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Summary 
 

While capture fisheries have been stagnating since the 1990’s, aquaculture 

production has increased steadily from being negligible in the 1980’s to sharing now 40% 

of the world fish supply. This increase entails a growing demand of fingerlings which 

results in an intensification in rearing fish larvae. Intensive rearing systems imply 

exogenous feeding which in turn led to a research activity to find food for fish larvae 

which is nutritious and can be produced cost effectively, since food is the highest cost 

factor in aquaculture production.  

Brachionus and Artemia are nowadays the normally used prey items for fish larvae. 

They can be produced in high densities with relatively low labour costs. However, they 

have to be enriched, e.g. with certain fatty acids, to fulfil the nutritional requirements of 

fish larvae and are still outperformed by copepods which are the natural food of marine 

fish larvae. Fish larvae fed with copepods show higher survival and growth rates as well 

as fewer malpigmentation and malformations. For this reason, this study focused on the 

rearing of copepods, especially harpacticoids as food for marine fish larvae. 

Harpacticoids can be reared in higher densities than calanoids and are more robust to 

salinity and temperature changes, which promise an easier and a more cost effective 

production. 

A copepod screening revealed Tachidius discipes as a possible new species as 

food for marine fish larvae. In the first chapter the effect of algal species on the growth 

performance, reproduction and fatty acid composition of T. discipes was investigated and 

compared to Tisbe sp. Additionally, the food saturation density was determined to allow 

an economical feeding procedure of the copepods. The two algal species Rhodomonas 

sp. and Phaeodactylum tricornutum revealed the best performance of both copepod 

species meeting the recommended ratio of essential fatty acids. T. discipes can compete 

with Tisbe sp. in terms of development time and reproduction when feeding on a 

nutritious food source, but Tisbe sp. had a higher fatty acid desaturation capacity and/or 

is a more opportunistic species which can compensate an inadequate food source by 

switching to other sources such as bacteria compared to T. discipes.  

Nevertheless, T. discipes was evaluated as a new food source for Baltic herring 

larvae (Clupea harengus) and compared with Brachionus plicatilis (Chapter 2). A 

surprisingly low performance of the herring larvae fed with T. discipes led to an in-vitro 

trypsin digestibility test of several prey types used in aquaculture. This study revealed a 

lower digestibility of T. discipes than Tisbe sp. The most digestible prey item was Artemia 

sp.  
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Subsequently, a 2D-video analysis was conducted to investigate if the benthic 

living mode of harpacticoid copepods is posing a problem for pelagic fish larvae in terms 

of feeding success and energy demand (Chapter 3). Benthic copepods are obviously 

detected by pelagic fish larvae, but the larvae had a lower feeding success when feeding 

on copepods compared to B. plicatilis, especially at first feeding. However, this improved 

with ontogeny. Providing harpacticoid copepods via a floating sieve improved the feeding 

success and lowered presumably the energetic expenditure of fish larvae.  

In conclusion, harpacticoid copepods can be a valuable food source for marine fish 

larvae, but their digestibility is a critical point, which should be considered when 

evaluating new species and conducting further feeding experiments. Furthermore, 

although harpacticoid copepods are cultured in relatively high densities, they do not 

reach the densities obtained with B. plicatilis. Consequently, copepods will be a food 

supplement rather than the sole food source. 
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Zusammenfassung 
 

Während der Fischfang seit den 90er Jahren stagniert, steigt die 

Aquakulturproduktion stetig an. War die Fischzucht in den 80er Jahren nur in geringem 

Maße vorhanden, so nimmt sie jetzt 40% der weltweiten Fischversorgung ein. Diese 

Zunahme brachte auch einen steigenden Bedarf an Setzlingen mit sich, der eine 

Intensivierung der Fischlarvenzucht notwendig machte. Intensive Aquakultursysteme 

benötigen eine Fütterung von außen. Dadurch erhöht sich die Forschungsaktivität, Futter 

zu finden, welches nahrhaft ist, aber auch kosteneffizient produziert werden kann. 

Brachionus und Artemia sind momentan die zwei meist genutzten Futterarten für 

Fischlarven. Sie können zwar mit geringem Arbeitsaufwand kultiviert werden, aber sie 

müssen mit Nährstoffen - insbesondere Fettsäuren - angereichert werden, um die 

Fischlarven adäquat zu versorgen. Für marine Fischlarven sind Copepoden ein 

Hauptbestandteil der natürlichen Nahrungsquelle. Werden Fischlarven mit diesen 

gefüttert, zeigen sie oftmals eine höhere Überlebensrate, ein besseres Wachstum und 

weniger Fehlpigmentierungen und Missbildungen im Vergleich zur Ernährung mit 

angereicherten Brachionus und Artemia. Aus diesem Grund liegt der Fokus dieser Studie 

auf der Zucht von Copepoden, insbesondere harpacticiden Copepoden als Futter 

mariner Fischlarven. Harpacticide Copepoden können in höheren Dichten als calanide 

kultiviert werden und sind robuster gegenüber Temperatur- und Salinitätsschwankungen. 

Dies verspricht eine leichtere und kosteneffizientere Zucht im Vergleich zu calaniden 

Copepoden. 

In einem Copepoden-Screening erwies sich Tachidius discipes als ein möglicher 

neuer Kandidat zur Aufzucht von Fischlarven. Im ersten Kapitel wurde die Eignung der 

neuen Art im Hinblick auf Wachstum, Reproduktion und Fettsäurezusammensetzung 

untersucht und mit Tisbe sp. verglichen. Außerdem wurde die 

Futtersättigungskonzentration bestimmt, um eine ökonomische Fütterung der 

Copepoden zu ermöglichen. Mit den beiden Algenarten Rhodomonas sp. und 

Phaeodactylum tricornutum zeigten die Copepoden die beste Performance und das 

empfohlene Verhältnis der essentiellen Fettsäuren wurde erreicht. T. discipes und Tisbe 

sp. wiesen gleiche Wachstums- und Reproduktionsraten auf bei Fütterung mit optimalem 

Futter. Aber Tisbe sp. hatte anscheinend eine höhere Kapazität Fettsäuren zu 

desaturieren und/oder es ist eine opportunistischere Art, die inadäquates Futter 

kompensieren kann, indem sie zu anderen Futterarten wie z.B. Bakterien wechselt. 

Dennoch wurde T. discipes als eine neue Futterart für Heringslarven (Clupea 

harengus) evaluiert und mit Brachionus plicatilis verglichen (Kapitel 2). Eine 
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überraschend schlechte Konstitution der Heringslarven bei Fütterung mit T. discipes 

führte zu einem anschließenden In-vitro-Verdauungstest mittels des Enzyms Trypsin. 

Diese Untersuchung zeigte, dass T. discipes schlechter verdaulich ist als Tisbe sp. Eine 

noch weitaus höhere Verdaubarkeit wies Artemia sp. auf. 

Anschließend wurde eine 2D-Videoanalyse durchgeführt um zu untersuchen, ob 

die benthische Lebensweise der harpacticiden Copepoden ein Problem für die pelagisch 

lebenden Fischlarven in Bezug auf Fangerfolg und Energieverbrauch darstellt (Kapitel 3). 

Benthische Copepoden wurden von den Fischlarven wahrgenommen. Aber die 

Fischlarven hatten seltener Futter im Darm, wenn sie mit Copepoden anstatt mit B. 

plicatilis gefüttert wurden. Dies verbesserte sich jedoch mit Entwicklung der Fischlarve. 

Die Verfütterung der Copepoden mittels eines schwimmenden Siebes verbesserte den 

Fangerfolg und verringerte wahrscheinlich den Energieverbrauch der Fischlarven.  

Abschließend lässt sich sagen, dass harpacticide Copepoden ein hochwertiges 

Futter für marine Fischlarven sind, aber ihre Verdaubarkeit ist ein kritischer Punkt, der 

bei künftigen Evaluierungen neuer Arten und bei Fütterungsversuchen berücksichtigt 

werden sollte. Obwohl harpacticide Copepoden in relativ hohen Dichten kultiviert werden 

können, werden nicht so hohe Dichten erzielt wie mit B. plicatilis. Somit werden 

Copepoden eher eine Nahrungsergänzung als das alleinige Futter für Fischlarven 

darstellen. 
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Introduction 
 

Aquaculture 

To meet the increasing demand for fish caused by population and economic 

growth (Wijkstrom, 2003), the aquaculture production is increasing from being negligible 

in the 1980ies to 40.3% of the world fish supply in 2010. The capture based fishery is 

stagnating since the last decades due to fishery restrictions and declining natural fish 

stocks (FAO, 2004). The catching yield of some species is even decreasing due to 

overfishing. Consequently, aquaculture is nowadays the fastest growing sector in food 

industry (FAO, 2012) and is defined as “the farming of aquatic organisms including fish, 

molluscs, crustaceans and aquatic plants. Farming implies some sort of intervention in 

the rearing process to enhance production, such as regular stocking, feeding, protection 

from predators, etc. Farming also implies individual or corporate ownership of the stock 

being cultivated” (FAO, 1997). In total, capture fishery and aquaculture provided 148.5 

Mio tonnes of fish in 2010, resulting in a per capita supply of 18.6 kg (FAO, 2012). 

Carp and Tilapia are the main farmed fresh water species and salmon and milkfish 

are the main marine species. The European aquaculture production is just a small 

contribution (4.2%) to the world total production of 59.9 Mio tonnes, with Norway being 

the main contributor, followed by Spain and France. Norway is the dominant producer of 

Atlantic salmon. The contribution of German aquaculture production is low with the focus 

on fresh water species, like rainbow trout and carp (Statistisches-Bundesamt, 2012). The 

European Union is the biggest importer of fish products owing to its increasing demand 

of fish. In general, fish provides high digestible protein and a high amount of 

polyunsaturated fatty acids, especially “omega-3”-fatty acids (Tocher, 2009) and they are 

important to fulfil the dietary demand of iodine (Fuge, 2007). To increase the European 

fish production and its competitiveness, the European fishery fund (EFF) was established 

in 2007.  

 

Larviculture 

The development of marine aquaculture resulted in an increasing demand of 

juveniles in marine hatcheries (Zambonino Infante and Cahu, 2001). Overall, the larval 

rearing is one of the most critical stages in fish production. The digestive tract of marine 

fish larvae is immature at hatching (Zambonino Infante and Cahu, 2001), the 

pigmentation of the eye is still under development at first feeding (Chesney, 2007) and 
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the prey perception distance increases with larval size (Miller et al., 1988). Therefore, the 

moment after yolk sac exhaustion, when the fish larva depends on exogenous food 

sources for energy and nutrients, is crucial for growth, development and survival.  

In general, fish larvae are pelagic and are feeding in the natural environment on 

protozoa, copepods, mollusc larvae, appendicularians, rotifers, marine cladocerans and 

phytoplankton (Arthur, 1976; Hunter, 1980; Turner, 1984). The ingestible prey size of fish 

larvae is restricted by the size of their mouth gap. Thus, smaller fish larvae have a 

smaller prey spectrum than bigger ones. In nature, fish larvae encounter a diverse food 

and size spectrum, but they may also encounter a low prey density and are vulnerable to 

predation. To find adequate food at the right time without being predated is challenging. 

Consequently, just 1% of a brood stock reaches the juvenile stage (Houde, 2002).  

Under aquaculture hatchery conditions, predation on larvae and low prey 

availability do not occur. However, the main disadvantage of hatcheries is the limited size 

spectrum offered to fish larvae, with the rotifers Brachionus plicatilis (299 ± 1.5 µm) and 

Brachionus rotundiformis (148.7 ± 1.3 µm) (Ciros-Pérez et al., 2001) and the nauplii of 

the brine shrimp Artemia sp. (428 – 515 µm, (Dhont and Van Stappen, 2003)) being the 

most common used prey types. The advantage of Artemia sp. is that no year-round 

production is necessary as the eggs can be stored and the nauplii can be produced on 

demand one day prior to feeding. The rotifer species, B. plicatilis and B. rotundiformis are 

relatively easy to rear and can be cultured in high densities. They are slow cruising 

pelagic organisms and can reproduce sexually and asexually (Lubzens et al., 2001).  

In 2010, about 600 different fish species were cultured (FAO, 2012). They have 

diverse needs and food requirements, i.e. sea bream (Sparus aurata) and sea bass 

(Dicentrarchus labrax) larvae, two mediterranean species are reared at around 15°C and 

hatch with a larval length of 3 – 4 mm (Moretti et al., 1999), whereas halibut larvae 

(Hippoglossus hippoglossus) are reared at 4 – 7°C and hatch with a larval length of 6 

mm (Kjørsvik et al., 2004). Larvae of H. hippoglossus are fed with Artemia sp., whereas 

the first two species need the smaller live feed Brachionus sp. at first feeding (Moretti et 

al., 1999; Kjørsvik et al., 2004). However, the rearing of these species with these live 

feeds can result in malformations, impaired vision and malpigmentation (Shields et al., 

1999; Koumoundouros et al., 2002; Fernández et al., 2008). Several studies reported a 

higher nutritional value of copepods as food organisms for fish larvae compared to 

rotifers or Artemia (Evjemo et al., 2003; Hamre et al., 2008b; van der Meeren et al., 

2008). However, not only nutrients decide about the suitability of a prey.  
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Prey suitability 

The suitability of prey organisms depends on several factors, such as swimming 

behaviour of larvae and prey, prey digestibility and nutritional value. 

 

Larval foraging behaviour and capture success 

The larval predation process involves several phases: search, perception, attack 

and capture. The foraging behaviour of fish larvae have been described as saltatory 

(pause-travel) (Browman and O'Brien, 1992a; b; Galbraith et al., 2004) or as cruising 

(MacKenzie and Kiørboe, 1995; Mahjoub et al., 2012). Saltatory predators are searching 

while pausing, whereas cruising predators are searching while swimming (O'Brien et al., 

1990). Fish larvae are mostly visual predators, but food detection also occurs by 

mechanical and chemical stimuli. Neuromasts are responsible to detect hydromechanical 

signals. Nitrogenous and amphoteric substances with low molecular weight, like amino 

acids are chemical signals, which stimulate olfactory ciliated receptors (Dempsey, 1978; 

Hara, 1993) and influence the swimming behaviour of fish larvae (Døving et al., 1994). 

While prey detection by olfaction can occur at larger distances, detection by sight occurs 

at relative low distances of around 0.5 to 1 body lengths (Miller et al., 1988). The 

increase of lens size and the development of the retina enhance the visual field and 

acuity with ontogeny (Yúfera, 2011). Herring larvae (Clupea harengus), which are used 

as a model organism in this thesis, are categorized as cruising predators (MacKenzie 

and Kiørboe, 1995). The visual field of herring larvae is in front and above, but prey items 

below them are not detected (Rosenthal and Hempel, 1970). Overall, the feeding 

success of C. harengus is low at first feeding (Rosenthal and Hempel, 1970; Blaxter and 

Staines, 1971) but increases with maturation of the sensory and locomotory system 

(Hunter, 1972; Chesney, 2007). The prey encounter rate increases with the swimming 

speed of prey and predator (Kiørboe and Visser, 1999). The predator covers a higher 

volume in shorter time and a faster prey produces higher hydromechanical signals which 

are perceived from a further distance by the predator. Furthermore, the perceiving 

distance increases with size and contrast of the prey (Buskey, 1994).  

Once the prey item is perceived, the capture success of fish larvae is influenced by 

prey escape response (Buskey et al., 1993; Titelman and Kiørboe, 2003), prey swimming 

behaviour (Viitasalo et al., 1998) and prey visibility (Eggers, 1977). Fast moving 

copepods cause a better prey perception by the predator than slow moving rotifers, but 

copepods also show better escape responses (Beck and Turingan, 2007). The benthic 

behaviour of harpacticoids can lead to low prey availability for the pelagic fish larvae. An 
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improvement of the availability might be the copepod rearing method described by 

Kahan et al. (1982), who tested the rearing of harpacticoid copepods in a floating sieve 

directly in the fish rearing tank. The sieve had a mesh size through which naupliar stages 

can fall to be directly available for the fish larvae. 

 

Digestion 

The digestive process is decisive for the nutrient absorption of the successful 

captured prey. The prey is swallowed in one piece and is being digested in the intestine, 

since most fish larvae are altricial and lacking a stomach during their first weeks of life 

until metamorphosis (Rønnestad and Morais, 2008). The digestive tract is functionally 

differentiated into bucco-pharynx, oesophagus, stomach anlage, intestine and anus at 

first feeding. The absorptive capacity increases through elongation and mucosal folding 

of the intestine (Rønnestad et al., 2013). Liver, gall bladder and pancreas are accessory 

digestive organs. The liver is producing bile, which is utilized in the emulsification of lipids 

and the gall bladder storages and releases the bile in the gut. The endocrine pancreas 

releases metabolic hormones such as insulin into the plasma (Rønnestad and Morais, 

2008). The digestion itself is performed by enzymes of the exocrine pancreas and the 

intestine. Pancreatic enzymes such as trypsin, lipase and amylase are released in the 

intestinal lumen, whereas cytosolic and brush border membrane enzymes are produced 

directly in intestinal cells. Pancreatic and cytosolic enzymes are mostly present at first 

feeding (Ribeiro et al., 1999; Zambonino Infante and Cahu, 2001). Concentrations of 

brush border enzymes are increasing with the folding of the mucosa and the 

development of microvilli at the luminal surface, meanwhile the activities of certain 

cytosolic enzymes are decreasing with larval development (Cahu and Zambonino 

Infante, 1995). The rise or decline of enzymes is genetically programmed, but the diet 

can modulate the plateau levels of enzymes and can include an earlier maturation of 

enterocytes, which are responsible for nutrient absorption (Zambonino Infante and Cahu, 

1999; Buchet et al., 2000).  

In the early stages of fish larvae, trypsin is the major pancreatic enzyme. Trypsin 

hydrolyses protein and plays a key role in activating other enzymes (Rønnestad et al., 

2013). The stimulation is both under hormonal and neural control. In general, the 

secretion of enzymes is stimulated by the hormone cholecystokinin (CCK), which is 

released by chemical triggers in the intestine (Rønnestad et al., 2007). In humans, the 

presence of fats and proteins in the intestine is responsible for this stimulation (Chandra 

and Liddle, 2009). Consequently, the type and amount of food influences the trypsin 
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concentration (Pedersen et al., 1987; Pedersen and Andersen, 1992) and thus, tryptic 

activity can be a valuable indicator for the nutritional status of the fish larvae.  

 

Nutritional aspect 

Once a prey item is successfully digested, the extracted nutrients are important for 

the growth and development of the fish larva. Fish larvae are fast growing organisms 

with a high demand of amino and fatty acids. Free amino acids are used as metabolic 

fuel and are also needed for the larva’s own protein synthesis. In general, fatty acids are 

constituents of different lipids. As part of triacylglycerols, they function mainly as a source 

of metabolic energy and are precursors of bioactive substances. As phospholipids, they 

form the lipid bilayer of all membranes. Biological processes, such as generation of 

adenosine triphosphate (ATP) and ion transport, are membrane associated and are 

regulated by the fluidity of the membrane, which in turn is determined by its fatty acid 

composition (Izquierdo and Koven, 2011; Wynn, 2011). Phospholipids are rich in 

polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (20:5ω3, EPA) and 

docosahexaenoic acid (22:6ω3, DHA). EPA and DHA originate in the marine food web 

mainly from microalgae. In microalgae EPA and DHA are synthesised by elongases and 

several desaturases (Δ6, Δ5 and Δ4) from α-linolenic acid (18:3ω3) (Fig. 1), whereas 

vertebrates are lacking the Δ4-desaturases (Bell and Tocher, 2009). Hence, vertebrates 

use the Sprecher-pathway by elongating 22:5ω3 to 24:5ω3, which is desaturated by a 

Δ6-desaturase to 24:6ω3 and finally transformed to 22:6ω3 (DHA) by β-oxidation 

(Sprecher, 2000). This way is quite complex due to a translocation from the cytosol into 

the peroxisome and back (Wynn, 2011), and is relatively limited in vertebrates. 

Therefore, both DHA and EPA are considered to be essential fatty acids for fish, since 

they cannot be synthesised in sufficient amounts from its precursor 18:3ω3 (Sargent et 

al., 1999b). 
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Figure 1: Pathway of the ω3 and ω6-fatty acid biosynthesis (modified from Wynn (2011). 

desat =desaturase 

 

In fish, high values of DHA are present in larval eyes (Benítez-Santana et al., 

2007). A dietary deficiency in DHA can lead to impaired vision, as well as 

malpigmentation (Reitan et al., 1994) and skeletal deformities (Roo et al., 2009). EPA 

and arachidonic acid (ARA) are competitive in their role as precursors of eicosanoids. 

These are hormone-like substances which play a role i.e. in the stress vulnerability, the 

inflammatory and immune response of fish larvae. EPA derived eicosanoids are less 

bioactive than those produced by ARA (Tocher, 2003). Therefore, the ratio between 

these fatty acids is an important issue. Sargent et al. (1995) emphasised that the ratio of 

DHA:EPA:ARA is as important as the amount and suggested an optimal ratio of 10:5:1, 

based on different studies.  

Copepods are rich in essential fatty acids and they have a high content of 

phospholipids (McKinnon et al., 2003). Phospholipids increase the efficiency of the 

dietary fatty acid transport from the intestine to the rest of the body (Tocher et al., 2008) 

and are therefore a superior source of essential fatty acids and energy (Coutteau et al., 

1997). To optimise the nutritional value of rotifers and Artemia, both are routinely 

enriched with a lipid emulsion prior to be supplied in the larval fish tank (Fernández-

Reiriz et al., 1993; Dhert et al., 2001). However, these enrichments are costly and often 

result in an increase in triacylglyceroles but not in phospholipids (Coutteau and 
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Sorgeloos, 1997; Rainuzzo et al., 1997). Furthermore, copepods probably offer an 

optimal protection of polyunsaturated fatty acids (PUFA) by natural antioxidants against 

peroxidation and they deliver optimal levels of natural antioxidants to the larvae (Sargent 

et al., 1997). 

A diet solely based on copepods or as a food supplement to rotifers or Artemia 

resulted in an improved growth rate, higher survival and a higher rate of normal 

pigmentation of fish larvae (Shields et al., 1999; Payne et al., 2001; Schipp, 2006; Busch 

et al., 2010). Due to the evidence that copepods have superior food quality compared to 

rotifers and Artemia, it is fundamental to optimise the rearing of marine copepods in 

order to fulfil nutritional requirements of hatchery reared fish larvae.  

 

Copepods 

Copepods are the natural prey of many fish larvae (Hicks and Coull, 1983; Turner, 

1984; 2004). They are also regarded as the insects of the sea in terms of size, diversity 

and abundance (Huys and Boxshall, 1991). Prior to reaching the adult stage, copepods 

run through 6 naupliar stages and 5 copepodite stages, providing a wide size range with 

only one species (Fig. 2). This makes copepods highly suitable as prey item for 

aquaculture hatchery purposes, as the cultivation of only one species results in the 

availability of a broad spectrum in prey size. The class Copepoda consists of 10 orders, 

of which Calanoida, Harpacticoida and Cyclopoida are the three orders commonly used 

in aquaculture. 

