table 7.4 shows the processing time in milliseconds of each trace in each phase with usage
of Iteration, and the number of method calls left after reduction. Iteration is the technique
with the lowest reduction rate. The number of method calls after the reduction ranges
between 1319 and 139119, wherein the reduced size does depend not only on the structure
of the trace but also on the starting size. Therefore, the traces are still sorted according to
size. The processing time in the reduction phase and in the model update phase increases
with the size of the trace. The total processing time is highly dependent on the model
update phase. An exception is the pubflow-1 trace, where the transfer phase takes unusually
long time.

Table 7.5 shows the performance of Iteration for the six example traces in the different
phases. The reduction rates of the traces with this technique are between 0.6% and 24.5%.
Thus, it depends strongly on the structure of the trace. The higher the reduction rate, the
better the total performance. As of a reduction rate of 4.5%, this technique speeds up the
processing time of the traces of our test set.

60

7.3. Results

Table 7.4. The processing time (in ms) of the traces in the different phases with Iteration

Traces Reduction Transfer Model Update Total Reduced Size
pubflow-1 1.57 ms 46.14 ms 5.13 ms 52.84 ms 1319
pubflow-2 1.16 ms 0.85 ms 10.73 ms 12.75 ms 2983
pubflow-3 2.40 ms 4.40 ms 44.76 ms 51.55 ms 8857
checkstyle 2.56 ms 1.67 ms 93.97 ms 98.20 ms 23596
pacman 7.45 ms 1.53 ms 404.40 ms 413.30 ms 138306
jhotdraw 10.81 ms 1.47 ms 544.60 ms 556.80 ms 139119

Table 7.5. The performance of Iteration in the different phases

Traces Reduction Transfer Model Update Total Reduction Rate
pubflow-1 0.82 0.98 0.97 0.97 1.6%
pubflow-2 0.89 1.04 1.28 1.23 4.5%
pubflow-3 0.64 0.91 0.95 0.94 0.6%
checkstyle 0.29 0.70 1.32 1.28 24.5%
pacman 0.11 0.99 0.97 0.95 0.9%
jhotdraw 0.07 1.16 1.33 1.30 13.6%

7.3.3 Associativity

Table 7.6 shows the processing time in milliseconds of each trace in each phase with usage
of Associativity, and the number of method calls left after reduction. The reduction phase
takes 1.89 to 52.56 milliseconds, the model update phase 4.46 to 486.8. Hence, the total
processing time depends strongly on the update model phase.

Table 7.6. The processing time (in ms) of the traces in the different phases with Associativity

Traces Reduction Transfer Model Update Total Reduced Size
pubflow-1 2.13 ms 37.65 ms 4.46 ms 44.24 ms 1112
pubflow-2 1.89 ms 0.85 ms 14.16 ms 16.89 ms 1875
pubflow-3 10.72 ms 4.85 ms 35.40 ms 50.97 ms 6915
checkstyle 13.43 ms 1.53 ms 74.54 ms 89.49 ms 18926
pacman 37.95 ms 1.37 ms 224.50 ms 263.90 ms 83553
jhotdraw 52.56 ms 1.17 ms 486.80 ms 540.60 ms 123597

Table 7.7 shows the performance of Associativity for the six example traces in the
different phases. The reduction rates of the traces with this technique are between 17.1%
and 40.1%. Four of the six traces are accelerated by this technique.

61

7. Practical Evaluation of Trace Reduction Techniques

Table 7.7. The performance of Associativity in the different phases

Traces Reduction Transfer Model Update Total Reduction Rate
pubflow-1 0.61 1.20 1.12 1.16 17.1%
pubflow-2 0.55 1.05 0.97 0.93 40.0%
pubflow-3 0.14 0.82 1.21 0.95 22.4%
checkstyle 0.05 0.76 1.66 1.40 39.4%
pacman 0.02 1.10 1.75 1.49 40.1%
jhotdraw 0.01 1.47 1.48 1.34 23.3%

7.3.4 Pattern Summarization

Table 7.8 shows the processing time in milliseconds of each trace in each phase with
usage of Pattern Summarization, and the number of method calls left after reduction. This
technique has two parameters which affect the reduction, and speed. For this experiment
we choose a distance of 300 and a nesting level of 1. This leads to 3 to 110 milliseconds
processing time in the reduction phase, and 3.5 to 339 milliseconds in the model update
phase. The total processing time is between 20 and 450 milliseconds, thus it depends more
on the update model phase, but not that much like in the techniques mentioned before.

