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1. Introduction 

The distribution of continental lithosphere has changed constantly through geological 

time, with larger continental masses periodically fragmenting into smaller crustal 

blocks and later re-amalgamating in different configurations as new supercontinents. 

The apparent random nature of this process hinders the reconstruction of ancient 

crustal terranes. Precambrian high-grade terranes may contain abundant granites 

that were derived from reworked older continental crust. Alternatively, granites in 

these terranes may represent differentiation products of juvenile material that 

originated directly from the mantle. Another possibility is the derivation of orogenic 

granitic magmas from an ancient source that contained both juvenile and older 

crustal components. Since granites often inherit geochemical and isotopic 

characteristics from their sources, their isotopic compositions can be used to 

reconstruct the geochemical composition and crustal history of granite-dominated 

terranes. Granitic melts form in different tectonic settings, from diverse sources and 

usually large amounts of crustal material are involved. These melts are often 

modified prior to emplacement or crystallization by a variety of processes that result 

in substantial geochemical variations among granitic plutons. However, depending on 

the actual degree of differentiation processes with or without crustal contamination 

after melt formation, the chemical and isotopic composition of the granites can still 

give valuable information about inaccessible portions of the deeper crust. 

 Large amounts of granites formed in the Central Zone of the Damara orogen 

of Namibia during Pan-African times (for a recent compilation see Miller, 2008). 

These include (i) syn-orogenic granites formed by partial melting of meta-igneous 

sources related to the Damara orogeny and pre-Damara basement (Jung et al., 

2003; McDermott et al., 1996), (ii) syn-orogenic S-type granites formed by partial 

melting of upper crustal meta-sedimentary rocks (Jung et al., 2000; McDermott et al., 

1996) and (iii) late-orogenic A-type granites (Jung et al., 2000). The exact 

geodynamic process that caused heat transfer and melting during collision of the 
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Kalahari craton and the Congo craton is still a matter of debate. Two contrasting 

models assume either a classical subduction zone environment (Barnes and Sawyer, 

1980; Kasch, 1983; Miller, 1983) or an intracratonic failed rift environment (Kröner, 

1982; Martin and Porada, 1977). During the last two decades, geochemical and 

isotope data for Damaran granites, together with precise U-Pb mineral ages have 

been presented. These data provide powerful constraints for the igneous evolution of 

the orogen. In this contribution, we present major element, trace element, isotope 

and geochronological data for granites and leucogranites from a basement-derived 

igneous complex in the Central Zone of the Damara orogen (Namibia); namely the 

Kubas igneous complex. The most recent compilation on Damaran granites (Miller, 

2008) does not provide reliable age information and chemical and isotope data for 

the Kubas granites. Similarly, published work since the early 70´s have largely 

ignored this important small-scale igneous complex. The Kubas granites crop out in a 

transition zone between remobilized basement lithologies and metasedimentary 

rocks of the Nosib and Swakop Group (Damara Sequence). Therefore, it is important 

to work out potential sources that may have contributed to the chemical and isotope 

compostion of the granites. In addition, the data are used to place constraints on first-

order processes. i.e. fractional crystallization with and without assimilation that may 

have modified their compositions.  

 

2. Geological setting 

The geology of the Damara orogen has been compiled in Miller (1983, 2008) and 

Gray et al. (2008). The Damara orogen exposes a deeply eroded cross section 

through a Pan African mobile belt. It consists of three branches that meet in a triple 

junction west of the Namibian coast. The NNW-SSE-trending Kaoko belt and the N-

S-trending Gariep belt are situated along the Namibian coast whereas the ENE-

WSW-trending Damara belt is located farther inland (Miller, 1983, 2008). The two 

coastal arms (Kaoko belt and Gariep belt) are considered to reflect the former 

Gondwana suture between South American and African cratons. The Damara belt 

s.s. is located between the Kalahari and the Congo cratons. It is still unclear whether 

the former basin between the two cratons rested on oceanic or continental crust. One 

model assumes an intracratonic failed rift with ensialic crust (Kröner, 1982; Martin 

and Porada, 1977) whereas another model assumes an oceanic basin with oceanic 
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lithosphere (Barnes and Sawyer, 1980; Kasch, 1983). The most important issue in 

this context is the size of the inferred ocean basin(s). The most recent compilation 

(Miller, 2008) suggests that the ocean basins are rather narrow features than wide 

areas underlayn by oceanic crust. 

