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Abstract

The equatorial deep jets (EDJs) are strong vertically alternating zonal flows extending over

almost the full depth of the equatorial oceans. They are trapped in a narrow equatorial band

of roughly 1◦ latitude about the equator, associated with a vertical scale of between 300 m

and 700 m; in the Atlantic Ocean, they have a time scale of about 4.5 years. The cross-

equatorial width of the EDJs is found to be roughly 1.5 times larger than implied by the

linear inviscid theory based on their vertical scale. In this work, EDJs are simulated using a

forced, dissipative low-frequency equatorial basin mode in a shallow water model associated

with a high-order baroclinic vertical normal mode. The lateral mixing of momentum is found

to result in a widening of the simulated EDJs; the widening of the EDJs by the lateral mixing

of momentum is considered as one of the explanations of the enhanced cross-equatorial width of

the observed EDJs. The zonal velocities measured by the Argo floats are used for comparison

of the meridional profiles and the flow strength with the simulations. A value of 300 m2/s

for the lateral mixing coefficient is found to be sufficient to account for the observed width of

the EDJs; also, the implementation of the background barotropic mean flow leads to a better

agreement with the observations at latitudes higher than 2.5◦ either side of the equator.
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Zusammenfassung

Die “equatorial deep Jets” (EDJs) sind stark vertikal alternierend zonalen Strömungen, die

sich nahezu über die gesamte Tiefe der äquatorialen Özeane erstrecken. Die meridionale Aus-

dehnung ist jeweils 1◦ N/S und die vertikale Ausdehnung variiert zwischen 300 und 700m;

im Atlantik haben die EDJs einer Zeitskala von etwa 4,5 Jahren. Die meridionale Breite der

EDJs ist ungefähr 1,5 mal größer als die von lineare reibungsfreien Theorie impliziert wird. In

dieser Arbeit werden die EDJs mithilfe eines “shallow water models” simuliert und können als

ein “forced, dissipative low-frequency basin mode” mit einem “high-order baroclinic vertical

normal mode” dargestellt werden. Es wird herrausgefunden, dass die “lateral mixing of mo-

mentum” zu einer meridional Ausdehnung der simulierten EDJs führt; die Ausdehnung durch

“lateral mixing of momentum” wird als eine der Ursachen der vergrößerten meridionale Breite

betrachten. Die aus Argo Float daten abgeleitet zonalen Geschwindigkeiten sind für Vergle-

ich mit den Simulationen verwendet. Mit “lateral mixing coefficient” von 300 m2/s zeigt das

Modell gute bereinstimmung mit Messungen bezglich der meridionale Breite der EDJs; zudem

verbessert die Umsetzung der hintergründig barotropen mittlere Strömung die Ergebnisse der

Modellsimulationen, insbesondere bei Breitengraden höheren als 2, 5◦ auf beiden Seiten des

Äquators.
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1 INTRODUCTION

1 Introduction

1.1 Equatorial Deep Jets

In the past few decades, Equatorial Deep Jets (EDJs) have been confirmed by observations

as a ubiquitous feature along the equator of all three oceans. The jets were first discovered

by Luyten and Swallow (1976) in the equatorial Indian Ocean from full-depth current profiles.

The existence of such jets in the Pacific Ocean was then reported by Hayes and Milburn (1980),

Leetmaa and Spain (1981) and Eriksen (1981). In the Atlantic ocean, the presence of the jets

was first inferred by Eriksen (1982) from hydrographic data, and then confirmed by Ponte and

Luyten (1990) from direct current measurements.

Observations in all three oceans have revealed similar characteristics of the EDJs. They

are deep zonal currents that alternate their direction vertically, extending from beneath the

Equatorial Undercurrent (EUC) down to at least 3000 m (cf. Fig. 1b of Eden and Dengler

(2008)). These flows are trapped within a narrow equatorial band of approximately 1◦ latitude

about the equator with amplitudes up to 20 cm/s and vertical scale in hundreds of meters.

In the Atlantic Ocean, a periodic behaviour of the EDJs has been noted by many authors.

Johnson and Zhang (2003) estimated a 5± 1 yr period for the EDJs calculated from available

deep CTD stations. Bunge et al. (2008) and Brandt et al. (2011) reported a roughly 4.5 yr

period by fitting a plane wave to moored ADCP data at 23◦W and Argo float data (see Fig.

2.3 discussed later), respectively. A downward phase propagation of about 100 m/yr has also

been noted in these papers. This, according to linear internal wave theory, is related to upward

energy propagation, which implies a deep generation mechanism for EDJs (Brandt et al., 2011).

However, the meridional scale of EDJs is found to be 1.5 times larger than implied by their

vertical scale based on inviscid, linear theory (Johnson and Zhang , 2003); a similar feature is

also found in the equatorial Pacific Ocean (Muench et al., 1994).

Fig. 1.1a, an update from Fig. 5 of Brandt et al. (2012), shows the zonal velocity obtained

from moored observations at 23◦W at the equator. Apart from the EUC in the surface layer, a

deep jet signal with eastward and westward velocities and downward phase propagation between

200 m and 700 m can be clearly detected. A harmonic fit to the same data in the depth range of

250 - 600 m using a period of 1670 days (Fig. 1.1b) reveals the structure of the observed EDJs,

confirming their periodicity and the downward phase propagation. An interesting feature of

the harmonic fit amplitude is that at about 400-m depth, a minimum occurs, which may be
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Figure. 1.1 | (a) Zonal velocity from moored ADCP data at 23◦W at the equator similar to

Fig. 5 of Brandt et al. (2012). The data have been updated using the newly recovered moored

ADCP data from cruise MSM22. (b) Harmonic fit of the same zonal velocity between 250 and

600 m, using a period of 1670 days. Note that the depth range plotted in (b) is different from

that in (a).

due to a superposition of equatorial waves at this depth.

Eden and Dengler (2008) conducted a simulation of Atlantic EDJs using four different

versions of a general circulation model, which differ in their horizontal and vertical resolution.

Two of them have an identical horizontal resolution of 1/3◦ but 45 and 450 vertical levels,
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respectively; while the other two have an higher identical horizontal resolution of 1/12◦ but

45 and 94 vertical levels, respectively. All the simulations mimic an EDJ-like structure at

35◦W at the equator. The best representation happens in the model with 1/12◦ horizontal

resolution and 94 vertical levels. A clear improvement can be already seen in the model with

1/3◦ horizontal resolution and 450 vertical levels compared to those model runs with 45 vertical

levels. However, even their best simulation reproduced neither the observed strength of Atlantic

EDJs nor the enhanced energy observed at 2− 2.5◦ away from the equator.

Hua et al. (1997) proposed a symmetric instability theory to explain the generation mech-

anism of EDJs, which suggests that a shear instability caused by the large scale flow field at

the equator could trigger the deep jets. Eden and Dengler (2008) also tested the symmetric

instability theory in their model simulation. They noted that a zonally constant zonal mean

flow has to be assumed, which is quite unrealistic compared with the complications in the real

world, and they concluded that it is unlikely that symmetric instability plays a dominant role

for the generation of deep jets in reality. D’Orgeville et al. (2007), Hua et al. (2008), and Fru-

man et al. (2009) have proposed that barotropic destabilization of mixed Rossby-gravity waves

with short zonal wavelength and low baroclinic vertical mode in the western boundary region

of the equatorial oceans could transfer energy to long Kelvin waves of a high baroclinic mode,

this is a more likely explanation.

It is reported that in the tropical Atlantic, the sea surface climate can be affected by the

EDJs (Brandt et al., 2011). A 4.5-yr climate cycle that coincides with the period of Atlantic

EDJs has been identified for sea surface temperature, wind and precipitation in the tropical

Atlantic (Fig. 1b of Brandt et al. (2011)), and which is related to the upward energy propagation

of EDJs mentioned above. Moreover, a close relation between the observed oxygen variability

at depth in the equatorial Atlantic and EDJs has been found by Brandt et al. (2012), together

with an implied eastward oxygen flux associated with the EDJs, contributing to maintain the

oxygen-rich equatorial region between the two oxygen minimum zones of both hemispheres.

Regarding the importance of the equatorial deep jets to the tropical Atlantic climate, more

explorations must be made to deepen the understanding of EDJs.

1.2 Vertical Normal Modes

Since the Atlantic EDJs are the concern of this work, and a shallow water model is used

to simulate some horizontal features of the EDJs, the concept of baroclinic vertical normal
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1.2 Vertical Normal Modes 1 INTRODUCTION

modes and low-frequency equatorial basin modes must be introduced first in order to make the

connection between the shallow water model and the equatorial deep jets.

For a continuously stratified ocean with flat bottom whose horizontal extent is much larger

than its vertical extent, certain simplifications can be made and a separation of variables tech-

nique can be applied. The result of this method is that the variables describing the ocean can

be expressed as a sum of an infinite set of modes, each of which consists of the product of the

vertical structure function and its corresponding horizontal structure function (Gill , 1982; Gill

and Clarke, 1974). Taking zonal and vertical velocity u and w on the Cartesian coordinates as

an example, we can write

u(x, y, z, t) =
∞∑

n=1

ũn(x, y, t)p̂n(z) (1)

w(x, y, z, t) =
∞∑

n=1

w̃n(x, y, t)ŵn(z) (2)

where the notation ũn and w̃n represent the horizontal structure function, and p̂n and ŵn

represent the vertical structure function, respectively; n = 0, 1, 2, ...etc denotes the nth vertical

normal mode.