 

 
Figure 2: Three developmental stages of Tachidius discipes (nauplius (156 ·116 µm, 

length·width), copepodites (306·146 µm), adult female (510·180 µm)). 

 

Calanoids are pelagic and are mostly selective suspension or ambush feeders 

(Paffenhöfer et al., 1982; Kiørboe et al., 1996). Rearing fish larvae with calanoid 

copepods has positive effects on survival, pigmentation and retinal morphology (Shields 

et al., 1999). However, the main disadvantage of this order is the low rearing density, 
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since fecundity is reduced at high culture densities (Peck and Holste, 2006). In addition, 

calanoid and cyclopoid copepods are sensitive to handling procedures due to their fragile 

body. Harpacticoid copepods are mainly surface feeders (Hicks and Coull, 1983), can be 

cultured in higher densities than calanoid copepods (Støttrup, 2000), are tolerant to 

salinity and temperature changes and feed on diverse food sources like microalgae, 

ciliates, fungi and yeasts and bacteria as aggregates or as detritus associates (McIntyre, 

1969; Hicks and Coull, 1983). Even a successful cultivation with vegetables and rice 

grains was reported (Betouhim-El and Kahan, 1972; Kahan, 1979). 

Furthermore, harpacticoid copepods are considered to have the ability to 

synthesise EPA and DHA along the biosynthesis-pathway (Fig. 1). So far, it is unknown 

whether the direct way or the Sprecher-pathway is used by the invertebrates including 

harpacticoid copepods (Bell and Tocher, 2009). However, this would have the advantage 

that these copepods can upgrade low nutritional algae, such as Dunaliella tertiolecta, 

which contain neither DHA nor EPA, but are easy to culture.  

Therefore, the focus was set on harpacticoid copepods in this study. The adult size 

of harpacticoids ranges from 0.2 to 2.5 mm and free-living individuals occupy diverse 

habitats, including interstitial, phytal and epibenthic living modes (Hicks and Coull, 1983). 

To date the number of tested copepods in aquaculture is relatively small and the main 

investigated species are: Amphiascoides atopus, Amonardia sp., Euterpina acutifrons 

(pelagic), Tigriopus spp., Tisbe furcata and Tisbe holothuriae (Fleeger, 2005). As 

production and nutritional value differs among species, a copepod screening is required. 

Uhlig (1984) emphasised several criteria for species used for aquaculture purposes: 

• High tolerance to changes in salinity and temperature 

• Short life cycle 

• High reproductive capacity 

• Tolerance of high culture densities 

• Acceptance of diverse food sources 
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Aim of the study 

The aim of this thesis is to improve the rearing of harpacticoid copepods for marine 

fish larvae. This includes the growth of the copepod population itself, as well as the 

suitability for fish larvae.  

The first chapter addresses the growth performance and food quality of two 

different harpacticoid species. After screening several species from the Kiel fjord, 

Tachidius discipes is considered as a potential new candidate for aquaculture purposes 

and is compared with Tisbe sp., a species already tested in larval feeding experiments. 

Besides labour, food is generally the largest cost factor in the aquaculture business, 

making up between 30 and 60% (Southgate, 2003). Therefore, the development index 

and reproduction in response to five different microalgae is analysed and the optimal 

algal food concentration determined. Furthermore the transfer of fatty acids from alga to 

copepod is analysed by providing microalgae varying in cell size and fatty acid 

composition. The suitability of these copepods in terms of fatty acid composition 

especially EPA and DHA is discussed. 

In chapter 2, a larval feeding experiment is conducted to test the suitability of T. 

discipes as food for fish larvae. Clupea harengus is used as a model organism. To study 

the effect of different prey items on the development of fish larvae and larval enzyme 

activity, copepods, rotifers and a mixture of both are offered to larvae of C. harengus. 

The mixture is provided to investigate whether a supplement of copepods is sufficient to 

result in improved larval condition. Based on the low growth performance of copepod-fed 

larvae, the digestibility of prey items typically used in aquaculture is also explored. 

In addition, the foraging behaviour of herring larvae in response to harpacticoid 

copepods and rotifers is investigated using video observations (Chapter 3). An indirect 

copepod supply method is tested, where copepods are provided via a floating sieve. This 

method is assumed to improve the availability of harpacticoid copepods. 
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Abstract 
We compared the development and fatty acid content of the harpacticoid copepods 

Tachidius discipes and Tisbe sp. fed with different microalgal species (Dunaliella 

tertiolecta, Rhodomonas sp., Phaeodactylum tricornutum, Isochrysis galbana, and a 

concentrate of Pavlova sp.), which differed in cell size and fatty acid composition.  

Tisbe could develop in 11 days with every alga to the same average stage, 

whereas Tachidius developed poorly when fed with Isochrysis and Dunaliella. Feeding 

with Phaeodactylum resulted in a fast development of both copepods at low algal 

concentrations. However, reproduction was higher with Rhodomonas as food than with 

the other algae. 

Fatty acid compositions of copepods were influenced by their food source, but both 

were able to convert DHA and EPA from precursors. Tachidius fed with Rhodomonas or 

Phaeodactylum was closest to the DHA:EPA:ARA-ratio of 10:5:1 considered optimal for 

some marine fish larvae. Tachidius showed similar development and reproduction 

capacity as Tisbe, but requested higher absolute fatty acid contents in the diet. Tisbe 

was superior in the utilisation of bacteria as additional food source and the bioconversion 

of precursor fatty acids. Phaeodactylum and Rhodomonas are recommendable food 

sources for both copepod species, but Phaeodactylum is more easily cultured. 
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1.1. Introduction 
 

Marine fish larviculture relies on easily reared live food such as rotifers and Artemia 

and, since these are deficient in highly unsaturated fatty acids, they are routinely 

enriched prior to being fed to fish larvae (Fernández-Reiriz et al., 1993; Dhert et al., 

2001). These enrichments often result in an increase in triacylglyceroles but not in 

phospholipids (Coutteau and Sorgeloos, 1997; Rainuzzo et al., 1997).  

Copepods are the natural food of many fish larvae (Sibert et al., 1977; Alheit and 

Scheibel, 1982; Turner, 1984; 2004) and they provide a high nutritional value (Shields et 

al., 1999; Evjemo et al., 2003). Moreover, in copepods phospholipids predominate 

compared to triacylglycerols (Sargent et al., 1997). Phospholipids increase the efficiency 

of transport of dietary fatty acids from the intestine to the rest of the body (Tocher et al., 

2008) and are therefore a superior source of essential fatty acids and energy (Coutteau 

et al., 1997). 

Fatty acids are one of the components which contribute to successful growth of 

heterotrophic organisms, as they are required for normal cell membrane functions 

(Sargent et al., 1995). Fatty acids like eicosapentaenoic acid (20:5ω3; EPA), 

docosahexaenoic acid (22:6ω3; DHA) and arachidonic acid (20:4ω6, ARA) are essential 

fatty acids (EFA) for most metazoan consumers and have to be incorporated with food. 

The ratio between these EFAs and the amount of each play an important role in the 

successful rearing of marine fish larvae (Sargent et al., 1995).  

Some fish species have poor larval survival using the traditional live feed of rotifers 

and Artemia. For instance, grouper larvae have a quite small mouth gap and have a 

higher feeding success with copepod nauplii compared to rotifers (Doi et al., 1997). Red 

snapper was only ingesting copepods, even when copepods and rotifers were present 

(Zavala-Leal et al., 2012).  

Usually the demand for copepods in larviculture is covered by net-catches of 

natural zooplankton, which are most often dominated by calanoid copepods. However, it 

is difficult to control the quality of natural zooplankton.  

To rear pelagic copepods directly under controlled conditions at the hatchery site, 

high water volumes are required, since reproduction of calanoid copepods is reduced at 

high densities (Peck and Holste, 2006). Benthic harpacticoids can be reared in higher 

densities than calanoids (Støttrup, 2000), are tolerant to salinity and temperature 

changes and they are able to feed on diverse food sources including microalgae, 

bacteria, organic matter, ciliates and detritus (McIntyre, 1969).  
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Hence, we focussed on harpacticoid copepods as food source, Tisbe sp. and 

Tachidius discipes. While Tisbe spp. is a popular species in feeding experiments (Heath 

and Moore, 1997; Støttrup and Norsker, 1997; Olivotto et al., 2008a; Olivotto et al., 

2008b), the suitability of Tachidius discipes for aquaculture purposes has not been 

explored yet to the best of our knowledge.  

Besides labour, food is generally the largest cost factor in the aquaculture 

business, making up between 30 and 60% of the total cost (Southgate, 2003). Food 

production in a hatchery starts with algae for live feed. Algae are quite expensive to 

produce and often require a special nutrient medium containing trace metals and 

vitamins. Hence, it is crucial to know the optimal algal food concentration and to choose 

an algal species which results in good development and reproduction.  

In the present study, we tested five algal species, differing in cell size, cell 

concentration and fatty acid composition, in respect to their effects on development, 

reproduction and fatty acid composition of two harpacticoid copepod species. We 

investigated the transfer and incorporation of algal fatty acids into harpacticoid copepods 

and as a result of this study, we propose a food chain which provides a suitable nutrition 

for fish larvae in aquaculture.  

 

 

1.2. Material and Methods 
 
1.2.1 Algal culture 

Five different algae (Rhodomonas sp., Phaeodactylum tricornutum, Isochrysis 

galbana, Dunaliella tertiolecta and a concentrate of Pavlova sp.) from different algal 

classes and with different fatty acid compositions (Table 1.1) were selected as food for 

the copepods. The culture medium, for all algal species except for Pavlova sp., was 

prepared by enriching filtered (0.2 µm) and autoclaved Baltic Sea water (18 ± 1 g L-1) 

with trace metals and vitamins based on the modified Provasoli’s enriched seawater 

medium (Provasoli, 1968; Ismar et al., 2008). Nitrogen and phosphorus were added as 

NaNO3 and KH2PO4 at a concentration of 880 µmol L-1 and 36 µmol L-1, respectively. 

The algae were cultured at 18°C, a light intensity of 100 µmol m-2 s-1 and at a light-dark 

cycle of 16h:8h. Pavlova sp. was offered in all experiments as a concentrate produced by 

BlueBioTech GmbH, Büsum, Germany, which aims at developing it for commercial use. 

Thus, differences to Pavlova as live algae may occur. Differences can be caused for 

example by leakage of nutrients during centrifugation or by the sudden salinity drop from 

30 g L-1 in the concentrate to 18 g L-1 in the experiments. However, microscopical 



Chapter 1 

24 
 

observation did not reveal destroyed cells, but the unusual small cell size (Table 1.1) can 

be a first hint. 

 

Table 1.1: Characteristics of the algal species used in this study 

Algal species Origin 

Mean ± SD carbon 

content (pg C cell-1) 

N = 3 

Mean ± SD cell 

diameter (µm) 

N = 6 

Fatty acid contents 

(%) 

Rhodomonas sp. 

(Chryptophyceae) 

Isolated from Kiel 

fjord  
67 ± 6 10.5 ± 2.0 8.7 EPA4 

4.6 DHA4 

Phaeodactylum 

tricornutum 

(Bacillariophyceae) 

SAG1090-1b 11 ± 2 27.4 ± 2.8 (length) 
2.7 ± 0.3 (width) 

0 – 2.3 ARA1,2 

13.6 – 30.5 EPA1,2 

0.2 – 1.7 DHA1,2 

Isochrysis galbana 

(Prymnesiophyceae) 

Isolated from 

North Sea 
8 ± 1 4.8 ± 0.8 15.4 – 20.4 DHA1,2 

1.0 – 1.4 EPA1,2 

Dunaliella tertiolecta 

(Chlorophyceae) 
SAG13.86 113 ± 5 10.6 ± 2.1 no DHA and EPA1 

Pavlova sp. 

(Pavlovophyceae) 

BlueBioTech 

GmbH, Germany 
5 ± 1 3.2 ± 0.6 

0.3 – 3.7 ARA1,2,3 

17.3 – 23.2 EPA1,2,3 

9.3 – 17.0 DHA1,2,3 

1 Lang et al. (2011), 2 Patil et al. (2007), 3 Zhukova and Aizdaicher (1995), 4 Renaud et al. (1999) 

 

 

1.2.2 Copepod culture 

The present experiments used Tachidius discipes, a harpacticoid copepod isolated 

at the Kiel Bay, Germany at a sandy shore in June 2009 and Tisbe sp. isolated from a 

cultivation tank of Acartia tonsa in November 2009. Both have been kept in culture in our 

laboratory (GEOMAR, Kiel, Germany) since that time. Tachidius is an eulittoral species 

(Noodt, 1957) with a length of 0.5 mm and a generation time of 19.6 days at 20°C (Heip 

and Smol, 1976). Tisbe sp. is an eurytopic substratum generalist (Hicks, 1982) with a 

length of 0.7 mm and a generation time of 16.4 days at 20°C (Bergmans, 1981). The 

populations were maintained in crystallising dishes of 400 mL volume at 18 ± 1°C with a 

12:12 h-L:D-period and a light intensity of 31 µmol m-2 s-1. 

We used a code for the different copepod – alga combinations throughout the 

manuscript, with following abbreviations: Tisbe (Ti), Tachidius (Ta), Phaeodactylum 

(Phaeo), Rhodomonas (Rhodo), Dunaliella (Duna), Isochrysis (Iso) and Pavlova (Pav). 

The generic names of these species or the abbreviations are used henceforth. 
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1.2.3 Experimental setup 

Growth and development 

The four different algal species, (Phaeodactylum, Rhodomonas, Dunaliella, 

Isochrysis) were kept in exponential growth phase by dilution every second day while the 

Pavlova-concentrate was used directly. Algae were offered in 6 different carbon 

concentrations (0.16, 0.24, 0.32, 0.64, 1.28, 2.56 mg C L-1) to the nauplii of Tachidius 

and Tisbe starting with stage I or II. Higher concentrations (5.12, 10.24, 20.48 mg C L-1) 

were offered when fed with Pavlova, due to low survival of Tisbe at lower concentrations. 

Seven days before the experiment started, the copepods were acclimatised to the 

corresponding algal species and were kept under food saturating conditions. Eventually, 

groups of 10 nauplii in triplicate for each algal species and concentration were cultivated 

in 10 mL filtered (0.2 µm) Baltic Sea water (17 ± 1 g L-1) in 6-well culture plates, resulting 

in a density of 1 nauplius mL-1 or 1.04 nauplii cm-2. The experiment was conducted at 

18°C at a 12:12 h-L:D light regime and a light intensity of 31 µmol m-2 s-1. Water 

exchange and restocking to initial algal concentration was done every second day. After 

eleven days, the development stage was determined, a stage value was assigned and 

the development index (DI) was calculated according to 

(1) ∑ −⋅= 1NSVDI ,  

where SV = assigned stage value (Table 1.2) and N = number of copepods. 

 

Table 1.2: Assigned stage values (SV) for the different development stages of copepods. 
Stage Stage value Stage Stage value 

N1 0 C1 5 
N2 0 C2 6 
N3 1 C3 7 
N4 2 C4 8 
N5 3 C5 9 
N6 4 C6 10 

N = naupliar stage, C = copepodite stage 

 

To analyse the impact of algal food concentration on the development index, a 

nonlinear regression model was fitted as used in Knuckey et al. (2005): 

(2) ( )xBADIDI ⋅+= max ,  

where x = food concentration (mg carbon L-1) and A and B = regression parameters. 

The saturating food level was calculated by solving Equation 2 for DI = 99% of 

DImax. In addition, the survival of copepods was determined at the end of the experiment. 
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Reproduction 

In this experiment, the effect of four microalgal species (Rhodomonas, 

Phaeodactylum, Isochrysis and Pavlova-concentrate) as food source on the nauplii 

production of the two copepod species were determined under food saturating conditions 

(4, 4, 4, 7, 14 and 18 mg C L-1 (Rhodomonas, Phaeodactylum, Ti-Iso, Ta-Iso, Ta-Pav 

and Ti-Pav, respectively)) in a 7-day experiment at 18°C at a 12:12 h-L:D light regime 

and a light intensity of 31 µmol m-2 s-1. The reproduction with Dunaliella could not be 

analysed due to low number of egg-bearing females. After acclimatising the copepods to 

the different algae for ten days, three females, carrying their first egg-sacs, were 

transferred to one well (10 mL) of a well plate (Nwells = 18, in copepod cultures with 

Pavlova the number of egg-carrying females was low, consequently the number of 

replicates was lower: Nwells = 9 (Ta-Pav), Nwells = 6 (Ti-Pav)) filled with 300 mL filtered 

(0.2 µm) Baltic Sea water (17 ± 1 g L-1), which resulted in a density of 0.3 females mL-1 

or 0.3 females cm-2. Each day the hatched nauplii were counted and removed. Every 

second day the females were transferred to new plates with the initial algal 

concentration.  

 

Fatty acid conversion 

The effect of food source on the fatty acid composition of the two copepod species 

Tisbe and Tachidius was determined in a 30-day experiment at 18°C at a 12:12 h-L:D 

light regime and a light intensity of 31 µmol m-2 s-1. It was started with around 

50 egg-bearing females in each glass dish (ø 14 cm) filled with 300 mL filtered (0.2 µm) 

natural Baltic Sea water (17 ± 1 g L-1). Five different algae (Rhodomonas, 

Phaeodactylum, Isochrysis, Dunaliella, Pavlova) were offered at food saturating 

conditions. Water exchange was conducted every tenth day. The five treatments were 

run in triplicates. The samples were filtered onto precombusted GF/F-filters (Whatman, 

25 mm diameter) and stored at -80°C until further analysis. Because the two copepod 

species were tested successively, with the exception of Pavlova as the diet, the fatty acid 

content of the algae changed between the two experimental runs. Therefore to compare 

the fatty acid pattern between the two copepods species, the differences (DF) between 

copepod and algal species were calculated as 

(3) 𝐷𝐹 = 𝐹𝐴𝐶𝑜𝑝𝑒𝑝𝑜𝑑 − 𝐹𝐴𝐴𝑙𝑔𝑎 , 

where DF = difference, FACopepod = fatty acid content of the copepod (ng µg biomass-C-1) 

and FAAlga = fatty acid content of the alga (ng µg biomass-C-1).  
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1.2.4 Analytical procedure 

To analyse the carbon content of algae and copepods, algal cultures and 

copepods were filtered onto precombusted GF/F-filters (Whatman, 25 mm diameter), 

dried overnight and then analysed with an organic elemental analyser (FLASH 2000, 

Thermo). 

Fatty acids were extracted overnight with a solvent mixture of 

chloroform:dichloromethane:methanol with a ratio 1:1:1. C13:0, C15:0, C17:0, C19:0 and 

C21:0 fatty acid methyl esters were added as internal standards. C23:0-fatty acid was 

added for esterification control. After separation into an organic layer and an aqueous 

layer by adding a 1-molar potassium chloride solution, sodium sulphate was added to the 

organic layer. After transferring the organic layer in a new glass cocoon, the fatty acids 

were converted to methyl esters at 50°C with a mixture of toluene and methanol which 

was supplemented with 1% concentrated sulphuric acid. After creating two layers with 

addition of 5% sodium chloride solution and hexane, the hexane phase was transferred 

to a new glass cocoon and evaporated under reduced pressure until dryness. The 

extract was redissolved with hexane to a final volume of 100 µL (modified after Christie, 

1989). 

The fatty acid methyl esters were analysed in a gas chromatograph (Trace GC-

Ultra, Thermo Fisher Scientific) equipped with a flame ionization detector and a TR-

FAME-column (10 m, 0.1 mm i.d., 0.20 µm film) with hydrogen as the carrier gas. The 

temperature programme started at 50°C for 1 min, increased by 30°C min-1 to 150°C, 

then 4°C min-1 to 180°C and 30°C min-1 to 240°C. Peaks were integrated using 

Chromcard software (Thermo Fisher Scientific) and identified with reference to known 

standards. The focus was set on the ω3 and ω6 fatty acids, but all fatty acids were 

included for the calculation of the total fatty acid content. Fatty acid values were 

biomass-normalized (ng FA µg C-1). 

 

1.2.5 Statistical analyses 

Prior to statistical analyses data were tested for normality and homogeneity of 

variances. If these criteria were not fulfilled a transformation was performed.  

Effects of the diet and copepod species on the DI and nauplii production were 

tested by a two way ANOVA. Differences in survival were tested by a three way ANOVA, 

including the food concentration as a factor. A post-hoc test (Tukey unequal N HSD was 

conducted to analyse the differences in nauplii production in detail using STATISTICA 8. 

Level of significance was set at p < 0.05.  
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Since not all fatty acids and fatty acid groups fulfilled the requirement of 

homogeneity of variances, a PERMANOVA was conducted to analyse single fatty acids 

and ratios statistically. Similarity matrices were computed using Euclidean distance. For 

the pair-wise test the Monte-Carlo p-values were used due to small numbers of 

permutation (Anderson et al., 2008). Differences between diet and copepod were tested 

by using the original fatty acid values per carbon biomass. The significance level was set 

at p < 0.05. To investigate the overall fatty acid variation between algae and copepod 

and among copepod species, multivariate analyses were conducted. Fatty acids which 

were present in more than five treatments were square-root transformed to even out rare 

and dominant fatty acids. A Bray-Curtis similarity matrix was calculated and analysed by 

multidimensional scaling (MDS) and cluster analyses. Similarity percentages routine 

(SIMPER) was conducted to determine the dissimilarities between treatments and the 

fatty acids which contribute the most to those differences. Primer 6.0 (Primer-E Ltd) was 

used for all statistical tests with fatty acids. 

Unless otherwise stated, all values are presented as mean value ± standard 

deviation.  
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1.3. Results 
 
1.3.1 Growth and development  

The development index (DI) of both copepod species increased with increasing 

food concentration with a tendency to level off at high food concentrations (Fig. 1.1). 

Fitting Equation 2 to the results yielded the parameter estimates shown in Table 1.3.  

 

 
Figure 1.1: Development index of Tachidius discipes (Ta) and Tisbe sp. (Ti) as a function 
of algal food concentration (mg C L-1 in Weibull-log-scale) for the five different algae used 
after eleven days of feeding on the respective food species. Symbols display the average 
of three measured replicates and standard deviation. Lines display the fitted regression 
with parameters shown in Table 3. Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum 
tricornutum, Pav = Pavlova sp., Duna = Dunaliella tertiolecta, Iso = Isochrysis galbana. 
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Table 1.3: Parameters ± standard error of the regression model ( )xBADIDI ⋅+= max , 
R2 of the whole model and the calculated concentration of saturation, N = 3. 