Table 7.8. The processing time (in ms) of the traces in the different phases with Pattern Summarization

Traces Reduction Transfer Model Update Total Reduced Size
pubflow-1 3.09 ms 13.26 ms 3.58 ms 19.93 ms 538
pubflow-2 7.06 ms 0.95 ms 12.19 ms 20.21 ms 2517
pubflow-3 9.82 ms 6.17 ms 10.61 ms 26.60 ms 1544
checkstyle 18.00 ms 1.26 ms 50.53 ms 69.79 ms 12001
pacman 29.27 ms 1.25 ms 154.70 ms 185.20 ms 53353
jhotdraw 110.20 ms 1.23 ms 339.20 ms 450.60 ms 83479

Table 7.9 shows the performance of Pattern Summarization for the six example traces
in the different phases. The reduction rates of the traces with this technique are between
19.4% and 82.7%. Five of the six traces are accelerated by this technique.

7.3.5 Getters and Setters

Table 7.10 shows the processing time in milliseconds of each trace in each phase with usage
of Getters and Setters, and the number of method calls left after reduction. The reduction
phase takes 3.56 to 350.40 milliseconds, the model update phase 3.81 to 348.40. Hence, the
total processing time depends approximately equal on both phases.

62

7.3. Results

Table 7.9. The performance of Pattern Summarization in the different phases

Traces Reduction Transfer Model Update Total Reduction Rate
pubflow-1 0.42 3.40 1.39 2.58 59.9%
pubflow-2 0.15 0.94 1.13 0.78 19.4%
pubflow-3 0.16 0.65 4.03 1.81 82.7%
checkstyle 0.04 0.92 2.45 1.80 61.6%
pacman 0.03 1.20 2.53 2.13 61.8%
jhotdraw 0.01 1.39 2.13 1.61 48.2%

Table 7.10. The processing time (in ms) of the traces in the different phases with Getters and Setters

Traces Reduction Transfer Model Update Total Reduced Size
pubflow-1 3.56 ms 23.73 ms 3.81 ms 31.10 ms 965
pubflow-2 9.86 ms 1.44 ms 6.89 ms 18.18 ms 1825
pubflow-3 25.90 ms 5.53 ms 23.12 ms 54.55 ms 6515
checkstyle 59.98 ms 1.18 ms 67.12 ms 128.30 ms 19974
pacman 223.50 ms 1.19 ms 124.10 ms 348.70 ms 51192
jhotdraw 350.40 ms 1.19 ms 348.40 ms 699.90 ms 90184

Table 7.11 shows the performance of Getters and Setters for the six example traces in
the different phases. The reduction rates of the traces with this technique are between
26.9% and 63.3%. Three of the six traces are accelerated by this technique. The most total
performance values are close to 1, which means the processing time with and without
reduction is the same.

Table 7.11. The performance of Getters and Setters in the different phases

Traces Reduction Transfer Model Update Total Reduction Rate
pubflow-1 0.36 1.90 1.31 1.65 28.0%
pubflow-2 0.10 0.62 2.00 0.86 41.6%
pubflow-3 0.06 0.72 1.85 0.88 26.9%
checkstyle 0.01 0.98 1.84 0.98 36.1%
pacman 0.00 1.27 3.16 1.13 63.3%
jhotdraw 0.00 1.43 2.07 1.04 44.0%

63

7. Practical Evaluation of Trace Reduction Techniques

7.3.6 Constructor Hiding

Table 7.12 shows the processing time in milliseconds of each trace in each phase with usage
of Constructor Hiding, and the number of method calls left after reduction. The reduction
phase takes 1.42 to 7.13 milliseconds, the model update phase 4.72 to 575.30. Hence, the
total processing time depends strongly on the update model phase.

Table 7.12. The processing time (in ms) of the traces in the different phases with Constructor Hiding

Traces Reduction Transfer Model Update Total Reduced Size
pubflow-1 1.42 ms 42.19 ms 4.72 ms 48.33 ms 1228
pubflow-2 4.66 ms 0.99 ms 10.95 ms 16.60 ms 2784
pubflow-3 2.12 ms 4.39 ms 39.60 ms 46.11 ms 8691
checkstyle 2.10 ms 1.54 ms 99.55 ms 103.20 ms 28844
pacman 7.03 ms 1.58 ms 379.80 ms 388.40 ms 138487
jhotdraw 7.13 ms 1.47 ms 575.30 ms 583.90 ms 155403

Table 7.13 shows the performance of Constructor Hiding for the six example traces in the
different phases. The reduction rates of the traces with this technique are between 0.8%
and 10.9%. The most total performance values are close to 1, which means the processing
time with and without reduction is the same.

