
A Benchmark Engineering Methodology to
Measure the Overhead of Application-Level Monitoring

Jan Waller and Wilhelm Hasselbring
Department of Computer Science, Kiel University, Kiel, Germany

{jwa, wha}@informatik.uni-kiel.de

Abstract: Application-level monitoring frameworks, such as Kieker, provide insight
into the inner workings and the dynamic behavior of software systems. However, de-
pending on the number of monitoring probes used, these frameworks may introduce
significant runtime overhead. Consequently, planning the instrumentation of contin-
uously operating software systems requires detailed knowledge of the performance
impact of each monitoring probe.

In this paper, we present our benchmark engineering approach to quantify the mon-
itoring overhead caused by each probe under controlled and repeatable conditions.
Our developed MooBench benchmark provides a basis for performance evaluations
and comparisons of application-level monitoring frameworks. To evaluate its capabil-
ities, we employ our benchmark to conduct a performance comparison of all available
Kieker releases from version 0.91 to the current release 1.8.

1 Introduction

Understanding complex software systems requires insight into their internal behavior.
Monitoring these systems with application-level monitoring frameworks, such as Kieker
[vHWH12, vHRH+09], can provide the required information at the cost of additional
runtime overhead. Especially when planning the instrumentation of deployed and con-
tinuously operating software systems, detailed knowledge of the performance impact of
each used monitoring probe is instrumental in reducing the actual performance overhead.
To the best of our knowledge, no benchmark targeting the overhead of monitoring itself
exists. Additionally, several authors [Hin88, Pri89, Sac11, FAS+12, VMSK12] recognize
the lack of an established benchmark engineering methodology.

We sketch such an methodology and employ it with our MooBench micro-benchmark. It
can be used to measure the monitoring overhead of traces containing method executions
under controlled and repeatable conditions. Furthermore, we provide a classification of
the possible causes of monitoring overhead into three portions and additionally quantify
each portion with our benchmark. Finally, we evaluate our benchmark with the help of
a performance comparison of different releases of the Kieker framework, starting from
version 0.91 (released Apr. 2009) to the current version 1.8 (released Oct. 2013).

The rest of this paper is structured as follows. In Sections 2 and 3, we introduce our notion
of monitoring overhead and our benchmark to measure it. We evaluate our benchmark in
Section 4. Finally, we discuss related work and draw the conclusions in Sections 5 and 6.



Figure 1: UML sequence diagram for method monitoring with the Kieker framework

2 Monitoring Overhead

The so-called probe effect is the influence a monitoring framework has on the behavior of
a monitored software system [Jai91]. It is caused by the monitoring framework using re-
sources (e. g., CPU-time) of the monitored system. In this paper, we are interested in parts
of the probe effect causing increases in the response time of the system. This additional
response time is the monitoring overhead of the monitoring framework.

A simplified UML sequence diagram for monitoring method executions with the Kieker
monitoring framework using event based probes and an asynchronous writer is presented
in Figure 1. A similar sequence diagram for Kieker using state based probes is presented
in [WH12, vHRH+09]. In addition to the control flow, the sequence diagram is annotated
in red with timings of the uninstrumented original method (𝑇 ) and the different portions
of monitoring overhead (𝐼 , 𝐶1, 𝐶2, 𝑊1, and 𝑊2). These portion form the three com-
mon causes of monitoring overhead: (1) the instrumentation of the monitored system (𝐼),
(2) collecting data within the system (𝐶 = 𝐶1 +𝐶2), and (3) either writing the data into a
monitoring log or transferring the data to an online analysis system (𝑊 = 𝑊1+𝑊2). Re-
fer to [WH12] for a detailed description of the identified portions of monitoring overhead.

In the case of asynchronous monitoring writers using buffers, as is usually the case with
Kieker, we can determine an upper and lower bound on the actual monitoring overhead
of writing (𝑊 ). The lower bound is reached, if the WriterThread writes the records faster
than they are produced. In the other case, the buffer reaches its maximum capacity and
the asynchronous thread becomes effectively synchronized with the rest of the monitoring
framework. Thus, its execution time is added to the caused runtime overhead of 𝑊 .



Figure 2: The three phases of our benchmark engineering methodology

3 Our Benchmark Engineering Methodology

Several authors [Hin88, Pri89, Sac11, FAS+12, VMSK12] recognize the lack of an estab-
lished methodology for developing benchmarks. Furthermore, besides many authors de-
scribing specific benchmarks, only few publications, e. g., [Gra93, Hup09], are focused on
such a methodology. In this section, we first sketch such a general methodology to develop,
execute, and present a benchmark. Next, we present details of our concrete methodology
for the MooBench benchmark for measuring the monitoring overhead of application-level
monitoring frameworks.