Copepod - Alga 
Maximum 

development 
index (DImax) 

A B 
R2 of the 

model 

Calculated 
concentration 
of saturation 
 (mg C L-1) 

Tachidius - Phaeo 7.82 ± 0.41 -4.94 ± 1.49 0.05 ± 0.08 0.68 1.39 
Tachidius - Rhodo 7.85 ± 0.81 -3.98 ± 0.68 0.35 ± 0.22 0.74 3.72 
Tachidius - Duna 2.93 ± 1.27 -2.84 ± 1.02 0.45 ± 0.39 0.54 5.76 
Tachidius - Iso 1.54 ± 0.43 -2.09 ± 0.30 0.49 ± 0.19 0.89 6.79 
Tachidius - Pav 8.01 ± 0.37 -8.85 ± 0.43 0.71 ± 0.04 0.95 13.95 
Tisbe -        Phaeo 8.25 ± 0.19 -3.36 ± 0.75 0.04 ± 0.05 0.80 1.19 
Tisbe -        Rhodo 6.98 ± 1.22 -2.59 ± 1.05 0.34 ± 0.53 0.31 3.31 
Tisbe -        Duna 8.56 ± 0.23 -4.33 ± 1.10 0.03 ± 0.04 0.79 1.13 
Tisbe -        Iso 6.84 ± 0.43 -11.96 ± 10.79 0.0002 ± 0.001 0.49 0.61 
Tisbe -        Pav 7.61 ± 0.61 -9.17 ± 0.75 0.76 ± 0.05 0.89 17.69 
Phaeo = Phaeodactylum tricornutum, Rhodo = Rhodomonas sp., Duna = Dunaliella tertiolecta, Iso = 

Isochrysis galbana, Pav = Pavlova sp.  

 

The five algal species (ANOVA: F = 19.58, p < 0.001) and the copepod species 

(ANOVA: F = 62.69, p < 0.001) had significant effects on the development index of the 

two copepod species Tachidius and Tisbe. The treatments in this study can be divided 

into three different groups (Fig. 1.2). Tisbe (Ti-Rhodo, Ti-Phaeo, Ti-Duna, Ti-Iso) and 

Tachidius (Ta-Rhodo and Ta-Phaeo) could develop in 11 days to a DImax of around 7.5 

which correspond to stage C3 – C4 with comparably low algal concentrations (0.61 – 

3.72 mg C L-1) (Table 1.3). Tachidius fed with Dunaliella or Isochrysis required higher 

algal concentrations (5.76 and 6.79 mg C L-1) to reach the DImax (2.93 and 1.54, 

respectively). These DImax were significantly lower than the others mentioned before. The 

third group comprised Tisbe and Tachidius fed with a Pavlova-concentrate. With Pavlova 

the smallest alga tested, they could develop in the experimental period as far as the first 

group, but they needed a higher algal concentration (17.69 and 13.95 mg C L-1, resp.) to 

be food saturated. 
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Figure 1.2: Maximum development index of Tachidius discipes (Ta) and Tisbe sp. (Ti) 
versus algal concentration of food saturation (mg C L-1) calculated with the nonlinear 
regression model (see Equation 2). Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum 
tricornutum, Pav = Pavlova sp., Duna = Dunaliella tertiolecta, Iso = Isochrysis galbana. 

 

The copepod survival generally increased with increasing algal concentration (Fig. 

1.3), though Tachidius showed a high survival rate also at low concentrations when fed 

with Phaeodactylum or Rhodomonas, indicating an interaction between diet, food 

concentration and copepod (ANOVA: F = 5.44, p < 0.0001,). Tachidius fed with 

Isochrysis at the highest concentration just obtained a survival of 53.3 ± 11.6% after 11 

days, all other treatments resulted in a survival between 80.0 ± 10.0% and 96.7 ± 5.8%. 

Tisbe fed with Pavlova could only survive with algal concentrations of 2.56 mg C L-1 and 

higher. 

 

 
Figure 1.3: Survival (%) of Tisbe sp. and Tachidius discipes after 11 days as a function of 
algal concentration (mg C L-1 in Weibull-log-scale). Values are given as least square 
means ± 95% confidence interval (N = 3). 
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1.3.2 Reproduction 

Algal species had a significant effect (ANOVA: F = 17.54, p < 0.001) on daily 

naupliar production per female (Fig. 1.4). No significant differences between the two 

copepod species could be observed (ANOVA: F = 0.68, p = 0.41), when feeding on the 

same algal species, except for Isochrysis. Reproduction of Tachidius fed with Isochrysis 

could not be tested because of the slow development of Tachidius feeding on Isochrysis. 

With Dunaliella both copepod species had extremely low reproduction, which could not 

be measured. Tachidius and Tisbe had the highest production of nauplii per female when 

feeding on Rhodomonas (9.73 ± 2.18 and 9.57 ± 1.93 nauplii female-1 day-1, resp.). 

However, the difference in reproduction between Rhodomonas and Phaeodactylum was 

only significant with Tisbe (p < 0.05) but not with Tachidius (p = 0.25). The production of 

nauplii was not significantly different between the treatments when fed with 

Phaeodactylum, Pavlova or Isochrysis.  

 

 
Figure 1.4: Daily naupliar production per female with standard deviation (N = 18, 
Tachidius-Pavlova: N = 9, Tisbe-Pavlova: N = 6) when feeding on the different algal 
species at food saturation levels.  

 

 

1.3.3 Fatty acids 

Algae 

The figures 1.5 and 1.6 outline the composition of the ω6 and ω3 fatty acids. Since 

the feeding experiment with Tisbe was not conducted simultaneously to the one with 

Tachidius, except for Pavlova as the diet, the fatty acid composition of the same algal 
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species differed in some cases. However, the main pattern remained similar. 

Phaeodactylum contained the lowest level of total ω6. This group consisted mainly of 

18:2ω6, whereas 18:3ω6 was most abundant in Dunaliella and 20:4ω6 (ARA) could be 

observed in high amounts in Pavlova (11.61 ± 0.82 ng µg C-1) but only in traces in the 

other diets (0 - 0.76 ± 0.14 ng µg C-1).  

The total amount of ω3-fatty acids was higher than the level of the ω6-groups. 18:3ω3 

was absent in Phaeodactylum but present in all other algae. Dunaliella did not contain 

any fatty acids with a longer chain length than 18 C-atoms. The ω3-group in Dunaliella 

comprised 16:4ω3, 18:3ω3 and 18:4ω3. Significant differences in the EPA content were 

found between all algal species, decreasing in the order: Phaeodactylum, Pavlova, 

Rhodomonas, Isochrysis and Dunaliella. Isochrysis had the highest amount of DHA, 

followed by Rhodomonas. Phaeodactylum and Pavlova contained significantly lower 

amounts of DHA than Rhodomonas, but significantly higher (p < 0.005) than Dunaliella. 

The DHA:EPA ratio differed between the algal species over a wide range from 

0.03 ± 0.01 (Pavlova) to 26.33 ± 2.00 (Isochrysis).  

 

Fatty acid transfer 

 

 
Figure 1.5: Amount of fatty acids of the ω6 (left side) and ω3-group (right side) (ng FA µg C-1) in 
(A) five different algal species and in (B) Tisbe sp. (Ti) which fed on different algal species, N = 3, 
Ti-Phaeo: N = 2, (Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum tricornutum, Duna = 
Dunaliella tertiolecta, Iso = Isochrysis galbana, Pav = Pavlova sp.) 
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Figure 1.6: Amount of fatty acids of the ω6 (left side) and ω3-group (right side) (ng FA µg C-1) in 
(A) five different algal species and in (B) Tachidius discipes (Ta), which fed on different algal 
species, N = 3, (Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum tricornutum, Duna = 
Dunaliella tertiolecta, Iso = Isochrysis galbana, Pav = Pavlova sp.) 

 

When copepods were feeding on Dunaliella, a chlorophyte without EPA and DHA, 

all polyunsaturated C18-fatty acids decreased in their carbon-specific amounts in the 

copepods relative to the algae (Fig. 1.5 and 1.6). At the same time, ARA, EPA and DHA 

increased significantly in Tisbe (Ti-Duna) (Table 1.4 and 1.5). In Tachidius (Ta-Duna) 

EPA and DHA also increased, however this increase was statistically not significant due 

to the large variability among replicates. 

When fed with Phaeodactylum, 18:3ω3, ARA and DHA in Tisbe (Ti-Phaeo) 

increased significantly compared to the diet. In contrast, Tachidius (Ta-Phaeo) contained 

significantly less ARA and more 18:3ω6 compared to the diet. Ta-Phaeo also had a 

significantly higher content of DHA and a lower content in EPA than the diet. 

When fed with Isochrysis, Tisbe (Ti-Iso) had a significantly lower content of 

18:2ω6, ARA and 18:4ω3 and higher content of EPA than the diet, whereas the fatty acid 

content of Tachidius (Ta-Iso) could not be analysed due to low growth and reproduction.  

When copepods were feeding on Rhodomonas, 18:3ω3 and 18:4ω3 decreased in 

Tisbe (Ti-Rhodo), while all other fatty acids of the ω3- and ω6-group did not change 

significantly. Tachidius (Ta-Rhodo) contained significantly less 18:3ω3, 18:4ω3 and EPA 

and more of 18:3ω6. 
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When feeding on Pavlova, ARA and EPA content decreased in both Tisbe and 

Tachidius, but DHA increased. However, both species contained the highest ARA-level 

of all treatments when feeding on Pavlova with 3.74 ± 0.95 ng µg C-1 in Tisbe and 

4.86 ± 1.15 ng µg C-1 in Tachidius, respectively. 

In Tisbe, the DHA:EPA-ratio ranged from 0.27 ± 0.05 (Ti-Phaeo) to 6.99 ± 1.34 (Ti-

Iso) (Table 1.4). The DHA:EPA-ratio increased significantly from alga to copepod in Ti-

Duna, Ti-Phaeo, Ti-Rhodo and Ti-Pav, but was decreasing in Ti-Iso (Table 1.5). In 

Tachidius, DHA:EPA-ratio ranged from 1.0 ± 0.24 (Ta-Pav) to 7.98 ± 1.88 (Ta-Duna). 

The ratio was significantly higher in Tachidius than in every diet. DHA:EPA-ratio 

increased more in Tachidius than in Tisbe, except for Pavlova as food source.  

The ω3:ω6-ratio was significantly higher in Tisbe than in the diet, except for Ti-

Phaeo, whereas Tachidius had a lower ω3:ω6-ratio than the corresponding diet. 
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Table 1.4: Fatty acid composition (ng µg C-1) of Tisbe sp. (Ti) and Tachidius discipes (Ta) fed with five different algal species.  
Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum tricornutum, Pav = Pavlova sp., Duna = Dunaliella tertiolecta, Iso = Isochrysis galbana. Values are 
mean ± standard deviation, (N = 3, Ti-Phaeo: N = 2)  

 Ti-Rhodo Ta-Rhodo Ti-Phaeo Ta-Phaeo Ti-Pav Ta-Pav Ti-Duna Ta-Duna Ti-Iso 

C14:0  2.7 ± 0.2 5.0 ± 2.0* 10.4 ± 1.5 8.0 ± 1.8* 5.2 ± 0.8 7.2 ± 0.2 nd 3.1 ± 0.6* 5.3 ± 1.2* 
C16:0  26.4  ±  2.9 28.9 ± 11.5 44.2 ± 13.2 50.1 ± 8.2 77.7 ± 15.2 93.7 ± 28.9 21.3 ± 8.3 58.7 ± 20.9 18.2 ± 2.7* 
C16:1ω7+iso-17:0 6.1 ± 2.0* nd4 71.4 ± 13.6* 6.0 ± 1.6 17.7 ± 8.4 10.9 ± 3.6* 5.0 ± 1.4* 6.2 ± 4.1 2.8 ± 2.7 

C18:0  15.5 ± 4.3 17.0 ± 5.1 14.6 ± 4.3 29.5 ± 6.4* 44.1 ± 8.3* 49.0 ± 19.7 13.0 ± 5.6 30.4 ± 14.6 10.7 ± 2.6 

C18:1ω9c  5.6 ± 1.3* 7.7 ± 5.0 18.3 ± 4.5* 7.2 ± 1.5 12.0 ± 3.5 14.5 ± 4.7 2.4 ± 0.3* 2.1 ± 1.3 9.7 ± 3.0* 
C18:1ω7 5.6 ± 0.3 5.0 ± 2.0* 9.5 ± 0.2* 5.4 ± 1.0 nd* nd 1.7 ± 1.2 8.8 ± 6.8 5.2 ± 0.6* 
C18:2ω6c  2.7 ± 0.6 5.2 ± 3.6 4.4 ± 1.0* nd* 5.7 ± 2.3 5.9 ± 1.2 1.1 ± 0.4* nd* 3.7 ± 1.2* 
C18:3ω6  nd* 7.5 ± 1.0* 0.61 ± 0.32* 13.6 ± 2.7* nd 0.60 ± 1.04 nd* 3.6 ± 0.5* nd 

C18:3ω3  12.7 ± 2.4 8.9 ± 7.5* 1.2 ± 0.1* nd 4.7 ± 1.9 4.9 ± 2.0 4.5 ± 1.7* 3.1 ± 1.8* 7.4 ± 2.8 

C18:4ω3 7.7 ± 0.9* 5.8 ± 4.0* nd nd nd nd nd* nd* 6.3 ± 1.2* 
C20:4ω6  0.53 ± 0.13 1.3 ± 0.6 1.9 ± 0.1* 0.75 ± 0.15* 3.7 ± 1.0* 4.9 ± 1.2* 0.48 ± 0.12* nd nd* 
C20:3ω3  nd 1.3 ± 0.6* nd 0.55 ± 0.58 nd 3.3 ± 3.0 nd 1.3 ± 0.7 nd 

C20:5ω3  13.2 ± 1.4 12.3 ± 6.2* 59.3 ± 4.4 9.0 ± 0.9* 17.2 ± 5.1* 13.7 ± 3.1* 3.3 ± 1.2* 0.52 ± 0.43 3.5 ± 1.4* 
C22:6ω3 18.2 ± 5.1 31.0 ± 12.5 16.2 ± 4.3* 21.9 ± 1.0* 22.1 ± 7.9* 14.0 ± 5.4* 11.4 ± 4.3* 3.7 ± 2.2 23.3 ± 4.3 

total 120.8 ± 11.6 142.6 ± 61.4 278.7 ± 50.9* 156.9 ± 21.4* 215.2 ± 50.2 231.0 ± 35.5 65.3 ± 21.6* 125.2 ± 53.2 97.4 ± 18.5* 
SFA1 45.5 ± 7.2 50.9 ± 17.8 72.4 ± 20.2 90.9 ± 16.7 128.4 ± 23.1 152.8 ± 49.3 35.0 ± 14.0 93.5 ± 36.6 35.0 ± 5.5* 
MUFA2 14.4 ± 2.7* 13.3 ± 7.4* 121.3 ± 18.4* 14.6 ± 0.9* 31.5 ± 10.2 26.8 ± 10.6 7.6 ± 1.3 8.61 ± 5.78 13.9 ± 4.6* 
PUFA3 47.9 ± 5.9* 73.3 ± 34.4* 95.4 ± 10.8* 45.7 ± 4.4* 55.3 ± 17.2 51.8 ± 11.8 21.3 ± 7.6* 14.3 ± 5.2* 37.9 ± 9.5 

DHA:EPA 1.4 ± 0.3* 2.6 ± 0.4* 0.27 ± 0.05* 2.4 ± 0.2* 1.3 ± 0.2* 1.0 ± 0.2* 3.4 ± 0.4* 8.0 ± 1.9* 7.0 ± 1.3* 
EPA:ARA 26.3 ± 8.2 9.6 ± 0.8 30.7 ± 1.0* 12.2 ± 1.9* 4.6 ± 0.5* 2.8 ± 0.2* 6.8 ± 1.3*   

ω6 3.5 ± 0.7 14.0 ± 4.9 6.9 ± 1.3* 14.3 ± 2.8 11.4 ± 4.2 14.8 ± 2.5 1.6 ± 0.5* 5.6 ± 0.2* 3.7 ± 1.2* 
ω3 51.8 ± 6.9 59.3 ± 29.5* 76.6 ± 8.9* 31.4 ± 2.0* 43.9 ± 13.0 35.8 ± 8.3 19.3 ± 7.1* 8.6 ± 5.0* 40.5 ± 9.5 

ω3:ω6 15.5 ± 4.9 4.1 ± 0.8 11.2 ± 0.9* 2.2 ± 0.4* 3.9 ± 0.3* 2.4 ± 0.3* 11.8 ± 1.4* 1.5 ± 0.8 11.2 ± 1.0* 
* Superscript star denote significant differences between copepod and the corresponding algal species. 
1 Saturated fatty acids include additionally 12:0, 20:0, 22:0 and 24:0. 
2 Monounsaturated fatty acids include additionally 14:1, 15:1, 17:1, 18:1ω9t, 20:1ω9, 22:1ω9 and 24:1. 
3 Polyunsaturated fatty acids include additionally 16:2, 16:3, 16:4ω3, 18:2ω6t, 20:2ω6, 20:3ω6 and 22:2. 
4 nd = non detectable level 
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Table 1.5: Differences in fatty acid composition (ng µg C-1) between the two copepods Tisbe sp. (Ti) and Tachidius discipes (Ta) and their food source in 
ng µg C-1. Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum tricornutum, Pav = Pavlova sp., Duna = Dunaliella tertiolecta, Iso = Isochrysis galbana.  
Values are mean ± standard deviation, (N = 3, Ti-Phaeo: N = 2) 
 Ti-Rhodo Ta-Rhodo Ti-Phaeo Ta-Phaeo Ti-Pav Ta-Pav Ti-Duna Ta-Duna Ti-Iso 

C14:0  -0.1 ± 0.2 a -6.1 ± 2.0 b 2.4 ± 1.5 a -15.1 ± 1.8 b -1.2 ± 0.8 a 0.7 ± 0.2 b -0.3 ± 0.0 a 2.3 ± 0.6 b -26.9 ± 1.2 

C16:0  1.3 ± 2.9 a -11.8 ± 11.5 a 14.9 ± 13.2 a 0.4 ± 8.2 a 25.5 ± 15.2 a 41.4 ± 28.9 a -8.2 ± 8.3 a 33.6 ± 20.9 b -12.1 ± 2.7 
C16:1ω7+iso-
17:0 6.1 ± 2.0 a -0.5 ± 1.3 b 52.4 ± 13.6 a -64.6 ± 1.6 b -6.2 ± 8.4 a -13.0 ± 3.6 a 2.6 ± 1.4 a 4.1 ± 4.1 a -0.2 ± 2.7 

C18:0  3.0 ± 4.3 a 9.1 ± 5.1 a -0.3 ± 4.3 a 26.5 ± 6.4 b 24.1 ± 8.3 a 29.0 ± 19.7 a 8.0 ± 5.6 a 20.9 ± 14.6 a 3.5 ± 2.6 

C18:1ω9c  2.8 ± 1.3 a 0.1 ± 5.0 a 17.1 ± 4.5 a 2.0 ± 1.5 b 4.0 ± 3.5 a 6.5 ± 4.7 a -2.1 ± 0.3 a -1.8 ± 1.3 a -18.6 ± 3.0 

C18:1ω7 -8.3 ± 0.3 a -10.4 ± 2.0 a 8.2 ± 0.2 a 3.7 ± 1.0 b 0.0 ± 0.0 a 0.0 ± 0.0 a 0.5 ± 1.2 a 7.0 ± 6.8 a 3.2 ± 0.6 

C18:2ω6c  -0.4 ± 0.6 a -5.9 ± 3.6 a 3.0 ± 0.9 a -5.6 ± 0.0 b 1.5 ± 2.3 a 1.7 ± 1.2 a -4.3 ± 0.4 a -5.1 ± 0.0 b -7.8 ± 1.2 

C18:3ω6  -0.3 ± 0.05 a 5.9 ± 1.0 b 0.6 ± 0.3 a 11.2 ± 2.7 b 0.0 ± 0.0 a 0.6 ± 1.0 a -6.5 ± 0.0 a -2.6 ± 0.5 b 0.0 ± 0.0 

C18:3ω3  1.5 ± 2.4 a -47.9 ± 7.5 b 1.2 ± 0.1 a -0.4 ± 0.0 b 3.4 ± 1.9 a 3.5 ± 2.0 a -41.9 ± 1.7 a -32.3 ± 1.8 b -0.1 ± 2.8 

C18:4ω3 -9.8 ± 0.9 a -42.4 ± 4.0 b 0.0 ± 0.0 a -2.4 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a -1.8 ± 0.0 a -2.5 ± 0.0 a -5.9 ± 1.2 

C20:4ω6  0.1 ± 0.1 a 0.2 ± 0.6 a 1.2 ± 0.1 a -1.1 ± 0.2 b -7.9 ± 1.0 a -6.8 ± 1.2 a 0.5 ± 0.1 a 0.0 ± 0.0 b -0.4 ± 0.0 

C20:3ω3  0.0 ± 0.0 a 1.3 ± 0.6 a 0.0 ± 0.0 a 0.6 ± 0.6 a 0.0 ± 0.0 a 3.3 ± 3.0 a 0.0 ± 0.0 a 0.7 ± 0.7 a 0.0 ± 0.0 

C20:5ω3  2.0 ± 1.4a -12.8 ± 6.2b 7.7 ± 4.4a -65.8 ± 0.9b -25.7 ± 5.1a -29.2 ± 3.1a 3.3 ± 1.2 a 0.5 ± 0.4 b 2.9 ± 1.4 

C22:6ω3 10.6 ± 5.0a 13.8 ± 12.5a 14.1 ± 4.3a 15.1 ± 1.0a 20.8 ± 7.9a 12.7 ± 5.4a 11.4 ± 4.3 a 3.4 ± 2.2 a 6.5 ± 4.3 

total 9.7 ± 11.6 a -110.2 ± 61.4b 135.0 ± 50.9 a -120.0 ± 21.4 b 39.9 ± 50.2 a 55.6 ± 35.5 a -59.3 ± 21.6 a 9.7 ± 53.2 a -57.3 ± 18.5 

SFA1 2.8 ± 7.2 a -9.3 ± 17.8 a 19.3 ± 20.2 a 12.1 ± 16.0 a 47.4 ± 23.1 a 71.8 ± 49.3 a 0.0 ± 14.0 a 57.7 ± 36.6 a -35.3 ± 5.5 

MUFA2 3.3 ± 2.5 a -17.6 ± 7.4 b 86.5 ± 18.4 a -65.4 ± 0.9 b -0.4 ± 10.2 a -5.1 ± 10.6 a 0.7 ± 1.3 a -1.1 ± 5.8 a -19.4 ± 4.6 

PUFA3 4.3 ± 6.5 a -88.9 ± 34.4 b 26.3 ± 10.8 a -72.9 ± 4.4 b -7.1 ± 17.2 a -10.7 ± 11.8 a -57.9 ± 7.6 a -55.7 ± 5.2 a 1.1 ± 9.5 

DHA:EPA 0.7 ± 0.3 a 1.9 ± 0.4 b 0.23 ± 0.05 a 2.3 ± 0.2 b 1.2 ± 0.2 a 1.0 ± 0.2 a 3.4 ± 0.4 a 8.0 ± 1.9 b -19.3 ± 1.3 

EPA:ARA 0.7 ± 8.2 a -23.1 ± 0.8 b -37.7 ± 1.0 a -29.8 ± 1.9 b 0.9 ± 0.5 a -0.9 ± 0.2 b 6.8 ± 1.3 a 0.0 ± 0.0 b -1.5 ± 0.0 

ω6 -0.6 ± 0.7 a -0.3 ± 4.9 a 4.8 ± 1.3 a 4.6 ± 2.8 a -5.6 ± 4.2 a -2.3 ± 2.5 a -10.7 ± 0.5 a -6.1 ± 0.2 a -8.2 ± 1.2 

ω3 4.3 ± 6.9 a -88.0 ± 29.5 b 22.9 ± 8.9 a -53.0 ± 2.0 b -1.5 ± 13.0 a -9.6 ± 8.3 a -49.7 ± 7.1 a -46.3 ± 5.0 a 3.4 ± 9.5 

ω3:ω6 3.9 ± 4.9 a -7.1 ± 0.8 b -14.2 ± 0.9 a -6.5 ± 0.4 b 1.2 ± 0.3 a -0.3 ± 0.3 b 6.2 ± 1.4 a -3.2 ± 0.8 b 8.2 ± 1.0 
Dissimilar superscript letters denote significant differences between Tisbe and Tachidius fed with the same algal species 
1 Saturated fatty acids include additionally 12:0, 20:0, 22:0 and 24:0. 
2 Monounsaturated fatty acids include additionally 14:1, 15:1, 17:1, 18:1ω9t, 20:1ω9, 22:1ω9 and 24:1. 
3 Polyunsaturated fatty acids include additionally 16:2, 16:3, 16:4ω3, 18:2ω6t, 20:2ω6, 20:3ω6 and 22:2. 
4 nd = non detectable level 
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The MDS ordination indicates that Dunaliella was distinct from all other algal and 

copepod species (Figure 1.7). Several 70% similarity groups were formed. One group 

was composed of Rhodomonas, Isochrysis and the corresponding copepods. 

