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Abstract. We present a new method for assimilating observations of sea surface height 
(SSH) into a high-resolution primitive equation model. The method is based on the 
concept of reinitialization. First, the surface velocity increments necessary to adjust the 
model forecast to the observed geostrophic surface currents are projected onto deep 
velocity increments by a linear regression method. Second, changes in the density field 
required to balance the changes in the velocity field geostrophically are obtained from an 
inversion of the thermal wind equation. A unique partition of the density increments into 
corresponding temperature and salinity changes is realized by conserving the local O-S 
relation of the model forecast. In contrast to pure statistical methods that infer 
temperature and salinity changes from correlations with SSH anomalies, our approach 
explicitly conserves water mass properties on isopycnals. For the assimilation experiment 
we use optimally interpolated maps of Geosat SSH anomalies (the mean topography is 
taken from the model), which are assimilated into the World Ocean Circulation 
Experiment (WOCE) Community Modeling Effort (CME) model of the North Atlantic 
Ocean at 5-day intervals covering the year 1987. It is shown that the assimilation 
significantly improves the model's representation of eddy activity, with the hydrographic 
structure of individual eddies agreeing well with independent hydrographic observations. 
The importance of a careful treatment of water mass properties in the assimilation process 
is discussed and further illustrated by comparing different assimilation schemes. 

1. Introduction 

One of the most important data sets for s•udying and mon- 
itoring the world ocean is presently provided by satellite altim- 
etry, which is the 0nly operational observing system that facil- 
itates continuous sampling of ocean dynamics on a global basis. 
The suitability of satellite altimetry to observe the oceanic 
mesoscale variability has been demonstrated in numerous in- 
vestigations, e.g., by Willebrand et al. [1990], who validated 
Geosat sea surface height (SSH) measurements with drifting 
buoys and hydrographic data. Global statistical descriptions 
were obtained, ranging from maps of the rms surface height 
variability to regional spectral analysis and characterization of 
typical space and time scales of mesoscale variability [e.g., Le 
Traon et al., 1990; Stammer, 1992]. These statistical descrip- 
tions have in common that they are essentially restricted to the 
ocean surface. It is only our knowledge of ocean dynamics that 
may enable us to infer subsurface information from the altim- 
etric data set. 

Combining ocean dynamics and large amounts of data is 
best organized around a numerical circulation model. By as- 
similating the data into such a model, a vast number of obser- 
vations can be dynamically extrapolated and interpolated both 
in space and in time to yield a complete and dynamically 
consistent description of the ocean. It is evident that a single 
observation of the sea surface topography will not allow a 
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unique determination of the deep ocean's state. In fact, there 
are an infinite number of possible states that would all match 
the surface observations at a given instant. However, different 

, 

states will evolve differently in time, eventually leading to dis- 
tinct dynamic topographie s. Hence subsequent altimeter mea- 
surements, when combined with •ome understanding of ocean 
dynamics, will have some potential for gradually revealing the 
structure of the deep ocean. Along these lines {he assimilation 
of satellite altimeter data becomes a very tempting prospect to 

_ 

globally monitor the state and, of course, al•o the potential 
changes of today's ocean. 

SO far most of the research on assimilation of altimeter data 

has involved numerical ocean circulation models with very few 
active layers [Kindle, 1986; HUrltiurt, 1986; Hurlbun et al., 1990; 
Haines et al., 1993] or quasi-geostr. ophic dynamics [Holland and 
Malanotte-Rizzoli; 1989; Robinson et al., 1988, 1989; Verron, 
1990; White et al., 1990 a, b,.c; Haines, 1991]. A common 
feature of such simple models is that .they do not require large 
computational resources and hence are most appropriate for 
developing and testing assimilation conceptS. On the other 
hand, they generally fail to resolve some Climatologically im- 
portant physical processes, as, for example, none of these mod- 
els has prognostic equations for tempeiature and salinity. 

In many respects, primitive eqtiation models with active 
thermodynamics can simulate the ocean circulation much 
more realistically. However, because of their complexity, as- 
similation of altimeter data into such models is not straight- 
forward and has largely been avoided. An exception is the work 
by Melior and Ezer [1991] and Ez•r and Melior [1994], who 
combine a suboptimal interpolation method with a statistical 
regression scheme to directly estimate temperature and salinity 
fields from the satellite-measured surface topography. The use 
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of a statistical [egression method that directly relates temper- 
ature and salinity to the observed sea surface height has, how- 
ever, the disadvantage that any error in the statistics will di- 
rectly translate into false estimates of water mass properties. 
As we will illustrate later in this study, this can eventually 
introduce completely unrealistic water masses, thereby disturb- 
ing any reasonable evolution of the dynamical model. Except 
for some well-sampled regions like the Gulf Stream region 
investigated by Ezer and Mellor, in practice, neither the still 
sparse oceanographic data sets nor present numerical circula- 
tion models can provide us with the required reliable statistical 
coefficients., 

In this paper we present an alternative assimilation method 
that specifically avoids any statistical regression to infer tem- 
perature and salinity from sea surface height. Our approach is 
guided by the notion that the distribution of temperature and 
salinity on isopycnal surfrices has no direct dynamical effect 
and hence cannot be observed by altimetry. Consequently, the 
distribution of temperature and salinity on these surfaces 
should be conserved during the assimilation step, while the 
assimilation procedure may well change the position of isopy- 
cnals. In this way the assimilation does not interfere with the 
physical process of formation of water masses and their spread- 
ing which occurs predominantly along isopycnal/neutral sur- 
faces. 

The new assimilation method is described in detail in the 

next section. It is subsequently tested in an identical twin per- 
spective before being applied to the eddy-resolving World 
Ocean Circulation Experiment (WOCE) Community Model- 
ing Effort (CME) model configuration of the North Atlantic 
Ocean [Bryan and Holland, 1989]. A 1-year assimilation exper- 
iment is performed using Geosat altimeter data of the year 
1987. The results are discussed with special emphasis placed on 
the role of conserving water mass properties during the assim- 
ilation. For comparison, some results of an approach very 
similar to the one suggested by Mellor and Ezer [1991] are also 
shown, clearly indicating that our more careful treatment of 
temperature and salinity can considerably improve the perfor- 
mance of altimeter data assimilation schemes. 

2. The Method 

The basic concept of essentially all sequential data assimi- 
lation methods can be illustrated by 

x a= x f+ K(y øbs- Hxf), (1) 

where x is the state vector of the numerical ocean circulation 

model, with indices f and a refering to forecast and analysis, 
respectively. The operator K, which in general will be neither 
linear nor constant in time, projects (or inverts) the difference 
between measured variables yOUS and their model forecast 
counterpart yS _- Hx s onto the model state space. An assim- 
ilation cycle then consists of (1) halting the model integration 
at observation time to obtain a model forecast x $ and associ- 

ated yI, (2) computing the correction K(y øus - Hx •) required 
to adjust the model state to the observations, and (3) restarting 
the model integration from the updated, or analyzed, state x •. 

Although one can derive statistical concepts like the Kalman 
filter that in principle, uniquely determine an optimal operator 
K [e.g., Ghil et al., 1981], in practice, one has to cope with 
limited computer resources that clearly rule out an application 
of statistically optimal methods to basin-scale eddy-resolving 

circulation models with typically O( ! 0 6) state variables. Any 
practical assimilation scheme for such state-of-the-art models 
can therefore only be an approximation to optimal methods. 
This also holds for our new approach to assimilate satellite 
altimeter data, which will be described below. 