According to [Sac11], a development methodology for benchmarks should include their
development process as well as their execution and the analysis of their results. He has in-
troduced the term benchmark engineering to encompass all related activities and concepts.
Generally speaking, a benchmark engineering methodology can be split into three phases,
as depicted in Figure 2, each with its own set of requirements:

1. The first phase is the actual design and implementation of a benchmark. Often this
phase is specific for a class of SUTs, allowing the execution of multiple bench-
mark runs and subsequent comparison of results with different SUTs. A benchmark
engineering methodology should provide general benchmark design requirements
(representative, repeatable, fair, simple, scalable, comprehensive, portable, and ro-
bust) as well as requirements specific to the class of SUTs, e. g., possible workload
characterizations and measures.

2. The second phase is the execution of a benchmark. Within this phase, one or more
benchmark runs are performed for specific SUTs. The results of each run are usually
recorded in a raw format and analyzed in the next and final phase. The methodology
should provide solutions to common problems with the respective benchmark. The
main requirement for this phase is the need for robust benchmark executions. This
can be ensured by, e. g., repeated executions, sufficient warm-up, and an otherwise
idle environment.

3. The third phase is the analysis and presentation of benchmark results. Here, the
gathered raw performance data are statistically processed and interpreted. For the
analysis, the methodology should provide guidelines for a statistically rigorous eval-
uation and validation of the collected data. Furthermore, it should provide guidelines
for the presentation of the statistical results, e. g., present confidence intervals in ad-
dition to the mean. To ensure replicability, it should additionally provide guidelines
for the description of the performed benchmark experiments.



The MooBench Benchmark for Monitoring Overhead

Our MooBench micro-benchmark has been developed to quantify the previously intro-
duced three portions of monitoring overhead for application-level monitoring frameworks
under controlled and repeatable conditions. In the following, we will detail some exem-
plary aspects of our benchmark engineering methodology and its three phases. The source
code and further details on our benchmarks are available at the Kieker home page.1

Design & Implementation Phase The general architecture of our benchmark consists
of two parts: First, an artificial Monitored Application instrumented by the monitoring
framework under test. And second, there is the Benchmark Driver with one or more active
Benchmark Threads accessing the Monitored Application.

The Monitored Application is a very basic implementation, consisting of a single Moni-
toredClass with a single monitoredMethod(). This method has a fixed, but configurable,
execution time and can simulate traces with the help of recursion. It is designed to perform
busy waiting, thus fully utilizing the executing processor core to simulate the work load
and also to prevent elimination by JIT compiler optimizations.

The Benchmark Driver first initializes the benchmark system and finally collects and per-
sists the recorded performance data. While executing the benchmark, each Benchmark
Thread calls the monitoredMethod() a configurable number of times and records each mea-
sured response time.

The configuration of the total number of calls prepares our design for robustness by in-
cluding a configurable warm-up period into runs. The method’s execution time and re-
cursion depth are used to control the number of method calls the monitoring framework
will monitor per second (parts of the design requirement representativeness, scalability,
comprehensiveness, and portability). For instance, we demonstrated a linear rise of mon-
itoring overhead with additional calls per time frame by modifying the recursion depths
with constant execution times in [WH12]. The remaining design requirements (repeata-
bility, fairness, and simpleness) are inherent properties of the benchmark.

Each experiment consists of four independent runs, started on fresh JVM invocations, used
to quantify the individual portions of the monitoring overhead:

1. Only the execution time of the calls to the monitoredMethod() is measured (𝑇 ).

2. The monitoredMethod() is instrumented with a deactivated probe (𝑇 + 𝐼).

3. An activated probe adds data collection without writing any data (𝑇 + 𝐼 + 𝐶).

4. The addition of an active writer represents full monitoring (𝑇 + 𝐼 + 𝐶 +𝑊 ).

This way, we can incrementally measure the different portions of monitoring overhead as
introduced in Section 2.

1http://kieker-monitoring.net/overhead-evaluation/

http://kieker-monitoring.net/overhead-evaluation/


Figure 3: Exemplary time series diagram of measured timings with Kieker

Execution Phase Each benchmark experiment is designed to consist of four independent
runs. Each run can be repeated multiple times on identically configured JVM instances to
minimize the influence of different JIT compilation paths. The number of method execu-
tions in each run can be configured to ensure sufficient warm-up.

