
Marine and Petroleum Geology 68 (2015) 766–775

Contents lists available at ScienceDirect

Marine and Petroleum Geology

journal homepage: www.elsevier.com/locate/marpetgeo

Research paper

Continuous inline mapping of a dissolved methane plume at a

blowout site in the Central North Sea UK using a membrane inlet

mass spectrometer – Water column stratification impedes immediate

methane release into the atmosphere

Stefan Sommer∗, Mark Schmidt, Peter Linke

GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany

a r t i c l e i n f o

Article history:

Received 19 December 2013

Received in revised form 24 July 2015

Accepted 14 August 2015

Keywords:

Blowout

Methane

North sea

Plume mapping

Membrane inlet mass spectrometry

a b s t r a c t

The dissolved methane (CH4) plume rising from the crater of the blowout well 22/4b in the Central North

Sea was mapped during stratified water column conditions. Geochemical surveys were conducted close

to the seafloor at 80.3 m water depth, below the thermocline (61.1 m), and in the mixed surface layer

(13.2 m) using membrane inlet mass spectrometry (MIMS) in combination with a towed CTD. Seawater

was continuously transferred from the respective depth levels of the CTD to the MIMS by using an in-

line submersible pump. Close to the seafloor a well-defined CH4 plume extended from the bubble release

site ∼460 m towards the southwest. Along this distance CH4 concentrations decreased from a maximum

of 7872 nmol l−1 to less than 250 nmol l−1. Below the thermocline the well-defined CH4 plume shape

encountered at the seafloor was distorted and filaments were observed that extended towards the west

and southwest in relation to current direction. Where the core of the bubble plume intersected this depth

layer, footprints of high CH4 concentrations of up to 17,900 nmol l−1 were observed. In the mixed surface

layer the CH4 distribution with a maximum of up to 3654 nmol l−1 was confined to a small patch of

∼60 m in diameter. The determination of the water column CH4 inventories revealed that CH4 transfer

across the thermocline was strongly impeded as only ∼3% of the total water column inventory was lo-

cated in the mixed surface layer. Best estimate of the CH4 seabed release from the blowout was 1751

tons yr−1. The fate of the trapped CH4 (∼97%) that does not immediately reach the atmosphere remains

speculative. In wintertime, when the water column becomes well mixed as well as during storm events

newly released CH4 and the trapped CH4 pool can be transported rapidly to the sea surface and emitted

into the atmosphere.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In November 1990, a shallow gas pocket in the Central North

Sea (well 22/4b) UK was accidently drilled by Mobile North LTD

that resulted in a severe gas blowout. Although the gas flow

strongly decreased directly after the event, vigorous methane (CH4)

bubble ebullition still continues until today and has been ob-

served to emanate from a 60 m wide crater (Schneider von Deim-

ling et al., 2007; this volume). During a survey in May 1994 that

was conducted across the North Sea, CH4 concentrations of up
−1
to 1453 nmol L were recorded at the sea surface close to the
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lowout (Rehder et al., 1998) resulting in high fluxes of the promi-

ent greenhouse gas into the atmosphere. Public awareness of this

lowout ceased until the event of the Deepwater Horizon oil spill

n April 2010 in the Gulf of Mexico, leading to a need for the novel

ssessment of the risks and the environmental hazards involved in

arine oil and gas exploration.

Yet, to date except studies in this volume (Leifer and Judd, in

his issue) almost no attempts have been made to quantify blowout

ischarge rates of CH4 from the seafloor, nor to determine the dis-

ribution of the dissolved CH4 plume in the water column or to

ssess the CH4 release into the atmosphere. Here, we report on

he spatial distribution of the dissolved CH4 plume in the close

urrounding of the blowout that was measured on three different

epth levels at a high spatial resolution to constrain the water col-

mn CH4 inventory using quasi-continuous membrane inlet mass
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Water column physical properties during deployment of CTD #8 at 93 m

water depth; Pos.: 57°55.448′ N, 1°38.052′ E.
pectrometry (MIMS). The measurements were conducted during

tratified water column conditions where vertical density gradi-

nt suppresses turbulent diffusive transport (Linke et al., 2010;

eifer et al., in this issue; Schneider von Deimling et al., in this is-

ue) leading to trapping of a fraction of the gas released from the

eafloor below and within the thermocline (Schneider von Deim-

ing et al., 2011; Leifer et al., in this issue).