Phaeodactylum, Pavlova and the respective copepods formed another group, whereas 

Dunaliella was distinct from their corresponding copepods.  

SIMPER analysis calculated the dissimilarities between groups and identified the 

fatty acids contributing the most to the differences. The lower level of 18:3ω3 and the 

higher level of DHA in Ti-Duna compared to Dunaliella were central to its dissimilarity of 

39.64%. Whereas the lower level of 18:3ω3 and the higher level of 18:0 in Ta-Duna 

compared to Dunaliella were central to its dissimilarity of 38.41%.  

Ti-Phaeo and Ta-Phaeo had a dissimilarity of 31.33%, with 16:1ω7+iso-17:0 and 

EPA contributing the most to that dissimilarity. Phaeodactylum and Ta-Phaeo had a 

dissimilarity of 34.57% with EPA contributing the most to the differences, whereas 

Phaeodactylum and Ti-Phaeo showed a dissimilarity of 20.16% with 16:1ω7+iso-17:0 

contributing the most to the differences.  

 

 
Figure 1.7: MDS-ordination with embedded Bray-Curtis-Similarity obtained by cluster 
analysis of the fatty acid profile of the different algal sources and the two copepods Tisbe 
sp. (Ti) and Tachidius discipes (Ta) fed with microalgae, N = 3, Ti-Phaeo N = 2.  
Similarity is expressed in percentage. The groupings marked by the dashed line 
represent 70% similarity and the solid lines represent 50% similarity based on cluster 
analysis. Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum tricornutum, Pav = 
Pavlova sp., Duna = Dunaliella tertiolecta, Iso = Isochrysis galbana.  
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1.4. Discussion 
 
1.4.1 Copepod performance 

The choice of a desirable diet should be based on a short development time, high 

survival rate and high reproduction, which should be attained at a low diet concentration. 

With Phaeodactylum as the diet, both copepod species attained a high development 

index within 11 days at a low food concentration. However, the reproduction was slightly 

higher with Rhodomonas as the diet, but to obtain that, a higher food concentration was 

required. Compared to Tisbe, the survival of Tachidius was high also at low algal 

concentrations when fed with Rhodomonas or Phaeodactylum (Fig. 1.3). Consequently, 

Tachidius should be preferred over Tisbe. Since development time increased at lower 

rations (Fig. 1.1), the advantage of higher survival is offset. Furthermore, the same algal 

species differed in their absolute fatty acid contents at the time when the experiments 

with Tisbe and Tachidius were conducted (Appendix: Table A1 and A2). Tisbe generally 

got a lower amount of fatty acids in the case of Phaeodactylum, Rhodomonas and 

Dunaliella. This might be a reason for the lower survival at low algal concentrations 

compared to Tachidius. 

However, the relative values of fatty acids in the diet were similar. Consequently, 

the conclusion that a high content in EPA (Phaeodactylum) or EPA and DHA 

(Rhodomonas) leads to high reproduction and a high growth performance can be made 

for both copepods, regardless of the different fatty acid contents of their diet.  

While there is no conspicuous advantage of Rhodomonas over Phaeodactylum or 

vice versa indicated, Dunaliella, Isochrysis and Pavlova showed disadvantages in at 

least one of the parameters. Feeding with Dunaliella resulted in poor development of 

Tachidius and poor reproduction of both copepods. With Pavlova a 5-fold higher carbon 

concentration was needed to attain the same DImax as with Rhodomonas. Since Pavlova 

is smaller than Rhodomonas, the higher saturation concentration can be explained by 

the observation of Frost (1972) that the carbon concentration at which the maximum 

ingestion rate occurs increases with decreasing cell size. However, Isochrysis also had a 

small cell size (4.80 ± 0.79 µm) and Tisbe got food saturated at a quite low carbon 

concentration of 0.61 mg C L-1 and showed a high DImax (6.84 ± 0.43), whereas 

Tachidius exhibited a slow and barely detectable development. For comparison, calanoid 

copepods respond with elongated generation times when fed with Isochrysis (Klein 

Breteler et al., 1995; Knuckey et al., 2005).  

The different performances of Tisbe and Tachidius fed with Isochrysis were 

surprising. Possible explanations are: (a) Tachidius and Tisbe have a different feeding 



Chapter 1 

40 
 

 
 

apparatus, (b) Tachidius could not deal with the biochemical composition of Isochrysis, 

(c) Tisbe could use other food sources present in the culture vessel such as bacteria. 

Size seems not to be the decisive factor, since both copepod species could ingest 

Pavlova which was even smaller than Isochrysis, although requiring a higher food 

concentration than when fed with other algae. Thus, the way the copepods can deal with 

the biochemical composition of Isochrysis and possibly bacteria as additional food 

source seem to be explanations for the differences in development of the two copepod 

species.  

Several studies showed that harpacticoids use bacteria as their food source 

(Decho and Moriarty, 1990; Guérin and Rieper-Kirchner, 1991; Perlmutter and Meyer, 

1991; Dahms et al., 2007; De Troch et al., 2010). In the present study, the bacterial fatty 

acid biomarkers 16:1ω7, iso-17:0 (Desvilettes et al., 1997) were enriched 

(+52.42 ± 13.63 ng µg C-1, Table 1.5) in Ti-Phaeo compared to Phaeodactylum and were 

contributing the most to the differences in fatty acid composition between Ti-Phaeo and 

Phaeodactylum. The same occurred when Tisbe was fed with Rhodomonas but not to 

such an extent as with Phaeodactylum. This could be a hint for the use of bacterial food 

sources by Tisbe, although other fatty acid biomarkers of bacteria, like iso-15:0, 15:1 and 

others, were not present in Tisbe. Since our cultures have not been axenic, bacteria 

could have been utilized by Tisbe. 

Harpacticoid copepods seem to need a higher algal concentration than calanoid 

copepods like Acartia spp., since Berggreen et al. (1988) and Knuckey et al. (2005) 

reported lower saturation concentrations, when fed with Rhodomonas, of 0.5 and 0.7 

mg C L-1, respectively. This might be due to different feeding behaviour. Calanoids are 

suspension-feeders (Paffenhöfer et al., 1982) whereas benthic harpacticoids graze on 

surfaces. To feed effectively they may require a dense algal coverage of the surface area 

rather than high algal concentrations in suspension. 

The harpacticoid copepod Euterpina acutifrons, fed with a mixture of four different 

algal species, showed a comparable reproduction of 10.9 nauplii female-1 day-1 (Zurlini et 

al., 1978) like Tisbe and Tachidius in this study. Acartia tonsa, a calanoid copepod, 

likewise exhibited the highest fecundity with Rhodomonas (23.5 nauplii female-1 d-1) 

(Peck and Holste, 2006), which is higher compared to our result. However, A. clausii was 

cultured in a 26-fold lower density, thus having a lower abundance of females that 

contribute to reproduction, which is leading to a lower overall production of calanoids. A 

lower total production also is observed in other mass production studies of calanoids 

(Støttrup et al., 1986; Payne and Rippingale, 2000) and harpacticoid copepods (Støttrup 

and Norsker, 1997; Rhodes, 2003).  
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In conclusion, Tisbe fed with the same diet like Tachidius showed the same or 

even better growth and reproduction performance, while getting lower absolute fatty acid 

contents. Consequently Tisbe might be a better candidate for aquaculture. 

 

1.4.2 Transfer of fatty acids 

Ti-Rhodo, Ti-Duna, Ti-Iso, Ta-Phaeo and Ta-Rhodo had similar EPA and DHA-

contents on a percentage basis compared to wild zooplankton of temperate climates 

(Nanton and Castell, 1999). In comparison to cultured copepod species, the total fatty 

acid content of Tisbe and Tachidius fed with Rhodomonas and Dunaliella was similar to 

values observed in Acartia tonsa, although the EPA-content was higher in A. tonsa and 

the DHA-content differed slightly (Veloza et al., 2006).  

The fatty acid compositions of Tisbe fed with Isochrysis and Dunaliella were similar 

to results of Tisbe investigated by Nanton and Castell (1999). However, Ti-Phaeo 

deviated especially in the EPA (21.9% of total fatty acid) and DHA-content (6.3%), but 

also in the 16:1ω7-content (23.5%) compared to Tisbe fed with Chaetoceros calcitrans 

(8.3, 21.4 and 0.4%, respectively), a diatom with similar fatty acid composition to 

Phaeodactylum. This again indicates the utilization of other food sources by Tisbe in the 

present study than the provided microalgae. De Troch et al. (2009; 2010) observed an 

increase in bacterial diversity on faecal pellets of a harpacticoid copepod than before in 

the diatom culture and concluded that bacteria function probably as an upgrade of the 

initial food source. The additional bacteria, probably originating from the copepod’s 

digestive tract, depend largely on the initial food source. This explains why the utilization 

of bacteria was not observed with all the tested microalgal species in this study. 

Moreover, the harpacticoid copepod Schizopera sp. was able to reproduce and grow on 

an exclusively bacterial diet (Dahms et al., 2007). This all suggests that Tisbe used 

precursor fatty acids of bacterial origin to enhance its DHA-content, consequently the 

EPA-content of Phaeodactylum was conservatively incorporated, whereas Tachidius had 

to use the microalgal precursors such as 18:3ω3 and EPA to enhance its DHA-content. 

The two copepod species showed different fatty acid patterns than their diet. Both 

copepods had a higher DHA-level and a higher DHA:EPA-ratio than their diet, except for 

Ti-Iso. Isochrysis already had a high DHA-level and therefore Tisbe did not seem to have 

the need for enriching this fatty acid. A percentage value of around 24% DHA is probably 

a saturation level for Tisbe, because even when fed with a mixed diet with a higher 

percentage of DHA, Tisbe did not exceed 26% DHA (Parrish et al., 2012).  

Phaeodactylum and Pavlova had high values of EPA but low levels of DHA. The 

fatty acid composition of Pavlova sp. in this study deviated from other Pavlova species 
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(Volkman et al., 1991; Ponis et al., 2006). The DHA content of Pavlova in our study was 

lower, whereas the ARA content was higher. However, Tachidius was increasing the 

DHA content and decreasing the EPA content when fed with Phaeodactylum or Pavlova, 

while the 18:3ω3-level remained constant. Thus, the DHA:EPA-ratio increased.  

Norsker and Støttrup (1994) tested the influence of three diets differing in their lipid 

and fatty acid content on the fecundity and fatty acid composition of Tisbe holothuriae 

and found an enrichment in EPA and DHA when fed with Dunaliella, but they also stated 

that the fatty acid composition of the diet was reflected to a large extent in the copepods. 

Their findings are in agreement with our finding that harpacticoids are able to produce 

EPA and DHA by elongation and desaturation of 18:3ω3 which is in high supply in 

Dunaliella. The same ability for elongation and desaturation was observed in a fresh 

water harpacticoid copepod (Caramujo et al., 2008). This shows that harpacticoids 

incorporate certain fatty acids in a conservative way if they are in the right amount and 

ratio to other fatty acids and if not they try to adjust the fatty acids to their needs. But 

their homeostatic ability is not perfect; otherwise all the treatments would result in a more 

or less similar fatty acid pattern, which is not the case as seen in Figure 1.6. Tisbe 

seems to have a higher desaturating capacity than Tachidius, which resulted in higher 

DHA and EPA values when having Dunaliella as a food source and also in a higher 

development index, 8.53 ± 0.23 compared to 2.93 ± 1.27, respectively. Nanton and 

Castell (1999) assumed a higher desaturating capacity for Tisbe sp. compared to 

Amonardia sp. 

Although Tisbe achieved a good development when fed with Dunaliella, it had a 

very low reproductive output which could not be measured in our experiment due to a 

low number of females carrying an egg sac. The synthesis costs of DHA and EPA seem 

to be paid off by reduced reproduction. Norsker and Støttrup (1994) assumed that the 

synthesis of ω3-HUFAs might be rate-limiting for reproduction, because they also 

observed an enhancement in reproduction when fed with Rhodomonas baltica instead of 

Dunaliella tertiolecta.  

The bioconversion in the ω6-chain, from 18:2ω6 to ARA, is less pronounced in the 

two copepod species than the ω3-conversion-chain, which is similar to other studies (De 

Troch et al., 2012; Parrish et al., 2012). Tachidius stopped the conversion process 

sometimes at 18:3ω6 and Tisbe only showed an increase when fed a diet low in ARA but 

high in EPA (Phaeodactylum) and when fed a diet without ARA (Dunaliella). When 

present at high concentrations in the diet (Pavlova) ARA was even reduced in the 

copepod. In conclusion, the desaturases were probably more active towards the ω3 fatty 

acid than the equivalent ω6 precursor, which also is the case in fish (Bell and Tocher, 
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2009) and the case of Tisbe showed that probably the ratio to other fatty acids such as 

EPA play a role. 

 

1.4.3 Outlook: Copepods for fish larvae 

Apart from other biochemical parameters like proteins, amino acids, pigments and 

vitamins, fatty acids play a central role in larval fish nutrition. The main focus is set on 

DHA, EPA and ARA-content and ratios between them. Reitan et al. (1994) eliminated 

mal-pigmentation of turbot when prey had a DHA:EPA ratio of 2:1 and Tocher and 

Sargent (1984) found this same ratio in several yolk sacs and eggs of marine fish larvae. 

Sargent et al. (1999a) suggested that an optimal DHA:EPA:ARA ratio for fish larvae 

would range around 10:5:1, but differing for each fish species. Further, they emphasised 

that both relative and absolute values of these fatty acids were important. The best larval 

development of Sparus aurata (Rodríguez et al., 1998) and the best pigmentation in 

Scophtalmus maximus larvae (Reitan et al., 1994) was obtained at a DHA-level of 

around 0.8% dry weight (≈18.6 ng µg C-1, converted with data of Øie et al. (1994)) in 

rotifers. This level is fulfilled by Tachidius when fed with Rhodomonas and 

Phaeodactylum with a DHA:EPA ratio of 2.62 ± 0.43 and 2.43 ± 0.15, respectively. Tisbe 

achieved 0.8% DHA when feeding on Rhodomonas, Pavlova or Isochrysis, but with 

lower or higher DHA:EPA ratios (1.36 ± 0.25, 1.27 ± 0.19, 6.99 ± 1.34, respectively) than 

suggested.  

Ta-Phaeo and Ta-Rhodo had a DHA:EPA ratio of ca. 30:12:1 and 25:10:1, 

respectively, fulfilling the suggested DHA:EPA ratio but having a too high EPA:ARA ratio. 

When copepods where fed with Pavlova-concentrate they displayed a ratio of 6:5:1 

(Tisbe) and 3:3:1 (Tachidius), respectively, having a better EPA:ARA ratio than with 

Phaeodactylum or Rhodomonas as a diet, but exhibiting a too low DHA:EPA ratio for 

optimal larval fish growth. A combination of Rhodomonas and Pavlova-concentrate as a 

diet could result in copepods which are optimal for rearing fish larvae, but the need for 

two algal species would lead to higher production costs.  

In conclusion, an algal cell size of more than 5 µm is suitable for both copepod 

species. Rhodomonas or Phaeodactylum were best suited for copepod performance and 

these diets resulted, in terms of fatty acids, in copepods suitable for fish larvae. However, 

Rhodomonas is an algal species which is a bit demanding to culture due to sudden 

breakdowns or overgrowth by other algal species, also observed by Knuckey et al. 

(2005) and therefore it might be inappropriate for aquaculture purposes. This results in a 

recommendation of Phaeodactylum over Rhodomonas. 
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Abstract 
This study aims to test the suitability of the harpacticoid copepod Tachidius 

discipes as an alternative live feed for fish larvae in comparison with the rotifer 

Brachionus plicatilis, a traditionally used live feed. Larvae of Clupea harengus were used 

as a model organism. T. discipes and B. plicatilis were offered as prey items, either as a 

sole diet or as a mixture of both. In order to investigate the suitability of the prey, 

RNA:DNA ratio, tryptic activity and growth of the fish larvae were determined.  

The rotifer and mixed-treatment resulted in similar larval growth performance. In 

contrast, the majority of larvae, which were fed with copepods as a sole diet, died after 

13 days. RNA:DNA ratio was significantly lower in this treatment compared to the other 

two treatments and the tryptic activity showed a decreasing trend. This compares well 

with starving larvae in other studies. However, the feeding incidence was significantly 

higher in copepod-fed larvae than in rotifer-fed larvae. This led to the assumption that 

they were not able to digest T. discipes sufficiently. 

Based on this observation and conclusion, in-vitro evaluation of the digestibility of 

several potential prey organisms for larval fish was conducted using trypsin. Artemia sp. 

showed the highest degradation. B. plicatilis was less digestible than Artemia sp. The 

calanoid copepod Acartia tonsa and the harpacticoid copepod Tisbe sp. were more 

digestible than T. discipes and the nematode Panagrolaimus sp.  
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2.1. Introduction 
 

Copepods are major natural food organisms for fish larvae. Calanoids are the 

dominant food source in the open marine water (Turner, 1984; 2004), whereas in coastal 

areas harpacticoids are an important link between primary producers and fish larvae 

(Sibert et al., 1977; Alheit and Scheibel, 1982). Both provide a good food quality (Shields 

et al., 1999; Evjemo et al., 2003), as well as an appetite stimulatory effect (Doi et al., 

1997; Støttrup and Norsker, 1997). However, in artificial rearing of marine fish larvae, 

copepods are rarely used as the production of pelagic copepods requires a much higher 

effort than the production of Artemia nauplii. Therefore, the rearing of marine fish larvae 

relies mostly on rotifers and Artemia, which are relatively easy to culture, but both live 

feeds have deficiencies in their nutritional value compared to natural feeding organisms 

such as copepods. This results in weaker growth performance, higher mortalities or 

malpigmentation of fish larvae (Shields et al., 1999; Payne et al., 2001; Schipp, 2006; 

Busch et al., 2010). It is therefore natural to consider the replacement of the traditional 

live feed with copepods and to investigate their suitability as alternative live feed for fish 

larvae. This study deals specifically with the properties of harpacticoid copepods.  

Benthic harpacticoids have some advantages compared to calanoid copepods: (1) 

they can be reared in higher densities than pelagic calanoid copepods (Støttrup, 2000), 

(2) harpacticoids are tolerant to salinity and temperature changes, and (3) they are able 

to feed on diverse food sources including microalgae, bacteria, organic matter and 

ciliates (McIntyre, 1969; Hicks and Coull, 1983). Hence, this study examined the 

suitability of harpacticoid copepods as feed for early stages of marine fish larvae. The 

results of Chapter 1 suggested Tachidius discipes as a suitable food source, based on 

their reproduction performance, their high fatty acid content of DHA (22:6ω3) and EPA 

(20:5ω3) as well as their DHA:EPA:ARA (ARA = 20:4ω6) ratio of 30:12:1 when fed with 

Rhodomonas sp., which is close to the suggested ratio of 10:5:1 for marine fish larvae 

(Sargent et al., 1999a). 

The nutritional condition of fish larvae can be monitored by the RNA:DNA ratio 

(long-term scale) and the tryptic activity (short-term scale) (Ueberschär and Clemmesen, 

1992). Growth specifically in fish larvae means mainly protein synthesis. The theory 

behind the application of the RNA:DNA ratio is that the amount of DNA is constant in the 

cell even under starving conditions, whereas RNA is directly proportional to protein 

biosynthesis (Buckley, 1980). Thus, larvae in good nutritional condition have a higher 

RNA:DNA ratio than starving larvae. Trypsin is the major pancreatic enzyme to degrade 

protein in the early stages of fish larvae. It is secreted as its inactive form trypsinogen 
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from the pancreas into the intestine and is activated by enteropeptidase. The secretion is 

stimulated by the hormone cholecystokinin (CCK), which is released by chemical triggers 

in the intestine (Rønnestad et al., 2007). In humans, the presence of fats and proteins in 

the intestine is responsible for that stimulation (Chandra and Liddle, 2009). 

Consequently, the type and amount of food influences the trypsin concentration 

(Pedersen et al., 1987; Pedersen and Andersen, 1992). Thus, both indicators can be 

used in fish larvae to monitor the feeding activity, the food quality (Trypsin) and the 

nutritional condition (RNA/DNA, Trypsin) of fish larvae.  

Feeding trials with herring larvae (Clupea harengus) comparing harpacticoid 

copepods (T. discipes) and rotifers (B. plicatilis) were performed to investigate the 

suitability of T. discipes as live feed for fish larvae and furthermore to test the suitability 

of T. discipes for mass culture. In order to evaluate the contribution of exogenous trypsin 

in the digestion process, which is controversially discussed (Dabrowski and Glogowski, 

1977; Munilla-Moran et al., 1990; Zambonino Infante and Cahu, 1994; Ribeiro et al., 

1999; França et al., 2010), the generic tryptic activity of the different prey types was 

analysed and related to the total tryptic activity measured in individual larvae. 