We analyze visualizations of time series diagrams of our experiments in combination with
JIT compilation and garbage collection logs to determine sufficient warm-up periods. As
a result for our evaluation, we recommend running 2 000 000 repeated method executions
with Kieker and discarding the first half as warm-up. Similar studies are required for other
monitoring frameworks, configurations, or hard- and software platforms. An exemplary
time series diagram for Kieker 1.8 with event based probes and a binary writer is presented
in Figure 3. The recommended warm-up period is shaded in gray in the figure.

Furthermore, the benchmark enforces initial garbage collection runs before the actual ex-
periment starts, as this minimizes the impact of additional runs during the experiment.
These additional garbage collections are also visible in Figure 3 by the regular spikes in
the measured response times.

The final execution phase requirement is the need for an otherwise idle system. Thus, the
benchmark and its components as well as the tested monitoring framework should be the
only running tasks on the used hardware and software system.

Analysis & Presentation Phase For details on rigorous statistical evaluations of Java
benchmarks, we refer to [GBE07]. For instance, our benchmark provides the mean and
median values of the measured timings across all runs instead of reporting only best or
worst runs. Additionally, the lower and upper quartile, as well as the 95% confidence
interval of the mean value are included.

Finally, to ensure replicability, detailed descriptions of the experiment’s configurations and
environments have to be provided.



4 Performance Comparison of Released Kieker Versions

In this section, we evaluate the capabilities of our MooBench benchmark by conducting
a performance comparison of the different released Kieker versions. The earliest version
we investigate is version 0.91 from April 2009. It is the first version supporting different
monitoring writers and thus the first version supporting all four measurement runs of our
benchmark without any major modifications to the code. We compare all further released
version up to the current version 1.8, that was released in October 2013. In all cases, we
use the required libraries, i. e., AspectJ and Commons.Logging, in the provided versions
for the respective Kieker releases. Additionally, we performed minor code modifications
on the earlier versions of Kieker, such as adding a dummy writer for the third run and
making the buffer of the writer thread in the fourth run blocking instead of terminating.

4.1 Experimental Setup

We conduct our performance comparison with the Oracle Java 64-bit Server VM in ver-
sion 1.7.0_45 with up to 4 GiB of heap space provided to the JVM. Furthermore, we utilize
an X6270 Blade Server with two Intel Xeon 2.53 GHz E5540 Quadcore processors and
24 GiB RAM running Solaris 10. This hardware and software system is used exclusively
for the experiments and otherwise held idle. The instrumentation of the monitored appli-
cation is performed through load-time weaving using the respective AspectJ releases for
the Kieker versions.

Our experiments are performed using probes producing OperationExecutionRecords. For
measuring the overhead of writing (𝑊 ), we use the asynchronous ASCII writer, producing
human-readable csv files, that is available in all Kieker releases. Starting with Kieker ver-
sion 1.5, we also repeat all experiments using the asynchronous binary writer, producing
compact binary files, and probes producing kieker.common.record.flow event records. The
event records are able to provide further details compared to the older records. In all cases,
Kieker is configured with an asynchronous queue size of 100 000 entries and blocking in
the case of insufficient capacity.

We configure the MooBench benchmark to use a single benchmark thread. Each exper-
iment is repeated ten times on identically configured JVM instances. During each run,
the benchmark thread executes the monitoredMethod() a total of 2 000 000 times with a
configured execution time of 0 µs and a recursion depth of ten. As recommended, we use
a warm-up period of 1 000 000 measurements.

In the case of state based probes, a total of ten OperationExecutionRecords is collected
and written per measured execution of the monitoredMethod(). In the case of event based
probes, a total of 21 kieker.common.record.flow records is produced and written.

To summarize our experimental setup according to the taxonomy provided by [GBE07], it
can be classified as using multiple JVM invocations with multiple benchmark iterations,
excluding JIT compilation time and trying to ensure that all methods are JIT-compiled
before measurement, running on a single hardware platform with a single heap size, and
on a single JVM implementation.



Figure 4: Performance comparison of eleven different Kieker versions

4.2 Performance Comparison: ASCII Writer & OperationExecutionRecords

Our first performance comparison restricts itself to the use of the asynchronous ASCII
writer and state based probes producing OperationExecutionRecords. This restriction is
necessary, as this is the only combination of writers and probes available in all versions.
A diagram containing mean response times with 95%-confidence intervals for the three
causes of monitoring overhead is presented in Figure 4. Quartiles are omitted in the dia-
gram to reduce visual clutter.

With the exception of Kieker 1.7, the response time overhead of instrumentation (𝐼) is
constant with about 0.5 µs. Version 1.7 contains a bug related to the extended support of
adaptive monitoring. This bug effectively causes Kieker to perform parts of the collecting
step even if monitoring is deactivated.