We have already pointed out that a single sea surface height 
field does not uniquely determine the state of the ocean. (If it 
did, one would not have to bother about assimilating altimeter 
data into numerical circulation models.) When approximating 
the operator K, one therefore has to be aware of the fact that 
the inversion of the observed model-data misfit (yObS _ Hx •) 
for a model state vector x is not always well conditioned. 
Particular care has to be taken with respect to such subspaces 
of the state space which are not well resolved by the inversion, 
as these subspaces may be very sensitive to small inaccuracies, 
either introduced by measurement errors, by incorrect statis- 
tical assumptions, or by approximations to the operator K. 
Quite similar to the "truncated solution" of the singular value 
decomposition often used in inverse modeling [Wunsch, 1978], 
it is generally advisable to restrict the inversion to the well- 
resolved modes of the system under consideration and to ex- 
ploit additional information to determine an element of the 
null space. 

With respect to the assimilation of satellite altimeter data 
into primitive equation models we argue that such a null space 
indeed exists: Disregarding weak nonlinearities in the thermo- 
dynamic state equation, there is no way to determine the dis- 
tribution of temperature and salinity on isoPYcnal surfaces 
from altimetry. Previous investigations using quasi-geostrophic 
ocean models [e.g., Haines, 1991] and even a linearized prim- 
itive-equation model [Fukumori et al., 1993] have on the other 
hand shown that altimeter data can constrain both current and 

density fields in the ocean interior. As far as linear ocean 
models are concerned, these findings can be further supported 
by the theoretical concept of observability lOschiles, 1994]. 

On the basis of the above considerations we suggest decom- 
posing K into three distinct operations to be applied succes- 
sively: A first operator, A, is used to project the observed 
model-data SSH misfit onto dynamically consistent corrections 
to the velocity and density fields (i.e., the fields observable by 
altimetry) of the model forecast. Here, geostrophy will serve as 
an appropriate dynamical consistency criterion that keeps the 
analyzed model state close to the slow (quasi-geostrophic) 
manifold and avoids strong excitation of gravity waves. The 
second operator, B, is a weighting matrix that accounts for the 
relative accuracies of observations, model forecast, and ap- 
proximations introduced by the operator A. To complete the 
projection of the observed model-data misfit onto state space, 
one finally has to determine an element of the nullspace. The 
function of operator C is to partition the weighted density 
increments computed by B ß A into increments of temperature 
and salinity. Equation (1) may then be rewritten as 

x a = x •+ C. B. A(y ø•'s- H x-f), (2) 

which is illustrated in form of a flowchart in Figure 1. The 
operations denoted by A, B, and C will be described in the 
following three subsections. 

2.1. Operator A: Finding a Dynamically Consistent Set 
of Correction Terms 

Most primitive equation models of the general circulation in 
use today do not treat sea surface height (SSH) as a prognostic 
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Figure 1. Flowchart of the assimilation algorithm as pre- 
sented by equation (2). For the details we refer to sections 2.1 
to 2.3. 

variable but employ the rigid-lid approximation to filter out 
fast external gravity waves. Although it is often stated that 
free-surface models would greatly simplify the assimilation of 
satellite altimeter data, we do not think that there is much 
difference between these two model classes with respect to 
altimeter data assimilation. This is because of the very close 
adherence of meso- and large-scale motions to geostrophy 
found practically everywhere in the ocean except for a narrow 
region along the equator. Hence there is an almost one to one 
correspondence between geostrophic surface currents and sea 
surface height, which makes it easy to transfer any assimilation 
concept originally developed for a free-surface model to a 
model version with a rigid lid and vice versa. It is therefore no 
serious restriction when we present our new assimilation 
method for a rigid-lid model. Note particularly that simply 
nudging the sea surface height of a free-surface model alone 
can have severe drawbacks: Although gravity waves would in 
principle quickly (on a timescalef -•) adjust the ocean interior 
to changes in the surface height, this mechanism is not ex- 
pected to work very well in numerical ocean circulation models 
that do not properly resolve all the required gravity wave 
modes. We suppose that as far as present primitive-equation 
models are concerned (and especially those with a reasonably 
fine vertical resolution), the efficiency of any altimeter data 
assimilation scheme can be considerably improved by exploit- 
ing the a priori information that the ocean's evolution closely 
follows the slow (quasi-geostrophic) manifold. This immedi- 
ately implies that, no matter whether the primitive-equation 
model has a free surface or a rigid lid, the assimilation scheme 
itself should actively extrapolate the surface information into 
the model ocean interior. 

Owing to uncertainties in present geoid models, altimetry 
cannot yet be used to extract the temporal mean SSH on the 
mesoscale. Only observations yobs of temporal anomalies of the 
sea surface elevation, •5• øbs, can be deduced from the data with 
sufficient accuracy. Accordingly, the operator H maps the state 

vector of the model forecast, x f, onto a corresponding map of 
SSH anomalies, •5•, defined relative to the climatological 
mean sea surface that, because of a lack of alternatives, is 
presently taken from the model. 

In order to reduce the computational load we shall separate 
horizontal, temporal, and vertical correlations in the ocean. 
Horizontal and temporal correlations will be exploited prior to 
the assimilation itself by a mapping algorithm applied to the 
tracked altimeter data (section 4) which produces objectively 
interpolated maps of •5• øbs (and also of the expected error 
variance to be taken into account by operator B) on the model 
grid. All that is left to the actual assimilation routine is to 
extrapolate the information provided by the SSH maps in the 
vertical. 

Having available maps of the altimetric SSH residuals, it is 
then straightforward to compute the model-data misfit in the 
geostrophic surface velocities, 

g •Sqqobs Aus =f • x V( - 8•), (3) 
where • is a unit vector pointing upward, f is the Coriolis 
parameter, and g is the acceleration due to gravity. This misfit 
can immediately be used to update the surface velocity of the 
model forecast. Note that the ageostrophic Ekman part of the 
surface currents, which cannot be observed by altimetry (but is 
well simulated by the model), will not be affected by the up- 
date. On the other hand, the above relation neglects ageostro- 
phic gradient wind contributions to the model-data misfit, 
which can for example be important in intense Gulf Stream 
rings that are, however, not properly resolved in the present 
1/3 ø model resolution. After all, (3) will not allow application 
of our assimilation method close to the equator. 

As pointed out above, it is reasonable to look for some 
vertical projection of the surface velocity misfit, Aug, into the 
ocean interior and to adjust the deeper model levels as well. 
One simple way to relate velocities, u, at given depth z to the 
geostrophic part of the surface currents, %, is a statistical 
linear regression method. For each individual column of model 
grid points we define the vertical regression coefficients for the 
zonal and meridional velocity components, u and v, respec- 
tively, by 

Ru = ((Sua)2) (4) 
and 

( •S v•S vg) 
nv: (5) 

where 15u = u - (u) denotes the actual deviation of the zonal 
velocity component u from its climatological mean (u) which, 
again, is provided by the model. Assuming that any deviation 
of the model from the observations has on average the same 
vertical profile as typical fluctuations in the model's velocity 
field, one can then also estimate a pseudo velocity misfit Au --= 
iX(u, v) at any depth level by the linear regression 

iXu = RuiXU a and iX v = R viX va. (6) 

In this way any observed model-data misfit in the geostrophic 
surface velocity, iXug, is projected onto a complete three- 
dimensional field of estimated pseudo velocity misfits iXu. Fig- 
ure 2 shows vertical profiles of R, for all model grid points 
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Figure 2. Profiles of the regression coefficients R, derived 
from a 3-year model climatology run. Profiles are shown for all 
model grid points along a section crossing the Gulf Stream 
from 60øW, 36øN to 50øW, 43øN, with an offset of 0.1 each. 

along a section crossing the Gulf Stream from 60øW, 36øN to 
50øW, 43øN. (The position of this section is indicated in Figure 
9.) The regression profiles consistently show that the region of 
strongest vertical shear is associated with the main thermo- 
cline, with only small horizontal variations. (See Figure 10c for 
an instantaneous temperature field of the model climatology 
run along this section.) 