The vertical structure functions p̂n(z) and ŵn(z) satisfy the differential equations in Sturm-

Liouville form:
d

dz
[

1

N2

dp̂n
dz

] +
1

c2
n

p̂n = 0 (3)

d2ŵn
dz2

+
N2

c2
n

ŵn = 0 (4)

with boundary conditions:

ŵn(z) = 0 and
1

N2

dp̂n(z)

dz
= 0 at z = 0 (the ocean suface) (5)

and

ŵn(z) = 0 and
1

N2

dp̂n(z)

dz
= 0 at z = −H (the ocean bottom) (6)

The solutions of Eq. 3 and Eq. 4 are

p̂n(z) = Ancos(
nπz

H
) (7)

ŵn(z) = Bnsin(
nπz

H
) (8)

with a separation constant cn = NH
nπ

, where N2 = −ρ−1
0 g dρ̄

dz
is the buoyancy frequency, H is the

total water depth, ρ0 is a typical water density. Note that N2 in this case is a constant profile
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since a uniform stratification is assumed. An and Bn are constants. Here cn is also the phase

velocity of the equatorial Kelvin waves that will be mentioned later on.
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Figure. 1.2 | Vertical structure of the first three and the 16th vertical modes calculated from

the mean CTD profile at 23◦W at the equator. Note that in this example, N2 is also calculated

from observations, so it varies vertically.

Fig. 1.2 illustrates the vertical structure of the first three and 16th vertical mode computed

from the mean CTD profile at 23◦W at the equator computed from cruise data. p̂1(z) has 1

zero-crossing, p̂2(z) has 2 zero-crossings, and p̂n(z) has n zero-crossings. The phase velocity

decreases with n. In this example, c1 ≈ 2.40 m/s, c3 ≈ 0.93 m/s, and c16 ≈ 0.17 m/s.

Note that the modes are orthogonal to each other, indicating that each mode is statistically

independent of any other mode. Also, for each normal mode, the horizontal structure satisfies

the linear shallow water equations in the following form,

ũnt − fṽn = −gη̃nx (9)

ṽnt + fũn = −gη̃ny (10)

η̃nt +Hn(ũnx + ṽny) = 0 (11)
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1.3 Equatorial Basin Modes 1 INTRODUCTION

where cn =
√
gHn is the separation constant of the nth mode and also the corresponding gravity

wave speed, η̃nt represents the isopycnal displacement, and Hn is the equivalent depth. Note

that cn for each mode is given by cn = NH
nπ

. Also, for a given normal mode of interest, the

equivalent depth Hn can be computed from Hn = c2
n/g. The shallow water equations given

above govern the horizontal behaviour of the associated normal mode.

1.3 Equatorial Basin Modes

A low-frequency basin mode, in the limit of the long-wave approximation, on a meridionally

infinite equatorial beta plane, is described by Cane and Moore (1981), and consists of an

eastward propagating equatorial Kelvin wave and a reflected westward propagating long Rossby

wave. The correspondence between EDJs and this gravest equatorial basin mode for a high

order baroclinic normal mode has been mentioned by several authors. For example, Johnson

and Zhang (2003) discussed the similarity between the EDJs and the first-meridional-mode

equatorial Rossby wave; D’Orgeville et al. (2007) discussed the correspondence of the oscillating

period of the EDJs and the first equatorial basin mode; Brandt et al. (2011) pointed out the

consistency between Atlantic EDJs and high order baroclinic basin modes.

The low-frequency basin mode for a given baroclinic normal mode with separation constant

cn can be understood as a Kelvin wave propagating eastward with phase velocity cn across the

basin of width Le, and being reflected at the eastern boundary as a first-meridional-mode long

Rossby wave, which propagates towards the western boundary with phase velocity cn
3

and is

reflected as a Kelvin wave in the next cycle and so on. Therefore the period of one complete

cycle is 4Le

cn
. The 1670 days period of Atlantic EDJs mentioned above corresponds to a phase

velocity of 0.17 m/s, associated with about the 15th vertical normal mode (cf. Fig. 11 in Brandt

et al. (2008)). In the research of Brandt et al. (2008) a set of vertical structure functions was

fitted to the detrended moored zonal velocity data at 23◦W at the equator. The resulting

vertical mode spectrum gives a distinct peak at the 15th mode, indicating that the Atlantic

EDJ are closely related to the 15th baroclinic vertical normal mode.

1.4 Lateral Mixing of Momentum

In the simulation of the Atlantic EDJs with a shallow water model, we primarily examine

the dependence of the meridional width about the equator, and the amplitude of the zonal

velocity, on the specified lateral mixing of momentum. Yamagata and Philander (1985) have
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1 INTRODUCTION 1.4 Lateral Mixing of Momentum

discussed the underlying physics. For a baroclinic equatorial basin mode, the zonal current

along the equator is approximately in geostrophic balance. The strength of the zonal flow is

then determined by the meridional density gradient either side of the equator by the thermal

wind equations. Therefore a reduction of the flow strength along the equator resulting from a

momentum flux into the adjacent areas leads to a decrease of the meridional density gradient.

However, below the region where the EUC generates strong vertical shear, diapycnal mixing

is extremely weak (Dengler and Quadfasel , 2002), with typical diapycnal diffusivities of order

10−6m2/s. It follows that diapycnal mixing is not responsible for reducing the meridional den-

sity gradients, hence a greater meridional width is required to reduce the meridional density

gradient. (Greatbatch et al., 2012). Moreover, Brandt et al. (2008) suggested that a lateral

mixing coefficient of 400 m2/s is enough to account for the reducing oxygen concentration from

west to east in the core of the oxygen tongue along the equator.

The shallow water model used in this work and the observational data for comparison with

the model, are described in the following chapter. In Chapter 3 the results from the model

simulation and the comparison with the observations will be made. Finally, a summary and

discussion of our conclusions will be presented in the last chapter.
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2 MODEL AND DATA

2 Model and Data

2.1 The Shallow Water Model

Our work is based on a shallow water model, with which the horizontal structure of the Atlantic

EDJs associated with a high-order baroclinic vertical normal mode is simulated. We idealize the

tropical Atlantic as an rectangular basin with a flat bottom, whose zonal extent is 55◦ longitude

similar to that in reality, and meridional extent is from 10◦S to 10◦N . Apart from the resonant

forcing that is applied to counter the dissipation, the bottom friction and Newtonian cooling

terms are switched off, allowing us to examine the direct influence of the lateral mixing of

momentum on the horizontal behaviour of the EDJs. As to be shown in the following chapters,

two scenarios of experiments are carried out. The first consists of model simulation without

the background mean flow; the second includes the background mean flow.

2.1.1 Experiment without Mean Flow

2.1.1.1 Basic Equations

The governing equations for a given baroclinic vertical normal mode in spherical coordinates

(cf. Greatbatch et al. (2012)) are

ut − fv = − g

acosθ

∂η

∂λ
+X + F u (12)

vt + fu = −g
a

∂η

∂θ
+ F v (13)

ηt +
He

acosθ

[
∂u

∂λ
+
∂(cosθv)

∂θ

]
= 0 (14)

where u and v are horizontal velocity components in the eastward and northward direction,

respectively; a is the radius of the earth; θ and λ represent latitude and longitude, respectively;

f = 2Ωsinθ is the Coriolis parameter, in which Ω = 7.27×10−5 rad/s is the angular velocity of

the Earth’s rotation; g = 9.8 m/s2 is the gravity acceleration; η is the isopycnal displacement;

X represents the forcing required to balance the dissipation; F u and F v are the lateral mixing

of momentum with eddy viscosity Ah; and He = 2.93 × 10−3 m is the equivalent depth. As

discussed above, this value of He corresponds to cn ≈ 0.17 m/s, associated with a equatorial

basin mode period TB = 1670 days for the Atlantic Ocean.
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2 MODEL AND DATA 2.1 The Shallow Water Model

2.1.1.2 Lateral Mixing of Momentum

The lateral mixing of momentum is given by

F u = Ahf
λ (15)

in the zonal direction, and

F v = Ahf
θ (16)

in the meridional direction, where Ah is the horizontal eddy viscosity. The lateral mixing of

momentum is parameterized in spherical coordinates in the form of conservation of momentum

by

fλ = ∇2u+
u(1− tan2θ)

a2
− 2sinθ

a2cos2θ

∂v

∂λ
(17)

fλ = ∇2v +
v(1− tan2θ)

a2
+

2sinθ

a2cos2θ

∂u

∂λ
(18)

and ∇2 is the Laplacian operator given by

∇2Q∗ =

[
1

a2cos2θ

∂2Q∗

∂λ2
+

1

a2cosθ

∂

∂θ

(
cosθ

∂Q∗

∂θ

)]
(19)

2.1.1.3 Forcing

To counter the dissipation resulting from the lateral mixing of momentum, an oscillatory forcing

is applied in the zonal momentum equation Eq. 12, which is generally given by

X = X0sin(ωt) (20)

where ω = 2π/TB is the angular frequency, TB is the gravest equatorial basin mode period (see

Fig. 3.3 later for discussion of the resonance of the forcing with a basin mode), and X0 is an

arbitrary amplitude. Because we are interested in the influence of the position of the forcing

on the horizontal structure of the Atlantic EDJs, the forcing is confined in specific regions in

different experiments, namely “full”, “centre”, “west”, “east”, and “equator”. For the “full”

case, the forcing is applied zonally uniformly over the full basin with a uniform amplitude X0,

and TB = 1.44288 × 108 s (corresponding to 1670 days). For the case “centre”, “west”, and

“east”, the forcing is confined over the central third, western third and eastern third of the basin

with exactly the same X0 and TB as in the case “full”, respectively. For the case “equator”,

the forcing is given by

X = X0e
−(βy2/2c)sin(ωt) (21)

13



2.1 The Shallow Water Model 2 MODEL AND DATA

where y = aθ (θ in radians); β = 2Ω/a = 2.3 × 10−11 m−1s−1 and hence the forcing is still

zonally uniform but confined within an equatorial Rossby radius of deformation of the equator

with the same TB and X0 used in the former experiments.

2.1.1.4 Boundary Conditions

A free slip boundary condition is applied to the lateral viscosity term on all the boundaries.

This means that at the boundaries, the velocity normal to the boundaries is zero, i.e. u = 0

at eastern-western boundaries and v = 0 at northern-southern boundaries; and the gradient of

the velocity parallel to the boundaries is zero, i.e. vλ = 0 at eastern-western boundaries and

uθ = 0 at northern-southern boundaries. On the northern-southern boundaries sponge layers

are used to eliminate Kelvin wave propagation along these boundaries (Yang and Liu, 2003),

the sponge layers can be understood as a damping term added to η in the continuity equation

(Eq. 14). It functions only in the boundary layers to damp wave propagation there.