 The major geological units of the Damara orogen are basement inliers with 

Archean and Proterozoic ages, shelf carbonates that surrounded the passive 

margins of the (ocean) basins between the cratons (Otavi Group), deepwater 

turbidites inside of the basins (Swakop Group) and foreland basin deposits in the 

Mulden and Nama Groups in the northern and southern parts of Namibia. The basal 

deposits that unconformably overlie the basement complexes are rift-related 

siliciclastic rocks of the Nosib Group (Gray et al., 2008; Miller, 1983, 2008). Quartz 

syenites, alkaline ignimbrites and alkali rhyolites in the upper Nosib Group constrain 

the minimum age to c. 750 Ma (Hanson, 2003; Hoffman et al., 1996; Jung et al., 

2007). The overlying Otavi Group is dominated by carbonates that rimmed the basins 

between the cratons (Gray et al., 2008). The widespread Kuiseb Formation (upper 

Swakop Group) is composed of turbiditic greywackes and pelitic shists with 

calcsilicate bands (Miller, 1983, 2008). The ~300 km long Matchless amphibolites, 

which are intercalated with the pelitic to semipelitic succession of the upper Swakop 

Group, strikes parallel to the orogen and are interpreted to indicate probably minor 

ocean spreading (Schmidt and Wedepohl, 1983; Miller, 1983, 2008). 

 The ENE-WSW-trending Damara belt originated by convergence of the Congo 

and the Kalahari cratons. Based on stratigraphy, grade of metamorphism, structure 

and geochronology it can be divided into a Northern, Central and Southern Zone 

(Fig.  1). The Central Zone is dominated by granites, basement complexes and 

metasedimentary sequences (Miller, 1983, 2008) in which the basement is exposed 

in elongated domes that strike along the orogen. In general, the metamorphic grade 

of the Central Zone increase from east to west and reaches high grade conditions 

with local partial melting near the coast (Hartmann et al., 1983). The Central Zone is 

characterized by regional metamorphism of low to intermediate pressure. Peak 

metamorphic conditions were reached approximately 500 to 520 Ma ago just before 

or after the main deformation with temperatures of c. 700-750°C (Jung, 2000; Jung 

and Hellebrand, 2006; Jung and Mezger, 2003). There is, however, petrological and 

geochronological evidence that other metamorphic episodes occurred at c. 540 Ma 

and c. 490 to 470 Ma (Jung, 2000; Jung and Mezger, 2003). The Central Zone is 
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dominated by intrusive rocks ranging from gabbro/diorite: granodiorite/tonalite: 

granite/leucogranite in proportions of 2:2:96. The intrusive rocks range in age from c. 

560 to c. 460 Ma (Miller, 2008) and crop out over an area of approximately 75,000 

km2. Based on their geochemical composition, most of the granites were derived 

from metasedimentary sources (Haack et al., 1982; McDermott et al., 1996; Jung et 

al., 2001) and metaluminous, amphibole-bearing granites, presumably generated by 

partial melting of meta-igneous sources (e.g. Jung et al., 1998), are rare. In addition, 

quartz diorites generated by partial melting of mafic lower crust occur also (Jung et 

al., 2002). Recent age determinations of structurally-controlled intrusive rocks (i.e. 

Longridge et al., 2011) indicated that in the south-western Central Zone, the main 

deformation (D2) occurred at 520-508 Ma and was coeval with high-grade 

metamorphism and granite intrusion (Jung and Mezger, 2003; Jung et al., 2003). 

This contrasts with age determinations elsewhere in the Central Zone that indicate 

early deformation around 550-540 Ma (Johnson et al., 2006) which is also coeval 

with metamorphism and antexis of basement rocks (Longridge et al., 2011). These 

age constraints are similar to a compilation of isolated ages provided by Gray et al. 

(2008). The Central Zone and the Southern Zone are separated by the Okahandja 

Lineament Zone. In the Southern Zone the Barrovian regional metamorphism 

increases from south to north and metamorphic conditions reached approximately 8 

kbar with maximum temperatures of c. 600°C (Hartmann et al., 1983; Kasch, 1983). 
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3. Results 

3.1 Field relationships and rock types 

The Kubas igneous complex is located c. 25 km south of Usakos and has an 

extension of approximately 300 km² at the earth’s surface (Fig. 2). It intruded into the 

metamorphic Abbabis complex as well as the Nosib and the Swakop Groups (Brandt, 

1985; Schreiber, 1996). In general, the Kubas igneous complex consists of two 

different granite types, grey granites and red leucogranites, although the spatial 

distribution of these two types is not precisely known. According to Brandt (1985) the 

main mass of the granite complex is composed of grey granites that are locally 

intruded by reddish leucogranites; indicating that the red leucogranites are apparently 

younger than the grey granites. Based on differences of the trace element 

composition the red leucogranites are further subdivided into two subtypes 

(leucogranite I and leucogranite II). In addition to these granite types, numerous 

pegmatites of varying size transect the Kubas granites.  