From the theory of geostrophic adjustment it is known that 
on scales larger than the Rossby radius of deformation, i.e., on 
the scales of interest in a general circulation model, the veloc- 
ity field adjusts itself to the density field. This implies that a 
corresponding correction Ap, that dynamically balances the 
above estimated velocity corrections Au, should be applied to 
the model's density field as well. Such a zip may be found as a 
solution of the following inverse problem: By combining hy- 
drostatic and geostrophic assumptions, the thermal wind equa- 
tion relates vertical shear in the horizontal velocity field to 
horizontal gradients of the in situ density field. When applied 
to the zonal and meridional components of estimated velocity 
corrections, Au and ZI v, this results in two equations for the 
single unknown zip, 

g c)Ap c)Au 
fp-• 0-• -= Oz (7) 

and 

g OAp OAv 
fPo Ox Oz ' 

(8) 

where Po = po(Z) refers to the background density profile. 
Using (6) and (3) to substitute for the velocity increments, one 
obtains 

OAp ORu O 
0•- = - Pø-•-•-z • [ 15•/øbs - 15q] (9) 

and 

OAp ORv O 
O• = -Pø-•-•-z •xx [/5•/øbs- /Sq]. (10) 

Because the z derivatives of the statistically derived regression 
coefficients are neither the same for Ru and Rv nor horizon- 
tally homogeneous, the overdetermined inverse problem given 
by (9) and (10) does not provide a consistent solution for zip. 
Only approximate solutions can be determined. 

We proceed by assuming the vertical regression coefficients 
Ru and Rv to be horizontally homogeneous. A comparison of 
the section of regression profiles shown in Figure 2 with cor- 
responding SSH fields (Figure 9) reveals that at least on the 
scale of individual eddies, the regression coefficients can in- 
deed to a good approximation be treated as horizontally ho- 
mogeneous quantities. Moreover, it is likely that the errors due 
to imperfect model statistics are more critical than neglecting 
small horizontal variations in these still uncertain coefficients. 

Giving both of the above relations the same weight, in a least 
squares sense the optimal zip then becomes 

O (Ru+Rv)[15•qøbs-•] (11) ZIP = -Pø•zz 2 ' 

The integration constants have been set to zero because for a 
perfect forecast of the sea surface elevation (i.e., 15• f - 15• øus) 
the density field should not be changed (i.e., zip = 0). 

It is relevant in practice that the above relationship between 
density changes and surface height anomalies is a local one and 
hence can be evaluated for each water column individually. 
Besides having the advantage of sufficiently low computational 
cost, a local relationship also allows straightforward applica- 
tion to data sets like maps of tracked altimeter measurements 
with their intrinsic spatially inhomogeneous data coverage and 
error structure. In particular, the density increment zip is re- 
lated to the scalar field/5•/itself, i.e., no horizontal derivatives 
of the surface height measurements are required at this point. 
(Spatial derivatives of the (mapped) data were, however, used 
to compute the changes in the velocity field in (3).) 

2.2. Operator B: Applying Weighting Coefficients 

Together with the statistically estimated velocity deviations 
ziu and ZI v, the density increment zip provides an approxi- 
mately balanced and hence dynamically self-consistent esti- 
mate for the correction to the forecast state x f in {u, v, p} 
space. In order to use these estimated correction terms to 
update the model forecast (equation (2)), their reliability rel- 
ative to that of the model forecast should be taken into account 

in form of some weighting matrix B. 
In principle, one could determine a statistically optimal 

weighting matrix B by minimizing the expected error covari- 
ance of the updated state x". This procedure would eventually 
result in the product B ß A becoming similar to the so-called 
gain matrix of the Kalman filter (in { u, v, p} space), with the 
difference that we have explicitly tied the geostrophic balance 
condition into operator A, whereas the Kalman gain matrix 
would reflect geostrophy implicitly via the statistics of the 
ocean. Recalling the figure of O(10 7 ) state variables, it is 
evident that neither computing nor storing such a matrix B 
would be feasible for an eddy-resolving ocean circulation 
model as considered in this study. 

To cope with the limited computer resources, we shall there- 
fore choose a diagonal matrix B, its elements being weighting 
coefficients •u, •v, and Up (to be defined at each grid point). 
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Beginning with the zonal velocity field and inserting the cor- 
rections Au into (2), we then obtain a scalar equation for each 
component of the updated velocity field 

u a= u I + iXuAU - u I + ixuRu(u• us- ufo), (12) 

with- obs _ uf a = AU given by (3) (The operator C does not /•g g ß 
affect the velocity components and hence does not appear in 
the above equation.) 

Neglecting any correlations between errors of different 
quantities, one can then derive a set of weighting coefficients 
/Xu (one for each velocity variable of the model) that minimize 
the expected error variance of the updated velocity compo- 
nents u a. As outlined in the appendix, the resulting expression 
for/Xu is a function of the relative errors of model forecast and 
observations and also of the error introduced by the simple 
vertical projection scheme represented by the linear regression 
coefficient Ru (equation (6)). While one can readily obtain 
reasonable estimates for the expected errors of the (mapped) 
altimeter data (see section 4), as well as for the error intro- 
duced by the vertical extrapolation scheme, it remains a major 
difficulty to determine the forecast error of the assimilation 
model. Clearly, the forecast error depends on the length of the 
forecast period. Although the time interval between successive 
assimilation steps is only 5 days, the frequency with which 
relevant information is mapped onto a particular grid point will 
still be governed by the satellite's repeat period (17 days in the 
case of Geosat). 

For simplicity, it was finally decided to approximate the 
forecast error variance of any model variable (of the assimila- 
tion run) as a time-independent constant, set equal to the 
process variance of the respective variable (of the model with 
no data assimilated). Although at first sight this relatively large 
error estimate seems to be a rather pessimistic assessment of 
the model's forecast ability, it is actually quite optimistic in 
regions like the eastern North Atlantic, where the model (with 
no data assimilated) underestimates the surface height vari- 
ability by up to a factor of 4 [Stammer and BOning, 1992]. To 
the extent that the assimilation of Geosat data is able to in- 

crease the model's SSH variability (see section 5 for an anal- 
ysis), the estimated forecast error will be even smaller than the 
variance of the assimilation run. 

Employing these simplifying assumptions one can then de- 
rive the following expression for the weighting coefficients used 
to update the velocity components (see appendix for a more 
detailed discussion): 

2 

= Cu,u( - ( 

where the squared correlation coefficient 

c = (SuSu) u,u = (14) 

accounts for the accuracy of the linear regression scheme used 
for vertical extrapolation, and r,G [0, 1 ] is the expected error 
variance of the local surface height value, normalized by the 
variance of the SSH field. Like the regression coefficients R u 
the correlation coefficients are taken from the model climatol- 

ogy, while r,is provided by the SSH mapping routine (section 
4). Note that both inaccurate surface height observations (i.e., 
r,> 0) as well as imperfect vertical correlations (i.e., Cu2,ug < 1) 
will reduce the weight of the estimated velocity correction Au. 
If on the other hand observations and vertical projection were 

perfect (i.e., /Xu = 1), the model forecast u z would be com- 
pletely discarded and (12) would yield u '• - Ru uøbs. 

To give an analogous expression for the remaining weighting 
coefficient/%, we note that via (11) the density increment Ap is 
directly coupled to the vertical derivative of the regression 
coefficients R u and R 7,- For this reason, the relative error in the 
vertical shear of these regression profiles has been set to the 
minimum accuracy of the coefficients that contribute to the 
(discrete) derivative. The explicit form for the weighting pa- 
rameters p,. then becomes 

•, = min (C• .... ,)(1 -- rn 2, (15) 
Uup, Ulow 
•up, •1ow 

where the subscripts up and low denote the vertical levels used 
for computing the individual z derivative in (11). As for (13), 
C. 2 .... is the corresponding squared correlation with the sur- 
face velocity, and r,is the estimated relative error variance of 
the mapped altimeter data. 

