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Abstract4

Mooring observations and model simulations point to an instability of the Labrador5

Current (LC) during winter, with enhanced eddy kinetic energy (EKE) at periods between 26

to 5 days, and much less EKE during other seasons. Linear stability analysis using vertical7

shear and stratification from the model reveals three dominant modes of instability in the8

LC:9

• a balanced interior mode with along-flow wavelengths of about 30–45 km, phase ve-10

locities of 0.3 m/s, maximal growth rates of 1 d−1 and surface intensified, but deep11

reaching amplitudes,12

• a balanced shallow mode with along-flow wavelengths of about 0.3–1.5 km, about three13

times larger phase speeds and growth rates, but amplitudes confined to the mixed layer14

(ML),15

• and an unbalanced symmetric mode with largest growth rates, vanishing phase speeds16

and along-flow structure, and very small cross-flow wavelengths, also confined to the17

ML.18

Both balanced modes are akin to baroclinic instability, but operate at moderate to small19

Richardson numbers Ri with much larger growth rates as for the quasi-geostrophic limit of20

Ri � 1. The interior mode is found to be responsible for the instability of the LC during21

winter. Weak stratification and enhanced vertical shear due to local buoyancy loss and the22

advection of convective water masses from the interior result in small Ri within the LC, and23

to three times larger growth rates of the interior mode in March compared to summer and24
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fall conditions. Both the shallow and the symmetric mode are not resolved by the model,25

but it is suggested that they might also play an important role for the instability in the LC26

and for lateral mixing.27

1. Introduction28

The Labrador Sea (LS) is one of few places in the world ocean where deep open ocean29

convection up to 2000 m occurs (Lazier 1973; Marshall and Schott 1999). Extreme cold30

and dry winter storms over the LS lead to enhanced air-sea buoyancy fluxes and thus to31

the formation of deep mixed layers (ML). During these events Labrador Sea Water (LSW)32

is formed, which is the upper part of the North Atlantic Deep Water and an important33

constituent of the meridional overturning circulation (MOC). Since the MOC in the Atlantic34

Ocean is responsible for a considerable northward heat transport, the LS is a key region35

for the global climate system. Atmospheric trace gases such as CO2 are also taken up36

and exported southward by the LSW, which makes the LS important for the ventilation37

of the abyssal ocean as well. The near-surface circulation of the LS is part of the cyclonic38

subpolar gyre of the North Atlantic and can be decomposed into the West Greenland Current,39

the Irminger Current and the Labrador Current (LC). We focus here on the LC which is40

sometimes divided into three different main branches (Lazier and Wright 1993; Cuny et al.41

2002). There is a more baroclinic part located at the shelf break, which here will be referred42

to as the shelf break LC. Another branch is referred here to as the deep LC, which is located43

further offshore over the continental slope. Finally, there is also a third branch of the LC,44

located over the shallow shelf.45
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The classical LSW is formed in the interior LS during deep convection (Schott et al. 2004;46

Yashayaev et al. 2007). However, recent observational studies suggest that deep convection47

near the boundary current also contributes significantly to the LSW formation (Lavender48

et al. 2002; Pickart et al. 2002; Cuny et al. 2005; Palter et al. 2008; Spall 2010). Pickart49

et al. (2002) find ML depths down to 1400 m over the continental slope within the deep LC50

during a hydrographic cruise in March 1997. Brandt et al. (2007) discuss the ventilation51

and transformation of LSW as well as its export in the deep LC. Their modeling study is52

consistent with observational studies and reveals that the deep LC is an important water53

mass transformation area due strong buoyancy fluxes during winter. Brandt et al. (2007)54

estimate that one third of the LSW transformation occurs within the deep LC and is already55

exported during the ongoing convection period, while the export of the classical LSW from56

the interior takes several years (Lazier et al. 2002). Thus, the deep LC might provide57

the most rapid export route of newly formed LSW out of the convection region and a direct58

communication route between subpolar regions and the subtropical gyre (Schott et al. 2004).59

Enhanced eddy kinetic energy (EKE) along the LC is found during the period of water60

mass transformation within the LS in winter, pointing towards an important role of the61

unstable boundary current for the ventilation process (Spall 2010). Brandt et al. (2004)62

find a distinct annual cycle in EKE estimates from satellite altimetry data from 1997-200163

in the LS region along the LC with a maximum of EKE in winter and a minimum in au-64

tumn. Morsdorf (2001) analyzes moored current data focussing on velocity fluctuations with65

synoptic timescales within the LC, and also finds a maximum of EKE in wintertime. Local66

high-frequency wind forcing, which is strongest during late winter, is sometimes suggested as67

the source of the velocity fluctuations (e.g. White and Heywood 1995). However, enhanced68

4



EKE along the LC during winter is also found in a high-resolution ocean model simulation69

forced with monthly mean wind fields (Eden and Böning 2002). This points towards an70

internal instability process as the source of the velocity fluctuations. Accordingly, Eden and71

Böning (2002) find enhanced transfer rates of mean potential energy to EKE and a maximum72

of the cross-stream in situ density gradient in the LC during winter, therefore suggesting73

baroclinic instabilities as the source of the seasonal cycle in EKE.74

Different instability mechanisms can operate in the ocean, depending on the specific75

background flow and stratification (e.g. Eady 1949; Stone 1966, 1970; Haine and Marshall76

1998; Boccaletti et al. 2007): Gravitational instability and (normal) upright convection77

occurs if a resting, horizontally stratified ocean experiences spatially homogeneous surface78

buoyancy loss. The resulting convective overturning process generates a deepening ML79

depth and takes place in convective cells (plumes) with lateral scales of L = O (1 km) for80

deep convection in the ocean. Depending on the duration and strength of the buoyancy loss,81

maximum convection depths down to 2000 m can be reached in the LS (Marshall and Schott82

1999).83

Pure centrifugal or inertial instability occurs for the case of constant density and a zonal84

background flow without vertical but with meridional shear. A necessary condition for85

inertial instability is f < ∂u/∂y; where f is the Coriolis parameter, but it is rarely found in86

this form in the ocean. More often a combination of horizontal and vertical shear is present,87

for which negative absolute potential vorticity (times f) becomes a necessary condition for88

symmetric instability (Haine and Marshall 1998; Olbers et al. 2012), which is equivalent to89

a Richardson number1 Ri smaller than one. This condition can hold for small f near the90

1The Richardson number Ri, the ratio of vertical stratification and vertical shear, is defined by Ri =
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equator or for weak but statically stable stratification and large lateral density gradients. In91

the ocean the latter situation is frequently present in the ML at frontal zones as for instance92

in the LC as discussed below; a combination of symmetric instability with gravitational93

instability leads to slantwise convection (e.g. Haine and Marshall 1998; Olbers et al. 2012).94

For a flow in the zonal direction, the growth rate of symmetric instability increases with95

increasing meridional wave number until it reaches asymptotically a fixed value for large l.96

The growth rate decreases with increasing Ri until it becomes zero for Ri = 1. For Ri < 1/4,97

the necessary condition for the familiar Kelvin-Helmholtz instability is met.98

For Ri > 3/4, baroclinic instability begins to dominate all other instabilities. It is a99

vertical shear instability taking its energy from the available potential energy of the back-100

ground flow and feeding it to EKE. Eady (1949) discusses analytical solutions of baroclinic101

instability for vertically constant shear and stratification and a constant Coriolis parameter102

f in the quasi-geostrophic limit of large Richardson numbers Ri and small Rossby number2103

Ro. Despite the ad hoc simplifications, Eady’s growth rates estimated from observations are104

well correlated with EKE (e.g. Treguier et al. 1997; Smith 2007; Chelton et al. 2007). The105

fastest growing wave for Eady’s case is found at kNh/f ' 1.6, where k is the lateral wave106

number, h the depth scale and N the vertical stratification.107

The non-geostrophic baroclinic instability problem allowing for small Ri and finite Ro108

was first discussed by Stone (1966, 1970) using hydrostatic approximation and by Stone109

N2/S2, with the Brunt-Väisälä frequency N =
√
−(g/ρ0) ∂ρ/∂z, the (neutral) density ρ, a constant reference

density ρ0, and the vertical shear S =
√

(∂u/∂z)2 + (∂v/∂z)2.
2The Rossby number Ro describes the ratio of inertial to Coriolis force terms, defined by Ro = U/(fL),

where U is a typical horizontal velocity and L a typical horizontal length scale, and is equivalent to Ro = ζ/f ,

where ζ is the relative vorticity.
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(1971) using non-hydrostatic equations, showing that the results from Eady (1949) can be110

transferred qualitatively to the situation with small Ri when applying small modifications:111