. Methodology

.1. Working area

The blowout site (well 22/4b) is located in the UK EEZ at

7°55′18′′N and 1°37′52′′E in the Central North Sea, for details of

athymetry see Schneider von Deimling et al. (2007; in this is-

ue). At this site, vigorous gas bubble release takes place that orig-

nates from an aquifer at the base of the Quaternary strata (Rehder

t al., 1998; Leifer and Judd, in this issue). Gas is released from

60 m wide crater that is formed within the 96 m deep sea

oor, for the detailed description of this site as well as its his-

ory since the blowout event in November 1990 see Schneider von

eimling et al. (in this issue; 2007). In situ sampling of gas bub-

les at 118 m water depth revealed the emanating gas represents

8–90% vol CH4 that is of biogenic origin (Schneider von Deim-

ing et al., in this issue). The bubble release creates a jet towards

he surface with a rising velocity of about 50 cm s−1 (Schneider

on Deimling et al., in this issue; Wilson et al., in this issue).

he core of the bubble stream is surrounded by bubbles, which

nstead of rising in a straight vertical line have been observed

o exhibit spiral vortical motions during their rise (Schneider von

eimling et al., in this issue). Observations using the two-manned

ubmersible JAGO during RV Alkor cruise AL290 in 2006 revealed

trong up- and downward convective currents close to the bubble

et.

.2. Data acquisition methods

During RV Alkor cruise AL374 (29.05.-11.06.2011; Linke et al.,

011) the distribution of dissolved CH4 in the near field of the

ubble plume (534 × 667 m) and it’s transfer through the wa-

er column to the mixed surface layer, where it eventually enters

he atmosphere, was studied during stratified water column con-

itions (Fig. 1, CTD#8 at 93 m water depth; Pos.: 57°55.448′ N,

°38.052’ E). The distribution of dissolved CH4 was mapped us-

ng a MIMS (see section 2.4) in combination with a video con-

rolled water sampling rosette equipped with a CTD (SBE9plus)

hat was towed across the blow out area (Fig. 2, for the tracks

ee Fig. 6A-C). Similar to the approach of Mächler et al. (2012), an

nderwater pump (DRE 100/2/G50V, AGB Pumpen, Hamburg, Ger-

any), typically used for rural sewage treatment, generated a con-

inuous water stream through a hose from the CTD to the labora-

ory, where quasi-continuous inline MIMS gas measurements were

ade (for details see below). The towing speed of this CTD sys-

em ranged between 0.5 and 0.8 kt s. GPS position was logged

arallel to the CTD data from an external GPS device, which was

ounted close to the CTD winch. A digital video telemetry system

Sea and Sun Trappenkamp, Germany; Linke et al., 2015) allowed

afe deployment and towing of the CTD system very close to the

ea floor.

In total, three video-guided CTD tracks were conducted in

he near-field of the bubble stream (Table 1). CTD track # 10

09.06.2011) was performed close to the seafloor at an average wa-

er depth of 80.3 m (Fig. 6C). CTD track # 11 (10.06.2011) took

lace below the thermocline at a water depth of 61.1 m (Fig. 6B).

he third CTD track (#12, 10.06.2011) was carried out in the mixed
urface layer at 13.2 m water depth to assess potential methane

elease into the atmosphere (Fig. 6A).

The deployments were conducted during a tidal phase cover-

ng predominantly either SW or NE current directions. The sam-

ling rate of the MIMS was 0.2 Hz. The actual response time and

ime needed to recover from high CH4 concentrations of e.g. up

o 8430 nM was determined using single distinct peaks beyond

ackground, indicating a reaction time of <20 s and a 95% re-

overy time of <60 s. During post-processing the sampling time

f the MIMS data was back-calculated to the sampling time of

he CTD system, which concurrently to the physical data fur-

her received the NMEA position signal of an external GPS al-

owing for geo-referencing of the CTD-as well as of the MIMS

ata. The time period between water sampling at the inlet of

he CTD and its arrival at the membrane inlet in the laboratory

as ∼2 min; this was considered during spatial analysis of the

ethane data. The 2D contour plots of the CH4 levels for each sur-

ey were constructed applying the kriging gridding procedure us-

ng the Surfer Version 9 software (Golden Software Inc.). The 3D

H4 distribution (see supplemental material S1) was determined

pplying inverse distance (isotropic) gridding of longitude, lati-

ude and water depth as well as trilinear CH4 concentration inter-

olation for volume rendering using Voxler 3.3 (Golden Software

nc.).

Supplementary data related to this article can be found online

t http://dx.doi.org/10.1016/j.marpetgeo.2015.08.020.