It remains to add the set of weighted increments iXuAU, 
/x•,A v, and /x, Ap to the forecast state vector x • in order to 
obtain the analyzed state x a. Only for such models that treat 
temperature and salinity independently and hence do not carry 
density itself as a prognostic state variable is it necessary to 
partition the computed correction to the density field of the 
model forecast into corresponding changes of temperature and 
salinity. This will be the function of operator C. 

2.3. Operator C: Partitioning Density Into Temperature 
and Salinity Increments 

In many primitive equation models, temperature and salin- 
ity, rather than density itself, are the prognostic variables of the 
model. In that case, /x(p)Ap has to be partitioned into incre- 
ments of temperature and salinity. It is evident that for a 
particular density there is no unique solution to this inverse 
problem as long as temperature and salinity are treated as 
independent variables. However, in the ocean these quantities 
are not really independent but are closely tied to individual 
water masses. Once a water mass has been formed and the 

water is no longer in direct contact with the atmosphere, its 
potential temperature and salinity, and hence potential den- 
sity, can for many purposes be considered as fixed. Ocean 
eddies can to a good approximation be regarded as adiabatic 
features. In this respect it is only the action of the surface 
conditions in the water mass formation area that simulta- 

neously determine, and thereby interrelate, temperature and 
salinity. 

This underlines our previous conclusion that there is no 
reason to change the distribution of (potential) temperature 
and salinity on isopycnal surfaces when assimilating altimeter 
data. It is the conservative aspect of water mass properties 
which immediately provides us with the additional constraint 
required for a unique inversion of/x(p)Ap for changes of the 
temperature and salinity forecast fields. 

For a level model, as considered in this study, the suggested 
algorithm first computes the analyzed (in situ) density p• = 
pt• + /x(pk)Ap k at each depth level k. Subsequently, it 
searches in the local water column of the forecast state for a 

water parcel (defined by a O-S point) that, when moved adia- 
batically to the depth level under consideration, produces the 
new density p•. In case of a potentially unstable stratification, 
there may be more than one O-S point that satisfy this crite- 
rion, whereupon the algorithm always selects the water that 
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requires the minimum vertical displacement. As long as the 
density change does not lead to the introduction of new po- 
tential densities (with the reference pressure of depth level k) 
not already present in the original water column, this proce- 
dure uniquely determines the analyzed temperature and salin- 
ity fields. When, on the other hand, the analyzed density ex- 
ceeds the range of potential densities of the model forecast, no 
vertically displaced water parcel of the forecast state can ac- 
quire the density p•,. In such cases, which are most likely to 
occur when light water is introduced at the top, some extrap- 
olation of the original O-S relation toward lower (or greater) 
densities has to be provided. A simple linear extrapolation of 
the temperature and salinity differences between adjacent 
depth levels is not always well behaved when large vertical 
gradients in temperature and salinity counteract, which turns 
out to be a particular problem in the seasonal thermocline. 
Therefore temperature and salinity are additionally con- 
strained to remain within 3øC and 0.5 psu of the model forecast 
values. 

3. An Identical Twin Experiment 
An appropriate criterion for rating the success of an assim- 

ilation experiment is its ability to drive the model state closer 
toward reality. Since the state of the real ocean is far from 
being known accurately, we resort for this question to identical 
twin experiments. They allow objective measurement of the 
convergence of the assimilation run by computing the differ- 
ence between state vectors of the assimilation and control run. 

For computational economy the simplified box model config- 
uration developed by Cox [1985] with rough bottom topogra- 
phy introduced by B6ning [1989] was used for testing our new 
assimilation scheme. The model is based on essentially the 
same numerical code as the CME model, which is subsequently 
used for assimilating Geosat data. The only change in the 
physics is a simplified state equation: There is no salt in the 
model, and density p is a linear function of the single state 
variable potential temperature T only; hence this test does not 
involve operator C. The model is set up for a simplified basin 
of 60 ø longitudinal width, extending from the equator to 65øN. 
There are 21 levels in the vertical and the horizontal resolution 

is 1/3 ø x 2/5 ø. 

The model years 30 to 32 are taken as climatology. Complete 
fields of the diagnostically calculated surface pressure as well 
as the corresponding three-dimensional fields of velocity com- 
ponents and temperature are stored twice a day for the model 
year 30. In the identical twin experiments these data from the 
so-called control run serve as substitute for the real world. The 

surface pressure maps are subsequently assimilated into the 
assimilation run that starts from different initial conditions at 

the beginning of model year 31. An objective criterion for the 
convergence of the assimilation process can then be obtained 
by computing the rms difference between the fields of the 
assimilation run and those stored from the control run. 

The temporal evolution of these rms differences is displayed 
in Figure 3 for the horizontal velocity field at selected depth 
levels as well as for temperature. The corresponding curves for 
the reference run with no data assimilated are also shown. It is 

evident that the assimilation of surface height data can con- 
siderably improve the model's representation of the ocean 
interior. After 82 days, i.e., 16 assimilation cycles, the errors in 
the surface (at 17.5 m) velocities have been reduced to 25% 
and those of the fifth model level (at 174 m) to 33% of the 

corresponding values of the reference run. The still decreasing 
rms error in the model temperature has reduced to 47% and 
that of horizontal velocity at 1800 m to 60%. Note that the 
errors in the near-surface variables apparently have almost 
reached their asymptotic values after very few assimilation 
cycles, while convergence of the ocean interior is much slower. 
This clearly indicates the important role of the numerical 
model in successively absorbing the assimilated information 
and carrying it forward in time. 

Overall, the assimilation procedure leads to significant and 
encouraging convergence of all model variables. The observed 
rms error reduction is close to (though slightly better than) the 
values reported by Cooper and Haines [1996], who performed 
identical twin experiments using exactly the same circulation 
model with a different assimilation scheme that is based on 

conservation of potential vorticity. Nevertheless, we wish to 
emphasize that because the simulated observations are dynam- 
ically and statistically consistent with the assimilation model, 
the results of such twin experiments tend to be overoptimistic 
with respect to applications to real data. A fair assessment of 
an assimilation method's performance will eventually have to 
involve its application to real data. 

4. Data Preprocessing 
The altimeter data used in this study are from the Exact 

Repeat Mission (ERM) of the U.S. Navy's Geodetic Satellite 
(Geosat). The data are available approximately every 7 km 
along each of the 244 ground tracks produced by the 17-day 
repeat orbit. A collinear analysis method as described in detail 
by Willebrand et al. [1990] was used to determine SSH residuals 
relative to a 2-year reference mean. In order to separate the 
horizontal, temporal, and vertical extrapolation problem, it 
was decided to map the tracked SSH residuals onto the model 
grid prior to the actual assimilation. A time series of quasi- 
synoptic maps, covering the entire model domain, was pro- 
duced using a linear space-time objective analysis technique 
[Bretherton et al., 1976]. To reduce the computational burden 
of interpolating O(105) Geosat observations onto some 5 x 
104 model surface grid points, it was decided to use a subop- 
timal method. The algorithm chosen is described by De Mey 
and M•nard [1989]. It greatly reduces the number of data 
points for the objective analysis by considering only statistically 
independent data within a chosen influence radius (typically 
400 km and 30 days). Like any objective analysis algorithm it 
nevertheless requires some a priori information in the form of 
a correlation function. 

