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o Complex software systems are almost never free of faults.
o Software faults are a major cause for system failures [Kiing and Krause, 2007;
Gray, 1986]
@ Manual failure diagnosis is time-consuming and error-prone.
e Huge amount of program states (space and time) [Cleve and Zeller, 2005]
o Temporal & spatial chasms between cause and symptom [Eisenstadt, 1997]
e Many systems are not known completely by a single person
e Some failures are hard to repeat — e.g., Heisenbugs
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Motivation

@ Administrators

Users Comp|eX
Software System

Motivation

o Complex software systems are almost never free of faults.

@ Software faults are a major cause for system failures [Kiing and Krause, 2007;
Gray, 1986]

@ Manual failure diagnosis is time-consuming and error-prone.
@ Most common failure diagnosis methods [Eisenstadt, 1997]:

o Data-gathering (e.g., print-statements to source code, memory dumps)
o Interactive execution using debugging tools

W. Hasselbring (Univ. Kiel) Failure Diagnosis based on Timing Behavior May 11th, 2009, Dagstuhl 2/



Motivation

Motivation

Failure E
Dlagn05|s

Log of
Runtime Behavior Repon
Measurements .
—_— Anomaly
_— Graphs
“ Administrators

Users Complex
Software System
with Monitoring

Our approach to support failure diagnosis

@ Runtime behavior is indicative for failures and error-propagation.

@ Automatic fault localization using anomaly detection on monitoring data.

@ Analysis and visualization in the context of automatically derived architecture
models.

W. Hasselbring (Univ. Kiel) Failure Diagnosis based on Timing Behavior May 11th, 2009, Dagstuhl



Foundations

Outline

© Motivation
© Foundations
© Approach
@ Case Study

© Summary & Conclusions

W. Hasselbring ( i Failure Diagnosis based on Timing Behavior

May 11th, 2009, Dagstuhl



Foundations

Online failure diagnosis based on anomaly detection

Anomalies
. . . System System
@ Anomalies are deviations from inflbences Svst B
. stem
normal system behavior. A
Anomaly
detection .

Univ. Kiel) Failure Diagnosis based on Timing Behavior May 11th, 2009, Dagstuhl 4 /25



Foundations

Online failure diagnosis based on anomaly detection
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Fault localization activities

@ Anomaly Detection

@ Anomaly Correlation
o Visualization and/or reporting
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Foundations

Propagation and Anomaly Detection

Error propagation

Fault System Service
(dormant / active) Err\or & Failure \)
\ System :
- <<Component>> =] <<Component>> =1 | i !
—>

@ Many errors propagate along calling dependencies.
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Propagation and Anomaly Detection

Error propagation

Fault System Service
(dormant / active) E”\O" & Failure \)
\ System :
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@ Many errors propagate along calling dependencies.

Anomaly correlation

@ Anomalies propagate as well - compensating analysis is required.

@ Some approaches analyze anomalies in context of calling dependency graphs.
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Foundations

Dependency Graphs

$ Calling Dependency Graphs
i @ Nodes: E.g., Operations,

1250 Components, Deployment
v contexts, Virtual Machines
ActionServiet @ Directed edges represent call
SN actions
113 // \\ 210
% \ o Weights quantify call frequencies
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Approach

Input Data

@ Calling dependencies
between operations

Comp VM Start RT Anomaly

0001 8 0.6
0002 1 -0.2
0004 4 0.9
0006 2 0.3

@ Anomalies scores provided by
a timing behavior anomaly detector

OmWO >
<X <X
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Approach

Architectural model creation

is JPetStore

Two alternative methods for creating the CDG:
@ Analysis of monitoring data

@ Static (source code) analysis
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Approach

Aggregation and integration into the architectural model

@ Each architectural element’'s anomaly scores are aggregated into a single

value

o Several metrics explored (mean, median, power mean, ...)