The growth rate ω of the fastest growing mode is then given by ω2 ≈ 0.09 f 2/(1 +Ri), while112

Eady found ω2 ≈ 0.09 f 2/Ri, which leads to time scales of about weeks or months for large113

Richardson numbers as in the classical mesoscale regime. However, for Ri = O(1) the time114

scales become much shorter and are of O(1/f). Another difference to Eady’s case at large115

Ri is a shift of the maximal growth rate towards smaller wave numbers.116

Molemaker et al. (2005) point out that the instability analysis at Ri = O(1) reveals two117

distinct baroclinic instability modes: The first one is a geostrophically balanced mode, which118

has the largest growth rates. This mode might be called the classical geostrophic or Eady119

mode since even for small Ri the simple Eady solution is only quantitatively modified, but120

not qualitatively. The second mode is a non-geostrophic mode, which has smaller growth121

rates compared to the geostrophic mode, but might play an important role for the dissipation122

of kinetic energy of the mean balanced flow (Molemaker et al. 2005, 2010). The geostrophic123

mode is well captured by the hydrostatic equations whereas the non-geostrophic mode has a124

large non-hydrostatic component (Stone 1971). Some authors (e.g. Boccaletti et al. (2007))125

call the balanced geostrophic mode at small Ri ”ageostrophic baroclinic instability”, which126

is misleading (Thomas et al. 2008) since it is still geostrophically balanced.127

Mixed Layer Instabilities (MLI) are a special type of baroclinic instability at low Ri and128

are trapped in the ML, if a large change in density separates the ML from the more stratified129

interior. Strong lateral density gradients in weakly stratified MLs can lead to this kind of130

instability. Boccaletti et al. (2007) show that these types of instabilities have length scales131

close to the Rossby radius characteristic for the ML defined as Nh/f , where N represents132
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the weak stratification in the ML of depth h. For typical ML properties (e.g. N = 10−3 s−1,133

h = 100 m and f = 10−4 s−1) this results in lateral scales of O(1 km), which is the typical134

length scale of the so-called ”submesoscale” flow in the surface of the ocean (Munk et al.135

2000). Furthermore, the MLI can be important for the restratification of the ML.136

The objective of this study is to learn about the frontal instability process along the137

LC, i.e. which kind of instability is at work here. In particular, we answer the question:138

Why do we observe the enhanced EKE levels in the LC only during late winter? High-139

resolution ocean model simulations and observational current data are evaluated to answer140

the question; linear stability analysis is applied to understand the physics of the frontal141

instability processes occurring within the LC. Understanding the instability process within142

the LC is crucial, as it might be important for mixing processes, which alter the water mass143

properties of the newly formed LSW during its rapid export within the deep LC (Spall 2010),144

and since the transformation rate might be a controlling factor of the Atlantic MOC and145

the meridional heat transport. Coarse-resolution ocean models and climate models do not146

resolve these processes and even most high-resolution ocean models are not able to simulate147

the enhanced EKE along the LC during late winter (Treguier et al. 2005). Furthermore148

it is important to understand the processes in order to parametrize their effects in coarse-149

resolution ocean and climate models.150

This paper is structured as follows: In section 2, the model and observational data151

are described. The seasonal cycle of EKE within the model and observational datasets152

is presented in section 3. The method and the results of the linear stability analysis are153

presented in section 4. The oceanic background conditions within the LC are analyzed in154

section 5 in order to explain the seasonality of the instability process and the EKE. The155

8



results are summarized and discussed in section 6.156

2. Model and observations157

a. Numerical model simulation158

An ocean general circulation model of the North Atlantic is analyzed in this study, with159

lateral resolution of 1/12o, which is about 5 × 5 km in the LS, and 45 vertical levels with160

thicknesses increasing from 10 m at the surface to 250 m at depth. The model has already161

been used for several different studies concerning the LS: Eden and Böning (2002) analyse162

the EKE as well as the strength and position of the boundary currents in the LS, which are163

in good agreement with observations. The model version of this study is the same as the one164

analyzed in Brandt et al. (2007), discussing the ventilation, transformation and export of165

LSW in the deep LC. We call this model simulation hereafter FLAME. Another more recent166

model version with very similar configurations as FLAME but using the Massachusetts In-167

stitute of Technology General Circulation Model code (Marshall et al. 1997) is also analyzed168

and is called accordingly MITGCM.169

FLAME and MITGCM share identical horizontal and vertical resolution as well as the170

same bathymetry. The monthly mean climatological surface forcing is also the same and171

identical to Eden and Böning (2002); it is derived from a three-year long analysis of the172

European Centre for Medium-Range Forecasts (ECMWF) operational forecast model by173

Barnier et al. (1995), with a surface heat flux formulation following Haney (1971) and surface174

salinity relaxation towards the monthly mean climatology of Levitus and Boyer (1994) with175
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a time scale of 30 days. All results shown here are taken from integrations following a 10 year176

spinup phase starting from rest and temperature and salinity given by Levitus and Boyer177

(1994). Open lateral boundaries following Stevens (1990) are applied at the southern (20o
178

S) and northern edge (70o N) of the model domain, and a relaxation zone towards the initial179

conditions within the Mediterranean Sea.180

The main differences between FLAME and MITGCM are the following: The primitive181

equations are discretized on a C-grid in MITGCM instead of a B-grid in FLAME, and a free-182

slip boundary condition is used in MITGCM instead of no-slip in FLAME. The biharmonic183

viscosity in FLAME is 2× 1010 m4s−1 cosφ, where φ denotes latitude, while in MITGCM a184

constant biharmonic viscosity of 1010 m4s−1 is used. We use biharmonic mixing in MITGCM185

with the diffusivity identical to the viscosity, while in FLAME harmonic isopycnal mixing186

with a diffusivity of 50 m2/s is applied. In FLAME, a bottom boundary layer parameteriza-187

tion following Beckmann and Döscher (1997) is applied, but not so in MITGCM. A simple188

surface mixed layer scheme after Kraus and Turner (1967) is used in FLAME, while we use189

the mixed layer model by Gaspar et al. (1990) in MITGCM.190

FLAME shows improvements of the hydrographic properties compared to the older sim-191

ulations (Czeschel 2005; Brandt et al. 2007). The simulated maximum convection depth192

within the interior LS (Lavender et al. 2002) seems to be more realistic in FLAME, while193

other high-resolution ocean models often suffer from unrealistic shallow or deep convection194

depths (Treguier et al. 2005; Rattan et al. 2010). In Czeschel (2005) and the other references195

mentioned above, the reader can find more information about model details and the im-196

provements of the hydrographic properties and deep convection. In MITGCM, however, the197

maximum convection depth is again too deep within the interior LS (not shown). The reason198
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for this bias is currently under investigation; the missing bottom boundary layer model in199

MITGCM and the missing deep inflow of very dense water masses might be an explanation.200

We use two different model configurations in this study for the following reasons. First,201

only daily averages of one year have been archived for FLAME which permits the comparison202

with spectral properties of mooring current observations on time scales of days (see below),203

and limits the discussion concerning the seasonality of the signal. Second, we use MITGCM204

as a sensitivity experiment to test whether the features we discuss here are consistent or205

sensitive to small details of the model configuration. We will discuss the differences between206

FLAME and MITGCM with respect to the annual cycle of EKE and the linear stability207

below in more detail.208

b. Observations209

In addition to the model simulations, we also discuss near-surface velocity measurements210

from moored acoustic doppler current profilers (mADCP) and a moored rotor current meter211

(RCM) located in the LC near the exit of the LS. Three moorings are used, with positions212

as marked in Fig. 1. Two moorings (K7 and K8) are located near 53oN within the LC. K7213

is closer to the shelf break, while K8 is located further offshore. Another mooring (K6) is214

located further upstream in the center of the LC near 55oN. The mADCPs at K7 and K8215

are upward looking at the top of the mooring line and have an instrument depth of 344 m216

and 324 m, respectively. Other instruments from both moorings are not discussed here. The217

dataset from K7 and K8 covers 2 years (1997-1999) and is available at an hourly frequency.218