For each experiment in this scenario, a horizontal eddy viscosity Ah and wind forcing X are

specified, the model is forced by the wind forcing to a steady oscillatory state, and a Arakawa

C-grid is used here as a natural way of finite differencing.

2.1.2 Experiment with Mean Flow

2.1.2.1 Basic Equations

The shallow water equations for a baroclinic mode including the barotropic mean flow (U, V )

in spherical coordinates are

ut − (f +ROT )v − ζV = − 1

acosθ

∂(gη + E)

∂λ
+X + F u (22)

vt + (f +ROT )u+ ζU = −1

a

∂(gη + E)

∂θ
+ F v (23)

ηt +
H

acosθ

[
∂u

∂λ
+
∂(cosθv)

∂θ

]
+

1

acosθ

[
∂(Uη)

∂λ
+
∂(cosθV η)

∂θ

]
= 0 (24)

where the mean flow (U, V ) satisfies

1

acosθ

[
∂U

∂λ
+
∂(cosθV )

∂θ

]
= 0, (25)

where (U, V ) are defined by a streamfunction as

U = −1

a

∂ψ

∂θ
, and (26)

14



2 MODEL AND DATA 2.1 The Shallow Water Model

V =
1

acosθ

∂ψ

∂λ
(27)

and are calculated by centred differencing from ψ (Fig. 2.2).

Also, in the basic equations the term ROT represents the relative vorticity of the mean flow,

given by

ROT =
1

acosθ

[
∂V

∂λ
− ∂(cosθU)

∂θ

]
, (28)

ζ represents the relative vorticity of the perturbations about the mean flow, given by

ζ =
1

acosθ

[
∂v

∂λ
− ∂(cosθu)

∂θ

]
(29)

and E represents the perturbed part of the kinetic energy, given by

E = uU + vV (30)

2.1.2.2 Barotropic Mean Flow

The barotropic mean flow is calculated using the zonal velocity obtained from 24 cruises along

23◦W , listed in Table 1. To calculate the stream function of the mean flow, we first take the

zonal velocities below 300 meters to avoid the influence of the strong currents in the upper

ocean, such as EUC. We average the zonal velocity over all the cruises and over the depth,

giving a mean profile of the zonal velocity between 5◦S and 5◦N along 23◦W . Then the mean

of the zonal velocity is removed in order to prevent any net transport by the mean flow in that

latitude range. The stream function ψ of the mean flow is obtained by integrating Eq. 26 with

latitude. Afterwards, the stream function is multiplied by a zonal structure function Eq. 31,

giving ψ a longitudinal dependence. The zonal dependence function is given by

plat =
1

2
tanh (αx(x− xW − x0))− 1

2
tanh (αx(x− xE + x0)) (31)

where tanh is the hyperbolic tangent function; αx = 0.855 is a stretching factor that determines

the slope of the transition zone (see caption of Fig. 2.1), x represents longitude, xE and xW are

the location of eastern and western boundary, respectively; x0 = 3.5◦ latitude is the distance

from the centres (red dots in the upper plot of Fig. 2.1) of the transition zones to the eastern

and western boundaries. Doing so gives a stream function that is zonally uniform between the

two transition zones. The stream function decays to zero within the transition zones and is

zero at the boundaries (lower plot in Fig. 2.1).
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2.1 The Shallow Water Model 2 MODEL AND DATA

table. 1 | List of the cruises used to calculate the mean velocity section at 23◦W for the

calculation of the mean flow.

Cruise section Max depth (m)

Thalassa (Aug 1999) 6◦S − 6◦N , 23◦W 6000

Seward Johnson (Jan 2000) 6◦S − 4◦N , 23◦W 2000

Meteor 47/1 (Apr 2000) 5◦S − 4◦N , 23◦W 5000

Meteor 55 (Oct 2002) 0◦ − 10◦N , 24◦W 650

Polarstern ANT XXII/5 (June 2005) 20◦S − 20◦N , 23◦W 300

Meteor 68/1 (May 2006) 2◦S − 0.5◦N , 23◦W 500

Ron Brown (June 2006) 5◦S − 13.5◦N , 23◦W 1500

Meteor 68/2 (JuneJuly 2006) 4◦S − 15.25◦N , 23◦W 1300

Ron Brown (JuneJuly 2006) 5◦ − 14.5◦N , 23◦W 1500

Ron Brown (May 2007) 4◦ − 15.5◦N , 23◦W 1500

Maria S. Merian 08/1 (Apr. 2008) 7.5◦ − 14◦N , 23◦W 600

LAtalante (FebMar 2008) 2◦S − 14◦N , 23◦W 400

LAtalante (Mar 2008) 2◦S − 14◦N , 23◦W 1300

Maria S Merian 10/1 (NovDec) 2008 4◦ − 14◦N , 23◦W 1000

Polarstern ANT XXV/5 (AprMay 2009) 20◦S − 20◦N , 23◦W 250

Endeavour 463 (May 2009) 5◦S − 3◦N , 23◦W 725

Meteor 80/1 (OctNov 2009) 6◦S − 15◦N , 23◦W 600

Polarstern ANT XXVI/1 (OctNov 2009) 20◦S − 20◦N , 23◦W 250

Meteor 80/1 (Nov 2009) 6◦S − 15◦N , 23◦W 4500

Meteor 81/1 (Feb 2010) 11.5◦S − 13◦N , 22◦W 1200

Polarstern ANT XXVI/4 (AprMay 2010) 5◦S − 13.5◦N , 23◦W 250

Maria S. Merian 18/2 (May 2011) 0◦ − 4◦N , 23◦W 2000

Maria S. Merian 18/2 (MayJune 2011) 5◦S − 5◦N , 23◦W 5200
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Figure. 2.1 | The zonal structure function (Eq. 31) (upper panel). The stream function of

the barotropic mean flow (lower panel). In the upper panel, the two steep branches with red

dots near the western and eastern boundaries are the transition zones given by the hyperbolic

tangent function; the red dots are the centres of the transition zones.
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Figure. 2.2 | The staggered grid for the finite-differencing in the experiment with mean flow.

The barotropic mean flow is added to the shallow water equations. We then force the model

with the same oscillatory forcing and note the effect of the mean flow. Following Sadourny

(1975), a grid illustrated in Fig. 2.2 is used in the simulation with mean flow. The other

conditions and setup of the model simulations are identical as in the model setup without

mean flow. As before, we test the model solution using different specifications of Ah and

forcing X.

In both scenarios, a two-level Adams-Bashforth scheme is applied to integrate the equations,

except that the sponge layers (see 2.1.1.4 about sponge layers) are integrated implicitly; the

other terms are integrated explicitly. The horizontal resolution for both scenarios is 0.1◦.

To satisfy the CFL criterion (i.e. c∆t
∆x

< 1) and keep the model stable in time, time steps

∆t = 2.88576 × 104 s and ∆tMF = 0.96192 × 104 s are applied in the scenario without mean

flow and with mean flow, respectively.

2.2 Observational Data

To compare the horizontal structure of the simulated Atlantic EDJs with observational data, the

YoMaHa’07 dataset is used, which contains estimates of velocities of deep and surface currents

18



2 MODEL AND DATA 2.2 Observational Data

Longitude

D
a
te

 

 

35W 25W 15W 5W 5E

Jan.1998

Jan.2000

Jan.2002

Jan.2004

Jan.2006

Jan.2008

Jan.2010

Jan.2012

−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure. 2.3 | Equatorial zonal velocities from 1000-dbar Argo float data. This is a redraw

of Fig. 4 in Brandt et al. (2011) using updated data. The velocity data (coloured dots)

were obtained between 1◦S and 1◦N . The colour shading represents the dominant interannual

variability in the equatorial Atlantic achieved by a plane-wave fit through maximizing the

explained variance.

obtained using data derived from the trajectories of Argo floats. The first measurement was

on August 04,1997 and the data are updated monthly. Argo floats are designed to measure the

velocities at their parking depth and make CTD profiles on their way to and from the surface.

The collected data are transmitted to ARGOS satellites when the floats are at the sea surface.

Each saved data point includes the information about longitude, latitude, depth, Julian time,

zonal velocity, meridional velocity and the error estimates of the velocities. The unit of the

velocities is cm/s. A detailed description of YoMaHa’07 dataset can be found in Lebedev et al.

(2007).

Since we are interested in the horizontal structure of the deep jets, only the zonal velocities

measured by the Argo floats, whose parking depth is 1000 dbar, were extracted. The missing

values and the velocities with an error estimate greater than 2 cm/s, as well as the velocities

greater than 4 times of the standard deviation from the mean zonal velocity at 1000 dbar

depth, have been excluded to filter the outliers. A choice of region is then made based on the

availability of Argo float data. Fig. 2.3 is an updated version of Fig. 4 in Brandt et al. (2011).
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Figure. 2.4 | Histogram of zonal velocity in the equatorial band (between 1◦S and 1◦N).

The estimated normal probability density function is drawn in red curve. Note that 38 bins

are used here, the number of bins is the square root of the number of available data. Note that

the normal density function is generated by using the parameters estimated from the data.

The coloured dots show that in the tropical Atlantic (between 1◦S and 1◦N) zonal velocities

from Argo floats at 1000-dbar depth are mostly available between 35◦W and 15◦W throughout

the whole time. A plane wave fit obtained by maximizing the explained variance reveals a

harmonic period of 1563 days (corresponding approximately to a basin mode period for the

15th baroclinic mode) with a wavelength of about 16.4× 103 km and an explained variance of

about 15.7%. This explained variance is only slightly more than a half of the value in Brandt

et al. (2011), and may have resulted from the variations in the newly updated data. Though in

the newly updated data, the measurement location tends towards the eastern half of the basin,

most available data throughout the entire time shown in Fig. 2.3 are between 35◦W and 15◦W .