Number of
executions > 0 . 2

Anomaly score

@ The aggregation reduces the complexity for the correlation activity
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Approach

Aggregation and integration into the architectural model

Approach

@ Each architectural element’'s anomaly scores are aggregated into a single
value

o Several metrics explored (mean, median, power mean, ...)

Number of
executions > 0 . 2

Anomaly score

@ The aggregation reduces the complexity for the correlation activity

vy

Example result: Three operations with assigned anomaly scores
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Approach

Correlation of anomaly ratings

Approach

@ Rules are applied that recompute an elements anomaly score in the context of
its callers and callees

e Similar approach to cellular automaton

@ The rules encapsulate error and anomaly propagation knowledge

Example scenario: Is A's anomaly score just the result of a fault in B?
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@ Rule 1:
Mean of anomaly ratings of directly connected callers . ..
relatively high? = Increase rating
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@ Rule 1:
Mean of anomaly ratings of directly connected callers . ..
relatively high? = Increase rating

@ Rule 2:
Maximum of anomaly ratings of directly connected callees . ..
relative high? = Decrease rating
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Approach

@ Rule 1:
Mean of anomaly ratings of directly connected callers . ..
relatively high? = Increase rating

@ Rule 2:
Maximum of anomaly ratings of directly connected callees . ..
relative high? = Decrease rating

o Additional rules:

o Consideration of call frequencies (edges in CDG)
o Transitive closure of callers
o Transitive closure of callees
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Approach Visualization

Visualization - Three visualization granularity levels

Granularity levels:

@ Deployment context level ,
/ Virtual Machine level N e e

Deployment Context Level

o Component level Comporertre
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Approach Visualization

Visualization - Deployment context / Virtual Machine level
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Approach Visualization

Component level

Virtual Machine 'klotz'
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Operation level

Approach
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Case Study

@ Case Study
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Case Study

Goals & Metrics

Proof of concept

Quantitative evaluation

Visualization evaluation

Accuracy:
Are injected faults accurately localized?

Clearness:
Are the results clearly (sufficient contrast) ranked?
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Case Study Experiment Setup

Experiment Setup

o Distributed variant of iBATIS JPetStore (5 nodes)
@ 34 operations are instrumented with monitoring probes

@ Workload generation
o Probabilistic user behavior

o Fault injection

Programming faults

Database connection slowdown

Hard disk misconfiguration

Resource intensive concurrent processes
CPU throttling
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Case Study Results

Results: Experiment statistics and fault localization quality

Experiment statistics

42 experiment scenarios
20 hours total experiment time

16 million monitored executions

100 MB data per experiment run

Fault localization quality (Accuracy and Clearness)

| Scenario | Injection “Trivial” | “Simple” | “Advanced”
No. 1 Progr. fault + + +
No. 2 Progr. fault + + 4+
No. 3 Progr. fault - = +
No. 4 DB slowdown + ++ S,
No. 5 DB slowdown o + ++
| Averages | 34 3.8 4.6 \
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Case Study Results

Visualization Clearness: No correlation vs. our approach
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Summary & Conclusions

@ Number of monitoring points: e Approach automatically adapts

o Too less: Architecture and its to architectural changes
o Non-intrusive monitoring

instrumentation

dependencies not discovered
o Too many: Large overhead
o Trade-off: Major component @ Anomaly detector requirements:

services and entry points o False alarms (false positives) can
be tolerated if equally

@ Monitoring overhead: o .
g distributed over the architecture

o Overhead approx. few

. . o Computational requirements:
microseconds/observation

i e 35.000 executions/sec on
@ Maintainability: 1.5 GHz Desktop
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Summary & Conclusions =~ Summary

Summary & Conclusions

Summary
@ New approach for failure diagnosis (focus on correlation and visualization)

o Evaluation of accuracy and clearness of correlation algorithms

o Case study with distributed web-application, fault injection, and probabilistic
workload

Conclusions
@ Good chance of localizing the fault
@ Large system parts are declared of not being a fault's cause
@ Approaches without correlation show a fault's effect, not its origin

@ Multi-granularity visualization even for small systems required
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