A more detailed description of the mooring configuration of K7 and K8 can be found in219
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Fischer et al. (2004). In addition to K7 and K8 we use one year (1996/1997) of mADCP220

and RCM data at an hourly frequency at K6. The ADCP at K6 is also upward looking at221

an instrument depth of 350 m. Here, we also use an RCM located at 662 m depth. A more222

detailed description of the mooring configuration of K6 can be found in Cuny et al. (2005).223

3. Annual cycle of EKE in the Labrador Current224

Fig. 1 shows the annual mean pattern of EKE within the LS, as simulated by MITGCM.225

A large maximum of EKE can be found at the continental slope of West Greenland reaching226

into the interior LS with values exceeding 300 cm2/s2 near the coast. The EKE in the interior227

LS reaches values between 100 cm2/s2 and 150 cm2/s2. Another weaker maximum with values228

between 50 cm2/s2 and 100 cm2/s2 is found along the LC. This pattern of EKE in the LS229

is very similar in each year of our climatologically forced simulations with slightly different230

amplitudes. Year-to-year differences in EKE in the LC remain smaller than 20 cm2/s2.231

The spatial pattern of EKE in the LS is very similar to that in FLAME, which is described232

in detail by Eden and Böning (2002). However, there are some differences in the absolute233

values: Eden and Böning (2002) find larger EKE of about 250 cm2/s2 to 400 cm2/s2 in the234

interior LS and values up to 150 cm2/s2 along the LC. A detailed comparison of FLAME with235

observational estimates of transports and EKE can be found in Eden and Böning (2002). It236

turns out that FLAME tends to overestimate the EKE maxima compared to estimates based237

on satellite altimeter data. This would suggest that MITGCM is closer to the observations in238

this respect, but we note that altimeter-based EKE estimates tend to be lower than estimates239

based on surface drifter data (Fratantoni 2001). Furthermore, large interannual variability240
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in the LS complicates the comparison with our climatologically forced model simulations.241

Fig. 2 shows the monthly mean EKE at K6 from MITGCM, FLAME and the moored242

current data. All three datasets show a clear peak of enhanced EKE in March and a strong243

surface intensification. Maxima of about 100 cm2/s2 are reached in both model simulations244

at 100 m depth during March, where K6 shows larger values of up to 250 cm2/s2. A second245

maximum during summer shows up in K6. It is not as strong in the near surface waters with246

values of about 100 cm2/s2 but reaches to greater depths. FLAME also simulates a second247

smaller maximum, which is separated from the maximum during March, while in MITGCM248

the EKE slowly decreases during spring until it reaches minimal values in late autumn so249

that a second maximum in summer cannot be identified.250

EKE is highly variable during different years in the observations (not shown), such that,251

in principle a longer time series is needed for a more reliable comparison. However, our252

analysis already suggests that the models generally simulate lower EKE compared to the253

observations. Estimates of EKE along the LC from satellite measurement also generally254

are larger compared to the model simulation (Brandt et al. 2004). This low bias of EKE255

in the model simulations might be explained by the missing high-frequency wind forcing in256

the model simulations, which would add additional variability into the current field during257

the whole year. Another possibility is a missing instability mechanism due to lack of grid258

resolution or excessive numerical damping. However, a more detailed analysis of this low259

bias is beyond the scope of the present paper; we assume that the bias does not effect the260

results presented here. Since both models show a distinct annual cycle in EKE with the same261

timing and similar maxima as the observational estimates (see Fig. 2), we are confident that262

our assumption is justified. In any case, the model simulations are forced with monthly263
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mean winds. Consequently, as already pointed out by Eden and Böning (2002) internal264

flow instabilities are suggested as the main source of enhanced EKE during winter and not265

high-frequency wind as suggested by e.g. White and Heywood (1995) and Morsdorf (2001).266

Fig. 3 shows spectral estimates from the current data of the three different moorings and267

from 3 years of MITGCM for different seasons. While 6-hourly snapshots are available for268

the spectral estimates in MITGCM, the archived daily averages of only one year for FLAME269

permit the detailed spectral analysis here. At K6 (Fig. 3 a,d), which is the northernmost270

mooring (see Fig. 1), the spectral estimate shows enhanced variance near the 2- and the 8-271

day-period during winter. In spring, the peaks are shifted towards longer periods associated272

with a strong increase of variance at the 10-day-period. During summer and autumn, most273

of the variance can be found at longer periods around 10 days. The spectra of the model274

simulation at K6 also show enhanced variance during winter between 2- to 8-day-periods275

as well as a shift towards longer periods in spring. During winter, the highest variance can276

be found near the 2-day-period. The peak is, however, not as large as in the observational277

data. In summer, the spectra of the model data contain less energy with enhanced variance278

between 5 to 10 days, while in autumn, almost no high-frequency variance can be found in the279

model simulation. This is in contrast to the observations, where high-frequency variability is280

also present during these seasons, and might be related to the missing high-frequency wind281

forcing of the model simulations, and/or a missing instability mechanism.282

The spectrum of K7 (see Fig. 3 b,e), which is located at the exit of the LS at around 53o
283

N, shows a maximum at the 5-day-period for winter. During the rest of the year most of the284

variance is contained at longer periods between 5 and 10 days. The spectra of the simulation285

show a similar behavior during winter and spring; in winter, most of the energy is found286
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at periods of 5 days. As seen before, amplitudes are in general lower in the model. The287

position of K8 (see Fig. 3 c,f) is located further offshore than the position of K7. The spectra288

of K8 show enhanced variance between 5 and 10 days during winter, while the spectra of the289

model simulation show a distinct peak at a period of 5 days during winter. Similar to K8,290

less energy is found in the model data during the rest of the year.291

The spectral analysis at 300 m depth (not shown) generally reveals lower energy levels292

compared to the surface. Model and observations agree at K7 and K8, showing enhanced293

high-frequency variance during winter at a period of 5 days. K6 also shows enhanced variance294

near a period of 2 days, which cannot be found in the model. However, the model also shows295

enhanced variance during winter. As seen before, the model simulation contains much less296

energy compared to the mooring data, especially at longer periods.297

We made no attempt to test the statistical significance of the individual spectral es-298

timates, and we doubt that any of them are on the basis of a restrictive null hypothesis299

given the short time series. Therefore, Fig. 3 represents only a qualitative analysis of the300

high-frequency variability comparison of the energy levels in the model and the observa-301

tions. Nevertheless our qualitative spectral analysis suggests that in general most of the302

high-frequency variance occurs during winter. At all moorings the ADCP data show en-303

hanced variance at periods between 5 to 2 days, which points to processes with very short304

time scales. In general, the spectra of the model and the observational data are similar in305

late winter. However, some differences also exist. The most striking difference in spectral306

behavior occurs in autumn. Almost no high-frequency variance is found in the model data307

but enhanced variance near the 10-day-period shows up in the observations. In summer308

the difference is not as strong (but also present) especially at K7 and K8 which are further309

15



south. We speculate that the missing variance in summer and autumn in the model simula-310

tion might be related to the missing high-frequency wind forcing in the model, which would311

add additional variability into the current field during the whole year, and/or to a missing312

instability process in the model.313

The simulations demonstrate that the high-frequency velocity fluctuations in winter are314

associated with a simultaneous instability of the whole LC: Fig. 4 shows speed and velocity315

of the upper LC at a depth of 91 m at four different times (of the year) from MITGCM.316

Similar structures can be seen in FLAME as shown by Eden and Böning (2002) in their Fig.317

8. The speed along the shelf break LC north of the Hamilton Bank at 55oN and between318

56oW and 54oW is relatively constant in mid December ranging between 0.6 m/s and 0.7319

m/s . The snapshot in mid March reveals a different picture: The LC becomes unstable and320

small scale velocity fluctuations are present in the whole LC. The absolute velocity is highly321

variable in the area of the LC and reaches values between 0.1 m/s and 1 m/s. The snapshot322

in mid June reveals a reorganizing of the upper shelf break LC. In mid September absolute323

velocities reach 0.5 m/s and the LC is slightly broader than in mid June. In FLAME the324

LC exhibits a similar behavior.325

The instabilities start to grow at the offshore edge of the shelf break LC when convective326

water masses appear in the boundary current (not shown). The first wave-like disturbances327

can be seen very quickly with timescales O(days) and along-stream wavelengths of about328