3.2 Mineralogy and petrography 

The grey granites are composed of quartz, plagioclase, alkali feldspar 

(microcline/orthoclase) and biotite. Allanite, apatite and zircon occur as accessory 

phases. Minor muscovite occurs as an alteration product of K-feldspar. In general, 

the grey granites have a medium grain size except for some alkali feldspar 

phenocrysts with a grain size up to about 2 cm. Quartz and feldspar show undulatory 

extinction and often subgrain formation. Plagioclase is partly sericitized. Many of the 

plagioclase twinning lamellae change in width and taper at their ends. Some of the 

lamellae are bent. Alkalifeldspar is subordinately sericitized and Carlsbad twinning as 

well as microcline twinning can be found, sometimes within the same grain. For some 

of the grains, microcline twinning is observed solely in the centre of the crystal. 

Biotite often occurs in clusters, but single crystals are also present. Few biotite 

sheets are strongly bent. Muscovite occurs as alteration of plagioclase (sericitization) 

or in contact with biotite.  

 Both subtypes of the red leucogranites appear similar in their mineralogical 

compositions. They consist of quartz, plagioclase and alkali feldspar 

(microcline/orthoclase). Minor minerals are muscovite and biotite. Apatite, zircon and 

euhedral Mn-rich garnet are accessory minerals. Furthermore, partly digested 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

cordierite with sillimanite inclusions was observed (Fig. 3a). Undulatory extinction 

and subgrain formation in quartz is more apparent than in the grey granites and 

combinations of Carlsbad twinning and microcline twinning can be found in 

alkalifeldspar. Furthermore, weak sericitization is observed in K-feldspar but is not as 

obvious as in the grey granites. Well developed muscovite crystals are present in 

plagioclase and appear to be primary. Biotite generally occurs as cluster and parts of 

it are usually altered to chlorite (Fig. 3b). Some of the biotite sheets are bent. Garnet 

is subhedral and sometimes cracked. 

 

4. Geochronology 

4.1 Grey granites 

Uranium-Pb zircon ages from the grey granites (samples 02/Ku07 and 02/Ku08) 

were obtained by LA-ICP-MS (Laser ablation - induction coupled plasma - mass 

spectrometry). Back-scattered-electron (BSE) and cathodoluminescence (CL) 

images of most of the investigated zircons showed predominantly igneous zonation 

patterns, however, many grains have an apparent core. Several different zircon age 

fractions could be observed (Table 2 and Fig. 4a): ~ 2.1 Ga to ~ 1.7 Ga (Fig. 4b), 

1025 ± 17 Ma (Fig. 4c), 553.3 ± 8.4 Ma (Fig. 4d) and 502.4 ± 9.0 Ma (Fig 4e). The 

latter one consists of only three data points.  

4.2 Red leucogranites 

Separation of zircon that can be used for LA-ICP-MS dating was not possible due to 

the low amount of Zr in the samples. The Rb-Sr isotope ratios of the red 

leucogranites I plot on a well defined isochron (MSWD = 2.0) with an age of 512.9 ± 

6.1 Ma (Fig. 5). Samarium-Nd isotope systematics yielded a similar but imprecise 

Sm-Nd whole-rock age of 497 ± 26 Ma (MSWD = 2.3) for the red leucogranites I. The 

leucogranites II have also elevated 147Sm/144Nd and 87Rb/86Sr ratios but these are not 

correlated with the 143Nd/144Nd and 87Sr/86Sr ratios, respectively. However, the 

samples plot at the lower end of the range defined by the red leucogranites I, 

suggesting some relationship between the two types of leucogranite. 

 

5. Geochemistry  
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5.1 Major and trace element composition 

The major and trace element whole rock composition of the granites from the Kubas 

igneous complex are shown in Table 1 and Figs. 6a and b. The grey granites have 

SiO2 concentrations between 69.6 and 73.0 wt% and are lightly peraluminous with 

alumina saturation indices between 1.02 and 1.14 (ASI = molar Al/(Ca+Na+K)). The 

K2O contents are higher than the Na2O contents (K2O/Na2O: 1.24 - 1.68) and 

variations of K2O and Na2O are small (K2O: 4.2 - 5.1 wt%, Na2O: 3.0 - 3.4 wt%). 