.3. Current measurements

The tidal regime, i.e. pressure, as well as the magnitude and

elocity of currents at the blowout site were measured during the

ime period 7.06.2011, 20:00 to 9.09.2011 17:30 UTC using a small

atellite Lander STL3 (Flögel et al., 2013) equipped with an upward

ooking 307.2 kHz ADCP (RDI-Teledyne Instruments) and a SBE16

lus V2 CTD. The STL3 was placed directly in the crater of the

low out (Position: 57°55.360′ N, 1°37.862′ E) in a water depth of

04 m. For the time period 3.06.2011, 07:00 until 6.06.2011 14:00

TC this system (STL1) has been further deployed in a distance of

doi:10.1016/j.marpetgeo.2015.08.020
https://www.researchgate.net/publication/232978600_Physical_limitations_of_dissolved_methane_fluxes_The_role_of_bottom_layer_processes?el=1_x_8&enrichId=rgreq-4df28ef3-5575-493e-86a6-311bf19a500e&enrichSource=Y292ZXJQYWdlOzI4NzIwMTk0NTtBUzozMDc2NzUwNjQxNDM4NzJAMTQ1MDM2Njg1OTU0MA==
https://www.researchgate.net/publication/232978600_Physical_limitations_of_dissolved_methane_fluxes_The_role_of_bottom_layer_processes?el=1_x_8&enrichId=rgreq-4df28ef3-5575-493e-86a6-311bf19a500e&enrichSource=Y292ZXJQYWdlOzI4NzIwMTk0NTtBUzozMDc2NzUwNjQxNDM4NzJAMTQ1MDM2Njg1OTU0MA==
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Fig. 2. Set up of methane measurement combining inline membrane inlet mass spectrometry and a towed video CTD. Water was pumped to the shipboard laboratory using

a pump which was submersed in about 10–15 m water depth. Within the laboratory this water stream was subsampled and transferred to the membrane inlet for gas

extraction. Care was taken to reduce temperature changes from the sampling point at the CTD until gas extraction in the inlet. The connection of water sample flow between

the subsampling site and just prior to the inlet is indicated by a and a’. For details see text.

Table 1

Details of the CTD surveys #10 (09.06.11), #11 (10.06.11) and #12 (10.06.11) conducted around the blowout. The start and end time (UTC) denotes the time period used for

the construction of the spatial CH4 distribution shown in Fig. 6A–C. Due to the vertical movements of the CTD during towing, average depth ± standard deviation is given.

CTD track Avg. depth (m) Start (UTC) End (UTC) Duration (h) No. of CH4 measurements Area covered (km2) Tidal regime

10 80.3 ± 4.2 07:29 10:30 3.0 2171 0.37 High to low, SW

11 61.1 ± 2.8 09:35 11:35 2.0 1444 0.72 High to low, SW

12 13.2 ± 0.5 12:44 17:02 4.3 3103 0.73 Low to high, NE
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about 29 nm from the blowout in the Sleipner oil field in a water

depth of 83 m (Position: 58°22.446′ N, 1°55.976′ E; 79 m water

depth).

2.4. Continuous in line gas measurements using a membrane inlet

mass spectrometer

Dissolved CH4 was measured ex situ using a membrane inlet

quadrupole mass spectrometer (GAM 200, InProcessInstruments,

Bremen) whose gas extraction inlet was inline with the water

stream that was continuously pumped to the laboratory through a

100 m long PVC hose (i.d.: 2.5 cm, wall thickness 4.5 mm, Fig. 2).

The entrance of the hose was mounted on the CTD frame be-

neath the Niskin bottles. The underwater pump (denoted as pump

in Fig. 2) yielded a flow rate of 31.9 L min−1 as determined by

measuring the time until a defined volume of 10 L was filled

and was clamped onto the CTD wire at a water depth of about

10–15 m. Although, some submersible pumps cause cavitation,

which would result in bubble formation, this was not observed.
he hose on deck and throughout its way to the laboratory was

nsulated thermally by using a foamed plastic mantle and addi-

ionally, by wrapping into rescue cover sheets to reduce temper-

ture changes. Water temperature at the hose inlet (CTD) and the

ose outlet outside on deck (denoted as outlet in Fig. 2) differed by

0.2 °C.

Plastic material is not entirely gas-tight hence diffusion of CH4

cross the hose wall might occur. The wall thickness of the PVC

ose was 4.5 mm; hence, according to the Einstein–Smoluchovski

elation (t = L2/2D, t: elapsed time, L: diffusion length, D: diffusion

onstant) the time needed for CH4 to diffuse through the tube wall

mounts to 598 h (DCH4 in plasticized PVC: 0.047 × 10−10 m2 s−1

t 25 °C; Kjeldsen, 1993). Hence, CH4 diffusion across the wall in

elation to high flow velocity of 31.9 l min−1 (i.e. 65 m min−1)

an be neglected. The water flow in the hose can lead to tem-

oral blurring of variations and carry over effects that can affect

he gas measurements. However, given the high fluid flow veloc-

ty, the boundary at the hose wall can be assumed thin reducing

hese effects. In addition, sub-sampling from the hose using a steel

apillary was conducted at its centre where the free flow velocity
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Fig. 3. Comparison between MIMS based and standard gas chromatographical CH4

measurements during CTD track #11. The time span underlain by grey area was

used to construct the contour plot shown in Fig. 6B.
as highest (Fig. 2 panel A), which furthermore suppresses such

arry over effects. This is also indicated by the fast recovery time

s mentioned before.