30−40 km. A wave passes a particular point in the LC within about two days. The enhanced329

variance near the two-day period, which can be found in the spectra, can be associated330

with these small scale disturbances. However, a further analysis of the time evolving flow331

field reveals that frontogenesis sets in rapidly leading to non-linear characteristics of the332
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flow. Frontal strain and shear rapidly deform the growing waves and consequently different333

wavelengths develop. An upscale energy transport seems to generate larger lateral scales334

with longer periods further downstream. This is supported by the spectral estimates of the335

model current data, which reveal that at the northernmost mooring K6, shorter timescales336

are generally found compared to the moorings further downstream.337

4. Linear stability analysis of the Labrador Current338

In this section, we discuss a non-hydrostatic ageostrophic linear stability analysis similar339

to the one performed by Stone (1971). However, the discussion here is slightly more realistic,340

since we also account for the vertical variation of the background shear and stratification, for341

the horizontal components of the Coriolis force, and apply a β-plane approximation rather342

than a f -plane. Assumptions, and the mathematical and numerical details of our method are343

described in the appendix. Our linear stability analysis predicts the characteristics of per-344

turbations on a vertically sheared background flow (which is taken here as the LC). Vertical345

eigenfunctions and eigenvalues for a given background flow are estimated numerically based346

on the linearized Navier-Stokes equations. If the amplitudes of those solutions are growing347

in time, i.e. when eigenvalues of the solutions become complex, they can be associated with348

unstable waves. The stability analysis yields time and length scale of the fastest growing349

wave solution, as well as perturbation quantities such as u′ and v′, and correlations such as350

EKE from (u′2 + v′2)/2. The unstable waves grow exponentially with time and it is assumed351

that the fastest growing waves will dominate after a short period of time and thus are the352

ones that can be identified in the model simulation and the observations.353
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The amplitude of the wave solution is not determined by the linear stability analysis.354

For the scaling of the amplitude in u and v, the imaginary part of the frequency ωi of355

the fastest growing wave is used as the inverse time scale and its wavelength L = 2π/k356

as the spatial scale. It is, however, clear that the final eddy length scale is a result of the357

non-linear processes excluded from the linear analysis considered here. For geostrophically358

balanced flow, L is usually larger than the scale of the unstable wave due to an inverse kinetic359

energy cascade (e.g. Olbers et al. 2012). However, it was shown in Killworth (1997); Eden360

(2011, 2012); Vollmer and Eden (2013) that the scaling based on the properties of the linear361

stability analysis yields indeed reasonable eddy amplitudes and related eddy diffusivities for362

meso-scale flow.363

We here use monthly mean values of the model simulations within the LC for different364

times during the year as the background flow and stratification for the linear stability analy-365

sis. We note that the linear stability analysis does not rely on the primitive equations as the366

model simulation, but is more general, and will thus reveal modes of instabilities which are367

not permitted in the model. We use the model simulation to provide the background flow368

and stratification since sufficient observations are not available. We use FLAME instead of369

MITGCM for the background conditions, since FLAME provides a stratification in slightly370

better agreement to observations because of the bias in convection depth in MITGCM. The371

stability analysis of the LC reveals three dominant modes of instability, which we call the372

interior, the shallow and the symmetric mode. These modes correspond to baroclinic in-373

stability in the interior, to baroclinic instability in the mixed layer (both at low Ri), and374

symmetric instability, respectively, and are discussed in the following.375
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a. Interior mode376

Fig. 5 shows the results of the linear stability analysis for background flow and stratifi-377

cation taken from March mean values of FLAME at the velocity grid point closest to the378

position of K6 within the LC. We have excluded the top 20 m from the analysis to avoid379

the ageostrophic Ekman layer. We have also excluded a bottom Ekman layer of the three380

lowermost grid boxes, in order to stay consistent with the linear stability analysis, where a381

geostrophically balanced background flow was assumed. The vertical grid which is used to382

solve the linear stability problem is identical to the model grid.383

The speed of the background velocity decays from about 0.6 m/s at 20 m to 0.17 m/s at384

700 m. The stratification is weak in the upper 50 m, and increases to N = 5.4× 10−3 s−1 at385

55 m and decays with depth to N = 0.8×10−3 s−1 at 700 m. The growth rate (the imaginary386

part of the eigenvalue ω) is estimated for different k and l combinations, where k is the zonal387

and l the meridional wave number. The resulting growth rates for each k and l combination388

are shown in Fig. 5a). The maximal growth rates are given for an orientation of the wave389

vector roughly parallel to the background flow, which is indicative of an Eady-type baroclinic390

instability. The fastest growing mode has a growth rate of 1/0.94 d−1 and a corresponding391

(rotated, along-flow) wavelength of 42.5 km, thus close to the interior first baroclinic Rossby392

radius, or zonal and meridional wavelength of 44.8 km and −134.5 km, respectively.393

The phase velocity, c = Re(ω)/
√
k2 + l2, of the corresponding wave solutions (given by394

the real part of the eigenvalue) is shown in Fig. 5b). For the fastest growing mode, the395

phase velocity is 0.28 m/s, leading to a steering level of the waves (where background flow396

and opposite phase velocity are identical) at a depth of 330 m depth. Note that isopycnal397
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diffusivities are expected to have a maximum at the steering level (Smith and Marshall 2009;398

Vollmer and Eden 2013).399

The vertical structure function of the perturbation velocities u and v and the resulting400

EKE are shown in Fig. 5e) and f), respectively, using the scaling of the amplitudes as401

outlined above. The velocities are surface intensified with maximal values of 0.35 m/s and402

decay to a mid-depth minimum of 0.15 m/s at depths below 200 m, before increasing slightly403

again, similar to an Eady-type instability. The EKE shows a surface maximum of 300 cm2/s2404

and decays to 50 cm2/s2 below 200 m. Since it shows loadings over the whole water columns,405

we call this mode the interior mode. It can be characterized as an Eady-type baroclinic406

(balanced) instability, but at Richardson numbers of O(1) as discussed below.407

For the linear stability analysis of the interior mode shown in Fig. 5 we have chosen the408

same vertical resolution as in the ocean circulation model (see section 2) and found this grid409

also appropriate for the linear stability analysis. However, sharp gradients in the vertical410

shear or stratification in the ML (Fig. 6) can lead to unstable modes resulting from grid411

noise, which are not physically meaningful. In the circulation model, the grid noise modes412

are damped by lateral and vertical friction and diffusion, which we have also applied in the413

linear stability analysis (see appendix). The effect of friction and diffusion on the interior414

mode is small however; the calculations for the interior mode are repeated with friction415

comparable to the friction used in the model simulations and without friction; changes in416

growth rates and vertical structure functions are within a few percent. Note that we have417

also excluded the influence of topography. The possible impact of topography is discussed418

in the last section.419

Table 1 show the growth rates and wavelengths of the interior mode at K6 using monthly420
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mean stratification and shear from FLAME for all months. The interior mode is present421

year-round, but has its maximum growth rate in March, where we also see the maximum in422

EKE at K6 both in the observations and the model. From November to February growth423

rates are also enhanced but smaller than in March, while during the rest of the year, growth424

rates are much smaller, except for May where a local maximum is present.425

The wavelength of the interior mode agrees with a qualitative comparison with the wave-426

length seen in the model simulation during the initial instability of the LC shown in Fig. 4.427

From wave length and phase speed, we calculate a wave period of about 1.8 days of the most428

unstable wave related to the interior mode at K6 in March. This is at least in qualitative429

agreement to the spectral estimate of velocity fluctuations in both the mooring data and430

the model simulation, although the spectral estimates show also enhanced variance at larger431

periods, pointing towards an inverse energy cascade in the turbulent flow. We therefore432

conclude that the interior mode is responsible for the instability of the LC in the model433

simulation and speculate that this might also be the case in the observations.434

b. Shallow mode435

For a typical monthly mean profile of background shear and stratification of the shelf436

break LC, a further mode is present. It is related to the weakly stratified ML, can be437

characterized as a baroclinic (balanced) mixed layer instability at small Ri, and is called the438

shallow mode. Fig. 6 shows this shallow mode for January mean values of background flow439

and stratification taken from FLAME at the velocity grid point closest to the position of K6.440

Here, we use for the numerical linear stability analysis a higher vertical resolution than for the441
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interior mode of 1 m, i.e. much higher than the vertical resolution of the circulation model.442