Following the successful capture of prey its digestibility decides about the real 

nutritional value of the prey item. Thus, it is fundamental to know the digestibility when 

evaluating new prey items. Fleeger (2005) reported observations which suggest that 

harpacticoids may leave the gut of fish larvae alive and undigested. Moreover, 

interspecific differences of copepod digestibility occurred in turbot (Conway et al., 1993). 

Consequently, the digestibility of these types of copepods as first food for fish larvae 

needs to be evaluated. In order to compare with other live feed organisms, which are 

already applied in rearing of fish larvae, these prey items were included into the 

digestibility trial. 

 

2.2. Material and Methods 
 
2.2.1 Live feed mass culture 

The harpacticoid copepod Tachidius discipes was collected from the Baltic Sea 

(Kiel Bay, Germany) in June 2009 and subsequently cultivated in the laboratory. The 

population was kept in flat plastic trays, providing a surface of 0.26 m2 for the copepods, 

and filled with 7.8 L filtered sea water (FSW, 0.2 µm filtered, 17 PSU) at 18 ± 1°C with a 

16 h:8 h-L:D-period. The copepod cultures were fed Rhodomonas sp. at food saturating 

levels, which resulted in good development and reproduction (Chapter 1). Copepods 

were maintained in a total of nine trays to feed the herring larvae. Daily, one to two trays 
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were used to harvest copepods for feeding the fish larvae. Accordingly, the same tray 

was harvested every 5 to 8 days. At the first two harvesting times, the size fraction 64 – 

120 µm of the copepods was fed to fish larvae by using sieves with these mesh sizes. 

Subsequently the fraction 120 – 250 µm was harvested. This resulted in feeding nauplii 

(N) and copepodites (C) between stage NIV and CIII, subsequently both nauplii and 

copepodites are referred to as copepods.  

Rotifers were reared in a cylindrical tank with a conical bottom, filled with FSW and 

fed with resuspended Nannochloropsis sp. concentrate (BlueBiotech GmbH, Büsum, 

Germany). Prior to introducing individuals in the fish larval tanks, rotifers were enriched 

for 3h with S.presso (Selco, INVE Aquaculture, Belgium) in a small separate tank, 

following the suggested enrichment protocol provided with the product. 

Artemia eggs (Premium Artemia, Sanders) were incubated for 24 hours in FSW at 

30°C, harvested and the newly hatched nauplii were introduced into the fish larval tanks 

without any further treatment. 

 

2.2.2 Larval feeding 

To investigate the effect of different live feeds on the performance of herring larvae 

(Clupea harengus), the larvae were fed with T. discipes (copepods), B. plicatilis (rotifers) 

or a mixture (1:1) (mixed) of both for 30 days post hatch (dph). A total of nine 75 L-tanks 

were used, each filled with 30 L filtered Baltic Sea water (5 µm, UV-treated, 15 ± 1 PSU). 

The tanks were placed in one big squared tank filled with water for better temperature 

control. Temperature was kept constant at 11 ± 1°C and fish larvae were reared at a 

density of approx. 20 larvae L-1. To exchange the water in the larval rearing tank, the 

water supply (5 µm-filtered, UV treated Baltic Sea water) was switched on for one hour 

prior to feeding (500 mL min-1). The prey density was adjusted daily to 3 prey items ml-1, 

by determining the prey density after the water exchange and adding prey items 

accordingly. At 18 dph all fish larvae, regardless of feeding treatment, were fed 

additionally Artemia sp. nauplii (1 nauplius mL-1). From 23 dph on, all fish larvae were 

only fed with Artemia sp. nauplii (2-3 nauplii mL-1). To analyse growth, RNA:DNA-ratio 

and tryptic activity, 20 fish larvae were sampled three h after adjustment of the prey 

density from each tank on 0, 4, 9, 12, 15, 18, 21, 24, 28 dph and subsequently stored in 

1.5 mL plastic vials at -80°C until further treatment. The different food items were 

sampled out of the production tanks once at the end of the experiment and stored at 

-80°C for further fatty acid and tryptic activity analyses.  
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2.2.3 Digestibility of prey organisms 

The digestibility of different prey organisms was investigated by incubating the 

organisms into a trypsin solution for 3 h. This time was chosen as a mean value of 

digestion time between 1.5 h (Fossum, 1983) and 5 h (Blaxter, 1965). Three food items 

(T. discipes, B. plicatilis and Artemia sp.) applied in the previous feeding experiment 

were used plus Tisbe sp. (Harpacticoida) and Acartia tonsa (Calanoida) in order to 

investigate differences between copepod orders. In addition, a candidate prey for larval 

rearing, the nematode Panagrolaimus sp. was included into the digestibility tests.  

Trypsin (10 mg mL-1) from bovine pancreas (1:250, SERVA GmbH, Germany) was 

solved in TRIS-buffer (0.1 M, pH 8) with CaCl2·H2O (0.02 M). TRIS-buffer without trypsin 

was taken as a control treatment. The tryptic enzyme concentration was set significantly 

higher compared to the natural concentration in the gut of herring larvae, because no 

changes in the physical appearance were visible in preliminary tests when natural 

concentrations were chosen. The prey items were treated in two different ways in order 

to mimic the impact of the mechanical treatment of the ring muscles around the gut 

which may have an important contribution in the digestion of prey organisms: (1) prey 

items were not treated before introducing them in the trypsin solution and (2) prey items 

in a 1.5 mL vial were shock-frozen at -80°C for 2 min and then squeezed once with a 

sharp tweezer to imitate the possible damage of the prey item by the mechanical process 

of the larval ring muscles (Rønnestad et al., 2003). 

Five prey items of each species were put in 1.5 mL vials filled with trypsin solution 

or buffer solution as a control. The vials were shaken on a shaking device (Mixer 5432, 

Eppendorf GmbH, Germany) for 3 h in a climate cabinet at 30°C. The temperature of 

30°C was chosen, because bovine trypsin needs higher temperature than trypsin from 

cold adapted fish to show similar catalytic efficiency (Outzen et al., 1996). As a measure 

of the digestibility, photos of prey items were taken after 3 h with a microscope camera 

(AxioCam MRc, Zeiss GmbH, Germany) mounted on a microscope (Axio Observer.A1, 

Zeiss GmbH, Germany) and used to evaluate digestibility. 

The total body area surrounded by the cuticle and the inner body area of the 

specimen in the control and the trypsin treatment were measured using ImageJ (v1.46r), 

in order to quantify the effect of trypsin solution on the prey organisms.  
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Subsequently, the percentage of inner body reduction (R) was calculated: 

(1)  𝐴𝑐��� = 1
𝑛
∑ (𝐴𝑖𝑐 𝐴𝑡𝑐⁄ )𝑛
𝑖=0  

(2)  𝑅 = 100 ∙ �1 − 𝐴𝑖𝑡 𝐴𝑡𝑡⁄
𝐴𝑐����

� ,  

where 𝐴𝑐��� = mean ratio of the inner body area (Aic) and the total body area surrounded by 

the cuticle (Atc) of the specimen in the control treatment, n = number of specimens, Ait = 

Area of the inner body of the specimen treated with trypsin, Att = total body area 

surrounded by the cuticle of the specimen treated with trypsin. 

 

2.2.4 Analytical procedures 

Growth and RNA:DNA-ratio 

The standard length (SL) of thawed larvae and the percentage of larvae which had 

at least one prey item in their gut (feeding incidence) was noted prior to the analyses of 

RNA:DNA ratio and tryptic activity. Samples for RNA:DNA-ratio were then freeze dried 

for 24 h to a constant weight (Alpha1-4 freeze dryer, Christ GmbH, Germany) and 

subsequently weighed with a microbalance (SC2, Sartorius AG, Germany). The specific 

growth rate SGR (%) was calculated as: 

(3)   𝑆𝐺𝑅 = (ln𝑊𝑡1−ln𝑊𝑡0)
𝑁

∙ 100 , 

where W(t1) = weight at time t1, W(t0) = weight at time t0, N = number of time units 

between t1 and t0. 

Analysis of RNA and DNA concentrations was performed with a modified method 

after Malzahn et al. (2003). The whole individual larva instead of only muscle tissue was 

analysed and subsequently the RNA:DNA-ratio was calculated of individual larvae. 

 

Tryptic enzyme activity 

Tryptic enzyme activity of individual fish larvae was assayed following the 

fluorescence-method described by Ueberschär (1995), with some modifications in order 

to fit the method to the application in microtiter plates: 250 µL substrate (Na-benzoyl-L-

arginin-4-methylcoumarinyl-7-amid, Bachem AG, Switzerland) were added to 50 µL 

homogenate of the fish larva or prey organisms in a 96-well-plate. After mixing and an 

incubation time of 20 min (temperature adaptation), the relative fluorescence 

enhancement was recorded every 2 min for 12 min using a microtiter fluorescence 

reader (Fluoroskan Ascent, Labsystems Thermo). The tryptic enzyme activity is given as 

an equivalent of hydrolysed substrate per time unit (nmol hydrolysed 

substrate min-1 larva-1).  
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Fatty acid content of prey 

Fatty acids were extracted for 12 hours with a solvent mixture of 

chloroform:dichloromethane:methanol with a ratio 1:1:1. As internal standard, C13:0, 

C15:0, C17:0, C19:0 and C21:0 fatty acid methyl esters were added. C23:0-fatty acid 

was added for esterification control. After separation into an organic layer and an 

aqueous layer by adding a 1 M potassium chloride solution, sodium sulphate was added 

to the organic layer. After transferring the organic layer in a new glass cocoon, the fatty 

acids were converted to methyl esters at 50°C with a mixture of toluene and methanol 

which was supplemented with 1% concentrated sulphuric acid. The addition of 5% 

sodium chloride solution and hexane resulted in two layers. The hexane phase was 

transferred to a new glass cocoon and evaporated under reduced pressure. The extract 

was then redissolved with hexane to a final volume of 100 µL (modified after Christie, 

1989). 

The fatty acid methyl esters were analysed in a gas chromatograph (Trace GC-

Ultra, Thermo Scientific Inc.) equipped with a flame ionization detector and a TR-FAME-

column (10 m, 0.1 mm i.d., 0.20 µm film) with hydrogen as the carrier gas. The 

temperature programme started at 50°C for 1 min, increased by 30°C min-1 to 150°C, 

then 4°C min-1 to 180°C and 30°C min-1 to 240°C. Peaks were integrated using 

Chromcard software (Thermo Scientific Inc.) and identified with reference to known 

standards. The focus was set on ARA (arachidonic acid, 20:4ω6), EPA 

(eicosopentaenoic acid, 20:5ω3) and DHA (docosohexaenoic acid, 22:6ω3), but all fatty 

acids were included for the calculation of the total fatty acid content. Fatty acid values 

were biomass-normalized (ng FA µg C-1). 

To analyse the carbon content of T. discipes and B. plicatilis, approximately 150 

organisms were filtered onto precombusted GF/F-filters (Whatman, 25 mm diameter), 

dried overnight and then analysed with an organic elemental analyser (FLASH 2000, 

Thermo Scientific Inc.). 

 

2.2.5 Statistical analyses 

Prior to statistical analyses, the assumptions of normality and homogeneity of 

variances were examined. The effects of the all three diets until 12 dph on the larval 

length, larval dry weight, SGR, tryptic activity and RNA:DNA-ratio of the larva were 

tested by a one-factorial-ANOVA, as well as the differences in the fatty acid content and 

tryptic activity of the prey. The effect of the mixed and the rotifer-treatment over the 

whole experimental time was analysed with a T-test (larval length, SGR, tryptic activity, 

RNA/DNA) and with a Mann-Whitney-U-test in the case of larval weight. Differences in 
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digestibility of the prey items were analysed by a two-factorial-ANOVA (prey type, pre-

treatment). Post-hoc comparisons (Tukey HSD, α = 0.5) were performed using 

STATISTICA 8. To analyse the effect of prey type on the feeding incidence, a Kruskal-

Wallis-test with multiple comparisons of p-values was performed (α = 0.5) with arcsin-

transformed data. Unless otherwise stated, all values are presented as mean value ± 

standard deviation. 

 

 

2.3. Results 
 
2.3.1 Copepod mass culture 

Overall, the harvest yields varied between trays (Fig. 2.1) and ranged from 10,486 

(Tray C) to 39,577 nauplii and copepodites L-1 (Tray A) at the first harvesting time. The 

yield in all trays was decreasing over time and the harvest yields ranged from 2120 (Tray 

F and H) to 11,516 nauplii and copepodites L-1 (Tray A) at the respective last harvesting 

time.  

The starting harvest yield was highest on tray A and was approximately 4-fold 

higher compared to tray I. Due to the high starting harvest yield, an average harvest yield 

of 4148 nauplii and copepodites L-1 day-1 was obtained. In contrast, the average harvest 

yields of all other trays with initial starting yields below 30,000 nauplii and copepodites L-1 

(Tray B-I) was 1568 nauplii and copepodites L-1 day-1.  

 

 
Figure 2.1: Harvested copepods of Tachidius discipes per litre during the feeding 
experiment. Each line represents one tray (tray volume: 7.2 L, surface: 0.26 m2) 
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2.3.2 Growth rates of herring larvae 

The majority of herring larvae fed with copepods died at 13 dph and therefore 

samples could only be collected until 12 dph for this diet to determine the standard 

length, dry weight and growth rate. 

The standard length (SL) of the herring larvae was 6.9 ± 0.3 mm at hatching and 

increased almost linearly over 28 days (Fig. 2.2). For larvae fed with rotifers and a 

mixture of copepods and rotifers, the SL after 28 dph was 13.2 ± 2.3 mm and 12.9 ± 1.2 

mm, respectively. The larvae fed with copepods showed an increase in larval length from 

day 9 to day 12. No significant differences could be found neither between all diets until 

day 12 (ANOVA: F = 1.64, p = 0.27) nor between rotifer and mixed-treatment until day 28 

(T-test: t = -1.37, p = 0.11). 

 

 
Figure 2.2: Standard length (mm) of Clupea harengus-larvae after hatching (dph) feeding 
on 3 different diets (copepods, rotifers, 1:1-mixture of both). Mean (N = 3) and standard 
deviation are displayed. From 18 dph (≈12.5 mm) the rotifer- and the mixed-treatment 
were supplemented with Artemia sp. From 23 dph Artemia sp. was the only food source. 

 

Overall, the dry weight increased exponentially over 28 days (Fig. 2.3). However, 

first it decreased from 0 dph to 4 dph. The final dry weight was 79 ± 39 µg (copepods, 12 

dph), 377 ± 159 µg (mixed, 28 dph) and 585 ± 533 µg (rotifer, 28 dph). The dry weight of 

herring larvae fed with rotifers scattered more compared to the mixed feeding regime. 

However, there was no statistically significant difference between the different diets 

(ANOVA: F = 3.8, p = 0.09, all diets until 12 dph; Mann-Whitney-U-test: U = 9, p = 0.08, 

rotifers and mixed until 28 dph). 
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Between 0 and 12 dph, the specific growth rates of larvae fed copepods, rotifers 

and a mixture thereof were 1.4 ± 0.9, 1.5 ± 1.3 and 2.1 ± 0.8% dry weight day-1, 

respectively. The growth rate between day 0 and day 28 of rotifer- and mixed-fed larvae 

were 7.6 ± 1.5 and 6.2 ± 0.3% dry weight day-1, respectively. The differences at both time 

intervals were not significant (ANOVA: F = 0.48, p=0.64 and T-test: t = -1.57, p = 0.19, 

respectively). 

 

 
Figure 2.3: Dry weight (µg) of Clupea harengus-larvae  after hatching (dph) feeding on 3 
different diets (copepods, rotifers, 1:1-mixture of both). Mean (N = 3) and standard 
deviation are displayed. Feeding regime as described in Fig. 2.2. 
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2.3.3 Feeding incidence 

The diet had a significant effect on the proportion of larvae which had at least one 

prey item in their gut (feeding incidence) (Kruskal-Wallis: H = 8.4, p < 0.05) (Fig. 2.4). 

Copepod-fed larvae had a significantly higher feeding incidence than rotifer-fed larvae 

(p < 0.05). The larvae fed with a mixture of both had a moderate feeding incidence, but 

was not significantly different to the other diets.  

 

 
Figure 2.4: Proportion of larvae (Clupea harengus) which had at least one prey item in 
the gut (feeding incidence) in dependence of prey type at 9 and 12 dph. Mean (N = 3) 
and standard deviation are displayed. 

 

 

2.3.4 RNA:DNA-ratio  

The diet had a significant effect on the RNA:DNA ratio (ANOVA: F = 22.73, 

p < 0.001) (Fig. 2.5). The newly hatched larvae showed a ratio of 2.37 ± 0.10. The ratio 

of the herring larvae fed with rotifers and a mixture showed a decrease in the RNA:DNA 

ratio over the first four dph concomitant with the assimilation of the yolk sac. From 4 to 

24 dph the ratio of the rotifer- and the mixed-treatment stabilised with a mean of 1.94 ± 

0.15 and 1.89 ± 0.21, followed by a significant increase to a ratio of 2.79 ± 0.73 and 2.54 

± 0.56, respectively. The RNA:DNA-ratio of larvae fed with copepods decreased to 1.04 

± 0.13 at day 9, being significantly lower compared to the other two diets (p < 0.01). At 

day 13 most of the copepod-fed fish larvae died. No significant differences were 

observed between the rotifer- and the mixed-treatment (T-test: t = -1.05p = 0.35). 
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Figure 2.5: RNA:DNA-ratio of herring larvae (C. harengus), after hatching until day 28 
(dph). The larvae were fed with 3 different diets (copepods, rotifers, 1:1-mixture of both). 
Mean (N = 3) and standard deviation are displayed. Feeding regime as described in Fig. 
2.2. 
 

 

2.3.5 Tryptic enzyme activity 

The tryptic enzyme activity of the fish larvae showed high variability (Fig. 2.6) and 

there were no significant differences between treatments (ANOVA: F = 2.67, p = 0.15 all 

diets until 12 dph; T-test: t = 1.15, p = 0.31, rotifers and mixed until 28 dph). As a 

consequence only trends are described. 

In general, the tryptic activity of herring larvae of all treatments decreased 

immediately after yolk sac absorption (≈ 7 mm length), regardless of the type of diet (Fig. 

2.6). The enzyme activity of larvae of >8 mm increased with larval length when fed with 

rotifers and a mixed diet. This trend was more obvious in the mixed-treatment. However, 

when Artemia sp. was added to the diet 18 dph (≈ 12.5 mm larval length), the tryptic 

activity of the mixed-treatment and the rotifer-treatment decreased. Both treatment 

groups fluctuated around 1 nmol hydrolysed substrate min-1 larva-1. The tryptic activity of 

fish larvae fed copepods decreased continuously until larvae were 11 mm in length. The 

subsequent increase to 2.1 nmol hydrolysed substrate min-1 larva-1 was just based on a 

measurement of a single fish larva.  
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Figure 2.6: Tryptic activity per herring larva as a function of larval length (mm). The 
larvae were fed with 3 different diets (copepods, rotifers, 1:1-mixture of both). Mean and 
standard deviation are displayed. Feeding regime as described in Fig. 2.2. 

 

The tryptic activity of the different prey items ranged from 0.011 ± 0.0004 

(T. discipes) to 0.017 ± 0.005 nmol hydrolysed substrate min-1 (Artemia nauplii) (Table 

2.1), with no significant differences between the prey items (ANOVA: F = 2.72, p = 0.11). 

The potential contribution of trypsin from an individual prey organism with a mean tryptic 

enzyme activity of 0.013 nmol hydrolysed substrate min-1 accounted for about 1.5% to 

the tryptic activity of an individual larva with a mean activity of 0.88 nmol hydrolysed 

substrate min-1. 

 

Table 2.1: Tryptic activity (nmol hydrolysed substrate min-1 organism-1) of prey 
organisms (N = 3, each replicate consisted of N = 150, 100, 50, respectively). 
Tachidius discipes (size fraction 120-250 µm, approx. stages NIV to CIII), enriched 
Brachionus plicatilis and newly hatched nauplii of Artemia sp. 
 

Prey type 
Mean tryptic activity ± SD 

(nmol hydrolysed substrate 
min-1 organism-1) 

Tachidius discipes 0.011 ± 0.0004 
Brachionus plicatilis 0.015 ± 0.003 
Artemia sp. 0.017 ± 0.005 
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2.3.6 Fatty acid content of prey 

The fatty acid content differed between the three types of prey items (Fig. 7). The 

total fatty acid content was highest in Artemia sp. followed by enriched B. plicatilis and T. 

discipes. ARA was significantly higher in B. plicatilis than in T. discipes (p < 0.05). There 

was no significant difference in the content of EPA (ANOVA: F =2.58, p = 0.16), whereas 

the DHA-content was significantly higher in B. plicatilis than in Artemia sp. and T. 

discipes (both, p < 0.001). As a result, the DHA:EPA ratio was significantly higher in B. 

plicatilis (2.35 ± 0.25) than in T. discipes (0.77 ± 0.12) and Artemia sp. (0.4 ± 0.2) (both, 

p < 0.001). 

 

 
Figure 2.7: Fatty acid content (ng prey item-1) of enriched Brachionus plicatilis, Tachidius 
discipes (size fraction: 120 – 250 µm) and nauplii of Artemia sp. in log-scale. Mean (N = 
3) and standard deviation are displayed. 

 

2.3.7 Digestibility of prey organisms 

The effect of trypsin on the different prey items is visualised with selected photos in 

the following figures below (Fig. 2.8 – 2.13). 
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Figure 2.8: Tachidius discipes after 3 h A) in a TRIS-buffer (control), B) in a trypsin 
solution without squeezing and C) with squeezing, scale bar = 200 µm 
 

 
Figure 2.9: Tisbe sp. after 3 h A) in a TRIS-buffer (control), B) in a trypsin solution 
without squeezing and C) with squeezing, scale bar = 200 µm 
 

 
Figure 2.10: Acartia tonsa after 3 h A) in a TRIS-buffer (control), B) in a trypsin solution 
without squeezing and C) with squeezing, scale bar = 200 µm 
 

 
Figure 2.11: Brachionus plicatilis after 3 h A) in a TRIS-buffer (control), B) in a trypsin 
solution without squeezing and C) with squeezing, scale bar = 200 µm 
  

B A 

B A 

B A 

A B 

C 

C 

C 

C 
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Figure 2.12: Artemia sp. after 3 h A) in a TRIS-buffer (control), B) in a trypsin solution 
without squeezing and C) with squeezing, scale bar = 200 µm 
 

 
Figure 2.13: Panagrolaimus sp. after 3 h A) in a TRIS-buffer (control), B) in a trypsin 
solution without squeezing and C) with squeezing (only half of the nematode, because 
squeezing procedure led to a division in two parts), scale bar = 200 µm 

 

After 3 h all prey items except of the nematode Panagrolaimus sp. were affected 

by trypsin, regardless of pre-treatment. The nematode just showed evidence of digestion 

if squeezed and a damage of the cuticle occurred, here division into two parts, prior to 

being treated with trypsin (Fig. 2.13C). Without squeezing they were still alive in the 

trypsin solution (Fig. 2.13B). The exoskeletons of the three copepod species were 

unharmed but the inner part of the body was obviously reduced compared to the control 

(Fig. 2.8 – 2.10). A. tonsa and Tisbe sp. showed a higher inner disintegration than T. 

discipes. B. plicatilis was partly still alive in the trypsin solution without being squeezed 

(Fig. 2.11). Artemia sp. was affected the most by trypsin (Fig. 2.12). Only parts of the 

antennae were left, but the thin cuticle was still visible.  

