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Mixing Observatories at GEOMAR 

Ship-based  

microstructure 

systems 

Autonomous 

microstructure 

platforms 

(MicroRider / Glider) 



Ship-board microstructure measurements (2005-2011) 

• repetitive microstructure sections 

within the cold tongue region 

from 11 cruises during different 

seasons 

• individual stations with at least 3 

profiles  (>2000 profiles) 

• shipboard ADCP measurements 



May-July 2011, 0°N, 10°W 

 

November 2009, 0°N, 23°W 

• microstructure probe (Rockland Scientific) 

attached to a Glider 

• measures autonomously for up to 4 

weeks 

• profiles the water column to 1000m in 

about 45 minutes 

Mixed layer depth 

Time series of turbulent kinetic energy  



• elevated vertical shear of 

horizontal velocity at the 

base of the mixed layer 

extends from 3°S to 1.5°N 

• elevated turbulence levels 

below mixed layer are 

found between 3°S and 

1°N 

• little mixing in stratified 

layer below MLD south of 

4°N 

mixed layer 

depth 

turbulent dissipation e 
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Seasonal cycle of  

mixed layer heat budget at 0°N, 10°W  

(Hummels et al., 2013) 
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Vertical shear of horizontal current and turbulent 

kinetic energy dissipation rates 

Shear variance S2=(du/dz)2+(dvdz)2 

Turbulent dissipation rate e  

• elevated 

dissipation rates 

coincide with 

elevated shear 

variance 

• bursts of elevated 

turbulence in the 

thermocline occur 

sporadically and 

last up to a few 

hours 

 



Horizontal currents observed during the 

MircoRider/Glider mission 

• Strong tidal 

currents in record 

with amplitude of 

~8 cm s-1 

• core of the EUC 

located at 40m-

60m depth 

Zonal velocity 

Meridional velocity 



Vertical shear of horizontal current and turbulent 

kinetic energy dissipation rates 

Shear variance S2=(du/dz)2+(dvdz)2 

Turbulent dissipation rate e  

• elevated shear 

variance above 

the EUC core 

• elevated 

dissipation rates 

coincide with 

elevated shear 

variance 

• bursts of elevated 

turbulence in the 

thermocline occur 

sporadically and 

last up to a few 

hours 

 



Vertical shear of horizontal current and turbulent 

kinetic energy dissipation rates 

Shear variance S2=(du/dz)2+(dvdz)2 

Turbulent dissipation rate e  

• elevated shear 

variance above 

the EUC core 

• elevated 

dissipation rates 

coincide with 

elevated shear 

variance 

• bursts of elevated 

turbulence in the 

thermocline occur 

sporadically and 

last up to a few 

hours 

 



Average TKE dissipation rates in N2 and S2 bins 

Observations (1.5°N – 2°S) 

Upper Thermocline  

(high shear region) 

from base of the mixed 

layer to 20m below 

Thermocline 

(lower shear region) 

from 40m below the 

mixed layer to 150m  



Ri-dependent mixing parameterizations 

Pacanowski and Philander (1981) 

Peters et al., (1988) 
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Evaluation of Ri-dependent Parameterizations 

Zaron & Moum (2009) 
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Average TKE dissipation rates in N2 and S2 bins 

Upper Thermocline (MLD to MLD+20m) 



Average TKE dissipation rates in N2 and S2 bins 

Thermocline (MLD+40m to 150m) 



Evaluation of Ri-dependent Parameterizations 

Pac & Phi 81 

Peters et al high 88 

Peters et al low 88 

KPP Large et al 95 

Zaron & Moum 09 

Zaron & Moum rev 09 

 

Microstructure data 

   from 2°S-1.5°N  
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Microstructure data 

   from 2°S-1.5°N  

Equatorial 

Pacific 

microstructure 

data  
(Zaron & Moum ‘09) 
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Microstructure data 
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Evaluation of Ri-dependent Parameterizations 

Pac & Phi 81 

Peters et al high 88 

Peters et al low 88 

KPP Large et al 95 

Zaron & Moum 09 

Zaron & Moum rev 09 

 

Microstructure data 

   from 2°S-1.5°N  
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 existing Ri-dependent mixing parameterizations do not well reproduce  

 

 

 

 

Conclusions 



 

 

 

 

 

 

 

 

 

 

 

 

 

Mixing Observatories at GEOMAR 

 Parameterization of shear driven mixing in the tropical 

ocean 

 Parameterization of internal wave driven mixing 

 Conclusions  

 

 

 

 

Roadmap 