We also restrict the analysis to the upper 200 m of the water column, since repeating the443

analysis with deeper profiles does not change the shallow mode considered here (compare444

also Fig. 7). This can be explained by almost vanishing vertical velocities of the shallow445

mode below the thermocline, such that the (approximate) lower boundary condition w = 0446

at z = 200 m becomes appropriate. The velocity and stratification profiles from the model447

simulation have also been smoothed with a running mean over a depth range of 12 m, and448

the linear stability analysis was used without any lateral friction and diffusion. The shear449

due to ageostrophic Ekman flow in the upper two grid boxes was removed, in order to stay450

consistent with the linear stability analysis, where a geostrophically balanced background451

flow was assumed.452

Different to the interior mode that exhibits a global maximum of the growth rates in453

wavenumber space (Fig. 5a), the shallow mode (red cross in Fig. 6a) appears as a saddle454

point. This is because the Richardson number Ri becomes smaller than one in the mixed455

layer – as seen in Fig. 6e) – which leads to the existence of symmetric instabilities with larger456

growth rates than both interior and shallow modes for large cross-flow wavenumbers. We457

note that applying a threshold to N to prevent Ri smaller than one, eliminates indeed the458

symmetric mode. The shallow mode becomes a global maximum of the growth rates at an459

almost identical position in wavenumber space as the red cross in Fig. 6a) (not shown) with,460

however, slightly smaller maximal growth rates due to the increased Ri. The symmetric461

mode is discussed in the next section, here we first concentrate on the shallow mode.462

The growth rates of the fastest growing shallow mode are > 3 d−1 in Fig. 6a) and thus463

larger than the ones of the interior mode. As for the interior mode, the wave vector of the464
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shallow mode is parallel to the background velocity, pointing also to an Eady-type baroclinic465

instability, but the along-flow wavelength of the shallow mode is O(1 km), i.e. much smaller466

than the one of the interior mode. The lateral scale of the shallow mode is close to the467

ML deformation radius, defined as Nmlhml/f , where Nml and hml are the stability frequency468

within the mixed layer and the mixed layer depth, respectively.469

The phase velocity of the shallow mode is 0.56 m/s, i.e. much faster than the one of the470

interior mode. In contrast to the interior mode, the velocity amplitudes of the shallow mode471

show loadings almost exclusively in the ML, but have – because of the much smaller lateral472

scale – maximal amplitudes of only 0.08 m/s, i.e. much smaller than those associated with473

the interior mode. Since the wavelength of the shallow mode is smaller than the horizontal474

resolution of the model, the shallow mode cannot be found in the model simulations and475

consequently cannot be responsible for the instability of the LC in the simulations. However,476

it is suggested that it will show up by increasing the model resolution and might also play477

an important role for the instability process in the real ocean.478

The interior mode is also present in Fig. 6a) at similar wave numbers and with similar479

vertical eigenfunctions as for March shown in Fig. 5a), but with smaller growth rates than480

the shallow mode. The interior mode can, however, hardly be seen in Fig. 6a) since for481

the wave number scaling used in Fig. 6a), the interior mode is located at a local maximum482

of growth rates very close to zero wave number amplitude. Therefore, we show in Fig. 7483

the growth rate as a function of the logarithm of the along-flow wavenumber and for zero484

cross-flow wavenumber, solving the linear stability problem for March shown in Fig. 5 also485

at a high vertical resolution of 2 m. Here, both interior and shallow mode can be seen as486

local maxima of the growth rates, with similar vertical structure in u and v as above.487
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Table 1 shows that the shallow mode is present year-round at K6, since growth rates are488

larger than 3 d−1 in almost each month. Different to the interior mode, however, the shallow489

mode shows no clear annual cycle in its growth rates, and in particular no maximum during490

late winter. On the other hand, the wavelengths of the shallow mode become larger in winter491

(November to March) than during the rest of the year, since the mixed layer depth – and492

thus the Rossby radius representative for the mixed layer – is larger during winter.493

c. Symmetric mode494

The symmetric mode only shows up in the LC when the Richardson number Ri becomes495

smaller than one in the ML. Symmetric instabilities can occur if the potential vorticity496

(times f) becomes negative or for 0 < Ri ≤ 1. Richardson numbers well below one are497

indeed present in both model simulations within the ML above the shelf break LC especially498

during early winter when the ML is deeper (see Fig. 6e and also Fig. 9), but also during all499

other months.500

While for the interior and shallow mode the fastest growing modes are found for a501

wavenumber vector k oriented parallel to the background flow, Fig. 6a) shows that largest502

growth rates associated with the symmetric mode are given for k oriented in cross-frontal503

direction. Furthermore, the interior and shallow modes can be found for along-flow wave-504

lengths close to the Rossby radius – either the interior Rossby radius or the Rossby radius505

representative for the mixed layer – while the symmetric mode is found for very small cross-506

flow wavelength.507

The numerical stability analysis predicts maximum growth rates at the scaled wavenum-508
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bers k = −0.45 and l = −1.06, or k = 0 and l = 1.1 when rotating the background flow into509

a zonal direction. Extending the analysis to larger wave numbers as shown in Fig. 6a) and510

b), the maximal growth rate of the symmetric mode further increases for larger (rotated) l,511

until it reaches asymptotically its maximum (not shown). The growth rate for the scaled512

wavenumber k = (−0.45,−1.06) of the symmetric mode is already much larger than those513

for the interior and the shallow mode, i.e. about 11 d−1 for a rotated meridional wavelength514

of 310 m. The phase velocity of the symmetric mode tends to vanish, which shows that515

these solutions are not real waves as for the interior and shallow modes, where the largest516

growth rates are associated with non-zero phase speeds. Different to the interior and the517

shallow mode, the symmetric mode also shows no structure in the along-flow direction, and518

it features very small wavelength in the cross-flow direction. The vertical structure of u and519

v of the symmetric mode shows maximal values of 3.7 cm/s at 23 m depth and vanishing520

velocities below the ML base.521

For wavelengths comparable to the lateral model resolution of about 5 km in the LS, the522

linear stability analysis predicts maximal growth rates of the symmetric mode which are523

much smaller than those of the interior mode, and which are likely damped by the friction524

in the model. Thus, we do not expect to see the symmetric mode in the hydrostatic model525

simulations. In the ML of the real LC, however, symmetric instability is likely to be present526

and will be related to slantwise convection. Note that the circulation model is hydrostatic527

and consequently not able to simulate slantwise convection.528
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5. Seasonality of the Labrador Current instability529

The interior mode has lateral scales of 30 to 45 km, thus is well resolved by the 1/12o
530

model simulations, while we do not expect to see the symmetric and shallow mode. By ap-531

plying the local linear stability analysis to monthly mean flow and stratification of the model532

simulation at each grid point in the LS, the interior mode is shown here to be responsible533

for the local maximum in EKE along the LC and its seasonality in the model simulations.534

Fig. 8a,b) shows the growth rates of the interior mode during March and September in the535

southwestern LS. Maximal growth rates up to 1.5 d−1 are reached in the northern part of the536

LC in March, while in the interior LS and onshore (except close to the shoreline), growth537

rates are much smaller or even vanish. Further downstream of the LC, the growth rates538

reach maximal values of about 1 d−1. In contrast, the growth rates along the LC are about539

three times smaller in September. Fig. 8c,d) shows the associated EKE during March and540

September at around 100 m depth. In March, EKE reaches 250 cm2/s2 within the LC, while541

in September the EKE is much weaker with maximum values of around 50 cm2/s2. Both542

timing and magnitude of the changes in growth rate and EKE thus agree well with both the543

model simulation and the observations shown in Fig. 2. Further, the growth rates and the544

EKE are enhanced along the whole LC in March, in agreement with both model and obser-545

vations. This suggests that the EKE maximum in late winter is produced locally along the546

whole LC due to the interior mode, i.e. due to baroclinic (balanced) instability. Wavelengths547

between 25 and 50 km, i.e. between 1 and 2 times the Rossby radius, are predicted along548

the LC for the interior mode in March (not shown). This is in good agreement with the first549

wavelike disturbances found in the model simulation. Note that in March wave numbers550
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are slightly smaller than in September. A shift towards smaller wave numbers points to551

ageostrophic effects for Ri = O(1), which we indeed find in winter as shown next.552