Table 7.13. The performance of Constructor Hiding in the different phases

Traces Reduction Transfer Model Update Total Reduction Rate
pubflow-1 0.91 1.07 1.06 1.06 8.4%
pubflow-2 0.22 0.90 1.26 0.94 10.9%
pubflow-3 0.72 0.91 1.08 1.05 2.5%
checkstyle 0.35 0.76 1.24 1.22 7.7%
pacman 0.11 0.95 1.03 1.02 0.8%
jhotdraw 0.10 1.16 1.26 1.24 3.5%

7.4 Discussion of the Results

Figure 7.2 shows the average performance values of the reduction phase for all evaluated
techniques and the complete test set. This bar chart shows that Iteration and Constructor
Hiding require the least processing time and Tree Summarization by far the most.

Figure 7.3 shows the average performance values of the model update phase for all
evaluated techniques and the complete test set. While the performance values of Tree

64

7.4. Discussion of the Results

Summarization and for example, Iteration, are significantly different, the values of the y-axis
scale logarithmically. Tree Summarization is by far the best technique in this phase, but
Pattern Summarization and Getters and Setters also have values significantly greater than 1.

Figure 7.4 shows the average performance values of the combined phases for all
evaluated techniques and the complete test set. Tree Summarization leads in the most cases
to a significant slowdown. Hence, with this experimental setup we can not advise this
technique. Pattern Summarization on the other hand leads in the most cases to a significant
acceleration, and thus is the best of our evaluated techniques. Iteration, Associativity, Getters
and Setters, and Constructor Hiding are close to 1. Hence, in this setup they are not useful.

Since the reduction phase can be parallelized, the performance values of the model
update phase demonstrate the potential of the reduction techniques for other experimental
setups.

Tree Summarization Iteration Associativity Pattern Summarization Getters & Setters Constructor Hiding

pubflow−1
pubflow−2
pubflow−3
checkstyle
pacman
jhotdraw

Average Reduction Performance

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7.2. Average performance rate for the reduction phase for all techniques and traces

65

7. Practical Evaluation of Trace Reduction Techniques

Tree Summarization Iteration Associativity Pattern Summarization Getters & Setters Constructor Hiding

pubflow−1
pubflow−2
pubflow−3
checkstyle
pacman
jhotdraw

Average Model Update Performance
1

2
5

10
20

50
10

0

Figure 7.3. Average performance rate for the model update phase for all techniques and traces

66

7.5. Threats to Validity

Tree Summarization Iteration Associativity Pattern Summarization Getters & Setters Constructor Hiding

pubflow−1
pubflow−2
pubflow−3
checkstyle
pacman
jhotdraw

Average Total Performance

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 7.4. Average total performance rate for all techniques and traces

7.5 Threats to Validity

We conducted the evaluation only on one desktop computer, and running ExplorViz with
only one worker node. Furthermore, the test set contains only 6 traces with a maximum
size of 161088 method calls. Unfortunately, the traces with more method calls provided by
Cornelissen does not follow the prescribed pattern.

Furthermore, the measurements for Pattern Summarization depend on two attributes,
the distance in which repetitions are searched, and the nesting level that determines how
often the trace passes the algorithm. We evaluate this technique only with a distance of 300
and a nesting level of 1. A comparison with the values of the theoretical evaluation shows
how much these attributes affect the reduction. With a distance of 300 and a nesting level
of 1 the pubflow-2 trace is reduced by 19%, with a distance of 310 the reduction increases to
34%.

67

Chapter 8

Related Work

Cornelissen

Cornelissen et al. [2008] inspired this thesis with their list of trace reduction techniques.
They implement a few of the techniques in Perl and evaluate them with a selection of traces
which differ in size and structure. Their focus lies on the assessment criteria. Therefore,
the easiest to implement techniques were chosen. Most of these techniques preserve too
less information for the use in ExplorViz.

Mohror

Mohror and Karavanic [2009] describe in their paper "Evaluating Similarity-based Trace
Reduction Techniques for Scalable Performance Analysis" different similarity methods to com-
pare traces. These methods then are used in a trace reduction technique like pattern
summarization.