Hence, we limit the application of data in the region between 35◦W and 15◦W and 5◦S and

5◦N .

Fig. 2.4 is the histogram of the zonal velocity data between 1◦S and 1◦N . 38 bins are used

and the number of bins is the square root of the number of available data. The red curve is the

estimated normal density function. The zonal velocity measured by Argo floats between 1◦S

and 1◦N are roughly in a normal distribution with the mean close to −0.17 cm/s and standard
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deviation of about 8.05 cm/s. 95% of the data lie between -15.8 and 15.8 cm/s.
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3 RESULTS

3 Results

3.1 Model Results

3.1.1 Model Simulation without Background Mean Flow

Prior to the equatorial deep jets simulation, a unforced equatorial low-frequency basin mode

described above has been set up. The initial conditions for this test follows the analytic solution

of Cane and Moore (1981):

[u, v, η] = [−itan2s, iωy(sec2s)2, 1]×
√
cos2sei

y2

2
tan2s (32)

where i is the imaginary unit, ω is the frequency, s = ω(x−Xe), and Xe is the basin width.
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Figure. 3.1 | Time evolution of the zonal velocity for the gravest basin mode test case for

Ah = 10 m2/s. Note that the time is normalized by the gravest equatorial basin mode period

(1670 days), corresponding to Time = 1 in the figure. Units are noted along the colour bars.

Note that as a test experiment, a reduced gravity shallow water model is used. The governing

equations are still the same as Eq. 12 - 14 but with the gravitational acceleration g replaced

by reduced gravity g′, and the equivalent depth He by a water layer thickness H. In order to
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keep the gravest basin mode period 1670 days, we choose the gravity wave speed c = 0.17 m/s.

A layer thickness H = 200 m is chosen for the consistency with the observed vertical scale of

the equatorial deep jets; the reduced gravity g′ is then equal to 1.445 × 10−4 m/s2. In this

test model run, the lateral eddy viscosity Ah is set to be 10 m2/s, and there is no external

forcing applied to counter the dissipation. The other model parameters, such as the horizontal

resolution, the integrating scheme, etc., are identical to the later model runs.
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Figure. 3.2 | Time evolution of the interface displacement for the gravest basin mode test

case for Ah = 10 m2/s. Note that the time is normalized by the gravest equatorial basin mode

period (1670 days), corresponding to Time = 1 in the figure. Units are noted along the colour

bars.

Fig. 3.1 and 3.2 illustrate the time evolution of both zonal velocity u and isopycnal displace-

ment η along the equator within two oscillation periods. Similar to Fig. 3 in Cane and Moore

(1981), both u and η alternate in sign with time, indicating the propagation of equatorially

trapped Kelvin and long Rossby waves. However, the reducing amplitude of both variables

with time reflects the dissipation caused by the lateral mixing. In the centre of the basin in

Fig. 3.1, especially within the first oscillating cycle, a focusing caused by many different Rossby

waves can be seen (see Fig. 3.12 discussed later).
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Figure. 3.3 | The square root of the zonally and temporally averaged square of the zonal

velocity along the equator as a function of the period of the forcing. The time average is

computed over the final steady oscillating cycle, and Ah = 10 m2/s. Note that along the x-

axis, the period of forcing is normalized by the gravest basin mode period TB = 1670 days, and

along the y-axis, the amplitude of
√
u2 is normalized by the maximum value.

After the test experiment of the gravest equatorial basin mode, we start to use the shallow

water model for a high-order baroclinic vertical normal mode, given by Eq. 12 - 14. In order to

overcome the dissipation shown in Fig. 3.1 and 3.2, a periodic zonal forcing (Eq. 20) is applied

over the basin. To test for resonance with a basin mode, we started with a series of experiments

forced by a spatially uniform forcing over the full basin given by Eq. 20, in which the oscillating

period of the forcing (corresponding to 2π/ω) for each experiment differs from each other, but

the amplitude of the forcing for each experiment stays constant, and Ah = 10 m2/s. We ran

the model in each experiment until it comes to a steady oscillating state, which basically means

that the input energy given by the forcing is equal to the dissipation caused by the lateral

mixing, so the model output stays exactly the same from one cycle to the next. Then we

recorded the last 10 complete oscillating cycles for each experiment corresponding to a given

period of forcing.

Fig. 3.3 shows the square root of the zonally and temporally averaged square of the zonal

24



3 RESULTS 3.1 Model Results

Longitude

T
im

e

 

 

u

45W 30W 15W 0E 10E
0

0.5

1

1.5

2

[m
/s

]

−20

−15

−10

−5

0

5

10

15

20

Longitude

T
im

e

 

 

η

45W 30W 15W 0E 10E
0

0.5

1

1.5

2

[m
e
te

rs
]

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure. 3.4 | Time evolution of the zonal velocity (left) and the isopycnal displacement (right)

along the equator for Ah = 10 m2/s in the case “Full”. Positive u and η represent eastward

velocity and downward isopycnal displacement, respectively. These two variables are plotted

over the same time span in the steady oscillatory state. Note that due to the periodicity of

the model output, only two complete oscillating cycles are shown here, and that the time is

normalized by the model period (1670 days), corresponding to Time = 1 in the figure. Units

are noted along the colour bars.

velocity along the equator as a function of the period of the forcing. The time average is

calculated over the final steady oscillating cycle. It is clear that the largest response of the

amplitude occurs when the period of wind forcing coincides the period of the gravest equatorial

basin mode, which is 1670 days. Interestingly, a second peak occurs when the period of the

forcing is half of the basin mode period, which corresponds to the second basin mode with twice

the frequency of the gravest basin mode.

In order to keep the resonance and keep the model in a steady oscillating state after spin-up,

all the following model runs without mean-flow, are set to have a fixed forcing amplitude, and

fixed forcing period (1670 days). We first still keep the forcing spatially uniform over the full

basin, and run the model with different values of Ah, in order to detect the effect of the lateral

eddy viscosity term on the amplitude as well as the width of the equatorial deep jets. We set

Ah = 10, 50, 100, 200, 300, 400, 500, 600 m2/s, respectively.

Fig. 3.4 shows the time evolution of the zonal velocity and the isopycnal displacement along

the equator for the case of Ah = 10 m2/s. Exactly two cycles in the steady oscillating state are
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Figure. 3.5 | The same as in Fig. 3.4, except for Ah = 200 cm2/s. Exactly the same model

time span of u and η is taken as in the Ah = 10 m2/s case. Please notice that different scales

are used for the colour bars for u and η compared to Fig. 3.4 and that the unit of each variable

is the same as in Fig. 3.4.

shown, and the maximum amplitude of neither of the variables changes with time, so it can

be concluded that the wind forcing (with a period of 1670 days) has successfully counteracted

with the dissipation caused by the lateral mixing term.

Fig. 3.5 and Fig. 3.6 illustrate the same variables as in Fig. 3.4, except that Ah = 200 m2/s

and Ah = 600 m2/s, respectively. For all the cases, the time span over which u and η are plotted

corresponds to the same model time range. Comparing the three lateral mixing cases, one can

clearly see that the amplitudes of u and η strongly decrease as Ah increases, especially on the

western side of the basin, indicating a strong damping effect of the lateral mixing term. Due to

the smaller phase velocity of the equatorial Rossby waves (manifesting as a longer propagating

time), the damping effect is greater on the Rossby waves than the Kelvin waves. A weak

focusing can be sensed at the centre of the basin of the zonal velocity for Ah = 10 m2/s (Fig.

3.4), while it does not appear in Fig. 3.5 or 3.6.

Before further proceeding, a few snapshots help us to have a direct impression of the model

output as well as the effect of the lateral eddy viscosity term. Fig. 3.7a and 3.7b are snapshots

of zonal velocity and isopycnal displacement for three different Ah cases taken simultaneously

from the model. Zonally symmetric structure is obvious, and similar to the time evolution

plots, the amplitude of the model response decreases as the lateral mixing coefficient increases.
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Figure. 3.6 | The same as in Fig. 3.4, except for Ah = 600 cm2/s. Exactly the same model

time span of u and η is taken as in the Ah = 10 m2/s case. Please notice that the scales for

the colour bars are the same as in Fig. 3.5 and that the unit of each variable is the same as in

Fig. 3.4.

On the eastern side of the basin, the zonal velocity has a maximum along the equator and

decays on either side with latitude, — the signature of the equatorially-trapped Rossby waves.

In order to examine the influence of the lateral mixing of momentum on the horizontal

structure of the Atlantic EDJs, we start with the forcing case “Full”. For each Ah in the “Full”

case, the square root of the zonally and temporally averaged square of the zonal velocity,
√
u2,

is calculated, making it a function of latitude. The time average is computed over the final

steady oscillating cycle, and the zonal average is done over the longitude range between 30◦W

and 15◦W in the model domain. This longitude band is chosen in correspondence with the

same longitude band used for processing the Argo float data (see Section 2.2). Fig. 3.8 shows

this quantity for 8 different Ah values as a function of latitude between 2◦S and 2◦N . The

results are zonally symmetric with maxima at the equator. It is obvious that the amplitude of√
u2 at the equator decreases dramatically as Ah increases.

We then normalize the quantity in Fig. 3.8 by the corresponding maximum value for each

Ah case, so that the normalized results have the same dimensionless maximum as plotted in

Fig. 3.9. It is clear that the curves become broader with increasing Ah. To measure the width

Le of the simulated EDJs quantitatively, we calculate the meridional distance over which
√
u2

decreases to 1/e of its maximum value on the equator. This corresponds to, in Fig. 3.9, the
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Figure. 3.7 | Simultaneous snapshots of zonal velocity (a) and isopycnal displacement (b) for

the cases Ah = 10, 200 and 600 m2/s, respectively. Please note that the colour bar scale for

u or η is set to be identical in each case to simplify the comparison, and that all of these six

snapshots are taken at the same time step in the model. The units are noted along the colour

bars.

horizontal width of each curve at
√
u2 = 1/e (black dashed line). The same process is then

repeated to all the other forcing specifications, making a direct comparison between the effect

of the different forcing locations possible.