 

B A 

B A C 

C 
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Fig. 2.14: Inner body reduction of different prey organisms  after 3 h in a trypsin-solution 
(10 mg mL-1, 30°C) compared to the control group (TRIS-buffer solution, 30°C). Mean 
(N = 3-5) and standard deviation are displayed. 

 

Imitating the mastication process by squeezing the prey items ones before 

introducing them in the trypsin solution did not affect the digestibility of prey significantly 

(ANOVA: F = 0.06, p = 0.8) (Fig. 2.14). However, the digestibility differed significantly 

between prey types (ANOVA: F = 10.99, p < 0.001). Artemia sp. exhibited the highest 

digestibility, which was significantly higher than the digestibility of T. discipes (p < 0.001), 

B. plicatilis (p < 0.01) and Panagrolaimus sp. (p < 0.001). Furthermore, differences 

between copepod species were observed. A. tonsa the calanoid copepod and Tisbe sp., 

one of the harpacticoids, were significantly more digestible than the harpacticoid 

copepod T. discipes (p < 0.01 and p < 0.05, respectively). T. discipes and the nematode 

Panagrolaimus sp. were least affected by the treatments.  

It has been observed once during the experiment that a harpacticoid copepod 

nauplius can survive the passage through the larval gut (Fig. 2.15). The individual left the 

gut of a 12 day old larva unharmed and alive. 
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Figure 2.15: Nauplius of Tachidius discipes excreted from the gut of a 12 day old larva 
(Clupea harengus), apparently unharmed and alive. Scale bar = 300 µm. 
 

 

 

2.4 Discussion 
 

The present study examined the option for mass cultivation of T. discipes and its 

nutritional value and digestibility as live feed for fish larvae. 

 

2.4.1 Suitability of harpacticoid copepods 

The starting density in the trays was too low to sustainably harvest copepods every 

5 – 8 days and consequently the harvesting yield decreased over time. Using trays with 

high starting densities could be feasible as demonstrated in this study (Tray A) and a 

sustainable production is basically possible. A further approach to sustainability by 

increasing productivity is the use of a copepod culture dominated by adult females 

(Støttrup and Norsker, 1997). In general, the batch culture of harpacticoid copepods 

results in relatively high productivity in comparison to calanoid copepod culture systems 

(Payne and Rippingale, 2001). However, a continuous culture system should be 

considered for the up-scaling of cultures (Støttrup and Norsker, 1997). 

The tryptic activity of the fish larvae in these experiments showed in general a high 

variability. This is probably due to varying individual trypsinogen syntheses in the 

pancreas (Pedersen and Andersen, 1992), which might be a result of different feeding 

conditions and general performance of the individual fish larvae. Nevertheless, the tryptic 

activity, a short-term indicator of food quality and nutritional status, followed in these 

experiments a previously described pattern, where the digestive enzyme capacity 

changed with larval age in four phases along the ontogenetic development of fish larvae 

(Pedersen et al., 1987; Ueberschär, 2006). Due to sampling interval and period only 

phase II and III were represented in this study. These phases are characterised by a 

decline of tryptic activity in the first feeding stages until a larval length of 7.5 mm, which 
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probably can be attributed to an ontogenetic deficiency to balance the demand of trypsin 

and the trypsinogen synthesis (Pedersen et al., 1987; Ueberschär, 2006) and was 

followed subsequently by phase III characterized by an increase of the tryptic activity. 

The reason for the decrease in phase II is still to be verified and needs further in-depth 

study (Rønnestad et al., 2013). 

The larval tryptic activity of copepod-fed larvae did not show an increase in phase 

III, but remained low instead. Furthermore, a high mortality and a decrease in RNA:DNA 

ratio occurred in copepod-fed fish larvae at 13 dph. This compares well with Pedersen et 

al. (1987), where starvation of C. harengus resulted in high mortality and behavioural 

signs of starvation at 13 dph. Thus, the herring larvae fed harpacticoid copepods were 

obviously starving although they had a significantly higher feeding incidence than rotifer-

fed larvae. The increased feeding activity or appetite was probably induced by 

movements of copepods (Doi et al., 1997; Støttrup and Norsker, 1997) or chemical 

stimuli (Dempsey, 1978), but it did not result in better growth performance of the herring 

larvae.  

This low performance can have two causes: (1) the nutritional value of the 

copepods (e.g. caloric content and fatty acids) was not sufficient to support growth of the 

fish larvae or (2) herring larvae reveal a weak digestibility of harpacticoid copepods.  

The caloric content of rotifers (0.0036 J ind-1) is 2.4 times larger compared to Tisbe 

nauplii (0.00147 J ind-1) (Støttrup and Norsker, 1997). In this study, bigger naupliar 

stages and first copepodite stages were used. Accordingly, the energetic difference 

between the rotifers and the copepod stages should be small or negligible. Artemia sp. 

with a lower DHA content than T. discipes proved to be an appropriate diet for herring 

larvae. Thus, the lower DHA content of T. discipes in comparison to B. plicatilis in the 

present study cannot be the reason for the poor performance of copepod-fed larvae. 

It is suggested that the digestibility of harpacticoid copepods is obviously a major 

issue. If the prey item shows a low digestibility, bio-molecules like proteins, amino acids 

and fatty acids, which trigger the pancreatic enzyme secretion (Liddle, 2000; Chandra 

and Liddle, 2009), cannot be digested efficiently and hence their absorption is low. 

Consequently, the tryptic activity remains low, like in this study.  

Comparing the mixed with the rotifer-treatment, no statistical differences in growth, 

RNA:DNA ratio and trypsin activity were observed. The initial decrease in RNA:DNA ratio 

is similar to observations made by Clemmesen (1987; 1994) and is probably caused due 

to changes from endogenous to exogenous feeding concomitant with physiological 

changes. Since RNA:DNA ratios of fish larvae reflect the feeding environment faced 

about 4 days before sampling (Clemmesen, 1994), the significant increase at day 28 

results from the change to Artemia nauplii as the sole diet from day 23 onwards. This is 
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probably due to the fact that Artemia sp. (224 J mg-1 dry weight (DW), (Dhont and Van 

Stappen, 2003)) provides a higher energy content than B. plicatilis (18.5 J mg-1 DW) and 

T. discipes (20.5 J mg-1 DW, for Tigriopus californicus) (Theilacker and Kimball, 1984), 

resulting in a higher growth rate, which is also reflected in the larval RNA:DNA ratio. 

The contribution of exogenous enzyme activity has been controversially discussed 

in the past (Dabrowski and Glogowski, 1977; Munilla-Moran et al., 1990; Zambonino 

Infante and Cahu, 1994; Ribeiro et al., 1999; França et al., 2010). The results of the 

present study demonstrated that the exogenous enzyme activity had a minor contribution 

to the total tryptic activity measured in individual larvae. The ingested prey contributes 

with only ~1.5% to the total mean tryptic activity of 0.88 nmol hydrolysed substrate min-1 

larva-1 without any significant differences between the types of prey. 

 

2.4.2 Digestibility of prey 

Our study provided strong evidence for a low digestibility of T. discipes. In order to 

be able to quantify the digestibility of T. discipes in larval guts in comparison to common 

live feed in aquaculture, we performed, to the best of our knowledge, the first time an in 

vitro digestibility test with T. discipes, compared to a number of other common and 

potential live feed organisms for fish larvae. 

Although other enzymes, such as amylase, lipase and phosphatase, contribute to 

the digestion of prey items in first feeding fish larvae, trypsin is a key enzyme in larval 

intestines (Pedersen and Andersen, 1992). Even though having used a trypsin 

concentration beyond a natural concentration in order to achieve a visible outcome, the 

results are being considered as useful. However, it should be noted that the natural 

orchestration of the various enzymes participating in larval digestion are probably more 

efficient compared to the conditions applied in this in-vitro experiment. Nevertheless, this 

study provides a first indication about the digestibility of different prey items, but not a full 

account of all steps involved in the digestion process. 

The imitation of the mastication process described by Rønnestad et al. (2003) had 

no significant effect on the digestibility. However, the tested nematode only showed an 

evidence of digestion if the cuticle was damaged previously. Walford and Lam (1993) 

stated that damage of rotifers is necessary to cause an autolysis and suggested that 

pharyngeal teeth may perform this function in sea bass larvae. Thus, a previous damage 

seems to be necessary to digest the prey organisms effectively. The singular squeezing 

in the present study might not have been an appropriate imitation of the mechanical 

process in the fish larva. Nevertheless, whether the two processes in the larva described 

above are capable to damage the flexible, thin nematode needs further investigation. 
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Compared to other prey items including Tisbe sp. likewise a harpacticoid copepod, 

T. discipes showed a low digestibility, which is according to the observation of a live gut 

passage by a nauplius of T. discipes and the poor growth performance of copepod-fed 

larvae in the feeding experiment. Interspecific differences in digestibility between 

copepods were also observed by Conway et al. (1993). Additionally, herring larvae can 

be successfully reared with A. tonsa (Pedersen et al., 1987) and turbot larvae with Tisbe 

holothuriae (Støttrup and Norsker, 1997). The digestibility of those two copepod species 

was higher compared to T. discipes. Thus, larvae of C. harengus have sufficient 

mechanical means and enzyme activity to digest calanoid copepods but not to digest the 

harpacticoid copepod, T. discipes, which is apparently more difficult to break down.  

The differences in the digestibility of prey items may result from the different 

structures of the cuticle of the tested prey items. Bresciani (1986) found a remarkable 

variation of the cuticular fine structure in copepods. The copepod cuticle consists of a 

protein matrix with lipids and rods of chitin (Bouligand and Neville, 1973 in (Boxshall, 

1991)). Although the cuticle is not digested by fish larvae, it is segmented which in turn 

allows enzymes to penetrate into the inner soft tissue of the prey. The different 

digestibility of the two harpacticoids is supposed to be a consequence of their different 

natural habitats. T. discipes was isolated from a coarse sand at the eulittoral, whereas 

Tisbe sp. is found more often in the phytal (Hicks, 1980). T. discipes might need a stiffer 

exoskeleton and segments which are closer connected to resist the turbulences and 

swirling sand grains than Tisbe sp. Calanoid copepods, such as the tested species A. 

tonsa, require a low weight to be able to float in the pelagial and to minimise the 

energetic costs for maintaining a certain depth, which results in a more fragile 

exoskeleton than harpacticoids.  

In contrast to copepods, the cuticle of rotifers contains neither chitin nor collagen 

and has no skeletal function (Clément and Wurdak, 1991). The underlying integument is 

an intracytoplasmic lamina, which is thicker around the trunk and contains keratin like 

proteins. This lamina is stiffened by disulphide bridges, which cannot be dissolved by 

proteolytic enzymes such as trypsin. However, other soft parts of the body were digested 

by enzymes (Bender and Kleinow, 1988). Thus, a high digestibility would have been 

expected. B. plicatilis can have a relatively high carbohydrate content of around 20 % of 

dry weight (Frolov et al., 1991) compared to Artemia sp. (10.6%) (Léger et al., 1986) or 

copepods (0.2 – 5.1%) (Båmstedt, 1986). Consequently, the interaction of all enzymes, 

especially amylase in this case, plays probably a bigger role for the digestion of rotifers 

than for the other tested prey organisms.  

Newly hatched Artemia nauplii (Branchiopoda) have a very thin cuticle with 0.3 – 

1.0 µm thickness (Freeman, 1989). Furthermore, the procuticle is not yet differentiated 



Chapter 2 

68 
 

into an endo- and exocuticle and is not calcified (Martin, 1991). As a consequence, the 

enzyme solution can obviously penetrate into these nauplii and digest the inner part.  

The cuticle of nematodes has a flexible multi-layered structure (Poinar Jr., 2001). It 

contains protein and collagen (Watson, 1965) and is not segmented (Wright, 1991). 

Therefore, the enzyme equipment available in the early stages of fish larvae might not be 

able to penetrate this structure. Consequently, trypsin cannot enter the nematode to 

digest the inner part unless a damage of the cuticle occurred previously. 

 

2.5 Conclusion 

The batch culture system for copepod production in this study was apparently not 

sufficient to achieve a sustainable harvest rate. The continuous system operated by 

Støttrup and Norsker (1997) presents a promising approach but deficiencies in 

productivity still remain. However, even low numbers of copepods added to the standard 

feeding protocol results in enhanced growth performance and pigmentation (Doi et al., 

1997; Heath and Moore, 1997; Olivotto et al., 2008b). Thus, a supplementation or a 

feeding at a short time period with copepods would reduce the required number of 

copepods and would facilitate their sufficient provision.  

The low performance of herring larvae fed with T. discipes, together with a low 

tryptic activity and a low RNA/DNA-ratio as well as the subsequent digestibility test 

revealed that herring larvae were obviously not able to digest this copepod species 

sufficiently. The interspecific differences in the digestibility of T. discipes and Tisbe sp. 

and their respective habitats lead to the assumption that robustness is to the expense of 

their digestibility. Consequently, besides the nutritional value such as fatty acid 

composition and protein content of the food organism, the accessibility to these nutrients 

is an important criterion when evaluating a new prey type.  
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Abstract 
We compared the swimming behaviour and feeding success of herring larvae 

(Clupea harengus) in the presence of harpacticoid copepods (Tisbe sp. and Tachidius 

discipes) and rotifers (Brachionus plicatilis), because harpacticoid copepods are being 

considered as alternative candidates for live feed in aquaculture. The comparison was 

performed at 5 and 10 days post hatch (dph) via 2D-video observations. We also 

investigated the potential advantage of feeding Tachidius via a floating sieve because 

the orientation of harpacticoids towards the bottom of the tank may pose problems for 

pelagic food searching fish larvae. Quantitative analyses of larval trajectories allowed the 

estimation of feeding behaviour through a series of indicators: swimming speed, 

straightness of the trajectories, turning angles and swimming activities (break, sink, slow, 

normal, and fast). The outcomes highlighted that the prey type had no significant effect 

on swimming speed or straightness of the swimming path. However, at 10 dph directly 

copepod-fed larvae spent less time in slow but more time in the normal swimming-state 

than rotifer-fed larvae and larvae fed with Tachidius via a sieve. This suggests higher 

energy expenditure of directly copepod-fed larvae. In addition, the feeding success was 

higher in larvae fed with Tachidius via sieve than directly Tachidius-fed larvae. 

Furthermore, Tisbe was obviously easier to capture than Tachidius, because Tisbe-fed 

larvae exhibited a higher feeding success than Tachidius-fed larvae. In conclusion, 

providing harpacticoid copepods via a floating sieve can improve the rearing of marine 

fish larvae and moreover, Tisbe should be preferred over Tachidius as a food organism. 
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3.1. Introduction 

 

Rotifers are easy-to-rear and consequently used as a common live food species in 

aquaculture, but are often of suboptimal food quality for fish (Payne et al., 2001; Busch et 

al., 2010). Copepods are known to improve survival, growth and development of fish 

larvae by increasing the food quality (Shields et al., 1999). Harpacticoid copepods are in 

particular a potential food in aquaculture to feed fish larvae (Støttrup and Norsker, 1997). 

Furthermore, they have advantages over calanoid copepods, including the utilization of 

diverse food sources (McIntyre, 1969) and the tolerance of higher culture densities 

(Støttrup, 2000).  

However, not only cultivation and quality of the prey organisms are important but 

also the ability of the fish larvae to capture them. The capture success of fish larvae is 

influenced by prey escape response (Buskey et al., 1993; Titelman and Kiørboe, 2003), 

prey swimming behaviour (Viitasalo et al., 1998) and prey visibility (Eggers, 1977). The 

predator avoidance efficiency is strongly depending on both, prey life stage (Fields and 

Yen, 1997; Titelman, 2001) and species (Fields and Yen, 1997; Buskey et al., 2002).  

In general, rotifers exhibit a slow cruising movement, whereas copepods display a 

more elusive swimming behaviour and show a predator avoidance mechanism by 

performing fast escapes in response to hydromechanical signals caused by predators 

(Kiørboe and Visser, 1999; Strickler and Balázsi, 2007; Waggett and Buskey, 2007). 

Therefore, rotifers are easier to catch because of their slower movement. First-feeding 

cod larvae, for example, preferred slow swimming protozoa over calanoid copepod 

nauplii (Hunt von Herbing and Gallager, 2000). On the other hand, the copepods’ 

movement is considered to be stimulating for the fish larvae (Heath and Moore, 1997). In 

this context, especially harpacticoid copepods might be advantageous due to their 

weaker escape abilities compared to calanoids (Beck and Turingan, 2007), which can 

lead to a higher capture success in fish larvae. At the same time, their orientation 

towards the bottom of the tank is potentially posing a problem for food searching fish 

larvae, since no perception of particles occurs when being underneath or high above the 

larva (Rosenthal and Hempel, 1970). It is therefore of interest for the aquaculture 

industry whether harpacticoid copepods are sufficiently available for fish larvae which 

sometimes are poor predators at the first days of their feeding phase, because of their 

limited sensory capability and manoeuvrability (Chesney, 2007).  

To overcome the potential obstacle for larvae of low prey availability, harpacticoid 

copepods might be cultured in a floating sieve directly at the larval rearing tank described 

by Kahan et al. (1982). Nauplii and early copepodite stages of harpacticoids can pass 
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through the sieve and are directly available for the fish larvae. As a consequence, the 

younger copepod stages probably stay a longer time in the water column and fish larvae 

may benefit from this type of food supply in terms of perception and energy demand.  

Herring larvae (Clupea harengus) serve as a model organism in this study. Their 

foraging behaviour is categorized as a cruising predator (MacKenzie and Kiørboe, 1995), 

which searches while moving and encounters prey throughout the visual field (Rosenthal 

and Hempel, 1970). Rosenthal and Hempel (1970) divided swimming patterns in break, 

slow swimming (meandering/searching), normal swimming and fast swimming (attack) 

states. Prior to the attack, the larva slows down and performs an S-shape posture. Slow 

swimming with a large amplitude of the head is assumed to enhance the visual field and 

the perception time (Rosenthal, 1968). Two developmental stages of larvae were 

investigated in this study, because herring larvae show a fast improvement of their 

foraging ability with an increased feeding success from 5% to about 40% in two weeks 

(Blaxter and Staines, 1971). Hence, larvae at 5 dph are considered to be larvae at first 

feeding, whereas larvae at 10 dph are more experienced larvae. 

To the best of the authors’ knowledge, the effect of benthic copepods as prey on 

the foraging behaviour of pelagic fish larvae remains unexplored. Therefore, the 

swimming behaviour of herring larvae (C. harengus) together with their feeding success 

was analysed in relation to different food sources (harpacticoid copepods Tachidius 

discipes and Tisbe sp., as well as the rotifer Brachionus plicatilis) and food supply 

methods using a 2D-video analysis by addressing following questions: (1) are pelagic 

fish larvae able to perceive and feed on benthic prey, (2) do they change their swimming 

behaviour when encountering differently moving prey, and (3) is the sieve supply method 

improving the larval feeding success? 

 

 

3.2. Material and methods 

 

The behaviour of herring fish larvae (Clupea harengus) in correspondence to 

different prey was monitored using 2D-video observations.  

 
3.2.1 Cultivation of herring larvae and prey organisms 

The harpacticoid copepods Tachidius discipes and Tisbe sp. were batch cultured 

as prey in a temperature-controlled room (17°C ± 1°C) in trays (H 14 cm * W 61 cm * D 

43 cm) stacked in a rack and fed daily with Rhodomonas sp. Filtered (0.2 µm) Baltic Sea 

water (16 ± 1 psu) was exchanged weekly. The rotifer Brachionus plicatilis was cultured 
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as prey in a conical tank with aeration from the bottom and fed daily with a 

Nannochloropsis-concentrate (BlueBiotech GmbH, Büsum, Germany). Prior to 

introducing rotifers in the larval tank, they were enriched for 3 h with S.presso (Selco, 

INVE Aquaculture, Belgium) following the suggested enrichment protocol provided with 

the product. 

The eggs of a total of 15 Baltic herring females (C. harengus) were artificially 

fertilized with the sperm of a total of 9 males on glass plates and subsequently kept in a 

glass aquarium until larvae hatched at 10°C. The daily water exchange with filtered and 

UV-treated Baltic Sea water (17 ± 1 PSU) was 60%. Once hatched, the fish larvae were 

transferred into two 30 L tanks placed in one big squared tank filled with water for better 

temperature control. A density of 20 fish larvae L-1 was adjusted. One tank was fed daily 

with nauplii and copepodites (stages N4 – C3, size fractionated with a sieve: 120 – 250 

µm) of T. discipes (copepod-tank) and the other with B. plicatilis (rotifer-tank) at a density 

of 3000 prey items L-1. A floating sieve (11 cm ø, 200 µm pore size) with a T. discipes-

culture inside was additionally introduced in the copepod-fed tank for the purpose of 

adaptation. Larvae that were used for behavioural studies starved for 24 h prior to the 

video recording. 

 
3.2.2 Video recording 

To determine the ability of pelagic fish larvae to perceive benthic copepods, the 

swimming behaviour of 30 fish larvae was analysed without food (control) and with T. 

discipes as prey by 2D-video observations. In order to analyse potential differences in 

foraging behaviour in dependence of prey movement, four different food conditions were 

tested: (1) T. discipes and (2) Tisbe sp. to compare two harpacticoid copepod species; 

(3) T. discipes via a floating sieve to analyse the influence of an indirect supply method; 

and (4) B. plicatilis to compare a common used live feed species with the harpacticoid 

copepods. To assess the effect of ontogenetic shifts, all food conditions were tested at 

two different developmental stages of C. harengus (first feeding at 5 dph and 

experienced feeding at 10 dph). The fish larvae had a mean standard length of 

7.73 ± 0.13 mm and 8.20 ± 0.47 mm, respectively. A sieve with the same mesh size 

which has been used in the larval rearing tank was used in this video-experiment. The 

feeding trial with B. plicatilis was conducted with fish larvae of C. harengus grown in the 

rotifer-tank and the other feeding trials with larvae of C. harengus from the copepod-tank, 

because fish larvae tend to stick to the prey they experienced previously (Rosenthal and 

Hempel, 1970). The video recordings were conducted at 11°C in a dark temperature 

controlled room. For each feeding treatment 30 fish larvae were transferred into a small 

glass aquarium (H 20 cm * W 19 cm * D 14 cm) containing 3 L filtered water as used in 
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the rearing tanks. The behaviour of C. harengus larvae without food (control) was 

recorded prior to introducing T. discipes in the aquarium. The prey density was equal to 

the rearing tank. To enhance the contrast of the larvae and their prey, the aquarium had 

three black opaque sides. The 2D-video set-up consisted of a single camera (Sony HDR-

XR550VE, 12MPixel, 25 fps) orthogonally orientated to the front-side of the aquarium 

(Fig. 3.1). The light source was a fibre optic light (KL1500 LD, Schott, Germany) 

positioned above the tank. The light intensity under the water surface was 17.5 

µmol m-2 s-1. After a de-stress time of 20 min after handling, fish larval swimming 

behaviour was recorded for 20 min for each treatment.  