Stratification, vertical shear and the resulting Richardson numbers determine the growth553

rate of the interior mode. Thus, these variables are discussed here in more detail for the554

near surface LC to explain the timing of the instabilities. Fig. 9 shows the monthly mean555

stratification N , vertical shear S as well as the Richardson number Ri along 57.6oN taken556

from FLAME for different months of the year. The transect is marked in Fig. 1. The seasonal557

cycle in N , S and Ri is related to the local ML variations and the advection of convective558

water masses from the interior LS. Due to increasing wind-induced turbulence the ML starts559

to deepen slightly already in September (not shown). The ML further deepens In October560

and November, but the water masses below the ML are still strongly stratified resulting in561

large Richardson numbers Ri� 1 below the ML. In late winter, however, weak stratification562

is also found below the ML depth with a maximum value of about N = 5×10−3 s−1 in March,563

and no clear pycnocline can be identified anymore, which was present in fall and early winter.564

This erosion of the pycnocline is caused by a combination of lateral advection of ventilated565

water and local surface heat fluxes.566

Due to the decrease in N in January, and due to an increase in the vertical shear S, the567

Richardson number Ri = N2/S2 starts to decrease significantly to values below 10, starting568

in the upper offshore part of the shelf break LC. Both the decrease in N and the increase is569

S are related to the approach of ventilated, much denser and weakly stratified waters from570

the interior LS. The lowest Richardson numbers in the LC can be found in February and571

March. Due to strong vertical shear and weak stratification in the upper 200 m Richardson572

numbers well below 10, even close to 1 are reached. In April, the restratification starts573
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due to local surface warming and due to the lateral cross-stream mixing induced by the574

instabilities. The restratification due to strong positive surface heat fluxes accelerates in575

March, but Richardson Numbers around 10 are still found in the depth range of 100 m due576

to the continuing presence of strong vertical shear. Only in late summer and autumn the577

Richardson numbers are large anywhere in the subsurface LC due to a combination of weak578

shear and strong stratification. Note that the vanishing N close to the bottom occasionally579

leads to low Richardson numbers as seen in Fig. 9, however, without any seasonal cycle or580

consequence on the instabilities of the LC.581

As shown above the vertical shear is strongest in the late winter whereas the stratifi-582

cation is weakest in winter. Consequently, both the annual cycle of the vertical shear and583

stratification are important for the instability process within the LC. Note that there is also584

an increase of the mean Rossby numbers along the LC in late winter in the model simula-585

tions. We have estimated the Rossby number using |ζ|/f , where ζ denotes relative vorticity.586

Mean maximum values of about 0.1 - 0.2 are reached along the LC in late winter, whereas587

in September the Rossby numbers are well below 0.1. Rossby numbers larger than 0.3 are588

found in more than 10% of the grid boxes in March, whereas in late summer and autumn no589

Rossby numbers larger than 0.3 are found along the LC. Since large Rossby numbers indi-590

cate that ageostrophic terms are of larger importance, the results from the quasi-geostrophic591

approximation are therefore in principle invalid to explain the dynamics of the LC.592
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6. Summary and discussion593

The LC features a local maximum in EKE which is known to have a pronounced annual594

cycle, peaking during winter and with much lower values during the rest of the year. The595

dynamical cause of this EKE maximum and its seasonality are the focus of this study. It can596

be important for lateral mixing and stirring processes, which alter the water mass properties597

of newly formed LSW during its rapid export within the deep LC, and for the transformation598

rates of LSW, which might be a controlling factor of the Atlantic MOC and its associated599

meridional heat transport.600

The pronounced annual cycle of EKE along the LC is found both in mooring current601

data and in high-resolution ocean circulation model simulations. The EKE magnitudes in602

the model simulations agree qualitatively well with observational estimates, although with603

a low bias particularly in summer and fall, which we relate to the missing year-round high-604

frequency wind stress forcing and/or to a missing instability process in the model. Spectral605

analysis of the mooring current data and velocities from model simulation within the LC606

show enhanced high-frequency variance for periods between two and five days during the607

peak in winter. Since the model is driven by monthly mean wind stress, internal instability608

can be made responsible for the seasonality of the EKE in the LC, while high-frequency wind609

stress forcing can be excluded as possible driver in the model. A model simulation with high-610

frequent wind forcing would help to explain and to quantify the missing background level in611

the variance, which is left for future work.612

Using typical stratification and vertical shear of the LC taken from the model simulations,613

linear stability analysis predicts three dominant modes of instability in the shelf break LC:614
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• An interior mode with an along-flow wavelength of about 30–45 km comparable to615

the local interior first baroclinic Rossby radius, and with a phase velocity of about616

0.3 m/s. This mode is present year-round, but has a maximal growth rate of about617

1 d−1 in March. It is surface-intensified, but with deep reaching amplitudes. The618

interior mode is akin to baroclinic instability, but operates mainly at low Richardson619

numbers and finite Rossby numbers, therefore with much larger growth rates than for620

the quasi-geostrophic limit of Ri� 1.621

• A shallow mode is present year-round, with an along-flow wavelength of about 0.3–622

1.5 km, comparable to the Rossby radius related to the depth and stratification of623

the mixed layer, and with a phase velocity of about 0.6 m/s. The amplitudes of the624

shallow mode are confined to the mixed layer, but it has growth rates about three625

times larger than the growth rates of the interior mode. The shallow mode is also a626

balanced mode akin to baroclinic instability, but confined to the mixed layer and for627

Ri = O(1). It is not resolved by the horizontal grid of the model, but is likely to be628

present in observations.629

• A symmetric mode can be found due to Richardson numbers below one in the ML of630

the LC with vanishing phase velocity. It has the largest growth rates at small cross-631

flow wavelengths, but no along-flow structure, and its amplitudes are also confined to632

the mixed layer. Growth rates of this modes on the grid scale of the model are small633

and thus not seen in the simulations, but the symmetric mode is likely to show up in634

the ML of the LC associated to slantwise convection.635

The interior mode is found to be in agreement with the growing instabilities in late winter636
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showing up in the model simulations. It has lateral scales close to the local Rossby radius637

of deformation and is thus resolved in the model. Due to the low Richardson numbers in638

the LC in winter, the time scale of the interior mode is comparable with the time scale of639

MLI or ”submesoscale” instabilities discussed e.g. by Boccaletti et al. (2007). The rapid640

start of the instability process along the whole LC in the model simulations is in agreement641

with the large growth rates of the interior mode. The lateral scales of MLI are set by the642

Rossby radius given by the stratification and depth of the ML and consequently much smaller643

than the lateral scales of the interior mode. Our shallow mode corresponds to the MLI of644

Boccaletti et al. (2007) and has indeed larger growth rates than the interior mode.645

Both shallow and interior mode are called balanced modes and are related to the Rossby646

wave branch (in contrast to the unbalanced gravity wave branch). Based on the orientation647

of the wavenumber vector in flow direction, and on the form of the growth rate as a function648

of wavenumber, it is clear that the interior and the shallow mode are Eady-type baroclinic649

instabilities, as discussed by many authors before (e.g. Stone 1970). However, it is also clear650

that ageostrophic terms are not small in particular for the dynamics of the shallow mode,651

since the Ri becomes O(1). In any case, the shallow mode is different from the ageostrophic652

mode by Molemaker et al. (2005) which can also be found in the mixed layer, and which is653

clearly out of balance, as detailed in the introduction.654

Low Richardson numbers well below 10 within the upper LC in March result in three655

times larger growth rates of the interior mode compared to September. The low Richardson656

numbers result from a combination of weak stratification and enhanced vertical shear in657

winter, which are in turn related to a combination of local buoyancy loss and the advection658

of weakly stratified denser convective water masses from the interior. During the rest of659
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the year strong stratification and weak vertical shear lead to larger Richardson numbers and660

smaller growth rates. Since larger isopycnal slopes and vertical shear, and weak stratification661

in winter are indeed observed features of the LC (Pickart et al. 2002; Cuny et al. 2005), our662

analysis suggests that the interior mode with increased growth rates due to low Richardson663

numbers leads to the observed EKE maximum in the LC in winter.664

Using the scaling of the velocity amplitudes introduced in Killworth (1997); Eden (2011),665

the interior mode contains most of the kinetic energy, since it has a much larger wavelength666

than the shallow mode, which compensates the smaller growth rate of the interior mode.667