69

Chapter 9

Conclusions and Future Work

9.1 Conclusions

The use of dynamic analysis in the program comprehension process leads to a large amount
of trace data. For storage or live trace visualization these data must be reduced. Addressing
this issue numerous trace reduction techniques were developed in the last years. In this
thesis we present several trace reduction techniques, and evaluate them based on their
reduction rate, their information preservation, their parallelizability, and their performance.
With our experimental setup Pattern Summarization achieved the best results. With a parallel
approach Tree Summarization could also be an interesting technique.

9.2 Future Work

The future work should focus on a wider evaluation. All implemented techniques should
be tested on a greater test set, and with parallel worker nodes. Furthermore, Pattern
Summarization, which was the best technique in our evaluation, should be tested with
different values for distance and nesting level.

For traces with several millions of method calls a parallelization through building
subtraces like described in Section 4.3 is an interesting task. In this case, the reduction filter
must be adjusted.

Another task is to analyze the 3 big traces from Cornelissen, and afterwards modify the
CornelissenTraceToExplorVizTransformFilter to read them correctly.

71

Bibliography

[Ball 1999] T. Ball. The concept of dynamic analysis. In: Proceedings of the 7th European
Software Engineering Conference Held Jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ESEC/FSE-7. Toulouse, France:
Springer-Verlag, 1999, pages 216–234. url: http://dl.acm.org/citation.cfm?id=318773.318944.
(Cited on pages 19, 20)

[Brauer and Hasselbring 2013] P. C. Brauer and W. Hasselbring. Pubflow: provenance-aware
workflows for research data publication. In: 5th USENIX Workshop on the Theory and
Practice of Provenance (TaPP ’13). 2013. url: http://www.pubflow.de. (Cited on page 9)

[Chan et al. 2003] A. Chan, R. Holmes, G. Murphy, and A. Ying. Scaling an object-oriented
system execution visualizer through sampling. In: Program Comprehension, 2003. 11th
IEEE International Workshop on. 2003, pages 237–244. (Cited on page 30)

[Checkstyle]. Checkstyle. last accessed: 2014-05-11. url: http://checkstyle.sourceforge.net/.
(Cited on page 9)

[Cornelissen et al. 2007] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman.
Visualizing testsuites to aid in software understanding. In: Software Maintenance and
Reengineering, 2007. CSMR ’07. 11th European Conference on. 2007, pages 213–222. (Cited
on pages 24 and 29)

[Cornelissen et al. 2008] B. Cornelissen, L. Moonen, and A. Zaidman. An assessment
methodology for trace reduction techniques. In: Proceedings of the 24th Conference on
Software Maintenance. Sept. 2008, pages 107 –116. (Cited on pages 2, 11, 18, 27, 29, 31,
48, 57, and 69)

[De Pauw et al. 1998] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Execution
patterns in object-oriented visualization. In: Proceedings of the 4th Conference on USENIX
Conference on Object-Oriented Technologies and Systems - Volume 4. COOTS’98. USENIX
Association, 1998, pages 16–16. url: http://dl.acm.org/citation.cfm?id=1268009.1268025. (Cited
on pages 11–15)

[Fittkau et al. 2013a] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live trace
visualization for comprehending large software landscapes: the explorviz approach. In:
1st IEEE International Working Conference on Software Visualization (VISSOFT 2013). 2013.
url: http://explorviz.net/. (Cited on page 7)

[Fittkau et al. 2013b] F. Fittkau, J. Waller, P. C. Brauer, and W. Hasselbring. Scalable and live
trace processing with kieker utilizing cloud computing. In: Proceedings of the Symposium
on Software Performance: Joint Kieker/Palladio Days 2013. CEUR Workshop Proceedings,
2013, pages 89–98. url: http://explorviz.net/. (Cited on page 9)

73

http://dl.acm.org/citation.cfm?id=318773.318944
http://www.pubflow.de
http://checkstyle.sourceforge.net/
http://dl.acm.org/citation.cfm?id=1268009.1268025
http://explorviz.net/
http://explorviz.net/

Bibliography

[Gargiulo and Mancoridis 2001] J. Gargiulo and S. Mancoridis. Gadget: A Tool for
Extracting the Dynamic Structure of Java Programs. 2001. (Cited on pages 17 and 26)

[Georges et al. 2007] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java
performance evaluation. In: Proceedings of the 22nd annual ACM SIGPLAN conference on
Object-oriented programming systems and applications. OOPSLA ’07. Montreal, Quebec,
Canada: ACM, 2007, pages 57–76. (Cited on page 5)