Lastly, flow rate variability of the submersed pump might af-

ect slightly the measured CH4 distribution. The flow rate vari-

bility of the pump is unknown but cannot be excluded. Hence,

n order to estimate the effect of variable flow rates of the sub-

ersed pump on the spatial distribution of CH4 we assumed a

% variability of the flow rate (±1.6 L min−1). This would cor-

espond to a delay or early arrival of the water-front moving

hrough the hose to the site, where subsampling was conducted

sing a steel capillary (i.e. after ∼100 m, for details see below

nd Fig. 2) of ±4.6 s. At a maximum towing speed of 0.8 kn

his results in a variability in the moved distance of ±1.9 m.

ith a meridional extension of the investigation area of about

40 m this corresponds to an uncertainty of ±0.4% in the loca-

ion of a gas measurement. We are aware that bubble entrain-

ent might have occurred, which might have led to increased CH4

oncentrations directly within the plume but not in the remaining

rea.

Subsampling of water from the PVC hose (Fig. 2, panel A) took

lace in the laboratory by using a steel capillary (i.d. 1.1 mm)

hat was connected to the glass membrane inlet. The distance be-

ween the location of subsampling and the membrane inlet was

bout 150 cm. Along this distance the steel capillary was perma-

ently cooled to the respective in situ temperature of the sub-

ea hose inlet. To achieve the best possible temperature stability,

he membrane inlet itself was kept submersed in a water bath

sing a Dewar vessel. This arrangement was placed in a cooler.

uring the deployments the temperature of the inlet increased

y a maximum of 0.2 °C. Constant flow of the subsampled wa-

er through the membrane inlet was achieved using a peristaltic

ump (Ismatec; denoted as PP in Fig. 2) generating a flow rate

f 3.5 ml min−1. The design of the glass membrane inlet followed

hat of G. Lavik (Max Planck Institute for Marine Microbiology, Bre-

en, Fig. 2). Within the glass inlet the water was sucked through

permeable silicone tube (Dow Corning, Cat. No. 508-007, length

0 mm, i. d. 1.57 mm, o. d. 2.41 mm). The wall thickness of the sil-

cone tube was 0.42 mm, time needed for CH4 to diffuse across the

ube wall amounts to 4 s (DCH4 in silicone: 221 × 10−10 m2 s−1 at

5 °C; Kjeldsen, 1993). Gas flow from the inlet to the quadrupole

ass spectrometer was conducted in a steel capillary supported

ith Helium that was supplied through a fused silica capillary (i.d.

00 μm, see Fig. 2, green line). The distance between the inlet

nd the ion source of the quadrupole was about 80 cm. An in-

ine cryo-trap (–35 °C, ethanol) between the inlet and the mass

pectrometer was used to reduce water vapour. Concentrations

f CH4 were obtained from calibrated ion currents at the mass

o charge ratio of 15. A Secondary Electron Multiplier was used

s a detector. Ion currents of CH4 were calibrated using aqueous

H4 standards of 1.8, 9.8, 100, 1,000, and 10,000 ppm. For each

alibration these standards were produced by equilibrating pre-

ltered (0.2 μm) seawater (80 ml) in a 100 ml flask with respec-

ive standard gases at the in situ temperature for 30 min in a wa-

er bath (Fig. 2, panel A). System response to these standards (9.8,

00, 1,000, 10,000 ppm) was linear. Laboratory tests confirmed

hat the time period of 30 min is sufficient to reach equilibrium

Walther, 2013). The CH4 detection limit of the MIMS is about

0 nmol L−1. MIMS derived methane concentrations were cross-

alidated with concentrations that were measured in discrete wa-

er samples that were taken during the different pump CTD tracks

y Niskin bottles (Fig. 3). Seawater from Niskin bottles was trans-

erred into pre-evacuated glass bottles and dissolved gases were

xtracted according to Keir et al. (2008). The methane concentra-

ion of extracted gas samples were determined onboard RV Alkor

y using a “Thermo Trace ultra” gas chromatograph (equipped
ith FID, RTX1-60 m capillary column, Ø = 0.53 mm, N2 carrier

as).

. Results and discussion

.1. Bubble release and transport

Vigorous gas bubble release from the sea floor was recorded

ydro-acoustically using a 38 kHz shipboard echosounder (Fig. 4),

ut was also observed visually during the video-guided CTD sur-

eys as well as during a dive with JAGO during RV Alkor cruise

L290 in 2006 (Schneider von Deimling et al., in this issue). Dur-

ng slack water conditions the bubble flare was observed in the

onar extending to about 65 m and penetrated into the thermo-

line that extended from about 60 to 40 m (Figs. 1 and 4). The

iameter of the bubble stream was about 10–20 m at the crater

im (Schneider von Deimling et al., in this issue). The direction of

he bubble plume distinctively changed with current strength and

urrent direction.