 

Figure 3.1: Experimental set-up to analyse 

swimming behaviour of fish larvae. The trial of 

feeding larvae via a floating sieve is shown.  

 

 

 

 

 
 
For each video recording, the trajectories of the fish larvae were reconstructed 

manually by successively clicking on the position of larval head in each frame, using 

MATLAB 2009 software (The MathWorks Inc.). Tracks are stored in an array object 

consisting of x and y coordinates. Only trajectories longer than 7 seconds (175 data 

points) were used to calculate statistically significant measurements. Each trajectory was 

considered to be independent. The numerical analysis was applied to an average 

number of about 4444 data points for each condition.  

 
3.2.3 Analysis of the swimming behaviour 

Swimming speed 

First the instantaneous speed Vi was calculated for each time step. The distance d 

(mm) travelled between two successive video frames was computed from the (x, y) 

coordinates as:  

(1) 𝑑𝑖 = [(𝑥𝑡 − 𝑥𝑡+1)2 + (𝑦𝑡 − 𝑦𝑡+1)2]1 2⁄ , 

where (xt, yt) and (xt+1, yt+1) are the positions of fish larva at the time t and t + 1, 

respectively.  
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The swimming speed, Vi (mm s-1) was subsequently estimated as:  

(2) 𝑉𝑖 = 𝑑𝑖 ∙ 𝑓, 

where f is the sampling rate of the camera, i.e. f = 25 frames s-1. 

Mean swimming speeds were calculated as the average of all instantaneous 

speeds determined across each individual trajectory. 

 

Swimming states 

Based on the swimming speed, swimming states were assigned to each frame. A 

total of five swimming states were determined according to swimming behaviour 

described by Rosenthal (1968) and Rosenthal and Hempel (1970) (Table 3.1).  

 

Table 3.1: Swimming states according to larval swimming speed with ecological meaning 
Swimming state Swimming speed (mm s-1) Ecological meaning 

Break 
< 1, 

minimal activity to avoid 
sinking 

Aiming for prey (S-shape) 
or 
resting  

Passive sinking 1 – 5,  
downward Resting 

Slow swimming 1 – 4  Searching with low 
energy expenditure 

Normal swimming 4 – 50  Searching 
Fast swimming > 50 Attacking  
 

The percentage of total time spent in each swimming state was calculated. 

 
Net-to-gross-displacement-ratio 

The net-to-gross-displacement-ratio (NGDR) was used to assess the straightness 

of the swimming path of larvae of C. harengus, according to Buskey (1984).  

(3) 𝑁𝐺𝐷𝑅 = 𝑁𝐷 𝐺𝐷⁄ , 

where net displacement (ND) and gross displacement (GD) correspond to the shortest 

distance from the start to the end point of the trajectory and the actual distance the fish 

larva had taken, respectively. The ratio is bounded between 0 and 1; a value of 1 reflects 

a rectilinear movement, whereas a value approaching 0 indicates a large complexity of 

the swimming path. 

 
Probability density function of angles 

The instantaneous angle is defined as the angle between two successive modes 

and was calculated after Chen et al. (2012). The probability density function (pdf) 
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describes the relative likelihood for a continuous random variable to have a given value 

and was calculated to see in more detail the variation of the instantaneous angles.  

 

3.2.4 Feeding larvae 

The fed fish larvae of C. harengus were subsequently conserved in formalin (4%) 

to analyse the gut filling. The percentage of larvae which had at least one prey item in 

the gut (feeding success) was determined for each feeding condition. 

 

3.2.5 Statistical analyses 

Prior to statistical analyses, the assumptions of normality and homogeneity of 

variances were examined. Swimming speed data were log-transformed. The comparison 

between unfed and Tachidius-fed larvae was conducted with a t-test (α = 0.5) in the case 

of swimming speed and NGDR and with a Mann-Whitney-U-test (α = 0.5) in the case of 

swimming states. The effect of both the four different prey types and age of the larvae on 

the swimming speed was tested by a two factorial ANOVA. Post-hoc comparisons 

(Tukey unequal N HSD, α = 0.5) were performed where appropriate. NGDR and 

swimming states were analysed with a Kruskal-Wallis-test followed by a multiple 

comparison test (α = 0.5). All statistical tests were conducted with STATISTICA 8. 

Unless otherwise stated, all values are presented as mean value ± standard deviation.  

 

 

3.3. Results 
 

3.3.1 Behaviour of unfed larvae versus larvae fed with harpacticoid 
copepods 

The swimming behaviour of unfed larvae (control) and larvae fed with benthic 

copepods revealed significant differences (Table 3.2). At 5 dph no significant differences 

(T-test: t = 1.64, p = 0.12) in mean swimming speed were observed, but the straightness 

of the path (NGDR) was significantly higher in fed larvae than in unfed larvae (T-test: 

t = -2.79, p < 0.01). Tachidius-fed larvae spent significant more time in the break state 

(Mann-Whitney-U test: U = 6, p < 0.01), but less time in normal swimming (U = 12, 

p < 0.01) compared to unfed larvae. Although no significant differences in the time spent 

in fast swimming were detected (U = 39, p = 0.33), 6% of the larvae which were fed with 

T. discipes had prey in their gut. 

For experienced fish larvae at 10 dph the differences in swimming behaviour 

between fed and unfed larvae were more pronounced than at first feeding. The mean 
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swimming speed (T-test: t = -3.10, p < 0.01) and the NGDR of fed larvae (T-test: 

t = -3.02, p < 0.01) were significantly higher than of unfed larvae, and therefore the 

swimming path was less tortuous. In addition, fed larvae spent more time in fast 

swimming than the unfed larvae and less time in the break state (Mann-Whitney-U test: 

U = 143.5, p < 0.05, both), whereas the time spent in the other states was similar. Both 

Tachidius-fed and unfed larvae did not enter the slow swimming state. 

 
Table 3.2: Analyses of feeding behaviour of 5 and 10 dph herring larvae without food (control) and 
with food (Tachidius discipes). Mean ± SD are displayed, (N = 10 (5 dph), 20 (10 dph)) 
Larval 

age 

(dph) 

Feeding 

condition 

Swimming 

speed (mm s-1) 
NGDR 

feeding 

larvae 

(%) 

% of time spent in each swimming state ± 95% CI 

break sink slow normal fast 

5 
Control 5.6 ± 2.1 0.10 ± 0.10* - 13.3 ± 2.3* 14.2 ± 4.3 19.8 ± 4.0 52.2± 9.7* 0.5 ± 1.0 

Tachidius 4.4 ± 1.9 0.24 ± 0.12* 6 31.9 ± 9.5* 19.9 ± 3.5 17.6 ± 4.1 30.5 ± 5.9* 0.04 ± 0.06 

10 
Control 8.4 ± 2.1* 0.44 ± 0.19* - 9.7 ± 1.8* 12.6 ± 2.9 - 77.6 ± 4.6 0.2 ± 0.2* 

Tachidius 10.6 ± 2.5* 0.61 ± 0.17* 22 7.0 ± 2.4* 9.8 ± 4.6 - 82.0 ± 7.1 1.1 ± 0.8* 

NGDR = Net to gross displacement ratio; CI = Confidence interval;  
Superscript * within same larval age indicate significant differences 

 

A total of six angles between two movements showed higher probabilities: around 

0, 23, 41, 86, 131 (young larvae), 140 (old larvae) and 180° (Fig. 3.2). The 23° and 41° 

angles were more pronounced under feeding condition than in the control, whereas an 

angle of 130° or 140° was more pronounced in the control compared to the feeding 

treatment. Comparing 5 and 10 dph larvae, the higher angles of 130° and 140° have a 

higher probability in younger larvae, whereas angles of 23 and 41° are more likely in 

older larvae. 

 
Figure 3.2: Probability density functions of instantaneous swimming angle in unfed 
herring larvae (control) and larvae fed with Tachidius discipes at two different 
developmental stages (5 and 10 dph). 
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3.3.2 Behaviour of larvae fed with different prey types 

Swimming speed 

The mean swimming speed of the herring larvae increased significantly with 

ontogeny (ANOVA: F = 202.71, p < 0.001) in fed larvae up to 12 mm s-1 (Fig. 3.3). 

However, fish larvae did not change the mean swimming speed when fed with different 

prey types.  

 

 
Figure 3.3: Swimming speed of 5 days and 10 days old herring larvae (Clupea harengus) 
in dependence of prey type (Tachidius discipes, Brachionus plicatilis, Tisbe sp.) and 
supply method (T. discipes offered via a floating sieve). The mean and standard 
deviation are displayed (NTrajectories = 10-20). 

 

Swimming states 

The swimming behaviour of first feeding larvae (5 dph) did not exhibit a clear 

dominance for a certain state (Fig. 3.4 A). Larvae which were fed with Tachidius via a 

sieve spent significantly more time in normal swimming than larvae fed directly with 

Tachidius (p < 0.01). Furthermore, larvae fed with Tisbe spent significantly more time in 

the break state compared to fish larvae fed with Tachidius via a sieve (p < 0.05) or with 

Brachionus (p < 0.01). The larvae entered seldom the fast swimming state (0 – 0.6%) 

regardless of food source.  

The more experienced fish larvae at 10 dph exhibited two main activity patterns 

(Fig. 3.4 B). Directly copepod (Tachidius and Tisbe) fed larvae spent significantly more 

time in the normal swimming state than Brachionus (p < 0.001, both) and Tachidius via 

sieve fed larvae (p < 0.001 and p < 0.01, respectively), but significantly less time in the 

slow swimming state (p < 0.05, all comparisons). Directly Tachidius-fed larvae did not 

enter the slow swimming state during the experimental observation. When Tachidius was 
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provided via a floating sieve, the behaviour resembled the behavioural pattern of 

Brachionus-fed larvae. The time spent in fast swimming did not change significantly 

between prey types (Kruskal-Wallis: H = 12.97, p = 0.34), but exhibited a range between 

1.15% (Tachidius-fed larvae) and 2.29% (Brachionus-fed larvae). 

Comparing the two larval stages (5 dph and 10 dph), the behavioural pattern of 

younger larvae did not show clear dominance for one state, whereas the pattern of the 

older larvae was dominated by normal swimming. The time spent in normal swimming 

increased significantly with ontogeny (p < 0.05, Brachionus and Tachidius via sieve; 

p < 0.001, Tachidius and Tisbe), whereas the time spent in break state decreased 

significantly (p < 0.001, all observations). Furthermore, fish larvae of all feeding regimes 

decreased the time spent in sinking (p < 0.01, all observations) with ontogeny, with the 

exception of larvae feeding on Tachidius via a sieve (p = 0.14). The time spent in slow 

swimming increased significantly in larvae feeding on Tachidius via a sieve (p < 0.05) 

and on Brachionus (p < 0.01), but decreased when directly feeding on Tachidius 

(p < 0.001) and Tisbe (p < 0.05) with ontogeny. The time spent in fast swimming did not 

change significantly with ontogeny, but an increasing trend was observed.  

 

 
Figure 3.4: Larval swimming behaviour of (A) 5 days old and (B) 10 days old herring 
larvae (Clupea harengus) in dependence of prey type (Tachidius discipes, Brachionus 
plicatilis, Tisbe sp.) and supply method (T. discipes offered via a floating sieve). Mean of 
residence time (%) spent in each of the five states. 

 

NGDR 

The NGDR increased with ontogeny of the larvae (Kruskal-Wallis: H = 48.36, 

p < 0.01), but the food source had no effect (Kruskal-Wallis: H = 3.62, p = 0.31 (5 dph) 

and H = 6.33, p = 0.097 (10 dph)) (Fig. 3.5). The higher the ratio, the straighter is the 

swimming path. Although not significant, the NGDR was highest at Tachidius-fed larvae 

at 10 dph. 
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Figure 3.5: Net-to-gross-displacement-ratio (NGDR) of 5 dph and 10 dph old herring 
larvae (Clupea harengus) in dependence of prey type (Tachidius discipes, Brachionus 
plicatilis, Tisbe sp.) and supply method (T. discipes offered via a floating sieve). Mean 
and standard deviation are displayed (NTrajectories = 10-20).  
 
Probability of instantaneous angles 

For each feeding condition, six angles between two movements showed higher 

probabilities: around 0, 23, 41, 86, 131 (first feeding larvae), 140 (experienced larvae) 

and 180° (Fig. 3.6 A, B). At 5 dph, the prey type did not affect the swimming angle.  

At 10 dph the low angles between 20 and 60° are more pronounced than the high 

angles between 120 and 160°. The probability distribution of swimming angle of 

Tachidius-fed larvae was similar to larvae fed with Tachidius via a sieve, whereas 

Brachionus-fed larvae had a lower probability of low angles and higher probability of high 

angles compared to the other feeding conditions. Tisbe-fed larvae had a low probability 

to swim in an angle of 180°.  

 

 
Figure 3.6: Probability density functions of instantaneous angle in dependence of prey 
type (Tachidius discipes, Brachionus plicatilis, Tisbe sp.) and supply method (T. discipes 
offered via a floating sieve) for (A) 5 dph and (B) 10 dph old herring larvae (Clupea 
harengus). 
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Feeding larvae 

The proportion of larvae which had at least one prey item in their gut differed 

between food source (Fig. 3.7). When Brachionus was the available prey, 46% of the 

larvae had prey in their gut at 5 dph. This proportion decreased to 29% at 10 dph. When 

feeding on Tisbe the larvae did not show a difference in feeding success (around 30%) 

with ontogeny. Although increasing with ontogeny, the lowest feeding success showed 

larvae fed directly with Tachidius. Especially at 5 dph, the feeding success of larvae fed 

via a sieve was 20% higher compared to directly Tachidius-fed larvae.  

 

 
Figure 3.7: Proportion of larvae which had at least one prey item in the gut (feeding 
success) in dependence of prey type (Tachidius discipes, Brachionus plicatilis, Tisbe sp.) 
and supply method (T. discipes offered via a floating sieve) at two different larval 
development stages (5 and 10 dph). 

 

 

3.4. Discussion 
 

Overall, the interpretation of the swimming states, especially swimming and break, 

depends on the larva’s foraging type. Predators with a cruise strategy are searching 

while moving and rarely pause, whereas predators with a pause-travel or saltatory 

strategy are exclusively searching while pausing and swim to enter a new unscanned 

water volume (O'Brien et al., 1990). Results in this study show that first-feeding herring 

larvae spent around one third in pausing. This is in agreement with observations made 

by Rosenthal and Hempel (1970), but contrasts with the description for cruising 

predators. At first feeding, fish larvae are subject to physical constraints imposed by both 
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viscous and inertial realms, with a Reynolds number of around 38 (based on mean 

swimming speed: 5 mm s-1). Moreover, the swimming ability is low and herring larvae 

have a low perception distance of 2 to 8 mm. Since perception distance is higher at 

resting and slow swimming compared to normal swimming (Rosenthal and Hempel, 

1970) and because energy expenditure increases with swimming speed (Dabrowski et 

al., 1988), early stage fish larvae can benefit from pausing due to lower energy 

expenditure and a larger visual field at the same time.  

More experienced fish larvae (10 dph) have developed a higher swimming ability, 

which led to a higher mean swimming speed. This in turn results in a shift to a realm 

where inertial forces start to prevail. This is expressed in a higher Reynolds number of 

around 88 (based on mean swimming speed: 11 mm s-1) compared to 38 five days 

earlier. Consequently, the herring larvae benefit from higher swimming activities by a 

reduced influence of drag forces and an increase of prey encounter rate by increasing 

the explored water volume.  

In summary, the behaviour changes with ontogeny by having a tendency to a 

pause-travel-predator at first feeding (high proportion of break state) and subsequently 

changing more to a cruise searcher (dominance of normal swimming). As a 

consequence, besides normal and slow swimming also pausing is considered as a mode 

of searching, but with decreasing energy expenditure from normal swimming to pausing. 

Additionally, the break state can be an indication that a larva was in the S-posture 

immediately before an attack (Rosenthal, 1969), as this could not be distinguished with 

the present set-up.  

 

3.4.1 Are pelagic fish larvae able to perceive benthic prey? 

In this study, herring larvae showed significant differences between food and no 

food conditions. The swimming path was straighter at feeding conditions, suggesting a 

more target-orientated swimming. Furthermore, fed larvae showed a higher probability in 

the swimming angle of around 41° than the control. This is considered to be an attack 

angle, since juvenile herring (Thetmeyer and Kils, 1995) as well as larval cod (Hunt von 

Herbing and Gallager, 2000) attack their prey at this angle. 

The observed difference of response between old and young larvae in time of each 

swimming state is probably due to the general different feeding strategy of young (pause-

travel) and older (cruising) larvae. The increased swimming activity in young non-fed 

larvae is also typical for larvae exposed to a low food density in order to increase their 

encounter rate with prey (Munk and Kiørboe, 1985). Moreover, the feeding success of 

6% and 22% in young and old larvae, respectively, indicates firstly that foraging abilities 
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improved considerably during 5 days and secondly that herring fish larvae are able to 

capture benthic copepods. However, this feeding success is a bit lower compared to 

40% in Artemia-fed larvae at 14 dph reported by Blaxter and Staines (1971).  

 

3.4.2 Do they change their foraging behaviour when encountering 
differently moving prey? 

First feeding fish larvae have limited abilities to adjust their swimming behaviour 

according to the prey type, since early stage fish larvae have only pectoral fins and a 

finfold (Doyle, 1977; Hunt von Herbing, 2001). As a consequence, the locomotion ability 

is reduced at 5 dph and the swimming patterns are more similar when exposed to 

varying prey types compared to older larvae. However, first feeding larvae spent more 

time in pausing when feeding on elusive harpacticoid copepods compared to slow 

moving rotifers. They probably pause more in order to ensure a longer presentation of 

the faster copepods to the retina and they need presumably more time to adjust their S-

shape position prior to attack (Rosenthal and Hempel, 1970).  

The general low locomotory capability is also an explanation for the lower feeding 

success when feeding on more elusive copepods than slow moving Brachionus. In 

general, rotifers have poor escape abilities and they do not increase their speed when 

larvae were present (Turingan et al., 2005). At predator presence, Brachionus 

rotundiformis exhibits a swimming speed of 1.33 ± 0.12 mm s-1 compared to 17.3 ± 1.7 

mm s-1 of a harpacticoid copepod (Nitokra lacustris) (Beck and Turingan, 2007). Other 

species of fish larvae, such as cod and red drum larvae also preferred slow moving prey 

at first feeding and switched later on to more elusive prey (Hunt von Herbing and 

Gallager, 2000; Krebs and Turingan, 2003). 

As mentioned above, all larvae switched more to a cruising behaviour at 10 dph. 

Apparently, directly copepod-fed larvae spent more energy for searching than rotifer-fed 

larvae, since they spent more time in normal swimming, which consumes more energy 

than slow swimming (Dabrowski, 1986). A higher swimming activity is typical for larvae 

encountering low prey densities (Munk and Kiørboe, 1985). Thus, the higher swimming 

activity of directly copepod-fed larvae suggests that the benthic copepods provided a 

lower prey density in the water column and remained more at the bottom of the aquarium 

due to their benthic mode of life. With an increased swimming activity the larvae enhance 

their encounter rate with prey. 

In general, the larval foraging performance is improving with ontogeny (Blaxter and 

Staines, 1971; Kiørboe et al., 1985), the pigmentation of the eye is enhancing (Chesney, 

2007) and the prey perception distance increases with larval size (Miller et al., 1988). 

This is reflected in the higher feeding success of Tachidius-fed larvae at 10 dph than at 
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5 dph. In contrast, the percentage of rotifer-fed larvae with prey in their gut had 

unexpectedly decreased at 10 dph. This is also reflected in the lower probability of the 

attack swimming angle at around 41° (Thetmeyer and Kils, 1995) which was highest in 

rotifer-fed larvae at 5 dph, but decreased in the older stage. The stimulating effect of the 

copepods’ movement (Heath and Moore, 1997) as well as the chemical stimuli 

(Dempsey, 1978) probably start to play a bigger role, since herring larvae showed 

increased activity to glycine and proline (Dempsey, 1978), two amino acids which are 

more abundant in copepods than in rotifers (van der Meeren et al., 2008).  

 

 
Figure 3.8: Trajectories of herring 
larvae A) fed directly with 
Tachidius discipes and B) fed 
directly with Tisbe sp. at a larval 
age of 10 dph. 
 Δ = start point, o = end point of 
each trajectory. The higher the 
distance between the points, the 
higher the swimming speed of the 
larva. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The comparison of Tisbe- and Tachidius-fed larvae revealed that Tisbe-fed larvae 

spent more time in slow-swimming at 10 dph and their feeding success was almost 7% 

higher than with Tachidius. The observation that fish larvae presumably slow down when 

 

B 

A 
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encountering food patches in order to stay longer therein (Rosenthal, 1968), suggests 

that Tisbe-fed larvae experienced higher food densities although the same food density 

was established in all feeding trials. Furthermore, the trajectories in Fig. 3.8 revealed that 

Tisbe-fed larvae swam often in a convoluted way with decelerating and accelerating 

components compared to Tachidius-fed larvae. This behaviour also results in a longer 

stay in the same water volume. The deceleration of the fish larvae also reduced the 

predator perception of copepods, which depends on fluid deformation rate caused by the 

fish larva (Kiørboe and Visser, 1999). This is confirmed by the higher feeding success of 

Tisbe-fed larvae in this study. 

Moreover, the two copepod species might have different escape behaviour and/or 

predator perception abilities in general. For instance, in calanoid copepods, a hop-and-

sink swimming pattern revealed shorter response latencies to acoustic signals than a 

cruising pattern (Waggett and Buskey, 2007). Behavioural analyses of benthic 

harpacticoid copepods are scarce (Hwang and Turner, 1995) and were not part of this 

study either. However, adult stages of Tachidius were positively phototactic, whereas 

adult stages of Tisbe avoided high light intensities and were harder to capture with a 

pipette (own observation). Therefore, a higher feeding success with T. discipes would 

have been expected. However, the capture attempts with the pipette were done from 

above the copepod, whereas fish attack from below the prey (Thetmeyer and Kils, 1995), 

consequently this observation might be misleading. Differences in predator perception 

abilities of the two copepod species were likely the reason for the different feeding 

success of the fish larvae (Titelman, 2001; Titelman and Kiørboe, 2003). In conclusion, 

the results tend to show that Tisbe is a superior food source for pelagic marine fish 

larvae compared to Tachidius. 