Stammer and Bbning [1992] showed that for the North At- 
lantic the spatial autocorrelation functions, averaged over 10 ø 
by 10 ø boxes, of the Geosat SSH residuals are not significantly 
different for ascending and descending tracks. They further 
found generally good agreement between these autocorrela- 
tion functions and the analytic functions estimated from the 
local POLYMODE [De Mey and Robinson, 1987] and TOUR- 
BILLON [Arhan and Colin de Verdi&re, 1985] experiments 
(Figure 4a). On the basis of this evidence, in the present study 
the same analytic isotropic form of the spatial autocorrelation 
function as for the POLYMODE experiment was used for the 
mapping: 

1 (ar)3]e-ar (16) C(r) =[1 + ar-• 
where a = 2.1038/L o and L o is the lag of the first zero 
crossing. As further shown by Stammer and B6ning [1992], L o 
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Figure 3. Temporal evolution of rms differences between control and assimilation run: (a) velocity differ- 
ences at 17.5 m, (b) at 174 m, and (c) at 1800 m. (d) Temperature rms differences integrated over the entire 
basin. The dashed curves represent the reference run with no data assimilated; the solid curves refer to the 
assimilation experiment. 

decreases rather smoothly from 255 km at the equator to 90 
km at 60øN with only little zonal variations. An analytic model 
for the lag of the first zero crossing L 0 was therefore fitted to 
the zonal averages of the Geosat values (see Figure 4b): 

L0(A, (p) = L0(cp) = 50 km + 205 km- (,p2 q_ •0 2 (]7) 

with (P0 = 30ø. The spatial autocorrelation function modeled by 
(17) was then multiplied by a stationary Gaussian decay, 
D(t) = exp (-t2/T2), with T = 10 days. With regard to an 
instrumental noise level of about 3.5 cm rms [Sailor and Le 
Schack, 1987], the Geosat data exhibit a relatively low signal to 
noise ratio for large parts of the North Atlantic Ocean [e.g., 
Stammer et al., 1991]. We therefore finally assumed a white 
noise level of 30% of the local process variance (within the 
chosen influence radius). 

The mapping routine was then applied to the Geosat SSH 

residuals resulting from the collinear analysis. A sequence of 
maps covering the year 1987 at 5-day intervals was produced. 
Together with the mapped SSH field a corresponding map of 
the estimated relative error variance r,= tr2(r•øbs)/Var (,løbs), 
required to set up the weighting matrix B (section 2.2), was 
obtained. As an example, Figure 5 shows a 10 ø x 10 ø region of 
estimated surface height (Figure 5a) together with the esti- 
mated relative error variance (Figure 5b). 

5. Assimilation Experiment 
In the following, the new assimilation method described 

above is applied to the Community Modeling Effort (CME) 
model configuration originally developed by Bryan and Hol- 
land [1989]. The model is based on the primitive-equation 
ocean circulation model described by Bryan [1969] and Cox 
[1984]. It covers the entire Atlantic Ocean between 15øS and 
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8O 

65øN (Figure 7) and the grid spacing is 1/3 ø in meridional and 
2/5 ø in zonal direction. In the vertical, 30 levels are used, with 
a vertical spacing increasing smoothly from 35 m at the surface 
to 250 m below 1000 m. Northern and southern lateral bound- 

aries are closed as is the Strait of Gibraltar, with buffer zones 
of a width of five grid points at which the temperature and 
salinity of the water is relaxed to values taken from Levims 
[1982]. A simple mixed layer model [after Camp and Elsberry, 
1978] computes the depth of vertically uniform temperature 
and salinity from the vertical flux of kinetic energy in the 
atmospheric boundary layer. 

The model was originally started from rest with initial tem- 
perature and salinity fields taken from the Levitus [1982] cli- 
matology. The model configuration used in this study is iden- 

tical to the one described by B6ning and Herrmann [1994] as 
experiment 4. It is forced with monthly mean wind stresses of 
Isemer and Hasse [1987] north and of Hellerman and Rosenstein 
[1983] south of the equator (with a transition zone between 0 ø 
and 5øN). Obviously, this climatological wind forcing will not 
be fully consistent with the SSH residuals measured by Geosat 
in 1987, and the assimilation will to some extent have to correct 
for the imperfect winds. Future experiments are planned to 
further investigate the role of accurate wind forcing by using 
synoptic wind stress analyses from the European Center for 
Medium Range Weather Forecasting. The thermohaline forc- 
ing of the model is represented by a relaxation of surface 
salinity to the monthly mean values of Levitus [1982] and a heat 
flux given by the linear formulation of Han [1984]. As men- 
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estimated relative error variance. Region and time chosen correspond to that of the subsequent intercom- 
parison with hydrographic data. 
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tioned previously, the CME model has a rigid lid. Conse- 
quently, surface pressure (within the hydrostatic assumption 
equivalent to surface height) is not a prognostic variable, but it 
can be computed diagnostically from the model state [e.g., 
Semtner, 1986]. 

Despite its high degree of realism, compared with most 
other basin-scale eddy-resolving ocean circulation models, the 
CME configuration of the North Atlantic Ocean still exhibits 
considerable systematic deficiencies. All the simulations per- 
formed so far have shown a rather unrealistic flow pattern in 
the Gulf Stream separation region, and the representation of 
mean frontal structures and eddy variability as associated with 
the North Atlantic Current (NAC) and the Azores Current 
(AC) is not really satisfactory [Beckmann et al., 1994a, b]. 
Quite generally, the intensity of mesoscale variability is found 
to be considerably underestimated [Stammer and B6ning, 
1992]. Only in the equatorial region a good agreement between 
SSH variability as simulated by the model and measured by 
Geosat exists [Didden and Schott, 1992]. Consequently, we 
expect the largest impact of the assimilation in the subtropical 
and subpolar regions. To avoid problems that can arise from 
applying the geostrophic assumption inherent in the assimila- 
tion scheme developed close to the equator, it was decided to 
restrict the assimilation to the region north of 10øN. A se- 
quence of objectively analyzed maps of Geosat measured SSH 
anomalies, covering the year 1987 at 5-day intervals, is then 
assimilated into a 1-year run of the eddy-resolving CME 
model. The experiment begins at January 1, 1987, and the 
model is initialized with the restart state of model year 32, 
which can therefore serve as reference run with no data assim- 

ilated. 

To obtain a first estimate of the assimilation experiment's 
performance, rms differences between the SSH maps derived 
from the Geosat data set and those diagnosed from the nu- 
merical model have been computed. (We used the mapped 
data set because considerable temporal fluctuations in both 
number and location of valid Geosat measurements dominated 

rms differences with respect to the tracked data.) Figure 6 
shows time series of these rms differences for three different 

experiments: reference (R) and assimilation experiment (A) as 
well as a forecast experiment (F) which is initialized with the 
model state reached by the assimilation run after half a year (at 
day 182) but subsequently runs in a pure forecast mode with no 
further data assimilated. As a typical feature of sequential 
assimilation, the rms error of the assimilation run resembles a 
sawtooth curve, with the error increasing steadily between suc- 
cessive assimilation steps and being reduced instantaneously at 
any of such steps. 

It is found that by assimilating surface height observations 
the original model-data difference of the reference run can be 
reduced by about 35%. Note that a fairly constant difference 
level is already reached after about 20 days, i.e., four assimi- 
lation cycles, or just one Geosat repeat cycle, and it takes only 
little more time for the model-data differences of the forecast 

experiment to increase back to values typical for the reference 
run. At first sight this relatively poor predictive skill seems to 
indicate only a minor role of the dynamical model for absorb- 
ing and carrying forward in time the assimilated observational 
information. However, the integral quantity of global rms dif- 
ferences does not distinguish between contributions due to 
errors in the intensity of the eddy field (which we are interested 
in) and contributions that arise from phase errors (which we 
are not really interested in). In the forecast experiment the 
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Figure 6. Temporal evolution of the rms SSH differences 
between objectively analyzed Geosat maps and model refer- 
ence run (R), assimilation run (A), and forecast run (F), re- 
spectively. All model grid points with estimated Geosat map 
error variance smaller than 0.6 have been used in the compu- 
tation of the rms model-data difference. 

latter particularly result from imperfections in the model cli- 
matology, which serves as reference for the Geosat SSH anom- 
alies and thereby introduces errors in the background advec- 
tive flow for the eddy field. In fact, the evolution of the rms 
forecast error (curve F of Figure 6) almost coincides with the 
corresponding curve for a persistence forecast (not shown). 