The current recordings during the STL3 deployment in the

rater of the blow out were strongly disturbed by the reflections of

he gas bubbles as noted in Nauw et al. (in this issue) and Wiggins

t al. (in this issue). Hence, the current regime was taken from the

TL1 deployment that was conducted 3 days before at the Sleipner

rea. Since the seafloor topography between the two ADCP sites

s rather smooth and there is no profound change in water depth,

his slightly remote site can be used for this approach. Addition-

lly at both sites the same tidal regime is present. Between the

ides at the 29 nm remote site and the blowout site there is only

slight time difference as the tides propagates from the north to-

ards the south. The changes of the current direction and velocity

howed a strong tidal component with SW and NE as major direc-

ions (Fig. 5). For the CTD survey #11 the major current directions

ere shown in Fig. 6B as trajectories of the movement of a wa-

er parcel starting at the blowout position. These trajectories were

erived calculating the distance a hypothetical water parcel would

ave moved in the time interval of 85.6 s between each subse-

uent ADCP velocity and direction measurement and summing up

hese vectors over a time period for 1 h.
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Fig. 4. A, Gas flare at the blowout site well 22/4b recorded with the shipboard 38 kHz echosounder. Insert b shows the gas flare almost reaching to the sea surface.

Fig. 5. Major current directions recorded during the Satellite Lander deployment

STL1 from the 3.06.2011, 07:00 until 6.06.2011 14:00 UTC in a distance of about

29 nm from the blowout in the Sleipner oil field. The percentages denote the rela-

tive abundance of the respective current velocities.
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3.2. High-resolution spatial dissolved CH4 distribution at the blowout

site

The CTD surveys with quasi-continuous online MIMS measure-

ments allowed fast mapping of the dissolved CH4 plume at the

blowout at very high spatial resolution, which by no means can be

achieved during conventional CTD water sampling casts. Although

such mass spectrometric offshore gas detection techniques are still

scarce in the literature, prominent examples such as the use of

an underwater membrane inlet mass spectrometer for the track-

ing of hydrocarbon plumes exist, for instance the determination

of subsea methane plumes after the Deepwater Horizon oil spill

(Camilli et al., 2010), localization of seafloor petroleum contamina-
ion (Camilli et al., 2009), or studying naturally occurring oil and

as seeps off California (Valentine et al., 2010). These examples

ighlight the enormous potential of mass spectrometry for iden-

ifying subsea hydrocarbon seepage (leakage) and monitoring the

istribution of hydrocarbon plumes in the water column in gen-

ral.

At 80 m water depth, only a few meters above seafloor (CTD

urvey #10), a well-defined dissolved CH4 plume could be moni-

ored that extended from the blowout crater, indicated by a white

ircle in Fig. 6C, to about 460 m towards southwest. Along this dis-

ance, the CH4 concentration was diluted from a maximum CH4

oncentration of 7872 nmol L−1 to less than 250 nmol L−1. Shortly

fter the start of the monitoring survey, the bubble plume was

ncountered transecting the 80-m depth horizon in a direction of

35° and in a distance of ∼50 m from the injection point leaving

footprint of strongly elevated CH4 levels (Fig. 6C).

Although the CTD survey #11 below the thermocline en-

ompassed a similar tidal regime compared to CTD survey #10

Table 1), the well-defined CH4 plume shape encountered during

TD survey #10 was not observed but instead was much more dis-

orted and characterized with the occurrence of filaments extend-

ng towards west and southwest (Fig. 6B). The lateral extension of

levated CH4 concentrations was not fully covered during this sur-

ey. The vertical eddy-diffusive transport of solutes in a stratified

ater column is strongly impeded, whereas the lateral transport

f dissolved gases is enhanced due to the absence of horizontal

ensity gradients (McGinnis et al., 2004; Linke et al., 2010; Schnei-

er von Deimling et al., 2011). Hence, with increasing distance to

he bubble stream the thermocline represents an effective barrier

or dissolved constituents. During bubble plume experiments in a

tratified lake it has been shown that the core of the plume itself

s highly turbulent and well-mixed with regard to the distribution

f temperature and oxygen (McGinnis et al., 2004). The near-field

s highly complex with multiple detrainments occurring at vari-

us water depths due to lateral advective cross flow (Leifer et al.,

009). Similarly to this observation, during the CTD survey #11 a

trong lateral SW current, which is indicated by the ADCP data,

robably induced the formation of filaments of elevated CH4 levels

o spread out along isopycnals. This also is indicated by the super-

mposed current trajectories shown in Fig. 6B. The spatial spread
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Fig. 6. A–C: Dissolved methane plume measured during the CTD surveys #10 at 80.3 m (panel C), #11 at 61.1 m (panel B) and #12 at 13.2 m water depth (panel A). The

tracks of the surveys and the positions where measurements were obtained are indicated (black crosses). The white circle indicates the position of the blowout crater at the

seafloor. The red circles denote the position of the CTD at a certain time. The black arrows indicate the location of the start of the different surveys. Flow trajectories are

provided for survey #11, the times provide the start time of each trajectory. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 7. Temperature measured during CTD survey #12 at 13.2 m water depth. The tracks of the survey and the positions where measurements were obtained are indicated

(grey crosses). The red circles denote the position of the CTD at a certain time. The black arrow indicates the location of the start of the surveys. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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of the dissolved CH4 plume further nicely correlates with hydro-

acoustical observations that clearly indicate lateral extrusions of

the bubble plume below the thermocline (Schneider et al., in this

issue; Wilson et al., in this issue).