The overhead of collecting monitoring data (𝐶) stays within the same magnitude for all
versions. For instance, the improvement between version 1.4 and 1.5 is probably related
to the added support for immutable record types and other performance tunings.

The most interesting and most relevant part is the overhead for writing the collected mon-
itoring data (𝑊 ). The obvious change between versions 1.2 and 1.3 corresponds to a
complete rewriting of the API used by the monitoring writers. This new API results in lots
of executions with very low overhead, e. g., Kieker 1.8 has a median overhead of 1.3 µs.
However, a small percentage of execution has extremely high response times of more than
one second, as is also evident through the large span of the confidence intervals.

Additionally, we repeated this experiment with a configured method time of 200 µs. This
way, we can determine a lower bound on monitoring overhead portion 𝑊 . For instance,
the first five versions of Kieker have a lower bound of below 4 µs of writing overhead 𝑊 .



Figure 5: Performance comparison of Kieker versions employing a binary writer and event records

4.3 Performance Comparison: Binary Writer & Event-Records

For our second performance comparison of different Kieker versions, we employ the event
based probes introduced with Kieker 1.5. Furthermore, we use the asynchronous binary
writer, also introduced in version 1.5. The results are summarized in Figure 5.

Similar to our previous comparison, the overhead of instrumentation (𝐼) stays constant
with the exception of Kieker 1.7. Refer to the previous subsection for details.

The overhead of collecting monitoring data (𝐶) with event based probes is higher, com-
pared to the overhead when using state based probes (cf., Figure 4). However, this behav-
ior is to be expected, as the event based probes produce twice the amount of monitoring
records per execution. Comparing the event based probes among the different Kieker ver-
sions hints at constant overhead.

Finally, the overhead of writing using the binary writer (𝑊 ) has been improved in the
most recent Kieker versions. Furthermore, compared to the ASCII writer of the previous
subsection, the average performance has much improved (especially considering twice
the amount of records) and is much more stable, as is evident by the minimal confidence
intervals and by the median being very close to the respective mean.

4.4 Further Performance Comparisons & Access to the Raw Experiment Results

For reasons of space, we provide further comparisons online for download.2 Refer to the
site http://kieker-monitoring.net/overhead-evaluation/ for details.

In addition to our benchmark results, we also provide the pre-configured benchmark itself
with all required libraries and Kieker versions.2 Thus, repetitions and validations of our
experiments are facilitated. Furthermore, we include all measurements for the described
experiments and additional graphs plotting the results. Finally, the results of several ad-
ditional experiments are included as well. For instance, we repeated all experiments on a
different hardware platform, equipped with two AMD Opteron 2384 processors running
at 2.7 GHz. Although the result graphs differ in the details, the overall trend of the results
remains similar.

2Data sets (doi:10.5281/zenodo.7615) and the pre-configured benchmark (doi:10.5281/zenodo.7616)

http://kieker-monitoring.net/overhead-evaluation/
http://dx.doi.org/10.5281/zenodo.7615
http://dx.doi.org/10.5281/zenodo.7616


5 Related Work

Although several authors [Hin88, Pri89, Sac11, FAS+12, VMSK12] recognize the lack
of an established benchmark engineering methodology, only few papers are concerned
with establishing one. [Gra93] gives a list of four requirements for benchmarks (relevant,
portable, scalable, and simple), that are also included in our list of requirements. How-
ever, the author focuses on the design phase, neglecting the execution and analysis phase.
[Hup09] provides five benchmark characteristics (relevant, repeatable, fair, verifiable, and
economical). The first four are also included in our set of requirements, the fifth is outside
of our scope. Although mainly focusing on the design and implementation, the author
also recognizes the need for a robust execution and for a validation of the results. [Sac11]
provides similar requirements, but focuses on five workload requirements (representative-
ness, comprehensiveness, scalability, focus, and configurability). The first three are also
part of our set, while the final two are included within other requirements. Additionally,
we follow the author’s advice on providing a benchmark engineering methodology.

Furthermore, to the best of our knowledge no other monitoring framework has been eval-
uated with a specialized benchmark targeting the overhead of monitoring itself. However,
several publicized monitoring frameworks also provide brief performance evaluations. For
instance, [App10] uses a commercial application to compare response times with and with-
out monitoring. Similarly, [KRS99] and [ES12] use the SKaMPI or SPECjvm2008 macro-
benchmarks to determine the overhead of monitoring.