Next, we shall investigate the effect the assimilation of Geo- 
sat data has on the spatial distribution of eddy activity. Figure 
7 displays the rms variability of the various surface height 
fields. The surface variability of the reference run with no data 
assimilated (Figure 7a) shows maximum values of about 22 cm 
rms near 35øN, 70øW, where the separating Gulf Stream forms 
a large, unrealistic loop before turning eastward. The region of 
maximum variability then follows the path of the Gulf Stream 
and the North Atlantic Current (NAC). The NAC does not 
properly cross the Mid-Atlantic Ridge (MAR) but instead 
forms a spurious band of high variability in the Irminger Sea 
southeast of Cape Farewell. The enhanced variability in the 
tropical Atlantic is associated with the seasonal cycle of the 
North Equatorial Counter Current (NECC) and the retroflect- 
ing North Brazil Current, which turns toward the NECC dur- 
ing summer. As shown by Schott and B6ning [1991], there is 
good correspondence between CME model results and obser- 
vational evidence in this region. 

Differences in the spatial distribution of the rms surface 
variability between the original CME model run and the cor- 
responding Geosat maps are most pronounced north of 30øN. 
The rms variability inferred from the Geosat data (Figure 7b) 
is largest in the Gulf Stream extension along 40øN between 
70øW and 40øW. Farther downstream there are two branches 

of high variability crossing the MAR, one corresponding to the 
NAC at about 50øN, while the other one at 35øN is associated 
with the Azores Current (AC). In most places the variability in 
the Geosat maps exceeds that of the CME model, with two 
notable exceptions: The maxima in the model surface variabil- 



14,184 OSCHLIES AND WILLEBRAND: ASSIMILATION OF ALTIMETER DATA 

100 I I I I I I I I I I I I 
100 o 90 ø 80 ø 70 ø 60 ø 50 ø 40 ø 30 ø 20 ø 10 owO øEElOø 

40 ø 

30 ø 

10 ø • '• • 

100 90 80 70 ø B0 ø 50 ø 40 ø 30 ø 20 ø •0 øw0 ø El0 ø 

60 ø- i ß ß i •i I •l • I x 

1 

100 ø 90 o 80 ø 70 ø Bo ø 50 ø 40 ø 30 ø 20 ø 10ow0 øE10 ø 

Figure 7. Variability of sea surface height computed from 14 
maps separated by intervals of 26 days, for (a) CME model 
reference run with no data assimilated, (b) Geosat maps that 
treat all data within a 17-day period as synoptic, and (c) sea 
surface height variability of the assimilation experiment. Con- 
tour interval is 5-cm rms. 

ity in the Irminger Sea and also near the Gulf Stream separa- 
tion are not in agreement with the satellite observations. 

It is evident from Figure 7c that the assimilation experiment 
with some success reproduces the spatial distribution of the 
rms surface variability in the Geosat data. Not only the NAC 
but also the AC are indicated by regions of intensified vari- 
ability, penetrating into the eastern basin. Consistent with the 

Geosat observations, the position of the highest variability has 
moved from the Gulf Stream separation region to the Gulf 
Stream extension. Moreover, the assimilation can apparently 
suppress the spurious signal in the Irminger Sea. In general, 
the changes due to the assimilation are encouraging as far as 
the spatial distribution of surface height variability is con- 
cerned, whereas the rms intensity of surface height fluctuations 
continues to be systematically underestimated. 

Wavenumber spectra of the surface height variability in sev- 
eral regions are shown in Figure 8. For a number of 10 ø by 10 ø 
boxes annual averages of meridional SSH spectra are com- 
puted, treating spectra separated by 2 ø zonally and 26 days 
temporally as independent. To retain consistency with the 
model output, the Geosat spectra are not computed along- 
track (for reference an along-track spectrum is included in 
Figure 8c), but instead meridional spectra are derived from 
maps like the one shown in Figure 9b, also separated by 26 
days and 2 ø zonally. Hence the shortest wavelength that can be 
supported by the model grid (74 km meridionally) determines 
the cutoff wavenumber of these Geosat spectra. From Figure 8 
it is obvious that there are considerable differences between 

the spectral energy densities refering to Geosat data and the 
CME model with no data assimilated. (Actually, these discrep- 
ancies are a manifestation of incorrect model statistics and may 
cause problems in pure statistical assimilation methods of 
which we shall give an illustrative example later on.) When 
compared with the reference run, the spectral energy densities 
resulting from the assimilation experiment are consistently 
closer to the Geosat data for all wavenumbers. However, the 
assimilation cannot prevent the model spectra from dropping 
rapidly for wavelengths shorter than 150-200 km. As pointed 
out by B6ning and Budich [1992], this is about the scale where 
for a 1/3 ø resolution model with biharmonic parameterization 
of lateral turbulent mixing, dissipative control becomes domi- 
nant. Assuming geostrophically related surface fields, the dom- 
inance of biharmonic friction would result in a spectral relation 
approaching k -•ø, which can indeed be observed. It is very 
likely that a model with higher horizontal resolution, which 
would allow shifting the frictional regime to smaller scales, can 
extract much more information from altimetric data, particu- 
larly on the mesoscale! 

The predominant effect of model friction on small scales can 
also be seen in instantaneous fields of sea surface height: Fig- 
ure 9 displays SSH maps for a small region of the Gulf Stream 
extension for the CME model with no data assimilated (Figure 
9a), Geosat SSH residuals plus model climatology mapped 
onto the model grid (Figure 9b) (in contrast to Figure 5 of an 
entire 17-day repeat period), and the assimilation experiment 
(Figure 9c). The positions of a cold core ring near 56øW and a 
large meander at about 53øW are represented quite accurately, 
but the SSH map of the assimilation experiment is consider- 
ably smoother than the corresponding one produced from the 
Geosat data set itself. While this demonstrates that the assim- 

ilation can indeed reproduce the phase of individual mesoscale 
features very well, it is also evident that the model in its present 
1/3 ø resolution version is not fully appropriate for a quantita- 
tive representation of mesoscale processes. 

When assimilating altimeter data we are not only interested 
in bringing the surface fields of the model closer to the obser- 
vations, but we also would like to obtain an improved descrip- 
tion of the deep ocean's hydrographic state. To investigate this 
matter in greater detail, we shall as an example analyze an 
individual state of the numerical ocean model. The state cho- 
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Figure 8. Meridional wavenumber spectra of sea surface height anomalies in 10 ø by 10 ø boxes. (a) Irminger 
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Spectra shown refer to Geosat data, the model with no data assimilated (NO), and to the assimilation 
experiment (ASSI). For reference, a corresponding along-track spectrum is shown in Figure 8c (from Stammer 
and B6ning [1992]). 

sen is the model hindcast for March 19, 1987, and corresponds 
to the surface height fields shown in Figure 9. It virtually 
coincides with the hydrographic section shown in Figure 10a, 
which was taken by Krauss et al. [1990] during the period 
March 23 to April 1, 1987. Along this section, a cold core ring 
was surveyed near 38øN, 56øW. This Gulf Stream ring can also 
be identified in the Geosat data (Figure 9b). 