In comparison to CTD survey #10 much higher CH4 concentra-

tion maxima of around 17,300, 12,900 and 17,900 nmol L−1 could

be determined during CTD survey #11. The concentration maxima

were measured in patches of about 100–160 m in diameter, which

were located in southwestern, western, and northwestern direc-

tions at distances of about 100–140 m from the blowout crater. As

already reasoned above, it seems that these patches were caused

by the bubble plume interaction with the 61 m water depth layer,

leaving a footprint of strongly elevated methane concentrations

when it rotates with changing current direction from south at the

beginning of the survey to northwest towards the end of the sur-

vey. Interestingly, the diameter of these patches is only slightly

bigger than that determined for the 80 m layer survey confirming

the laboratory- and field observations of an almost non-expanding

bubble core (McDougall, 1978; McGinnis et al., 2004) as well as

field observations that were made about the shape of the bubble

plume of the investigated blowout (Schneider von Deimling et al.,

in this issue).

The CTD survey #12 in the well mixed surface layer at 13 m

water depth revealed elevated dissolved CH4 concentrations of up

to 3654 nmol L−1 confined to a well-defined spot of about 60 m

in diameter in close proximity of the gas bubble injection point
Table 2

Methane inventories calculated for the different CTD surveys.

CTD track Avg. depth(m) Grid cell area/no. Grid cellsa (m2)/n Area of e

10 80.3 98.0/2178 0.21

11 61.1 75.6/2571 0.19

12 13.2 79.4/608 0.05

a Number of grid cells with CH4 levels >50 nmol L−1.
b Area where CH4 levels >50 nmol L−1 were measured.
c CH4 inventory determined for the area of excess CH4.
Fig. 6A). This is astonishing, since similarly to the CTD surveys

10 and #11, this survey #12 also comprised changes in the cur-

ent direction, hence, a more blurred CH4 distribution would have

een expected. It appears, that only at locations where the bub-

le stream is breaking through the thermocline and reached the

ixed surface layer, elevated levels of dissolved CH4 can be mea-

ured. Indeed, this was shown by the coincidence of enhanced CH4

evels with colder temperatures compared to average temperatures

easured at this depth level (Fig. 7). As has been suggested by sev-

ral plume models (McGinnis et al., 2004, and references therein)

nd a plume description (Schneider von Deimling et al., in this is-

ue), colder bottom water must have been entrained at the base of

he bubble plume and transported by it to this depth horizon and

ventually to the sea surface (Fig. 7), as reported in the CTD data

n Leifer et al. (in this issue), too. It is however required that this

pward advection is compensated by a downward directed flow

Schneider von Deimling et al., in this issue; Wilson et al., in this

ssue). Upward transport of cold water was not detected during

TD survey #11, which was likely due to the very low tempera-

ure difference of ∼0.1 °C between the water body at 61 m and

he bottom water at about 80 m (Fig. 1). There might have been

he possibility to observe the downward flow of warmer water

rom within the thermocline into the colder water body at 61 m as

ownward jets reported by Wilson et al. (in this issue). However,

emperature changes measured during CTD survey #11 are mainly

ontrolled by vertical uplift of the towed CTD into the thermo-
xcess CH4
b (km2) CH4 inventoryc (kg) CH4 inventory (for 1 km2) (kg)

0.25 1.2

1.45 7.8

0.02 0.5
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line, which was caused by variable towing speed of the research

essel.

Questions might arise to what extent the CH4 distributions

hown in Fig. 6A–C represent the actual state at the time of the

urvey rather than superimposed over previous CH4 inventories.

ig. 6A–C depict the dissolved methane distribution at the time

f the measurement including the effects of transport, mixing

nd consumption i.e. by microbial methane oxidation. Since con-

umption is relatively slow the presented distribution is mainly

overned by transport. Hence great care has been taken to con-

uct these measurements within one tidal phase (i.e. one current

egime) (cf. Fig. 5). Our measurements (Figs. 3, 6A-C) further indi-

ate that between the two subsequent current regimes when the

lume is directed either in SW or NE direction very little if any

H4 remained in the water column from the previous tidal phase,

hich could contribute to the actual measurements.