Abundances of CaO, MgO, TiO2 are rather uniform among the samples (CaO: 1.7 - 

2.1 wt%, MgO: 0.7 - 1.1 wt%, TiO2: 0.34 - 0.42 wt%). Ba is enriched relative to Rb 

and Sr, whereas Rb is enriched relative to Sr (Sr/Ba: 0.21 - 0.29, Rb/Ba: 0.38 - 0.51, 

Rb/Sr: 1.46 - 2.19). The Zr/Hf ratios vary between 34.7 and 37.1 and there is a well 

defined positive correlation between Zr and Hf. The variations of Rare Earth 

Elements (REE) of the grey granites are small and hence, the chondrite-normalized 

REE patterns are broadly similar (Fig. 7). Both, LREE and HREE are enriched with 

LaN/SmN ranging from 4.0 to 5.1 and GdN/LuN ratios ranging from 1.7 to 3.5. All grey 

granites show negative Eu anomalies (Eu/Eu*: 0.45 to 0.61). It is noteworthy, that 

correlations of major elements with SiO2 (Fig. 6a) are virtually absent and the 

variation of the major elements is relatively small. 

 The red leucogranites can be subdivided into two subtypes. Both subtypes 

have high SiO2 concentrations between 73.7 and 76.8 wt% and low MgO 

concentrations between 0.03 and 0.2 wt%. Furthermore, both types of red 

leucogranite are depleted in CaO, Fe2O3 (total) and TiO2 (CaO: 0.5 - 1.1 wt%; Fe2O3 

(total): 0.5 to 1.0; TiO2: 0.01 - 0.06 wt%) (Fig. 6a). The ASI (alumina saturation index) is 

mostly similar to the grey granites (1.04 to 1.09) with the exception of sample 

09/Ku01 which has a higher value of 1.22. The K2O contents are generally higher 

than the Na2O contents (K2O: 4.2 - 4.9 wt%, Na2O: 3.4 - 4.2 wt%; K2O/Na2O: 1.0 - 

1.45). The red leucogranites I are enriched in Rb (395 - 424 ppm), Nb (39 - 56 ppm), 

Y (65 - 119 ppm) and U (9 - 29 ppm) and depleted in Sr (6 - 15 ppm) and Ba (17 - 90 

ppm). Relative to the grey granites, they are enriched in Pb and depletd in Zr. The 

corresponding Rb/Sr and Rb/Ba ratios of the red leucogranites are high and the 

Sr/Ba ratios are low (Rb/Sr: 26 - 68, Rb/Ba: 4.4 – 25 Sr/Ba: 0.14 - 0.82) (Fig. 6b). 

Most of the chondrite-normalized REE patterns of the red leucogranites I are 

enriched in HREE relative to LREE (LaN/YbN: 0.4 - 0.5) and a prominent negative Eu 
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anomaly is observed (Eu/Eu* = 0.02 - 0.07) (Fig. 7). The Zr/Hf ratios of the red 

leucogranites I are low; ranging from 13.7 - 16.0.  

 The Sr contents of the red leucogranites II are less depleted than in 

leucogranites I (Sr: 18 - 55 ppm) whereas the Rb concentrations are slightly lower 

than those observed in the red leucogranites I. Consequently, the Rb/Sr ratios are 

significantly lower than in the red leucogranites I, ranging from 4.2 to 16.9. The Y, Nb 

and U contents are considerably lower than for the red leucogranites I (Y: 10 - 30 

ppm, Nb: 8 - 22 ppm, U: 4 - 8 ppm). The REE patterns of the red leucogranites II are 

mostly unfractionated (LaN/YbN: 0.8 - 2.9) but the MREE are slightly depleted (Fig ). 

The negative Eu anomaly is less well pronounced (Eu/Eu* = 0.4 - 0.6) than in the red 

leucogranites I. The Zr/Hf ratios are slightly higher than in red leucogranite I and 

range from 17.4 to 21.5. 

5.2 Sr, Nd and Pb isotopes 

Strontium, Nd and Pb isotope analyses are reported in Table 3. The initial Sr and Nd 

isotope ratios of the grey granites are calculated for an age of 550 Ma. This age is 

assumed to reflect the magmatic age as shown by the U-Pb zircon ages. The initial 

87Sr/86Sr ratios range from 0.718 to 0.720 and the initial εNd values are strongly 

negative (εNd: -16.1 to -17.6). The Nd model ages range from ~2.2 to ~2.5 Ga. The 

Pb isotope ratios of the grey granites obtained on acid leached feldspars are shown 

in Figure 9. The range in Pb isotopes is small with a notable variation in 207Pb/204Pb 

at virtually constant 206Pb/204Pb ratios and the samples plot above the Stacey and 

Kramers (1975) Pb evolution curve. The 206Pb/204Pb ratios range from 17.00 to 17.05, 

the 207Pb/204Pb ratios from 15.56 to 15.61 and the 208Pb/204Pb ratios from 37.98 to 

38.17. 