Apart from all the model simulations, a theoretical prediction of the EDJ width as a function

of Ah is given by a scale analysis, following Greatbatch et al. (2012). Under the approximation

of an equatorial β-plane (Gill , 1982), we work in a limited range of latitudes centred around

the equator. The unforced zonal momentum equation with the lateral mixing term is:

−Ah∇2u+
∂u

∂t
− βyv = −g ∂η

∂x
(33)

where ∇ is the Laplacian operator given by

∇2 =
∂2

∂x2
+

∂2

∂y2

Its non-dimensional form is given by scaling the interface displacement η and time t with H

and T , respectively; the horizontal length scale x and y with L and Le, respectively, and zonal

velocity u and meridional velocity v with U and V , respectively. We assume a basin, whose

zonal length scale is considerably larger than the meridional length scale (i.e., Le � L), and

that zonal velocity decays exponentially as it moves away from the equator (i.e., u = Ue−y
2/L2

e).
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Figure. 3.8 | The square root of the zonally and temporally averaged square of the zonal

velocity as a function of latitude, for the forcing case “Full” in the simulation without mean

flow. All the Ah values used are shown here. The time average is computed over the final

steady oscillating cycle, and the zonal average is done over the longitude range between 30◦W

and 15◦W in the model domain. The unit of
√
u2 is m/s, and the unit of Ah is m2/s.

The balance of terms at the equator, y = 0, requires that
(

2Ah
L2
e

+
1

T

)
U = −gH

L
(34)

For Le � L, the long wave approximation can be made, so the meridional momentum

equation reduces to

βyu = −g∂η
∂y

(35)

Taking the y derivative of Eq. 35 and setting y = 0, it follows that

βu = −g∂
2η

∂y2
(36)

Assuming again that η has an e−y
2/L2

e dependence, the scaling shows that

βU = −g2H

L2
e

(37)

Combining Eq. 34 and Eq. 37 gives a function of Le:

L4
e −

2L

βT
L2
e −

4AhLT

βT
= 0 (38)
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Figure. 3.9 | The same quantity as in Fig. 3.8, but normalized by the corresponding maximum

for each case. Note that the units for Ah are the same as in Fig. 3.8.

Due to the dominance of the gravest Rossby wave in the model results for the “Full” case,

we could argue that the phase velocity of c/3 (c =
√
gH) is approximately equivalent to the

zonal width of the basin L divided by the time scale T as follows

c

3
=
L

T

Therefore, Eq. 38 becomes

L4
e −

2c

3β
L2
e −

4AhTc

3β
= 0 (39)

which can be solved as a quadratic equation with the result

Le =

√√√√ c

3β
+

√
c2

9β2
+

4AhTc

3β
(40)

As mentioned in the introduction, the meridional width of the observed Atlantic EDJs is

found to be 1.5 times larger than the theoretical width implied by the vertical structure of

the EDJs, based on linear inviscid theory (Johnson and Zhang (2003)). We can calculate the

cross-equatorial width for the gravest Rossby wave in the same way as we calculated Le for the

model response, which gives a value of Le = 0.65◦ for the model parameters. This value agrees
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Figure. 3.10 | The e-folding width (in degrees latitude) of the model response for different

values of the lateral mixing coefficient Ah. In the different cases, the forcing is applied over the

whole basin (Full), the equatorial band (Equator), the west third of the basin (West), the centre

third of the basin (Centre), and the east third of the basin (East). Please refer to subsection

2.1.1.3 for details of the forcing. The theoretical prediction of the width (Theory) is also plotted

(Eq. 40).

with the theoretical width given by Eq. 40 at Ah = 0, as follows

Le =

√
2c

3β
≈ 0.63◦ (41)

To give a good fit to the model response (case “Full” in Fig. 3.10), T in Eq. 40 is chosen to

be one third of the basin mode period (1670/3 = 417.5 days). The corresponding theoretical

width is plotted as the black solid line in Fig. 3.10.

Fig. 3.10 shows the cross-equator width of the simulated EDJs as a function of Ah for

different forcing specifications (cf. subsection 2.1.1.3 for details of the forcing). As expected,

Le increases as Ah increases in all the cases. The greatest width of the model response is given by

the forcing “West”, the second is by the forcing “Centre”. Since the equatorial Kelvin wave has

a greater cross-equatorial width than the gravest Rossby wave, this indicates a more important
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Figure. 3.11 | The square root of the zonally and temporally averaged square of the zonal

velocity between 30◦W and 15◦W along the equator for different forcing specifications. Note

that the label marks for the forcing are the same as in Fig. 3.10, and that this quantity is

normalized by the largest value among all the forcing specifications. A logarithmic scale is used

for the y-axis.

role of the Kelvin wave in these two cases in comparison with the cases “Full” and “East”, in

which the gravest equatorial Rossby wave dominates (see Fig. 3.12 and 3.13 discussed later).

A smaller width of the model response is given by the case “Equator”, and the dependence of

the width on Ah in this case is also weaker than in the other cases, especially when Ah is larger

than 200 m2/s. However, if we take 1.5 × 0.65◦ = 0.98◦ as a reference width of the observed

Atlantic EDJs, the corresponding Ah value in our simulation case “Equator” is 300 m2/s. This

value is comparable with the value of 400 m2/s suggested by Brandt et al. (2008) to balance the

reduction of oxygen concentration from west to east along the equator. Approaching Ah = 0 in

Fig. 3.10, the widths of the simulated EDJs in different forcing cases also differ from each other.

This is caused by the presence of many other Rossby waves that appear when the dissipation

is too small to suppress them (Greatbatch et al., 2012).

In Fig. 3.11, the square root of the zonally and temporally averaged square of the zonal
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Figure. 3.12 | The amplitude and phase of the model zonal velocity for Ah = 10 m2/s in

the case “Full”. The amplitude is normalized by the maximum value of the model response.

The phase is taken for one complete oscillating cycle, the zero-phase corresponding to the time

point when the largest eastward zonal velocity along the equator occurs. A phase of 90 degrees

means that at that location the maximum occurs by a lag of a quarter of the model period,

compared to zero.

velocity along the equator for different forcing cases is plotted as a function of Ah. The zonal

average is taken between 30◦W and 15◦W and the time average is taken over the final steady

oscillating cycle. As we can see, in all the forcing specifications, the larger Ah is, the smaller

the amplitude is. The largest model response on the equator results from the spatially uniform

forcing (Full), and uniform forcing confined within the equatorial band (Equator) leads to the

second largest model response. Among the other three cases, when the forcing is applied over

the central third of the basin (centre), the model responds the largest, and the model amplitude
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Figure. 3.13 | The amplitude and phase of the model zonal velocity for Ah = 200 m2/s in the

case “Full” (left) and “West” (right). The amplitude is normalized by the maximum amplitude

in each plot. The phase is taken for one complete oscillating cycle, the zero-phase corresponds

to the time point when the largest eastward zonal velocity along the equator occurs. A phase

of 90 degrees means that at that location the maximum occurs by a lag of a quarter of the

model period, compared to zero.

is smallest when the forcing is over the eastern third of the basin (East). Taking this result

together, we may infer that the centre of the basin is the most efficient location to excite a

equatorial basin mode, while the eastern third is the most inefficient location (Greatbatch et al.,

2012).

To give a better understanding of the model response, the amplitude and phase of the zonal

velocity for Ah = 10 m2/s and Ah = 200 m2/s in the case “Full” are shown in Fig. 3.12 and

Fig. 3.13 (left), respectively. The amplitude of the model response is plotted as the maximum

of the zonal velocity at each location in the model domain and is normalized by the largest

value of the zonal velocity along the equator. The phase can be understood as the time step

when the maximum eastward zonal velocity occurs at each grid point of the model domain,

and the time step when the largest eastward zonal velocity along the equator occurs is marked
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as the 0-phase. From this time on, one complete oscillating cycle of the model is taken into

account, and the end point of this cycle is marked as 360◦-phase.

It is not surprising that the maximum zonal velocity appears at the equator. A strong

focusing at the centre of the basin can be seen for Ah = 10 m2/s. This feature appears in

the analytic solution of Cane and Moore (1981) (cf. Fig. 1 and 2 in their paper) and is a

consequence of the beta-dispersion of Rossby waves (Schopf et al., 1981). Looking at the phase

plots for both Ah cases, we see a clear westward phase propagation, indicating the dominance

of the gravest Rossby wave in the “Full” case. In the amplitude and phase for Ah = 200 m2/s

in the case “West” (Fig. 3.13 right), a eastward propagating signal can be observed on the

western side of the basin, reflecting a more important role of the equatorial Kelvin wave in this

forcing case.

3.1.2 Model Simulation with Background Mean Flow

In this simulation scenario, a barotropic mean flow (Fig. 2.1) is added to the shallow water

equations (Eq. 22 - 24). We run the model under the influence of the mean flow with the same

oscillatory forcing as before and examine the model response under different lateral mixing

coefficients and different forcing locations, as we did in the simulation without mean flow.

Fig. 3.14 shows the square root of the zonally and temporally averaged square of the zonal

velocity along the equator as a function of the period of the forcing. It is produced in the same

way as used for Fig. 3.3. Though the plot still shows two principal peaks, the peaks are not

located exactly at period 1 and period 0.5 of the forcing as in the simulation without mean

flow. This shift implies that the largest model response tends to occur at a shorter period of

the forcing, which is due to the “Quasi-Doppler shift” resulting from the mean flow (Gerkema

et al., 2013). However, since period 1 of the forcing locates within the range of the resonance

peak, and in order to compare with the former simulations, we still keep the period of the

forcing identical to the period of the gravest equatorial basin mode (1670 days), and keep the

amplitude of the forcing the same as used in the simulation without mean flow.