The efficiency of the assimilation procedure on extrapolating 
surface information into the ocean interior can now be dem- 

onstrated by comparing these independent hydrographic data 
with the results obtained from the assimilation experiment. 
The corresponding (same time and same location) tempera- 
ture section of the assimilation experiment is shown in Figure 
10b, that of the reference run in Figure 10c. Obviously, neither 

the reference run nor the assimilation run can reproduce the 
sharp horizontal temperature gradients of the hydrographic 
data. Furthermore, both model states systematically overesti- 
mate the depth of the mixed layer. While we expect that data 
other than observations of sea surface height will be required 
to obtain better estimates of the mixed layer depth (e.g., ac- 
curate wind forcing, SST measurements, hydrographic data), 
the problem of generally too weak horizontal gradients cannot 
be overcome in the present model resolution, with its only 25 
model grid points on the 875-km-long section shown in Figure 
10. However, we find that the assimilation of altimeter data 
leads to a clearly improved description of the thermocline 
structure: Not only does the assimilation run produce a rea- 
sonable hindcast of the doming of the thermocline associated 
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Figure 9. Sea surface height on March 19, 1987. (a) CME 
model when no data are assimilated, (b) model climatological 
mean plus SSH anomaly estimated from Geosat data of the 
17-day period March 11-27. (c) Hindcast of the assimilation 
experiment. Contour interval is 5 cm. Also indicated in all 
figures is the cruise track of R/V Poseidon, along which the 
sections shown in Figures 10 and 11 were obtained. 
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Figure 10. Potential temperature section along a straight 
line running from 36øN, 60øW to 43øN, 50øW. (a) Hydrographic 
section of R/V Poseidon (described by Krauss et al. [1990]) with 
the position of the cold core ring marked by an arrow, that of 
the Gulf Stream by "G", (b) hindcast of the assimilation ex- 
periment, (c) reference run with no data assimilated, (d) pure 
linear regression estimate. 
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with the cold core ring, albeit of underestimated magnitude, it 
also gives a good account of the changed position in the me- 
andering Gulf Stream. In this respect, we think that despite the 
shortcomings of the circulation model and the relatively sim- 
ple, suboptimal assimilation method, there is encouraging 
agreement between assimilation experiment and independent 
data along this hydrographic section. 

For comparison we also show the results from an experiment 
employing a purely statistical vertical extrapolation method 
very similar to the one proposed by Mellor and Ezer [1991]. 
Local vertical correlations between directly measured surface 
properties and the prognostic model variables are used to 
project the observations onto state space. In particular, regres- 
sion coefficients R r and R s, which relate temperature and 
salinity to sea surface height itself, are computed from the 
model climatology: 

Rr = Rs = (18) 

Shown in Figure 10d is the statistically estimated temperature 
field pest __ p(Test, sest) and T est with 

T est= T f + /•r[(T)+ RrSr/øus- Tf], (19) 

where •r = C•., ,1 - r,. (See equation (A9) in the ap- 
pendix.) 

Perhaps the most striking feature of the hydrography result- 
ing from this linear regression method is the large changes in 
temperature (and also salinity and density) close to the surface. 
Just three grid points west of the section shown in Figure 10d, 
near-surface temperature estimates even exceed 27øC! For the 
Gulf Stream extension, such water mass properties can cer- 
tainly not be considered as realistic values. This deficiency of 
the statistical regression scheme can readily be attributed to 
the use of regression coefficients computed from the model 
statistics. As discussed above, these statistics are inaccurate if 
only for the reason that the model considerably underestimates 
the surface height variability. There is simply no guarantee that 
an extrapolation of the simple linear regression (19) to such 
altimeter measurements that considerably exceed the range of 
sea level fluctuations simulated by the original model will give 
physically reasonable temperature estimates. Because of the 
physical constraints on temperature and also salinity to closely 
match the regional distribution of water masses, any linear 
relationship between water mass properties and sea surface 
height will be rather local in O-S space, and one should be 
extremely reluctant to further extrapolate it. In this respect, the 
regression coefficients of the horizontal velocity components 
used in the previously developed reinitialization scheme (6), 
which may be viewed as representing the average superposition 
of different vertical modes, are believed to depend much less 
on the typical amplitudes of the surface velocity anomalies. To 
summarize these results, it can be concluded that one should as 
far as possible avoid tying uncertain model statistics into as- 
similation procedures, as long as numerical models of the 
ocean circulation still exhibit considerable systematic deficien- 
cies. 

To finally illustrate the important role of the circulation 
model for absorbing and dynamically interpolating the inter- 
mittent altimetric observations, another set of potential tem- 
perature sections is shown in Figure 11. For time and location 
again corresponding to the R/V Poseidon section of Figure 10a, 
Figure 11a displays the result of a single reinitialization step. 
The model forecast was taken from the reference run as shown 
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Figure 11. Potential temperature section along a straight 
line running from 36øN, 60øW to 43øN, 50øW (as Figure 10), (a) 
after single assimilation step, (b) after two assimilation cycles, 
i.e., 10 days of assimilation, and (c) after five assimilation 
cycles, i.e., 25 days of assimilation. The corresponding picture 
after 15 assimilation cycles is shown in Figure 10b. 

in Figure 10c, the Geosat map is that of Figure 5. Recalling 
that the impact of the assimilation step is proportional to the 
model-data difference (see equation (2)), it is evident that 
despite starting from a completely wrong model forecast, i.e., 
the "worst" case, a single assimilation step leads to only mod- 
erate improvement of that state. Figure 11b shows the situation 
after two successive assimilation cycles, i.e., the model hindcast 
with the assimilation turned on 10 days before taking the hy- 
drographic snapshot. Still, there is only little signal of the cold 
core ring or the shifted Gulf Stream front. As can be seen from 
Figure 11c, this has changed after five assimilation cycles, i.e., 
25 days after starting the assimilation. Obviously, the quality of 
the model hindcast improves with increasing length of the 
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assimilation run. Note in particular, that in contrast to the 
evolution of the surface height rms error (Figure 6), the rep- 
resentation of the thermal structure still improves even after 25 
days as can be seen by comparing Figure 11c with the hindcast 
obtained after assimilating for 78 days (Figure 10b). 

6. Conclusions 

The present study has demonstrated that the assimilation of 
satellite altimeter data into a basin-scale, eddy-resolving prim- 
itive equation model is feasible and, when applied correctly, 
can indeed provide new information about the state of today's 
ocean. Because of the immense computational requirements of 
statistically optimal methods like the Kalman filter or the ad- 
joint method, one is restricted to adopt much simpler assimi- 
lation methods. To still utilize the information in the altimeter 

data properly, some direct extrapolation of the surface obser- 
vations into the ocean interior is required. 

The reinitialization method presented in this study was spe- 
cially constructed to constrain any changes in the model's hy- 
drographic state in a physically sensible way. The explicit ex- 
trapolation of the observed model-data misfit is restricted to 
those variables that do have a dynamical effect on the surface 
height field, namely, density and velocity. After a dynamically 
self-consistent estimate of these fields has been obtained, the 
computed density increment is partitioned into corrections to 
the prognostic model fields temperature and salinity. This par- 
tition explicitly conserves potential temperature and salinity on 
isopycnals at individual assimilation steps, thereby avoiding 
unnecessary distortions of the modeled water mass properties. 

It was shown that the assimilation of Geosat altimeter data 

could considerably improve the spatial distribution of surface 
height variability. However, in order to fully assess the poten- 
tial role of data assimilation in oceanography, one certainly has 
to investigate the effect of the assimilation procedure on other 
fields, such as temperature, salinity, and current velocities. 
Indeed, it turned out that the reinitialization method was able 
to produce a more reasonable hydrographic picture of the 
ocean. The high degree of realism reached by the reinitializa- 
tion method was illustrated by the quite satisfactory reproduc- 
tion of the doming of the thermocline associated with a cold 
core ring, which agreed well with independent hydrographic 
observations reported by Krauss et al. [1990]. Since only sea 
surface height measurements were assimilated, this is a re- 
markable success which emphasizes the additional gain of in- 
formation resulting from the combination of data with dynam- 
ical models. 