[Hamou-Lhadj and Lethbridge 2006] A. Hamou-Lhadj and T. Lethbridge. Summarizing
the content of large traces to facilitate the understanding of the behaviour of a software
system. In: Program Comprehension, 2006. ICPC 2006. 14th IEEE International Conference
on. 2006, pages 181–190. (Cited on page 29)

[Hamou-Lhadj and Lethbridge 2002] A. Hamou-Lhadj and T. Lethbridge. Compression
techniques to simplify the analysis of large execution traces. In: Program Comprehension,
2002. Proceedings. 10th International Workshop on. 2002, pages 159–168. (Cited on
pages 15–18)

[Hamou-Lhadj et al. 2005] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering behavioral design models from execution traces. In: Software Maintenance
and Reengineering, 2005. CSMR 2005. Ninth European Conference on. 2005, pages 112–121.
(Cited on pages 22, 23)

[Hamou-Lhadj and Lethbridge 2004] A. Hamou-Lhadj and T. C. Lethbridge. A survey of
trace exploration tools and techniques. In: Proceedings of the 2004 Conference of the Centre
for Advanced Studies on Collaborative Research. CASCON ’04. Markham, Ontario, Canada:
IBM Press, 2004, pages 42–55. url: http://dl.acm.org/citation.cfm?id=1034914.1034918. (Cited
on page 31)

[Jacobson 1992] I. Jacobson. Object-oriented Software Engineering. New York, NY, USA:
ACM, 1992. (Cited on page 11)

[JHotDraw]. JHotDraw. last accessed: 2014-05-11. url: http://www.jhotdraw.org/. (Cited on
page 9)

[JPacman-Framework]. JPacman-Framework. last accessed: 2014-05-11. url: https://github.

com/SERG-Delft/jpacman-framework. (Cited on page 9)

[Kleinberg 1999] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM 46.5 (Sept. 1999), pages 604–632. (Cited on page 23)

[Kuhn and Greevy 2006] A. Kuhn and O. Greevy. Exploiting the analogy between traces
and signal processing. In: Software Maintenance, 2006. ICSM ’06. 22nd IEEE International
Conference on. 2006, pages 320–329. (Cited on pages 18 and 21)

[Mancoridis et al. 1998] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner.
Using automatic clustering to produce high-level system organizations of source code.
In: Program Comprehension, 1998. IWPC ’98. Proceedings., 6th International Workshop on.
1998, pages 45–52. (Cited on pages 18–20)

74

http://dl.acm.org/citation.cfm?id=1034914.1034918
http://www.jhotdraw.org/
https://github.com/SERG-Delft/jpacman-framework
https://github.com/SERG-Delft/jpacman-framework

Bibliography

[Mancoridis et al. 1999] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner. Bunch: a
clustering tool for the recovery and maintenance of software system structures. In:
Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Conference on. 1999,
pages 50–59. (Cited on page 18)

[Mohror and Karavanic 2009] K. Mohror and K. Karavanic. Evaluating similarity-based trace
reduction techniques for scalable performance analysis. In: High Performance Computing
Networking, Storage and Analysis, Proceedings of the Conference on. 2009, pages 1–12. (Cited
on page 69)

[MyBatis JPetStore]. MyBatis JPetStore. last accessed: 2014-05-11. url: http://mybatis.github.

io/spring/sample.html. (Cited on pages 7, 8)

[Reiss and Renieris 2001] S. Reiss and M. Renieris. Encoding program executions. In:
Software Engineering, 2001. ICSE 2001. Proceedings of the 23rd International Conference on.
2001, pages 221–230. (Cited on page 17)

[Rohr et al. 2008] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever, S. Giesecke,
and W. Hasselbring. Kieker: continuous monitoring and on demand visualization of
Java software behavior. In: Proceedings of the IASTED International Conference on Software
Engineering 2008 (SE’08). ACTA Press, Feb. 2008, pages 80–85. (Cited on page 9)

[Safyallah and Sartipi 2006] H. Safyallah and K. Sartipi. Dynamic analysis of software
systems using execution pattern mining. In: Program Comprehension, 2006. ICPC 2006.
14th IEEE International Conference on Program Comprehension (ICPC). 2006, pages 84–88.
(Cited on pages 15, 16)

[Salah and Mancoridis 2004] M. Salah and S. Mancoridis. A hierarchy of dynamic software
views: from object-interactions to feature-interactions. In: Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on. 2004, pages 72–81. (Cited on page 5)