The scaling can thus explain why a great portion of the observed variance in the LC due668

to baroclinic instability is also present in the model simulations. On the other hand, we669

speculate that the missing variance in the model simulation compared to observations might670

result from EKE related to the unresolved shallow mode, but this can only be answered671

by increasing the model resolution well below 1 km. Based on the scaling of the velocity672

amplitudes, we might also speculate that the more energetic interior mode is more important673

for lateral mixing and stirring than the less energetic shallow mode. However, linear stability674

analysis does not allow to infer the mixing effects of the instabilities in the fully non-linear675

turbulent regime.676

The symmetric mode also does not show up in the model, but we do not expect this677

mode to be important for lateral mixing and stirring. However, it does modify convection in678

the LC to slantwise convection (e.g. Cuny et al. 2005). We have not found the ageostrophic,679

unbalanced mode described by Stone (1971); Molemaker et al. (2005) in the linear stability680

analysis, since it has always smaller growth rates than the balanced modes. This mode might681

play an important role for the dissipation of kinetic energy of the mean balanced flow, but682
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because of the smaller growth rates, we do not expect this mode to play an important role683

for lateral mixing.684

Since our model simulation is climatologically forced we cannot realistically account for685

interannual variability. The growth rate of the instability process depends on the Richardson686

number, which depends in turn to some extent on the watermasses advected from the interior687

of the Labrador Sea. Since the deep convection activity and thus the stratification in the688

Labrador Sea shows large interannual variability (e.g. Lazier et al. 2002), it is possible that689

the strength of the instability process also shows large interannual variability. Thus, model690

simulations with realistic interannually varying forcing are suggested in order to learn about691

the possible linkage between the strength of deep convection and the instability process in692

the boundary current.693

Finally, a few caveats need to be addressed: The linear stability analysis accounts only694

for vertical shear instability, while horizontal shear and thus barotropic instability is not695

included. Eden and Böning (2002) calculated energy transfer rates of potential energy and696

kinetic energy of the mean flow into the EKE along the LC, and find that generally only697

10% of the EKE is fed from the lateral shear of the mean flow. It thus seems to be sufficient698

here to focus on the vertical shear only. For other boundary currents such as the shelf699

break current in the Mid Atlantic bight, lateral shear appear to be more important (Lozier700

et al. 2002). The LC is certainly also influenced by topography, but topographic effects are701

neglected here. Since the focus of this study lies on seasonal effects and the topography702

does not change during the year, this simplification seems justified. Furthermore, (Lozier703

and Reed 2005) found that for baroclinic currents, the effect of topography remains small.704

On the other hand, topography can also stabilize currents (Isachsen 2011; Vollmer and Eden705
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2013), such that growth rates might be overestimated.706
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Appendix A710

The linear stability analysis is based on the following equations:711

∂tu + u ·∇u = −∇p+ 2Ω× u + bez + Av∂zzu + Ah∇2u (1)

∂tb+ u ·∇b = Kv∂zzb (2)

∂tp+ c2s∇ · u = 0 (3)

where u denotes the fluid particle velocity, p the (scaled) pressure, b the buoyancy, Ω =712

|Ω|(0, cosφ, sinφ) the Earth rotation vector at latitude φ, cs the speed of sound, ez the713

vertical unit vector, Av and Ah vertical and horizontal viscosities, respectively, and Kv714

vertical diffusivity. The Boussinesq approximation is applied to the momentum Eq. (1) and715

full incompressibility (or cs →∞) was assumed to derive Eq. (2) by combining temperature716

and salt conservation equations. Eq. (3) is a combination of mass conservation and the717

equation of state (see e.g. Olbers et al. 2012), where the Boussinesq approximation is only718

partially applied by keeping a finite cs in the time derivative of p, which makes it a prognostic719
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equation for p. By doing so, it is much simpler to obtain the eigensolutions of the linearized720

system by numerical methods, as for the fully incompressible equations considered by e.g.721

Stone (1971). On the other hand, sound waves will be part of the solution, but they can722

easily be identified by their large phase velocities and sorted out, even when artificially723

decreasing cs. We found this method to work well for cs = 150m/s, the value which we use724

in this study, and we do not expect any effects of the sound waves on the remaining (gravity725

and Rossby) wave branches, since tests with variations in cs do not change the solution and726

analytical solutions of idealized test cases as the Eady case are correctly reproduced.727

The equations are linearized with respect to a basic state with vanishing vertical velocity,728

and no horizontal variations in lateral velocity and stratification, using w = 0 and ∂p/∂z = 0729

at z = −h, 0 as kinematic and dynamic boundary conditions. By ignoring lateral variations730

of the background flow and stratification, we do not account for lateral shear instability731

and assume that those instabilities are unimportant for the purpose of this study. For a732

non-constant Earth rotation vector Ω in Eq. (1), linear waves do not solve the problem.733

A streamfunction and velocity potential is therefore introduced for the horizontal velocity.734

In the corresponding tendency equations for streamfunction and velocity potential, Ω and735

dΩ/dy show up and are taken both as constants, to allow for a varying Ω (in a WKB sense).736

For wave solutions u = u0(z) exp i(k · x − ωt), b = b0(z) exp i(k · x − ωt), and p =737

p0(z) exp i(k · x− ωt), with the horizontal wave number vector k = (k, l) and the frequency738

ω, Eq. (1) to Eq. (3) become a vertical eigenvalue equation. Discretization in the vertical739

yields an algebraic eigenvalue problem, which can be solved at given k and l for the vertical740

eigenfunctions u0, b0, p0, and the eigenvalues ω. Im(ω) is the growth rate of the solution;741

we consider only eigenfunctions with the largest growth rate at given k and l. Re(ω)/|k| is742
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the phase velocity, the related EKE is given by Re(u0 · u∗0)/2.743

744
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List of Tables854

1 Growth rate Im(ω) and wavelength L of the interior and shallow mode at K6855

from monthly mean background shear and stratification from FLAME. U and856

V at velocity grid points closest to the mooring positions and N2 interpolated857

on these points are taken as background values for the linear stability analysis. 43858
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Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Im(ω) in d−1, interior 0.81 0.85 0.94 0.50 0.73 0.18 0.22 0.34 0.34 0.34 0.69 0.76
Im(ω) in d−1 shallow 3.36 3.06 3.03 3.13 3.49 3.47 3.47 3.05 3.30 2.66 3.30 2.95

L in km, interior 39 46 43 30 35 33 39 41 42 43 34 30
L in km, shallow 1.5 2.3 1.8 0.4 0.6 0.4 0.4 0.3 0.3 0.6 1.2 0.9

Table 1. Growth rate Im(ω) and wavelength L of the interior and shallow mode at K6
from monthly mean background shear and stratification from FLAME. U and V at velocity
grid points closest to the mooring positions and N2 interpolated on these points are taken
as background values for the linear stability analysis.
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List of Figures859

1 Annual mean EKE in cm2/s2 in the LS, calculated from three years of the860

MITGCM simulation. The contour interval is 50 cm2/s2. EKE is calculated861

using velocity deviations from a seasonal mean using three years of model862

data. u and v have been interpolated on tracer grid points prior to the anal-863

ysis. White circles denote the position of the upstream mooring K6, and the864

downstream moorings K7 and K8. Bars indicate the section shown in Fig. 9. 48865

2 Monthly mean EKE in cm2/s2 at K6 in MITGCM (a), FLAME (b) and866

moored current data (c). EKE is calculated using band-pass (2 to 30 d) fil-867

tered velocity using three (one) years of model data from MITGCM (FLAME)868

and from one year mooring data. The EKE of the observational current data869

is estimated at five different depths (at around 90, 155, 205, and 310 m from870

ADCP data and around 660 m from RCM data). The black contour lines in-871

dicate 10, 20, 50, 100, 150, 200 and 250 cm2/s2. The mooring does not cover872

the upper 100 m due to surface reflection and vertical mooring displacement.873

u and v in MITGCM have been interpolated on tracer grid points prior to the874

analysis. EKE at grid points closest to the mooring positions are shown in a)875

and b). 49876
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3 Variance-preserving spectra of the alongshore flow for different moorings (K6,877