Of further interest for future applications of the reinitializa- 
tion method is its property of conserving temperature and 
salinity on isopycnals. By improving the model's capability to 
accurately reproduce location and structure of cyclonic anom- 
alies and frontal systems, the assimilation of altimeter data can 
inherently control the temporal and spatial setting of water 
mass modification associated with these dynamical features. 
With temperature and salinity of the newly formed water es- 
sentially being fixed by the atmospheric conditions in the for- 
mation area, these properties will not be changed by subse- 
quent reinitialization steps. In this way the assimilation of SSH 
anomalies can lead to an improved mean hydrography of the 
model, which in turn will influence the mean currents. Such 
changes in the model mean have indeed been observed to 
occur in our assimilation experiment. A more detailed analysis 
of the underlying mechanisms (changes in water mass forma- 

tion, action of Reynolds stresses) is under way and will be 
reported in a future paper. 

It is probably true that only by coupling the forthcoming 
continuous flow of accurate oceanic data with sophisticated 
numerical models will oceanographers be able to obtain a fully 
consistent description of the world ocean evolving in time. 
Eventually, the operational assimilation of any kind of obser- 
vations will provide an indispensable tool for monitoring, un- 
derstanding, and possibly predicting the changing climate of 
our ocean planet. The present work, which comprises the first 
successful assimilation of real altimeter data into a basin-scale 

eddy-resolving ocean model with active thermodynamics, is 
meant to be a basic contribution to this ambitious plan. 

Appendix: Derivation of the Weighting 
Coefficients 

In this appendix a brief derivation of the weighting coeffi- 
cients Ix, and ix o will be given. These coefficients were intro- 
duced in section 2.2 as elements of the diagonal weighting 
matrix B. They are used in the update equations, e.g., for the 
eastward velocity component 

U a : U f '-{- I. zuRu(u• bs- u•), (Ai) 

with- ors _ u• = Au given by (3). 
The statistically optimal •, would minimize the expected 

error variance (e2(ua)) of the analyzed (or updated) velocity, 
where we have defined e( ... ) = ( .... u) as the difference 
relative to the (unknown) true velocity u, and (...) denotes 
the expectation value. Using (A1), the expected analysis error 
variance can be described by 

(82(ua)> : (82(Uf)> q- 21dbu(•(Uf)[•(RuUøbS•l -- (Ruu.f9)]> 

+/Xu2([e(Ruu• bs) - e(Ruu•)]2). (A2) 

Note that the last two terms include the error of the pseudo 
_ obs 

observations R,,,u• . In this respect, not only does the error 
(RuU obs) describe the error of the observed surface velocities, 8x, t7 

but it also accounts for the error introduced by the simple 
linear regression scheme used to vertically extrapolate surface 
data into the ocean interior. This extrapolation error is due to 
the fact that a linear regression can only explain the fraction 
C 2 (in the above example the squared correlation C 2 be- U, g4g 

tween surface and deep velocities) of the variance of the de- 
pendent variable (u in this case): 

Var (R,u•) = C 2 Var (u) (A3) 

Hence the variance that can not be explained by the linear 
regression scheme is 

1 -C 2 
u,u• Var (Ruud). (A4) (1-C 2u) Var(u)= C2 U, 

U, U# 

The error variance of the pseudo observation" o•s then l•uU g 
becomes 

1 -C 2 
(e2(RuUObS , 9 )) Ru2( 2'• obsx u, ug 2 tU 9 ) = e tug )) q- C2 Ru Var , (A5) 

U, U# 

where the first term on the right describes the downward pro- 
jection of the observational error at the surface and the second 
term accounts for the systematic error of the regression 
scheme. The latter term vanishes only for perfect correlations 
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2 • 

C•,, % - 1, i.e., when there is a linear relationship between 
surface and deep velocities, whereas the linear regression will 
provide an exact projection of surface information into the 
ocean interior. 

The weighting coefficient •u that minimizes the analysis 
error can be found by setting 0 (• 2 (u a))/0 txu = 0. Assuming 
that observational and forecast errors are uncorrelated and 

approximating (•(ur)•(R,ura)) by (•2(ura)) Var (u)/Var (ua), 
we obtain 

Ix, = C 2 ,g[(•2(uOb, • + (•2(u•))] + (1 - C 2 ,g) Var (Aua) ' ", g ! ., 

(A6) 

where the identity R• 2 = C• 2, % Var (u)/Var (ua) has been 
used (see equation (14)). It remains a main difculty to esti- 
mate the model forecast error variance (,2(u•a)). Because it is 
well known that numerical circulation models in general will 
not only exhibit statistical but also systematic errors (e.g., in- 
correct representation of the Gulf Stream separation), we 
make the rather conservative choice and approximate (•2(u•a)) 
by the variance of the geostrophic surface currents, Var (ua), 
of the unperturbed model (see also the discussion in section 
2.2). Expression (A6) then becomes 

•[.•u 

obs• )/Var (ug)+ 1 ) +( 1 -C 2 0 Var (Aua)/Var (ua)' , 

(A7) 

For Vat (Aug)/Var (ug) = 2, i.e., the variance of the model- 
data misfit being equal to the difference between two com- 
pletely independent states of the unperturbed model, this can 
be reduced to 

1 

/Xu = 2 - C 2 u•[1 - (•2(uø•S•)/Var (ua)] ' (A8) U, g l 

Note that/x•, = I for perfect observations ( = 0) 
C 2 = 1). In this case, the model and perfect correlations ( •, % 

forecast is replaced by the accurate (pseudo) observations. If 
2 

on the other hand either C,,, % = 0 (in this case we also have 
Ru = 0, and /x,, is not really important) or 
(ug)), the weighting coefficient becomes Ix,, = 1/2. Since in 
the absence of relevant altimetric data the SSH mapping algo- 
rithm produces just the climatological mean surface height, 
Ix = 1/2 tends to minimize the analysis error by forcing the 
assimilation model toward climatology. Although climatology 
would, in this case, indeed be the state of minimum error, we 
shall at this point relax the minimum variance principle in 
order to put more weight on a self-consistent dynamical evo- 
lution of the circulation model. We therefore replace the 
above expression by 

Ix, •- C 2 ,•[1 - ( 2,_ o•s,)/Va r (ug)], (A9) •tug ) u, 

which is identical to the leading term of a Taylor series expan- 
2 2 obs 

sion of (A8) about Cu ,• (1 - (, (ug))/Var (ug)) = 1 (i.e., 
perfect observations ahd perfect correlations). Still,/.•, = 1 for 
perfect observations and perfect correlations, but now/.% = 0 
if there is no relevant observational information. 

In principle, it is possible to compute the expected relative 
error variance of the observed geostrophic surface currents, 

(s2(u•t's))/Var (ug), from the estimated error variance of the 
mapped SSH residuals, r,• = (•2(,løt's))/Var (,løt's). However, 
for reasons of computational economy it was decided to ap- 
proximate (A9) by the local expression 

/x, = Cu 2, ,•( 1 - r,•)2, (A10) 

where r. is provided by the SSH mapping routine (section 4). 
As is described in section 2.2, the fact that computing the 

density increments Ap involves vertical derivatives of the re- 
gression profiles R. and R v leads to a corresponding expres- 
sion for the weighting coefficients for the density update, 

ix,= min (C• .... g)(1- r,•) 2, (All) 
"up, "low 
Vup, Now 

where the subscripts up and low denote the vertical levels used 
for computing the individual z derivative in (11). 
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