[Van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey,
and D. Kieselhorst. Continuous monitoring of software services: design and application
of the Kieker framework. Technical report TR-0921. Department of Computer Science,
Kiel University, Germany, Nov. 2009. (Cited on page 9)

[Van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: a framework
for application performance monitoring and dynamic software analysis. In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
ACM, Apr. 2012, pages 247–248. (Cited on page 8)

[Vasconcelos et al. 2005] A. Vasconcelos, R. Cepêda, and C. Werner. An approach to
program comprehension through reverse engineering of complementary software views.
In: Proc. Workshop on Program Comprehension through Dynamic Analysis (PCODA). 2005,
pages 58–62. (Cited on page 31)

75

http://mybatis.github.io/spring/sample.html
http://mybatis.github.io/spring/sample.html

Bibliography

[Wong et al. 1999] W. Wong, S. Gokhale, J. Horgan, and K. Trivedi. Locating program
features using execution slices. In: Application-Specific Systems and Software Engineering
and Technology, 1999. ASSET ’99. Proceedings. 1999 IEEE Symposium on. 1999, pages 194–
203. (Cited on page 31)

[Zaidman and Demeyer 2004] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event execution frequency. In: Software
Maintenance and Reengineering, 2004. CSMR 2004. Proceedings. Eighth European Conference
on. 2004, pages 329–338. (Cited on page 20)

[Zaidman et al. 2005] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying
webmining techniques to execution traces to support the program comprehension
process. In: Software Maintenance and Reengineering, 2005. CSMR 2005. Ninth European
Conference on. 2005, pages 134–142. (Cited on pages 23, 24)

76

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Foundations
	2.1.1 Dynamic Analysis
	2.1.2 Java Benchmarking

	2.2 Used Technologies
	2.2.1 ExplorViz
	2.2.2 Kieker
	2.2.3 PubFlow
	2.2.4 Checkstyle
	2.2.5 JPacman
	2.2.6 JHotDraw

	3 Trace Reduction Techniques
	3.1 Summarization
	3.1.1 Execution Pattern Notation
	3.1.2 Pattern Summarization
	3.1.3 Object and Event Clustering
	3.1.4 Monotone Subsequence Summarization

	3.2 Metrics-Based Filtering
	3.2.1 Frequency Spectrum Analysis
	3.2.2 Utilityhood Measure
	3.2.3 Webmining
	3.2.4 Stack Depth Limitation

	3.3 Language-Based Filtering
	3.3.1 Package Filtering
	3.3.2 Visibility Specifiers
	3.3.3 Getters and Setters
	3.3.4 Constructor Hiding

	3.4 Ad Hoc
	3.4.1 Sampling
	3.4.2 Fragment Selection

	3.5 Own Approach
	3.5.1 Tree Summarization

	4 Assessment Criteria for Trace Reduction Techniques in Respect to Online Trace Visualization
	4.1 Reduction Rate
	4.2 Information Preservation
	4.3 Parallelizability
	4.4 Performance

	5 Theoretical Evaluation of Trace Reduction Techniques
	5.1 Summarization
	5.1.1 Iteration
	5.1.2 Associativity
	5.1.3 Pattern Summarization
	5.1.4 Object and Event Clustering
	5.1.5 Monotone Subsequence Summarization

	5.2 Metrics-Based Filtering
	5.2.1 Frequency Spectrum Analysis
	5.2.2 Utilityhood Measure
	5.2.3 Webmining
	5.2.4 Stack Depth Limitation

	5.3 Language-Based Filtering
	5.3.1 Package Filtering
	5.3.2 Visibility Specifiers
	5.3.3 Getters and Setters
	5.3.4 Constructor Hiding

	5.4 Ad Hoc
	5.4.1 Sampling
	5.4.2 Fragment Selection

	5.5 Own Approach
	5.5.1 Tree Summarization

	5.6 Overall Result

	6 Implementation
	6.1 Selection
	6.2 Design

	7 Practical Evaluation of Trace Reduction Techniques
	7.1 Scenarios
	7.2 Experimental Setup
	7.3 Results
	7.3.1 Tree Summarization
	7.3.2 Iteration
	7.3.3 Associativity
	7.3.4 Pattern Summarization
	7.3.5 Getters and Setters
	7.3.6 Constructor Hiding

	7.4 Discussion of the Results
	7.5 Threats to Validity

	8 Related Work
	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	Bibliography