6 Conclusions and Outlook

This paper presents our realization of a benchmark engineering methodology to measure
the overhead of application-level monitoring. Particularly, we present our MooBench
micro-benchmark to determine three identified causes of monitoring overhead. Our bench-
mark methodology is evaluated by creating a series of performance comparisons of eleven
different released versions of the Kieker monitoring framework. In summary, our bench-
mark engineering methodology is capable of determining the causes of monitoring over-
head within several different version of the Kieker monitoring framework. Furthermore,
our evaluation demonstrates the importance Kieker places on high-throughput monitoring.

The presented division of monitoring overhead into three common causes and its mea-
surement with the MooBench micro-benchmark has already been evaluated in the context
of the Kieker framework, e. g., [WH12, vHWH12]. As future work, we will verify these
portions with the help of additional lab experiments conducted on further scientific and
commercial monitoring frameworks. We also plan to perform performance comparisons
between Kieker and these additional monitoring frameworks. To further validate our re-
sults, we will compare them to results of macro-benchmarks and to results of using a
meta-monitoring approach, i. e., monitoring a monitoring framework.

Finally, benchmarking is often considered to be a community effort [SEH03]. Conse-
quently, we provide our benchmarks as open-source software and invite the community to
use our tools to verify our results and findings.



References

[App10] AppDynamics. AppDynamics Lite Performance Benchmark Report, 2010.

[ES12] Holger Eichelberger and Klaus Schmid. Erhebung von Produkt-Laufzeit-Metriken:
Ein Vergleich mit dem SPASS-Meter-Werkzeug. In Proceedings of the DASMA Metrik
Kongress, pages 171–180. Shaker Verlag, 2012. In German.

[FAS+12] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl, and
Cafer Tosun. Benchmarking in the Cloud: What it Should, Can, and Cannot Be. In
Proceedings of the 4th TPC Technology Conference on Performance Evaluation &
Benchmarking, pages 173–188. Springer, 2012.

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java per-
formance evaluation. In Proceedings of the 22nd Conference on Object-Oriented Pro-
gramming Systems and Applications, pages 57–76. ACM, 2007.

[Gra93] Jim Gray, editor. The Benchmark Handbook: For Database and Transaction Systems.
Morgan Kaufmann, 2 edition, 1993.

[Hin88] David F. Hinnant. Accurate Unix Benchmarking: Art, Science, or Black Magic? IEEE
Micro, 8(5):64–75, 1988.

[Hup09] Karl Huppler. The Art of Building a Good Benchmark. In First TPC Technology Conf.
on Performance Evaluation and Benchmarking, pages 18–30. Springer, 2009.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation, and Modeling. John Wiley & Sons, 1991.

[KRS99] Dieter Kranzlmüller, Ralf H. Reussner, and Christian Schaubschläger. Monitor over-
head measurement with SKaMPI. In Proceedings of the 6th European PVM/MPI
Users’ Group Meeting, pages 43–50. Springer, 1999.

[Pri89] Walter J. Price. A Benchmark Tutorial. IEEE Micro, 9(5):28–43, 1989.

[Sac11] Kai Sachs. Performance Modeling and Benchmarking of Event-Based Systems. PhD
thesis, TU Darmstadt, Germany, 2011.

[SEH03] Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using Benchmarking
to Advance Research: A Challenge to Software Engineering. In Proceedings of the
25th International Conference on Software Engineering, pages 74–83. IEEE Computer
Society, 2003.

[vHRH+09] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers, Sören
Frey, and Dennis Kieselhorst. Continuous Monitoring of Software Services: Design
and Application of the Kieker Framework. Technical Report 0921, Department of
Computer Science, Kiel University, Germany, 2009.

[vHWH12] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proc. of the
3rd ACM/SPEC Int. Conf. on Performance Engineering, pages 247–248. ACM, 2012.

[VMSK12] Marco Vieira, Henrique Madeira, Kai Sachs, and Samuel Kounev. Resilience Bench-
marking. In Resilience Assessment and Evaluation of Computing Systems, pages 283–
301. Springer, 2012.

[WH12] Jan Waller and Wilhelm Hasselbring. A Comparison of the Influence of Different
Multi-Core Processors on the Runtime Overhead for Application-Level Monitoring. In
Multicore Softw. Engineering, Performance, and Tools, pages 42–53. Springer, 2012.


	1 Introduction
	2 Monitoring Overhead
	3 Our Benchmark Engineering Methodology
	4 Performance Comparison of Released Kieker Versions
	4.1 Experimental Setup
	4.2 Performance Comparison: ASCII Writer & OperationExecutionRecords
	4.3 Performance Comparison: Binary Writer & Event-Records
	4.4 Further Performance Comparisons & Access to the Raw Experiment Results

	5 Related Work
	6 Conclusions and Outlook