Looking at the time evolution of u and η for Ah = 10 m2/s in the “Full” case (Fig. 3.15),

we see that the model response to the wind is in a steady oscillating state. Different from the

same case in the simulation without mean flow (Fig. 3.4), no focusing can be sensed at the

centre of the basin in the u plot, while in the η plot, the damping on the western side of the

basin relative to the eastern side is stronger. This implies a more dominant role of the gravest

equatorial Rossby wave in this case. The time evolution for Ah = 200 and 600 m2/s (Fig. 3.16

35



3.1 Model Results 3 RESULTS

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period of forcing [ T
0
 ]

√
u
2

Figure. 3.14 | The square root of the zonally and temporally averaged square of the zonal

velocity along the equator as a function of the period of the forcing. The time average is

calculated over the final steady oscillating cycle, the zonal average is taken across the whole

basin, and Ah = 10 m2/s. Note that along the x-axis, the period of the forcing is normalized

by the gravest basin mode period TB = 1670 days, and that along the y-axis, the amplitude of√
u2 is normalized by the maximum value.

and 3.17) shows a similar result as in the same Ah case in the simulation without mean flow

(Fig. 3.5 and 3.6, respectively): the amplitude of the model response decreases as Ah increases,

and on the western side of the basin, the quantities are damped stronger than on the eastern

side.

Snapshots of of u and η are taken at the same time step in the model for different Ah values.

They also show a very clear decrease of the amplitude of the model response as Ah increases.

However, a rather complicated structure reflects the influence of the background mean flow.

Though it is not zonally symmetric, a Rossby-wave-like structure still can be seen on the eastern

side of the basin, with the maximum zonal velocity along the equator, and decaying away from

the equator with latitude. For Ah = 10 m2/s, η alternates in sign along about 5◦S, similar

feature exists at the same latitude close to the eastern boundary of the basin in η plots for

Ah = 200 and 600 m2/s. This feature will be discussed later (see Fig. 3.21).
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Figure. 3.15 | Time evolution of the zonal velocity (left) and the isopycnal displacement

(right) along the equator for Ah = 10 m2/s in the case “Full” in the simulation with mean

flow. Positive u and η represent eastward velocity and downward isopycnal displacement,

respectively. These two variables are plotted over the same time span in the steady oscillatory

state. Note that due to the periodicity of the model output, only two complete oscillating cycles

are shown here, and that the time is normalized by the model period (1670 days), corresponding

to Time = 1 in the figure. The units are noted along the colour bars.

We follow the same procedure to calculate the cross-equatorial width of the model response

in this simulation scenario as we used for the simulation without mean flow. The square

root of the zonally and temporally averaged square of the zonal velocity between 30◦W and

15◦W for each specification of Ah and forcing is first calculated, then it is normalized by the

corresponding maximum value in each case; finally, we use the meridional width at which this

quantity decreases to 1/e of its maximum value at the equator to measure the cross-equatorial

width of the simulated EDJs. The e-folding width of the model response as a function of Ah for

different forcing cases in the simulation with mean flow is shown in Fig. 3.19. In comparison

with the simulation without mean flow (Fig. 3.10), the width for all the Ah values in the case

“West” exceeds that in the same forcing case of the former scenario by at least 0.5 degrees.

This mirrors a greater impact of the equatorial Kelvin wave on the width in the presence of

the background mean flow than without mean flow. In the case “East”, the width tends to

be smaller by about 0.5 degrees, when Ah is greater than 200 m2/s. The width in the case

“Full” is slightly larger and the width in the cases “Centre” and “Equator” have little change.
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Figure. 3.16 | The same as in Fig. 3.15, except for Ah = 200 cm2/s. Exactly the same model

time span of u and η is taken as in the Ah = 10 m2/s case. Please notice that different scales

are used for the colour bars for u and η compared to Fig. 3.15. The units are noted along the

colour bars.
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Figure. 3.17 | The same as in Fig. 3.15, except for Ah = 600 cm2/s. Exactly the same model

time span of u and η is taken as in the Ah = 10 m2/s case. Please notice that the scales for

the colour bars are the same as in Fig. 3.16. The units are noted along the colour bars.

Comparing the width in the case “Full” with the theoretical prediction (the same as in Fig.

3.10), we see that they are not largely removed from each other (the case “Full” indicating
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Figure. 3.18 | Simultaneous snapshots of zonal velocity (a) and isopycnal displacement (b)

for Ah = 10, 200 and 600 m2/s in the “Full” case with mean flow, respectively. Please note

that the colour bar scale for u is different for Ah = 10 m2/s and that for η it is set to be

identical in each case to simplify the comparison, and that all of the six snapshots are taken at

the same time step in the model. The units are noted along the colour bars.

slightly larger width), and in general the curve “Theory” is still a reasonable estimate to the

model response of the “Full” case in the simulation with mean flow.

The square root of the zonally and temporally averaged square of the zonal velocity along

the equator as a function of the lateral mixing coefficient Ah for the simulation with mean

flow is shown in Fig. 3.20. Following the same process as before, the square of the zonal

velocity is averaged zonally between 30◦W and 15◦W , and temporally over the final steady

oscillating cycle. As we see, for all the forcing cases, the model response is overall greater than

that in the simulation without mean flow. However, as Ah increases, the amplitude of the

model response decreases as before.
√
u2 is still largest in the forcing case“Full”, followed by

“Equator”, ”Centre” and “West”, and is smallest in the case “East”. Therefore, the conclusion

about the efficiency of the forcing location, i.e. the centre of the basin, made in the former

section is still valid here.

The amplitude and phase for Ah = 10 and 200 m2/s in the forcing case “Full” (Fig. 3.21) are

produced by the same method as used before. It shows a rather complicated structure for both

Ah cases, especially off the equator. For example at about 4◦N , there are bands with enhanced

amplitude of the zonal velocity; these are the off-equatorial wave guides induced from the mean

flow. There are also bands in which the zonal velocity remains nearly zero through the whole
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Figure. 3.19 | The e-folding width (in degrees latitude) of the model response in the simulation

with mean flow for different values of the lateral mixing coefficient Ah. In the different cases,

the forcing is applied over the whole basin (Full), the equatorial band (Equator), the west third

of the basin (West), the centre third of the basin (Centre), and the east third of the basin

(East). Please refer to Section 2.1.1.3 for details of the forcing. The theoretical prediction of

the width (Theory) for the case without mean flow is also plotted (Eq. 40).

oscillating cycle, for example at about 3.5◦ S for Ah = 10 m2/s, the corresponding phase shows

a discontinuity at the same latitude as well. This may result from the strong zonal velocity

of the mean flow that would damp and absorb the energy of the waves, preventing the wave

penetration. The phase also shows a dominant westward propagation along the equator, and

the Rossby wave structure near the eastern boundary of the basin, indicating the dominance

of the gravest equatorial Rossby wave. However, compared with the simulation without mean

flow, the Rossby wave focusing at the centre of the basin vanishes even for the small Ah value of

10 m2/s. Note that at about 5◦S in the phase for Ah = 10 m2/s, we see the similar alternating

structure as shown in Fig. 3.18, this could be considered as the extension of the Rossby wave

fronts that are tilted into the zonal direction in the presence of the mean flow. This may

also reflect some instability induced from the mean flow, although the amplitude of the zonal
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Figure. 3.20 | The square root of the zonally and temporally averaged square of the zonal

velocity between 30◦W and 15◦W along the equator for different forcing cases in the simulation

with mean flow. Note that the label marks for the forcing are the same as in Fig. 3.19, and

that this quantity is normalized by the largest value among all the forcing specifications. A

logarithmic scale is used for the Y-axis.

velocity at this location is very small compared to that at the equator. Also, these features do

not grow with time in the model runs, and oscillate in the same period as the gravest basin

mode, and they decrease in the model runs with high values of Ah. Therefore, we still consider

them to be physically reasonable. Moreover, the structure of the phase for both Ah are very

similar, indicating a very weak dependence of the phase on Ah.

3.2 Comparison with Observation

3.2.1 Profile Comparison

As mentioned above, to quantitatively compare our modelled Atlantic EDJs with observation,

we use the Argo float data with parking depth of around 1000 meters between 30◦W and 15◦W .

The missing values and the velocities with an error estimate greater than 2 cm/s, as well as the
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Figure. 3.21 | The amplitude and phase of the model zonal velocity for Ah = 10 m2/s (left)

and Ah = 200 m2/s (right) in the case “Full” in the simulation with mean flow. The amplitude

is normalized by the maximum amplitude in each plot. The phase is taken in one complete

oscillating cycle, the zero-phase corresponds to the time point when the largest eastward zonal

velocity along the equator occurs. A phase of 90 degrees means that at that location the

maximum occurs by a lag of a quarter of the model period, compared to zero.

velocities greater than 4 times of the standard deviation from the mean of the zonal velocity

at 1000 dbar depth are excluded to remove the outliers. We choose this longitude band based

on the availability of the Argo float data through the entire recording time (Fig. 2.3).

After outliers are removed, the Argo float data are first binned into overlapping latitude

bands of 0.5◦ width, the distance between the centres of every two closest bins is 0.2◦. Then

the data in each bin are sorted in the order of the time of the measurement, regardless of

the longitude. Finally, a 1670-day harmonic is fitted to the sorted time series in each bin,

resulting in a meridional profile of the amplitude of the harmonic fit with a resolution of 0.2◦

latitude. The harmonic fit to the equatorial bin (centred at 0◦ latitude) is demonstrated in

Fig. 3.22. The blue dots are zonal velocities from the Argo float data, the green curve is the

corresponding harmonic fit. As we see, the 1670-day harmonic fit represents the structure of
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Figure. 3.22 | The 1670-day harmonic fit for the equatorial bin (centred at 0◦ latitude). The

dots are the sorted zonal velocity from the Argo float data in cm/s, the green curve is the

corresponding harmonic fit.

the Argo float data very well and it explains about 27% of the variance of the observed data.

Here one assumption must be made: all the zonal velocities laying between 30◦W and 15◦W

are in the same phase2.