.3. From depth level specific CH4 inventories towards an estimate of

he total CH4 mass flux

Vertical mass flux of CH4 via bubble ebullition and bubble

lumes has been assessed using transport/dissolution models in

ombination with field data (e.g. Leifer and Patro, 2002; McGinnis

nd Little, 2002; McGinnis et al., 2004; Linke et al., 2010). Further

ttempts were made by directly measuring bubble ebullition using

ideo footage from which bubble characteristics such as size and

ise velocity can be determined (Leifer et al., in this issue; Schnei-

er von Deimling et al., in this issue).

In an approach similar to that of Heeschen et al. (2005) and

au et al. (2006), we used the measured dissolved CH4 invento-

ies of the investigated depth layers (Fig. 6A-C) to extrapolate the

otal water column CH4 inventory and combine this with an best

stimate of the time needed to build up this inventory in order

o obtain a conservative estimate of the fraction of dissolved CH4

ass release from the blowout site.

The CH4 inventories of the different CTD surveys at 80.3, 61.1,

nd 13.2 m water depth were calculated using the grid that was

enerated to construct the contour plots depicted in Fig. 6A–C. Due

o the detection limit of the MIMS of ∼20 nmol L−1 and in order

o consider potential carry over effects only CH4 concentrations as-

igned to the respective grid cell in excess to 50 nmol L−1 were

onsidered. The cell inventory was calculated by multiplying the

H4 concentration assigned during the gridding procedure to each

ell with the respective grid cell area for a layer thickness of 10 cm

Table 2). Subsequently, the CH4 inventories for the survey at 80.3,

1.1 and 13.2 m water depth were calculated by summing up the

espective cell inventories, which amount to 0.25, 1.45, and 0.02 kg

H4 respectively.

As discussed above, the thermocline acts as a barrier prevent-

ng elevated dissolved CH4 mass flux to the mixed surface layer. To

ccount for this during the extrapolation of the total water column

nventory, the water column was subdivided into the three depth

ones, the zone below the thermocline (BTC, 80.3 to 61.1 m), the
able 3

ater column CH4 inventories extrapolated for the zone below the thermocline (BTC),

etermined based on the time needed to build up the inventories in the different depth

arming potential (GWP) of CH4 for 100 yr period of 25 (Shindell et al., 2009).

Depth zone CH4 inventory (tons) C

BTC 0.16

TC 0.15

MSL 0.01

total 0.32 1

a A build up time of 1 h instead of the actual time period of 4.3 h was used for survey
b The GWP is defined as the integrated global mean radiative forcing out to a selected

009).
hermocline (TC, 61.0 to 40 m) and the well-mixed surface layer

MSL, 39.9 to the surface). The total inventories of the zone be-

ow and within the thermocline were extrapolated assuming a lin-

ar relationship between the CH4 inventories determined during

he three different CTD surveys. This approach accounts for de-

rainments of CH4 rich water not only to occur at the base of the

hermocline but also at various depths as indicated by field mea-

urements and the bubble plume model of McGinnis et al. (2004).

ater depths deeper than 80.3 m to the seafloor and the volume

f the crater of the blow out were not considered due to a lack

f appropriate CH4 data allowing the calculation of the inventory.

ithin the mixed surface layer density gradients can be neglected,

ence the CH4 distribution measured at the 13.2 m depth horizon

as assumed to be uniform throughout this layer. This is also indi-

ated by the studies of Schneider von Deimling et al. (in this issue)

nd Leifer et al. (in this issue), which based on hydro-acoustics re-

ort the formation of a well-confined secondary bubble plume at

his depth zone. A bubble plume forms when gas is vigorously re-

eased from the seabed. When this plume reaches the thermocline

nly the largest bubbles avoid detrainment and continue as a sec-

ndary plume with a momentum high enough to overcome this

arrier and reach the sea surface (McDougall, 1978). The invento-

ies determined for the BTC, TC and MSL indicate that CH4 transfer

cross the thermocline is indeed strongly impeded as only ∼3% of

he total water column inventory is located in the mixed surface

ayer (Table 3).

The methane mass release from the blowout was approached

y assessing the time needed to build up the calculated dissolved

H4 inventories, which beside physico-chemical properties of the

lume is depending on current velocity and direction. This ap-

roach assumes that at least between each subsequent ebb tide

hase the dissolved CH4 inventory from the previous phase was

ompletely renewed due to horizontal advection as is indicated in

ig. 6A–C. According to the duration of the surveys #10 and #11,

hich both present spatially clearly defined dissolved CH4 distri-

utions with no apparent effects of CH4 carry over from the pre-

ious phases time periods of 3 and 2 h, respectively (see Table 1),

ere assumed as maximum time periods needed for the formation

f the respective dissolved CH4 inventories. Due to the irregular

rack covering a much longer time period than would be actually

eeded to map the small patch of dissolved CH4 in the MSL 1 h

as arbitrarily assumed for CTD survey #12.