K7 and K8, for exact location see Fig. 1) estimated from moored ADCP data878

(a),(b) and (c) (from one, two and two years in a,b,c, respectively) as well879

as from three years MITGCM simulation (d),(e) and (f). The data was cut880

into 30 day segments, with 15 days overlap. Each segment was detrended881

and multiplied with a hamming window. All segments within one season are882

averaged. Winter (JFM) in black, spring (AMJ) in red, summer (JAS) in blue883

and autumn (OND) in yellow. Tides and internal waves are removed from the884

ADCP current data with a 40 hours low-pass filter. u and v in MITGCM have885

been interpolated on the tracer grid points closest to the respective mooring886

position prior to the analysis. 50887

4 Instantaneous snapshots of speed and velocity (arrows, every fourth grid888

point) at 91 m depth in the MITGCM simulation for four different times of889

the year in the southwestern LS. (a) December 15th, (b) March 15th, (c) June890

15th and (d) September 15th. u and v have been interpolated on tracer grid891

points prior to the analysis. 51892
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5 The interior mode at K6 calculated from March mean background shear and893

stratification from FLAME. Shown are the growth rate in 1/day (a) and the894

phase velocity in m/s (b) as a function of the (scaled) wave numbers. The wave895

numbers are scaled using the local Rossby radius
∫ 0

−hN/fdz. Monthly mean896

background velocity U (solid) and V in m/s (dashed) (c) and stratification N897

in 1/s (d) are also shown together with the vertical structure functions of the898

predicted perturbation velocities u (solid) and v (dashed) in m/s (e) and the899

resulting EKE ((u2+v2)/2) in cm2/s2 (f) for the fastest growing mode. U and900

V at velocity grid points closest to the mooring positions and N2 interpolated901

on these points are taken as background values. 52902

6 The shallow (red cross in a and b) and symmetric mode (black cross in a and903

b) at K6 for background shear and stratification taken from January mean904

values in FLAME. Shown are the growth rate in 1/day (a), phase velocity905

in m/s (b), monthly mean background velocities U (solid) and V (dashed)906

in m/s (c), and the background stratification N in 1/s (d). The Richardson907

number Ri is shown in (e) as black solid line, the red line indicates Ri = 1.908

Velocity perturbations u (solid) and v (dashed) of the shallow mode in m/s909

are shown in (f), the corresponding variables for the symmetric mode are910

shown in (g). The corresponding growth rates for the shallow and symmetric911

mode are marked with a red and black cross in a) and b), respectively. The912

wave numbers in a) and b) are scaled with the mixed layer Rossby radius (see913

text for definition). U and V at velocity grid points closest to the mooring914

positions and N2 interpolated on these points are taken as background values. 53915
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7 Interior, shallow and symmetric mode at K6 for background shear and strat-916

ification taken from March mean values in FLAME. Shown are the growth917

rate in 1/day (a) and phase velocity in m/s (b) as a function of the along-flow918

wavenumber k in 1/m for cross-flow wavenumber l = 0 (black) and l = 0.02/m919

(red). U and V at velocity grid points closest to the mooring positions and920

N2 interpolated on these points are taken as background values. The back-921

ground flow and planetary vorticity gradient are rotated by 22 degrees in922

anticlockwise direction, such that V becomes minimal. c), d) and e) show the923

eigenfunctions of u and v for the different modes. 54924

8 Predicted growth rates in FLAME in 1/day (a,b) of the interior mode, and its925

related EKE at around 100 m depth in cm2/s2 (c,d) during March (a,c) and926

September (b,d) in the southwestern LS. U and V at velocity grid points and927

N2 interpolated on these points are taken as background values. 55928

9 Seasonal cycle of monthly mean buoyancy frequency N in 1/s, vertical shear929

S =
√

(∂u/∂z)2 + (∂v/∂z)2 in 1/s and the logarithm of the Richardson num-930

ber Ri = N2/S2 along 57.6oN from FLAME. Also shown is the alongshore931

velocity component (solid white lines in m/s with contour interval of 0.1 m/s) 56932
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Fig. 1. Annual mean EKE in cm2/s2 in the LS, calculated from three years of the MITGCM
simulation. The contour interval is 50 cm2/s2. EKE is calculated using velocity deviations
from a seasonal mean using three years of model data. u and v have been interpolated on
tracer grid points prior to the analysis. White circles denote the position of the upstream
mooring K6, and the downstream moorings K7 and K8. Bars indicate the section shown in
Fig. 9.
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Fig. 2. Monthly mean EKE in cm2/s2 at K6 in MITGCM (a), FLAME (b) and moored
current data (c). EKE is calculated using band-pass (2 to 30 d) filtered velocity using
three (one) years of model data from MITGCM (FLAME) and from one year mooring data.
The EKE of the observational current data is estimated at five different depths (at around
90, 155, 205, and 310 m from ADCP data and around 660 m from RCM data). The black
contour lines indicate 10, 20, 50, 100, 150, 200 and 250 cm2/s2. The mooring does not cover
the upper 100 m due to surface reflection and vertical mooring displacement. u and v in
MITGCM have been interpolated on tracer grid points prior to the analysis. EKE at grid
points closest to the mooring positions are shown in a) and b).
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Fig. 3. Variance-preserving spectra of the alongshore flow for different moorings (K6, K7
and K8, for exact location see Fig. 1) estimated from moored ADCP data (a),(b) and (c)
(from one, two and two years in a,b,c, respectively) as well as from three years MITGCM
simulation (d),(e) and (f). The data was cut into 30 day segments, with 15 days overlap.
Each segment was detrended and multiplied with a hamming window. All segments within
one season are averaged. Winter (JFM) in black, spring (AMJ) in red, summer (JAS) in
blue and autumn (OND) in yellow. Tides and internal waves are removed from the ADCP
current data with a 40 hours low-pass filter. u and v in MITGCM have been interpolated
on the tracer grid points closest to the respective mooring position prior to the analysis.
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have been interpolated on tracer grid points prior to the analysis.
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Fig. 5. The interior mode at K6 calculated from March mean background shear and strat-
ification from FLAME. Shown are the growth rate in 1/day (a) and the phase velocity in
m/s (b) as a function of the (scaled) wave numbers. The wave numbers are scaled using

the local Rossby radius
∫ 0

−hN/fdz. Monthly mean background velocity U (solid) and V in
m/s (dashed) (c) and stratification N in 1/s (d) are also shown together with the vertical
structure functions of the predicted perturbation velocities u (solid) and v (dashed) in m/s
(e) and the resulting EKE ((u2 +v2)/2) in cm2/s2 (f) for the fastest growing mode. U and V
at velocity grid points closest to the mooring positions and N2 interpolated on these points
are taken as background values.
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Fig. 6. The shallow (red cross in a and b) and symmetric mode (black cross in a and b)
at K6 for background shear and stratification taken from January mean values in FLAME.
Shown are the growth rate in 1/day (a), phase velocity in m/s (b), monthly mean background
velocities U (solid) and V (dashed) in m/s (c), and the background stratification N in 1/s
(d). The Richardson number Ri is shown in (e) as black solid line, the red line indicates
Ri = 1. Velocity perturbations u (solid) and v (dashed) of the shallow mode in m/s are
shown in (f), the corresponding variables for the symmetric mode are shown in (g). The
corresponding growth rates for the shallow and symmetric mode are marked with a red and
black cross in a) and b), respectively. The wave numbers in a) and b) are scaled with the
mixed layer Rossby radius (see text for definition). U and V at velocity grid points closest to
the mooring positions and N2 interpolated on these points are taken as background values.
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Fig. 7. Interior, shallow and symmetric mode at K6 for background shear and stratification
taken from March mean values in FLAME. Shown are the growth rate in 1/day (a) and
phase velocity in m/s (b) as a function of the along-flow wavenumber k in 1/m for cross-flow
wavenumber l = 0 (black) and l = 0.02/m (red). U and V at velocity grid points closest
to the mooring positions and N2 interpolated on these points are taken as background
values. The background flow and planetary vorticity gradient are rotated by 22 degrees in
anticlockwise direction, such that V becomes minimal. c), d) and e) show the eigenfunctions
of u and v for the different modes.
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Fig. 8. Predicted growth rates in FLAME in 1/day (a,b) of the interior mode, and its
related EKE at around 100 m depth in cm2/s2 (c,d) during March (a,c) and September (b,d)
in the southwestern LS. U and V at velocity grid points and N2 interpolated on these points
are taken as background values.
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Fig. 9. Seasonal cycle of monthly mean buoyancy frequency N in 1/s, vertical shear S =√
(∂u/∂z)2 + (∂v/∂z)2 in 1/s and the logarithm of the Richardson number Ri = N2/S2

along 57.6oN from FLAME. Also shown is the alongshore velocity component (solid white
lines in m/s with contour interval of 0.1 m/s)
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