Fig. 3.23 is a update version of Fig. 5 in Greatbatch et al. (2012). It shows the square of

the amplitude of the 1670-day harmonic fit to the zonal velocity from the Argo float data as

a function of latitude. The data we used were measured from August 1997 to May 2013, this

duration of measurement is about 1.5 years (almost one third of the gravest equatorial basin

mode period) longer than that used in Greatbatch et al. (2012). Comparing with their result,

though the zonal velocity shares a similar structure with a strong bias towards the northern side

of the equator, the overall amplitude of the zonal velocity is smaller. This could be attributed

to the increased available measurements in the updated version of the Argo float data, which

2Certainly, they are not in exactly the same phase, however, 15◦ longitude accounts for less than 7% of the

zonal wavelength given by the gravest basin mode period T = 1670 days and the gravity wave speed c = 0.17 m/s.
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Figure. 3.23 | The square of the amplitude of the 1670-day harmonic fit to the zonal velocity

from the Argo float data as a function of latitude. The Argo float data used here are measured

between 30◦W and 15◦W with the parking depth of about 1000 m. The measurement period

is August 1997 to May 2013. The error bars are calculated assuming each measurement to be

independent.

decreases the dependence of the fitted amplitude on the exceptional large values that can be seen

in Fig. 3.22 between the years 2006 and 2009. The error bars show the estimated error of the

harmonic fit given by Eq. 43 with the assumption that all the measurements are independent,

despite the fact that in reality there is some autocorrelation, which would increase the error

bars.

Following Brandt et al. (2011), the harmonic analysis of the zonal velocity is performed by

fitting a linear regression model in a least-squares sense to the Argo data as follows,

dm = GA = A1IN + A2cos(ωt) + A3sin(ωt) (42)

where dm is the fitted data vector of length N , t is the time vector of the data of the same

length; G is the regression model matrix in the size of N×3, consisting of 1, cos(ωt) and sin(ωt)

in either of the three columns, respectively, and each of the columns has the same element in

the length of N ; ω = 2π/TB is the angular frequency and TB = 1670 days is the gravest basin

model period, and A is a column vector of the regression factors (A1, A2 and A3). The error

44



3 RESULTS 3.2 Comparison with Observation

2S 1S 0 1N 2N
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5 Amplitude of U
2
 from Model Results and Argo Data Normalized by the Kinetic Energy

Latitude

N
o
rm

a
liz

e
d
 U

2

 

 

Ah=10

Ah=50

Ah=100

Ah=200

Ah=300

Ah=400

Ah=500

Ah=600

Argo data

Figure. 3.24 | A comparison between the cross-equatorial profiles of the square of the zonal

velocity u2 from the model simulation for the case “Equator” in the simulation without mean

flow and the Argo float data. Note that the zonal velocities squared from both model and Argo

float data, together with the error bars, are normalized to give the same area under each curve

between 1◦S and 1◦N . The unit of Ah is m2/s.

matrix is given by

∆A =

√
(GTG)−1[(d− dm)T (d− dm)]

n− k
(43)

where n is the number of degrees of freedom, k=2 is the number of dependent model factors.

The standard errors of the elements of A are given by the diagonal elements of ∆A and d is the

original zonal velocity from the Argo floats. The degree of freedom is the number of the data

used, assuming each measurement to be independent. The explained variance of the harmonic

fit is then defined by

V e =
V ar(d)− V ar(d− dm)

V ar(d)
(44)

where Var is the sample variance.

For comparison, we first calculate the zonally and temporally averaged square of the zonal

velocity for each Ah in the forcing case “Equator” in the simulation without mean flow (similar

to Fig. 3.8 for the case “Full”), then normalize them by the area integration between 1◦S and

1◦N for each Ah, so that the area under each curve between 1◦S and 1◦N is the same. The
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Figure. 3.25 | The same as in Fig. 3.24, except that the result for the forcing case “Equator”

in the simulation with mean flow is used. Note that the zonal velocities squared from both

model and Argo float data, together with the error bars, are normalized to give the same area

under each curve between 1◦S and 1◦N . The unit of Ah is m2/s.

result is plotted in Fig. 3.24, together with the meridional profile obtained from the harmonic

fit (Fig. 3.23); note that the profile from the Argo float data is normalized in the same way.

As we see from the figure, on the southern side of the equator, the observation agrees very well

with the model response for Ah between 50 and 200 m2/s within the latitude range from 1◦S to

0.5◦S. All the model cases fail to simulate the peak between 2◦S and 1.5◦S. On the northern

side of the equator, even the largest value of Ah cannot agree with the observation within the

latitude range from 0.2◦N to 1◦N . This is a consequence of the weakening dependence of the

simulated EDJ width to large values of Ah as mentioned when discussing Fig. 3.10. However,

if we take the error bars into account, except at 0.8◦N , all the curves lie within the error bars,

allowing a wide range of eddy viscosities Ah to satisfy the observed width. As a conclusion,

taking into account the asymmetric structure about the equator of the observed data, this result

is in a good agreement with the previously discussed Ah value of 300 m2/s (see discussion on

Fig. 3.10), which is sufficient to account for the observed cross-equatorial width of the EDJs.

Comparing the profile of the harmonic fit amplitude with the profiles from the model sim-
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ulation with mean flow for the case “Equator” (Fig. 3.25), we see a very similar structure as

before. However, on the northern side of the equator, the model results tend to agree with the

observation better than in Fig. 3.24. This is a consequence of the widening caused by the mean

flow as discussed in Fig. 3.19. As a result, at 0.8◦N , the curves for Ah = 500 and 600 m2/s lay

within the range of the error bar at this latitude, this improves the compatibility between the

model simulation and the observation.

3.2.2 Root Mean Square Comparison

After the profile comparison, a calculation of the root-mean-square difference (RMS) between

the amplitude of the zonal velocity from the Argo float and the model is designed. As discussed

before, the eddy viscosity of 300 m2/s is a good estimation to account for the observed width

of the Atlantic EDJs. We therefore use the simulation result for Ah = 300 m2/s of the case

“Equator” in both runs with/without mean flow to calculate the RMS with the Argo float data.

For a precise calculation, the RMS is designed in a point-to-point sense, which means that the

square of the difference between the Argo float data and the model output data is computed

at each measuring location and time.

Prior to the calculation, several preparation steps need to be done. First of all, the time

series of the model simulation is not initialized referring to any real time point, it starts from

0 s and increases by ∆t seconds in each time step to the end of the model run. Therefore, it

is essential to match the model time series with a real time series. Given the fact that both

of the model simulation and the observed Atlantic EDJs share the gravest basin mode period

TB = 1670 days, we could refer the model time series to the time series of the Argo float data

by matching the phase of the model with the phase of the harmonic fit to the zonal velocity

from the Argo float data along the equator. Practically, this can be done by searching for the

model time step, at which the phase of the modelled zonal velocity at the equator is the same

as the phase of the beginning point of the harmonic fit to the zonal velocity along the equator.

Fig. 3.26 shows the 1670-day harmonic fit for the equatorial bin of the Argo float data,

together with the fitted model solution. The equatorial bin extends from 30◦W to 15◦W and

extends 0.25◦ either side of the equator; also, the harmonic fit is exactly the same as in Fig.

3.22. The model solution is taken at 23◦W at the equator in the simulation without mean

flow. Previously, the zonal velocity between 30◦W and 15◦W was binned in order to create a

harmonic fit. We therefore choose 23◦W as the longitude where the phase of the zonal velocity

from the model solution is to be matched with the corresponding phase of the Argo float data.
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Figure. 3.26 | The 1670-day harmonic fit for the equatorial bin (centred at 0◦ latitude),

together with the fitted model solution. The dots are the sorted zonal velocity from the Argo

float data in cm/s, the green curve is the corresponding harmonic fit, and the red plus sign

represents the zonal velocity at 23◦W at the equator in the simulation without mean flow.

Note that the amplitude of the zonal velocity from the model is given by the amplitude of the

harmonic fit along the equator; and that the Argo float data used here and the corresponding

harmonic fit is the same as in Fig. 3.22.

Also, the amplitude of the model solution is first normalized by the maximum eastward zonal

velocity at this location, then multiplied by the amplitude of the corresponding harmonic fit.

As we see, the zonal velocity at 23◦W at the equator from the model shares exactly the same

real time series with the fit to the Argo float data along the equator. Therefore, we refer the

starting time step of the matched model result at 23◦W at the equator shown in Fig. 3.26 to

Aug 5 1997, and we choose the model data starting on this day for comparison with the Argo

float data. However, please be aware that the phase of the model itself varies with latitude

(Fig. 3.12), whereas this fitted model solution is only the best fit of the model phase at 23◦W
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Figure. 3.27 | The root mean square difference between the zonal velocities from the Argo

floats and the model simulation without mean flow (upper panel), and the number of available

Argo float data (lower panel) as a function of latitude. The square of the difference is first

calculated “point-to-point”, then the square root is taken after averaging the square of the

difference within each latitude bin.

at the equator to the Argo float data.

Secondly, although the information about the measuring location is recorded in the Argo

float data, the data are not saved in the same format as the model output data. For this reason,

we re-construct the zonal velocity from the Argo float data according to the grid used by the

model output data to simplify the calculation of the RMS. This is done by allocating the Argo

float data to the closest location in the model grid and the closest time in the model time series
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Figure. 3.28 | The optimization calculation of minimizing the RMS at the equator. This is

done by shifting the phase of the model solution from 0◦ to 360◦, and simultaneously magnifying

the model solution by a dimensionless factor varying from 0 to 10, before the point-to-point

calculation of the difference between the zonal velocities from Argo floats and model within the

equatorial bin.

designated in Fig. 3.26. Doing so gives us a 3-dimensional matrix of the zonal velocity from

the Argo float data in exactly the same size of the model output data. The locations and time

steps at which no zonal velocity is measured by the Argo float data are filled with missing

values, and have no influence on the RMS calculation at all.