 

3.4.3 Is the sieve supply method improving the larval feeding success? 

The swimming behaviour of copepod via sieve-fed larvae resembled the swimming 

behaviour of rotifer-fed larvae at 10 dph, whereas directly copepod-fed larvae were more 

active and spent less time in slow swimming (Fig. 3.4 B). Since metabolic costs increase 

with swimming speed (Hunt von Herbing et al., 2001), the provision of copepods via a 

sieve or feeding the larvae with rotifers reduced the energy demand and resulted 

probably in a higher net energy gain, assuming that both prey types provide similar 

energetic value.  

Although the probability distribution of swimming angles is similar in both supply 

methods, including the attack angle (Fig. 3.6 A+B), the feeding success is higher in 

copepod via sieve-fed larvae. Copepods that fall through the sieve often do not move 
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and sink passively to the bottom until they start active swimming (own observation). 

Thus, slowly sinking copepods might be easier to capture than active swimming 

copepods. 

 

In conclusion, pelagic fish larvae are able to attack and feed on benthic copepods, 

although the energy demand seems to be higher when the copepods were introduced 

directly in the fish tank. On the contrary, the foraging behaviour on copepods offered via 

a sieve resembled the behaviour when feeding on rotifers and the feeding success was 

higher compared to directly fed copepods. The provision of harpacticoid copepods via a 

sieve combines the advantageous characteristic of rotifer-fed larvae, i.e. high capture 

success and presumably low energy expenditure but also the high nutritional value of 

copepods, which has been shown in numerous studies (McEvoy et al., 1998; Rønnestad 

et al., 1998; Payne et al., 2001). Consequently, when harpacticoid copepods are used as 

food organisms, their provision via a floating sieve is recommended to improve the 

rearing of marine fish larvae. Additionally Tisbe should be preferred over Tachidius as 

harpacticoid species, since feeding success was higher with the first species. 

Nevertheless, at very first feeding (5 dph) slow moving prey such as rotifers (this study) 

or protozoa (Hunt von Herbing and Gallager, 2000) should be preferred. 
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In this study the suitability of harpacticoid copepods as food for marine fish larvae 

was investigated with the focus on fatty acids as a determinant of nutritional value. Three 

harpacticoid copepod species originating from the Kiel Fjord were identified as Ameira 

parvula, Amonardia normani and Tachidius discipes. A. parvula showed a low 

reproduction and the nauplii stages of A. normani were not able to swim which makes 

them unavailable for pelagic fish larvae. Consequently, the first two species are not 

considered to be suitable food items, but T. discipes was chosen for further experiments. 

 

Suitability of Tachidius discipes 

The first chapter revealed that T. discipes, a quite abundant harpacticoid copepod 

in the Baltic Sea, fulfils almost all criteria summarized by Uhlig (1984) for potential 

candidates in aquaculture.  

This species has a relatively short life cycle with a duration of ca. 11 days from 

nauplius to adult stage, which is similar to other harpacticoid species such as Tigriopus 

japonicus (Provasoli et al., 1959), Euterpina acutifrons (Zurlini et al., 1978) and Tisbe sp. 

in this study. 

Furthermore, T. discipes has a reproductive capacity comparable to other 

harpacticoid copepods (Zurlini et al., 1978). Including the feasible copepod density in the 

calculation, the production of T. discipes nauplii can be 8-times higher than the 

production of calanoid copepods (Acartia tonsa, (Peck and Holste, 2006)). 

The mean copepod density (all stages) in mass culture was 91 individuals cm-2 

(15 000 individuals L-1), thus 5 times higher compared to calanoid cultures (Chesney, 

1989), revealing a tolerance of high culture densities. Zhang and Uhlig (1993) proposed 

an even higher density of 40 harpacticoid females cm-2 (= 10 000 females L-1) for 

maximum productivity. Since harpacticoids require surface area rather than water 

volume, increasing the surface normally improves the productivity. However, Støttrup 

and Norsker (1997) could not achieve a higher harvest yield with their half-automatic 

cultivation system in which they used plastic balls to increase the surface area in conical 

tanks. Individuals probably cling to the substrate, which hampers the harvesting and 

leads to lower yields.  

The tolerance of T. discipes to salinity or temperature changes was not 

investigated in this study, but their origin from the eulittoral suggests a general tolerance 
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of physical changes. Smol and Heip (1974) additionally observed high survival rates at 

temperatures between 5 and 15°C. 

However, the acceptance of diverse food sources was not fulfilled by T. discipes to 

the same degree as by Tisbe sp. Alternative food sources such as vegetables and 

enriched tomato juice, which were successfully used as food for Tisbe sp. (Kahan, 1979) 

and Nitokra lacustris (Rhodes, 2003), resulted in a low performance of both species (T. 

discipes and Tisbe sp.) in this study (unpublished observation by the author). However, 

Tisbe sp. performed better when fed with algae of low PUFA content. It either has a 

higher fatty acid desaturation capacity or uses bacteria when exposed to food sources 

that are low in highly unsaturated fatty acids. The description of Tisbe spp. as an 

opportunistic species (Castel and Lasserre, 1979; Gee et al., 1985; Gollasch et al., 2000) 

indicates its flexibility. The ability of using bacteria as a food source can have 

advantages by compensating inadequate food. On the other hand, this can also have 

disadvantages when trying to influence the nutritional value of Tisbe sp. by providing a 

certain microalgal species, but mainly bacteria are ingested instead. Nevertheless, when 

T. discipes is fed with Rhodomonas sp. or Phaeodactylum tricornutum it shows similar 

performance to Tisbe sp. Furthermore, it meets the DHA and EPA-content required for 

fish larvae, such as Psetta maxima and Sparus aurata (reviewed by Izquierdo and 

Koven, 2011), as well as the ratio of DHA:EPA recommended by Sargent et al. (1999a). 

In summary, T. discipes is a highly reproductive species which is easy to culture in high 

densities. It requires only small volumes and provides a high nutritional value in terms of 

fatty acids. 

However, the low performance of herring larvae fed with T. discipes (Chapter 2) 

emphasised the importance to define some additional criteria. The subsequent 

digestibility test revealed interspecific differences of harpacticoid copepods in protein 

digestibility using trypsin, the major pancreatic enzyme in first feeding fish larvae 

(Pedersen and Andersen, 1992). T. discipes was less digestible than Tisbe sp. 

Consequently, robustness, which was higher in T. discipes in terms of handling-stress, is 

obviously increased at the expense of digestibility.  

Both observed differences between T. discipes and Tisbe sp., usage of other food 

sources and digestibility, result probably from their adaptation to different habitats. In this 

study, T. discipes originated from a coastal zone with coarse sand and had to withstand 

high ranges of environmental changes, especially mechanical disturbance, which 

probably led to a stiffened cuticle with closely linked segments. On the contrary, the 

natural habitat of Tisbe sp. is often the phytal (Hicks, 1980). This living mode implies the 

usage of bacteria since copepods do not graze directly on macroalgae, but on 

populations of bacteria, diatoms, fungi and blue-green algae, which are associated to the 



Discussion 

93 
 

 
 

mucilage released by macroalgae (Hicks and Coull, 1983). Therefore, Tisbe sp. is 

probably more used to a bacterial based diet and developed a higher desaturation 

capacity.  

In conclusion, it is good to have a robust species to facilitate the rearing procedure 

and to reduce the probability of sudden culture break-downs, but robustness may be 

connected with a lack of digestibility. Thus, future copepod screening should be done in 

habitats where copepods are exposed to 

• low food quality, which enhances their fatty acid desaturation capacity, 

• changes in temperature and salinity, which increases their tolerance range 

and in turn facilitates the rearing, 

• low mechanical disturbance, which increases their digestibility. 

 
Moreover, the swimming ability of the new species and its effect on energy 

expenditure and capture success of fish larvae should be known, as this is decisive for a 

positive net energy gain of fish larvae (Hunt von Herbing et al., 2001). Only a few studies 

deal with the swimming behaviour of harpacticoids (Hwang and Turner, 1995; Seifried 

and Dürbaum, 2000; Turingan et al., 2005). Thus, the knowledge about escape 

behaviour and predator perceiving abilities of harpacticoids is scarce. However, as 

demonstrated in chapter 3, these characteristics influence the capture success of fish 

larvae and their consequential net energy gain, particularly at first feeding when foraging 

abilities are still low. Therefore behavioural studies of harpacticoid copepods are strongly 

recommended. 

Furthermore, this study revealed that fish larvae adjust their feeding behaviour in 

response to the swimming behaviour of their prey (Chapter 3). However, this is less 

pronounced in first feeding than in more experienced fish larvae. Hence, a slow moving 

prey is recommended at first feeding, due to the low swimming abilities of the fish larvae. 

This compares well with observations made for first-feeding cod larvae which preferred 

slowly swimming protozoa (Hunt von Herbing and Gallager, 2000).  

In conclusion, when harpacticoid species or live feed species in general are 

evaluated as food for marine fish larvae, it is recommended to determine their 

digestibility as well as their swimming behaviour and the associated energetic 

expenditure of fish larvae.  
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General suitability of copepods 

The nutritional suitability of copepods has been proven in numerous studies 

(McEvoy et al., 1998; Payne et al., 2001; Evjemo et al., 2003). However, calanoid 

copepods are cultured in relatively low densities and require high value microalgae as 

food source. Harpacticoid copepods can be reared in relatively high densities but the 

separation of exuviae and detritus from the animals can be an obstacle for a successful 

harvest (own observation). However, this problem can be circumvented or at least 

reduced by culturing the copepods directly in the fish tank in a floating sieve (Kahan et 

al., 1982). Although Zhang and Uhlig (1993) documented with this technique a sufficient 

provision of 10 nauplii mL-1 in the fish larval tank, it has not been tested in a feeding 

experiment with fish larvae yet. Different temperature optima between copepod and fish 

larvae might pose a problem and can result in lower copepod productivity. Nevertheless, 

the provision of harpacticoid copepods via a floating sieve obviously improved the 

capture success and probably also the net energy gain of herring larvae by spending 

less time in normal but more time in slow swimming mode. Furthermore, a higher feeding 

success was demonstrated compared to directly introduced harpacticoid copepods. 

Hence, the general provision of harpacticoid copepod via a sieve is advantageous, but 

the combined production of larvae and copepods has to be tested still. 

Schipp (2006) stated that it is unlikely that copepods can cost effectively compete 

with larviculture systems for fish species that are easily cultured on rotifers. The 

generally high costs of live feeds including rotifers, sudden break downs of live feed 

production and the potential to introduce pathogenic bacteria or viruses into the fish 

larval tank led to increased research in formulated feed. This artificial feed is 

advantageous due to a lower work load, the ability to buy them on demand and its ability 

to be stored (Barrows and Rust, 2000). However, so far the performance of fish larvae 

fed with artificial feed is reduced compared to larvae fed with live feed (Blair et al., 2003). 

This may be due to a low digestibility of the formulated feed as well as a fast leaching of 

some water-soluble compounds.  

Kolkovski et al. (1997) was able to improve the utilization of artificial feed with a 

supplementation of Artemia. The copepods’ movement or their chemical stimuli 

(Dempsey, 1978) even enhanced the feeding incidence in herring larvae older than 9 

days after hatching (Chapter 2 and 3) compared to rotifers. Additionally, Støttrup and 

Norsker (1997) observed an appetite stimulatory effect of Tisbe holothuriae when being 

supplemented for just one day to rotifers as food for turbot larvae. This suggests that 

copepods are probably a superior supplement to trigger the feeding response in larvae 

fed with formulated food than other live feed such as rotifers or Artemia.  
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Moreover, harpacticoid copepods have a tank cleaning function (Fig. 1), which can 

reduce the bacterial load and consequently improve the water quality. 

 

   
Figure 1: Bottom of a fish larval tank A) with and B) without harpacticoid copepods 
 

In conclusion copepods can be used as a general supplementation to improve the 

nutritional value of other live or formulated feed and enhance the feeding activity of the 

fish larvae. Further, they can be used for short-time feeding to ensure optimal 

pigmentation in larvae of flat fish species, e.g. 14 days after first feeding is a critical time 

for normal pigmentation in halibut larvae (Rønnestad et al., 1998).  

Thus, without the need of a high number of individuals, harpacticoid copepods, 

which have been selected from the suggested habitat mentioned above, can be easily 

cultured in batch cultures and provided via a floating sieve to fish larvae and in this way 

enhance the rearing of marine fish larvae. Moreover, copepods will always be an 

essential start-feed for new fish species with unknown nutritional requirements and for 

tropical fish species with small larval sizes. 

 

Outlook 

In terms of dietary needs, copepods embody a model for good food quality, since 

copepods are dietary components of fish larvae in nature. Consequently, they can serve 

as a reference when designing microdiets or enrichments. Since main nutrients, such as 

proteins and lipids, are already integrated in enrichment products, the focus should be 

set on micronutrients. Some of the micronutrients are more abundant in copepods than 

in rotifers or Artemia (Hamre et al., 2008b; van der Meeren et al., 2008) and can be the 

reason for the superior quality of copepods. Recently, the effect of iodine and selenium 

enrichments on fish larval performance was investigated with consistently positive results 

A B 
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(Hamre et al., 2008a; Penglase et al., 2010; Ribeiro et al., 2011). In all studies with 

enrichments or formulated feed, the bioavailability of the added substances has to be 

taken into account, as has been shown e.g. for selenium (Wang and Lovell, 1997) and 

for the source of fatty acids (Coutteau et al., 1997; Tocher et al., 2008). Further research 

is needed in this area with an emphasis on determining the required amount of the tested 

substance. 

Apart from the risk of delivering pathogenic bacteria, beneficial bacteria such as 

Bacillus spp. and Roseobacter sp. are associated with copepods (Hansen and Bech, 

1996; De Troch et al., 2010) and can support the health of the fish larva (Gatesoupe, 

1999; Planas et al., 2006). Since copepods might provide different bacteria than rotifers, 

the bacterial colonization of the digestive tract of fish larvae would be influenced by the 

food source. Additionally, the bacteria of the live feed can be influenced by providing 

probiotic bacteria which ideally reduce pathogenic bacteria by competitive exclusion 

(Villamil et al., 2003). The provision of probiotics can also improve the performance of 

copepods (Drillet et al., 2011), which in turn leads to a higher harvesting yield. 

Furthermore, the apparent usage of bacteria as food source observed in this study and 

the observation that harpacticoid copepods increase their faecal pellet production to 

create a substrate for bacteria (De Troch et al., 2009), which potentially serve as an 

upgrade of the initial food source (De Troch et al., 2010), emphasises the importance of 

bacteria in general. Consequently, investigations about the role of bacteria should be 

intensified. 
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Appendix 
Table A1: Fatty acid composition (ng µg C-1) of five different algal species, which were 
fed to Tisbe sp.  
Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum tricornutum, Pav = Pavlova sp., Duna = 
Dunaliella tertiolecta, Iso = Isochrysis galbana. Values are mean ± standard deviation of the mean 
(N = 3), (nd = non detectable level). 
 Rhodo Phaeo Pav Duna Iso 
C14:0  2.8 ± 0.4 8.1 ± 0.3 6.5 ± 0.5 0.3 ± 0.5 32.2 ± 8.2 
C16:0  25.2 ± 9.2 29.3 ± 4.1 52.4 ± 13.2 29.4 ± 3.4 30.3 ± 3.3 
C16:1ω7+ 
C iso-17:0 nd 19.0 ± 1.7 23.9 ± 2.9 2.4 ± 0.2 3.0 ± 0.6 

C16:4ω3 nd nd nd 20.8 ± 2.1 nd 
C18:0  12.5 ± 5.7 14.9 ± 4.3 20.0 ± 5.9 5.1 ± 1.2 7.2 ± 1.2 
C18:1ω9c  2.8 ± 0.6 1.3 ± 0.3 8.0 ± 1.0 4.5 ± 0.6 28.3 ± 2.4 
C18:1ω7 13.9 ± 6.2 1.3 ± 0.2 nd 1.3 ± 0.3 2.1 ± 0.7 
C18:2ω6c  3.1 ± 0.4 1.4 ± 0.3 4.2 ± 0.7 5.4 ± 0.7 11.4 ± 0.9 
C18:3ω6  nd nd nd 6.5 ± 0.9 nd 
C18:3ω3  11.2 ± 2.7 nd 1.3 ± 0.95 46.4 ± 5.8 7.5 ± 2.4 
C18:4ω3 17.5 ± 4.2 nd nd 1.8 ± 0.1 12.2 ± 1.7 
C20:4ω6  0.44 ± 0.07 0.76 ± 0.14 11.6 ± 0.8 nd 0.43 ± 0.06 
C20:3ω3  nd nd nd nd nd 
C20:5ω3  11.2 ± 1.9 51.6 ± 4.0 42.9 ± 2.6 nd 0.63 ± 0.21 
C22:6ω3 7.5 ± 1.1 2.1 ± 0.6 1.2 ± 0.5 nd 16.6 ± 6.5 
total 111.0 ± 34.6 143.7 ± 3.3 183.7 ± 28.6 124.5 ± 13.9 139.5 ± 22.8 
SFA1 42.7 ± 18.5 53.1 ± 8.3 81.1 ± 19.7 35.0 ± 3.6 70.4 ± 11.8 
MUFA2 2.8 ± 0.6 33.4 ± 2.1 31.9 ± 3.8 6.9 ± 0.7 33.3 ± 1.3 
PUFA3 33.5 ± 6.1 55.9 ± 4.8 62.5 ± 5.2 58.3 ± 7.3 36.8 ± 10.1 
DHA:EPA 0.67 ± 0.02 0.04 ± 0.01 0.03 ± 0.01 - 26.3 ± 2.0 
EPA:ARA 25.7 ± 5.1 68.5 ± 7.0 3.7 ± 0.04 - 1.5 ± 0.5 
ω6 4.1 ± 0.6 2.1 ± 0.4 17.0 ± 1.9 12.3 ± 2.2 11.9 ± 1.0 
ω3 47.5 ± 9.9 53.7 ± 4.5 45.4 ± 3.8 69.0 ± 7.9 37.1 ± 10.8 
ω3:ω6 11.6 ± 0.9 25.4 ± 2.4 2.7 ± 0.3 5.6 ± 0.4 3.1 ± 0.7 
1 Saturated fatty acids include additionally 12:0, 20:0, 22:0 and 24:0. 
2 Monounsaturated fatty acids include additionally 14:1, 15:1, 17:1, 18:1ω9t, 20:1ω9, 22:1ω9 and 24:1. 
3 Polyunsaturated fatty acids include additionally 16:2, 16:3, 16:4ω3, 18:2ω6t, 20:2ω6, 20:3ω6 and 22:2. 
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Table A2: Fatty acid composition (ng µg C-1) of five different algal species, which were 
fed to Tachidius discipes.  
Rhodo = Rhodomonas sp., Phaeo = Phaeodactylum tricornutum, Pav = Pavlova sp., Duna = 
Dunaliella tertiolecta, Iso = Isochrysis galbana. Values are mean ± standard deviation of the mean 
(N = 3), (nd = non detectable level). 
 Rhodo Phaeo Pav Duna Iso 
C14:0  11.1 ± 1.4 23.1 ± 4.1 6.5 ± 0.5 0.83 ± 0.08 84.0 ± 6.7 

C16:0  40.6 ± 8.1 49.6 ± 14.3 52.4 ± 13.2 25.1 ± 4.6 61.4 ± 7.3 
C16:1ω7+ 
C iso-17:0 3.9 ± 1.6 70.6 ± 22.3 23.9 ± 2.9 2.1 ± 0.5 4.9 ± 0.3 

C16:4ω3 nd nd nd 16.1 ± 1.8 nd 

C18:0  7.9 ± 2.2 2.9 ± 1.9 20.0 ± 5.9 9.5 ± 1.3 5.6 ± 1.1 

C18:1ω9c  7.6 ± 4.6 5.3 ± 3.3 8.0 ± 1.0 3.9 ± 0.4 74.8 ± 10.4 

C18:1ω7 15.4 ± 0.8 1.7 ± 1.4 nd 1.8 ± 0.4 8.5 ± 0.6 

C18:2ω6c  11.1 ± 3.4 5.6 ± 0.6 4.2 ± 0.7 5.1 ± 0.8 20.3 ± 2.1 

C18:3ω6  1.7 ± 0.7 2.4 ± 0.8 nd 6.2 ± 0.4 0.78 ± 0.10 

C18:3ω3  56.8 ± 6.1 0.42 ± 0.39 1.33 ± 0.95 35.4 ± 5.4 18.0 ± 1.9 

C18:4ω3 48.3 ± 8.8 2.4 ± 2.0 nd 2.5 ± 0.3 25.1 ± 4.9 

C20:4ω6  1.1 ± 0.7 1.8 ± 0.3 11.6 ± 0.8 nd nd 

C20:3ω3  nd nd nd 0.60 ± 0.17 nd 

C20:5ω3  25.1 ± 1.6 74.8 ± 6.4 42.7 ± 2.6 nd 1.3 ± 0.2 

C22:6ω3 17.1 ± 0.8 6.8 ± 1.1 1.2 ± 0.5 0.30 ± 0.13 22.7 ± 1.7 

total 252.8 ± 30.4 276.9 ± 51.9 183.7 ± 28.6 115.5 ± 15.6 336.2 ± 32.9 

SFA1 60.1 ± 11.5 78.9 ± 19.7 81.1 ± 19.7 35.8 ± 5.1 152.5 ± 15.0 

MUFA2 30.9 ± 6.6 79.9 ± 26.9 31.9 ± 3.8 9.7 ± 1.5 92.0 ± 10.3 

PUFA3 162.2 ± 16.3 118.7 ± 10.9 62.5 ± 5.2 70.0 ± 9.3 91.7 ± 8.6 

DHA:EPA 0.68 ± 0.02 0.09 ± 0.01 0.03 ± 0.01 - 18.5 ± 3.7 

EPA:ARA 32.7 ± 25.0 42.1 ± 7.7 3.69 ± 0.04 - - 

ω6 14.3 ± 4.3 9.7 ± 1.1 17.0 ± 1.9 11.7 ± 1.4 21.8 ± 2.2 

ω3 147.3 ± 17.2 84.4 ± 9.4 45.4 ± 3.8 55.0 ± 7.5 67.1 ± 6.4 

ω3:ω6 11.2 ± 4.9 8.7 ± 0.7 2.7 ± 0.3 4.7 ± 0.2 3.1 ± 0.1 
1 Saturated fatty acids include additionally 12:0, 20:0, 22:0 and 24:0. 
2 Monounsaturated fatty acids include additionally 14:1, 15:1, 17:1, 18:1ω9t, 20:1ω9, 22:1ω9 and 24:1. 
3 Polyunsaturated fatty acids include additionally 16:2, 16:3, 16:4ω3, 18:2ω6t, 20:2ω6, 20:3ω6 and 22:2. 
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