We are aware that our estimate of the seabed CH4 release from

he blowout of 1247 tons yr−1 in 2011 involves simplifications and

ncertainties. But nevertheless it supplements other attempts to

urther constrain the CH4 release from the blowout site using a

ompletely different methodology. As generally the aerobic micro-

ial CH4 oxidation is viewed as being quite slow (Reeburgh, 2007

nd references therein) microbial CH4 removal during the short

ime periods of the different surveys has been neglected in the

stimate. Our approach further assumes that the CH4 in the bub-

les becomes fully dissolved until it reaches the sea surface. How-
the thermocline (TC) and the mixed surface layer (MSL). The release rates were

zones, for details see text. The CO2 equivalent was calculated assuming a global

H4 release (tons yr−1) CO2 equivalentb (mio tons yr−1)

714 0.015

452 0.009

80a 0.002

247 0.030

#12.

time of an emission pulse of 1 kg CH4 relative to that for 1 kg CO2 (Shindell et al.,
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ever, gas measurements of bubbles reaching the sea surface re-

vealed that they still contained ∼25% CH4 (Schneider von Deim-

ling et al., in this issue). Yet, these authors report that a major part

of the rising bubbles was trapped in the thermocline and a sec-

ondary plume is formed in the mixed surface layer. This plume is

characterized with a relatively low bubble transport to the sea sur-

face so that only about 2% of the methane released at the seafloor

is emitted into the atmosphere, justifying the above assumption.

Another major uncertainty represents the time needed to build up

the inventories at the different depth levels, which particularly for

the inventory in the mixed surface layer was difficult to constrain.

Given the restricted spatial CH4 distribution and the overall low

CH4 levels determined during the CTD survey #12, an even 4 times

shorter time interval (15 min) would increase the total CH4 re-

lease by 19% to 1488 tons yr−1. In the gas bubble plume Schneider

von Deimling et al. (in this issue) report the formation of micro

methane gas bubbles with diameters less than 200 μm. Appar-

ently, they became trapped below the thermocline and probably

rapidly swept away by currents. Hence, a fraction of the methane

is exported to the far field of the gas plume, which was not en-

tirely covered during this study. Especially during CTD survey #11

the entire dissolved CH4 plume was not mapped completely and

the depth zones below 80.3 m and inside the crater was not con-

sidered. Assuming an 25% higher inventory for depth level 61.1 m,

the overall CH4 release increases by another 15% to about 1751

tons yr−1. This estimate corresponds to a CH4 release of ∼78 L s−1

under atmospheric pressure, which is about 9 fold lower than the

gas release of 90 L s−1 that was determined based on the bubble

volume and number of bubbles under in situ pressure (Leifer et al.,

in this issue). However, dramatic variations in emission strength

have been documented for this site (Wiggins et al., in this is-

sue). Assuming a global warming potential of 25 (Shindell et al.,

2009), the estimated source strength of the blowout in compar-

ison to other major anthropogenic greenhouse gas sources such

as for instance the yearly CO2 emission caused by the German

traffic in 2012 (Umwelt Bundesamt, 2013) is minor, representing

only about 0.02% and might be considered negligible. Still, all the

different approaches (hydroacoustics, modelling, measurements of

the dissolved gas phase, etc.) to determine the source strength of

methane release in such a particular setting inherit their uncer-

tainties. Hence, the growing opportunity of combining these meth-

ods for cross-validation might contribute to better constrain the

actual gas emission in future.

4. Conclusions

Despite the uncertainties involved in the calculation of the CH4

inventory, it became apparent that a substantial part of ∼97% of

the dissolved methane originating from the blowout site (well

22/4b) does not immediately reach the atmosphere, but is retained

in the water column below and presumably within the thermo-

cline. This corresponds with observations of the structure of the

bubble plume made by Schneider von Deimling et al. (in this is-

sue), who estimated that only about 2% of the entire amount of

CH4 injected into the water column is directly entering the at-

mosphere. The fate of the trapped vast dissolved CH4 fraction re-

mains speculative. Microbial oxidation in the water column acting

on longer time scales as well as the slow transfer of CH4 across the

MSL into the atmosphere also considering methane that has been

transported away from the blowout by currents was hypothesized.

In wintertime, when the water column becomes well-mixed newly

released CH4 but also the trapped CH4 pool can be easily trans-

ported to the sea surface via turbulent diffusion and emitted into

the atmosphere (e.g. Schneider von Deimling et al., 2011). It is even

conceivable, that following a quiescent phase during strong storm

events, the trapped CH pool might be emptied at once, resulting
4
n a CH4 pulse into the atmosphere. These aspects are certainly

mportant and need attention in the environmental impact assess-

ent of the blowout but require a more detailed study of the dis-

olved CH4 concentrations in the surrounding of the blowout as

ell as atmospheric CH4 measurements during different seasons.
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