Following the presetting above, we keep the maximum amplitude of the model solution

given by the amplitude of the harmonic fit to the zonal velocity along the equator, and restrict

the application of both Argo data and model data still within the longitude band between

30◦W and 15◦W . Fig. 3.27 shows the root mean square difference between the zonal velocities

from the Argo floats and the model simulation without mean flow as a function of latitude.

The square of the difference between the Argo data and model data is first calculated at each

location and time, the result is binned into overlapping latitude bands of width 1.5◦ centred on

a 0.25◦ grid, then the square root is taken after the square of the difference is averaged within

each latitude bin. Note that the equatorial bin used for the RMS calculation is broader than
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that used for the harmonic fit, for the purpose of increasing the number of the Argo float data.

As shown in the figure, the RMS is the largest at the equator, and decreases with latitude

on either side of the equator. This is not a surprising feature if we look back at Fig. 3.24,

in which the amplitude of the harmonic fit deviates from that of the model at many places

between 0.75◦S and 0.75◦N . Between 2.5◦S and 1◦S, the RMS is also relatively high, this may

be related to the small peak in the harmonic fit amplitude at about 1.5◦S. Between 3◦N and

5◦N , the number of the Argo float data is larger, while the RMS is smaller than at any other

latitude.
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Figure. 3.29 | The same RMS as in Fig. 3.27 (upper left), the standard deviation of the

Argo float data in each latitude bin (upper right), the RMS divided by the standard deviation

at each latitude (lower left), and the number of the Argo float data in each latitude bin (lower

right).

Based on the RMS result shown in Fig. 3.27, a further optimizing attempt is made to reduce

the RMS at the equator. This is done by artificially shifting the phase of the model solution

forward from 0◦ to 360◦, and simultaneously multiplying the model solution by a dimensionless

factor varying from 0 to 10, before the point-to-point calculation of the difference between the

zonal velocities from the Argo float and the model within the equatorial bin. Fig. 3.28 shows

the result of the optimization at the equator as a function of the phase shift and the multiplying
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Figure. 3.30 | The RMS for the simulation with mean flow (upper panel), and the difference

of the RMS between the the simulation with/without mean flow (lower panel), as a function of

latitude. In the lower panel, positive values mean the the RMS between Argo float data and

the model with mean flow is larger than that between Argo data and the model without mean

flow.

factor of the model solution. The contour lines represents the resulting RMS at the equator,

with a minimum located at a phase shift of 0◦ and multiplying factor of 1.3 in respect to the

model solution in Fig. 3.26. This 0◦ phase shift verifies our choice of the zonal velocity at

23◦W at the equator when matching the phase of the model with the phase of the harmonic

fit to the Argo float data. However, applying this equatorially optimized phase and amplitude

to the model, we compute the RMS again as a function of latitude in the same way as before
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(not shown here). It shows a decrease of the RMS at the equator by only about 0.03 cm/s but

an increase of the RMS away from the equator by about 0.5 cm/s. Therefore, we do not apply

this optimization to the RMS calculation for the simulation without mean flow.

In the lower left plot of Fig. 3.29, the RMS is divided by the standard deviation (upper

right) of each latitude bin. In general, the normalized RMS is close to 1 near the equator, and

increase to about 1.2 and 1.4 at 5◦S and 5◦N , respectively. This implies a close relation between

the large variability of the Argo float data and the large values of RMS near the equator.

For the RMS comparison for the simulation with mean flow, we follow the same procedure:

first the model data is fitted to the harmonic fit of the Argo float data by matching the phase

of the zonal velocities at the equator (the same as Fig. 3.26); then the argo flow data is re-

constructed in the format of the model data; in the end the RMS is calculated as a function

of latitude. The optimizing attempt (not shown) in this simulation also failed to decrease the

overall RMS.

Fig. 3.30 shows the RMS between the Argo float data and the model simulation with

mean flow, and the difference in the RMS between these two simulations. The result is very

similar to Fig. 3.29 (upper left), with large values around the equator and decreasing with

latitude. Looking at the difference in the RMS calculation, we only see relatively large difference

at latitudes higher than 1.75◦ on both sides of the equator; the negative difference means

a smaller RMS in the model simulation with mean flow. This result then reflects that at

higher latitudes, the model simulation with mean flow is more compatible with the observations

than the simulation without mean flow, although this improvement in the amplitude by the

barotropic mean flow is very small, less than 1 cm/s.
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4 Summary and Discussion

A linear shallow water model is used to simulate a forced, dissipative equatorial basin mode

for a high-order baroclinic vertical normal mode. As discussed by many authors (Johnson and

Zhang , 2003; D’Orgeville et al., 2007; Brandt et al., 2011), the Atlantic equatorial deep jets

share a great similarity with the gravest equatorial basin mode. Therefore, this model is taken

as a simple representation of the equatorial deep jets (EDJs). As demonstrated in Fig. 3.10, the

existence of the lateral mixing of momentum with eddy viscosity results in an increase of the

cross-equatorial width of the simulated EDJs. The widening of the EDJs by the lateral mixing

of momentum could be responsible for the enhanced cross-equatorial width of the observed

EDJs compared to that implied by linear inviscid theory. The enhanced width has been noted

by Johnson and Zhang (2003) in the Atlantic Ocean and by Muench et al. (1994) in the Pacific

Ocean. The lateral mixing of momentum also leads to a reduction in the strength of the zonal

velocity along the equator (Fig. 3.11). The corresponding mechanism can be understood as

that at the equator, the large zonal scale zonal flows are in geostrophic balance, in the absence

of diapycnal mixing to remove the density anomalies, the reduction in the zonal velocity due

to lateral mixing must be compensated by a weaker density gradient, hence a broader jet. The

influence of the different forcing locations on the width and strength of the EDJs has been

investigated. It is found that forcing in the centre of the basin is probably the most efficient

way of exciting a basin mode.

Through the comparison between the width implied by the inviscid theory and the width

in the simulation case with forcing zonally uniform over the equator, but meridionally confined

within an equatorial Rossby radius of deformation either side of the equator (forcing case

“Equator”), a value of the eddy viscosity Ah = 300 m2/s is estimated to account for the

observed cross-equatorial width of the EDJs. This value of Ah has been confirmed to be

sufficient by comparison of the meridional profiles of the zonal velocity between the simulations

and the Argo float data, and it is consistent with the value of 400 m2/s suggested by Brandt

et al. (2011) to close the oxygen budget along the equator. Furthermore, the root mean square

difference (RMS) between the zonal velocity from the Argo float data and the model simulation

is calculated. It is found that the RMS is the largest near the equator and decreases with latitude

either side of the equator (Fig. 3.29). The large value of the RMS near the equator may arise

from both the large variability in the zonal velocity from the Argo data and the northward bias

in the observed zonal velocity near the equator, a feature that is not found in the model results
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(Fig. 3.24).

A further attempt was made to examine the influence of a background barotropic mean flow

on the horizontal structure of the simulated EDJs. The cross-equatorial width of the simulated

EDJs for a given forcing case is generally larger in the simulation with mean flow than in

the simulation without mean flow. As a result, on the northern side of the equator, the model

simulation with mean flow is more compatible with the Argo float data in the comparison of the

meridional profiles of the zonal velocity (see discussion in Fig. 3.24). A value of 300 m2/s is still

a reasonable estimation for the eddy viscosity Ah; also, for the RMS calculation, the simulation

with mean flow shows a better consistency with the Argo float data at latitudes higher than

2.5◦ (Fig. 3.30). Taken together, the results of both simulations with/without mean flow

are consistent with each other; and the implementation of the background barotropic mean

flow improves the consistency of the modelled data with the observational data, especially at

latitudes higher than 2.5◦ either side of the equator.

Based on the results, we believe that further work is required to test the importance of other

processes for the EDJs, for example, a varying lateral eddy viscosity, Ah, with latitude. As

discussed by Greatbatch et al. (2012), the flanking jets near 2◦N and 2◦S may influence the EDJs

by altering Ah, and in reality, it is also possible that the lateral eddy viscosity varies spatially

with the background mean flow. Also, a more realistic coastline may result in a different wave

structure at the boundaries, although we did not used data (model or observations) close to

the boundaries. In addition, as shown in Fig. 3.23, the amplitude of the northward biased

maximum zonal velocity decreased in the updated Argo float data, compared to Fig. 5 of

Greatbatch et al. (2012). It is possible that a longer measurement period and a more complete

spatial coverage of the observational data would reduce the uncertainties in the calculation

of the EDJs and provide a more accurate comparison between the model simulation and the

observations.

Note that in order to counter the dissipation by the lateral mixing of momentum, a resonant

forcing with the period of the gravest equatorial basin mode T0 = 1670 days was applied. Since

the model is linear, the amplitude of the forcing is just an arbitrary choice. For example, the

amplitude of the forcing used in this work is too large when the resulting amplitude of the zonal

velocity in the model simulation is up to 20 m/s. Therefore, the amplitude can be reduced in the

future studies. Besides, in order to keep the gravity wave speed c = 0.17 m/s, the equivalent

depth He = 2.9 × 10−3 m was used. This condition, in turn, gives a very small isopycnal

displacement, even though the zonal velocity is unrealistically large. Although the isopycnal
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displacement is not the main concern of this work, one can still obtain a relatively realistic

isopycnal displacement for a given velocity by scaling η from our simulation in a reduced-

gravity sense, in which a layer thickness H ′ should be pre-defined, and the corresponding

reduced gravity g′ can be calculated by g′ = c2/H ′. The “realistic” isopycnal displacement η′

is then given by η′ = ηH ′/He. This is illustrated for the case of the analytical solution of the

equatorial basin mode (Fig. 3.1 and 3.2).

Nevertheless, the EDJs show a downward phase propagation (Fig. 1.1a), associated with

vertical energy transfer. For this reason, a equatorial basin mode cannot exactly represent the

EDJs. In reality, there must be a set of different vertical modes, and the energy is transferred

between these modes. These features should be further examined in 3-dimensional models.

However, the existence of different vertical modes should not change the fact that the simple

mechanism concerning the role of the lateral mixing of momentum is still applicable. Therefore,

the results shown before are still valid.
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