 The initial Sr and Nd isotope ratios of the red leucogranites I and II are 

calculated to an age of 513 Ma. The initial 87Sr/86Sr ratios of the red leucogranites I 

range from 0.723 to 0.744 and for the red leucogranites II from 0.712 to 0.721. 

Because of the high Rb/Sr ratios of the red leucogranites, the accuracy of the 

calculated initial values is strongly dependent on the precision of the age and the 

accuracy of the Rb/Sr ratio. Hence, the reported values and inter sample variations 

are only approximations to the real values. The initial εNd values of the red 

leucogranites I and II are similar and strongly negative ranging from -16.1 to -16.9 

and from -13.6 to -19.1, respectively. The Nd model ages range from ~2.1 to ~ 2.5 
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Ga.  The variations of Pb isotope ratios obtained on acid leached feldspars for both 

leucogranites cover a wide range of values (Table 3; Figure 9). In contrast to the grey 

granites, the leucogranites have substantial variations in 207Pb/204Pb and 206Pb/204Pb 

ratios. The 206Pb/204Pb ratios range from 17.17 to 18.05, the 207Pb/204Pb ratios from 

15.58 to 15.67 and the 208Pb/204Pb ratios from 37.94 to 38.25. Like the grey granites, 

the leucogranites plot also above the Pb evolution curve defined by Stacey and 

Kramers (1975). 

 

6. Discussion 

The grey granites and the red leucogranites (I and II) are not directly genetically 

related, indicated by their different geological ages. However, all granite types of the 

Kubas igneous complex likely formed from similar sources but at different times, from 

melts modified by different processes. 

   

6.1 Geochronology  

The U-Pb zircon ages obtained on the grey granites gives the first precise age 

constraint for this igneous complex in the basement-dominated Central Zone of the 

Damara orogen. Inherited zircon cores give ages of c. 1.0 Ga and a range of ages 

between 1.8 to 2.1 Ga. Jacob et al. (1978) obtained an age of c. 2.0 Ga for the 

underlying Abbabis metamorphic complex and Kröner et al. (1991) and Longridge et 

al. (2011) have shown that remobilized basement rocks constitute an important 

fraction of the Pre-Damara rocks in the area with apparent ages of c. 1.0 Ga. 

Therefore, the inherited Proterozoic ages likely reflect the age of the underlying 

basement. Similarly, Johnson et al. (2006) reported inherited zircon grains from a 

Salem-type granite with an apparent Pb/Pb age of c. 1.9 Ga.  

 Zircon fractions yielding ages that are characteristic for the Damara orogenic 

episode give two age populations; one defining an age of 553 ± 8 Ma and another 

defining an age of 502 ± 9 Ma. We interpret the older age to reflect the main intrusion 

age of the grey granites. This interpretation is consistent with the U-Pb zircon age of 

549±11 Ma (Jonson et al., 2006) from a nearby Salem-type granite. The younger age 

may reflect new growth of zircon at the time the leucogranites invaded the igneous 
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complex at 513±6 Ma which is constrained by the Rb-Sr whole rock age obtained on 

the leucogranites I. Rubidium-Sr dating of granites from the Damara orogen (Haack 

et al., 1980, 1982) have yielded a number of precise ages. Subsequent Pb-Pb zircon 

dating of some of these granites (Jung et al., 1998) have shown that the Rb-Sr ages 

could be similar or younger than the Pb-Pb ages. On the other hand, recent work on 

granulite-facies Proterozoic leucogranites from the Kaoko belt (Jung et al., 2012) has 

shown that even in granites that have undergone high-grade metamorphism, Rb-Sr 

ages can be similar to U-Pb zircon ages. Therefore, the younger Rb-Sr age obtained 

on the leucogranites may has geological significance. Alternatively, the younger U-Pb 

age of 502±9 Ma obtained on the grey granites correspond to limited new growth of 

zircon close to the inferred peak of regional metamorphism. This peak of regional 

metamorphism occurred at c. 500-510 Ma which is reflected by Sm-Nd and Lu-Hf 

garnet ages of unmigmatized metapelites or migmatized meta-igneous rocks 

occurring elsewhere in the basement-dominated part of the high-grade Central Zone 

of the Damara orogen (Jung et al., 2009; Jung and Hellebrand, 2006; Jung and 

Mezger, 2003). Similarly, Longridge et al. (2011) reported U-Pb zircon ages of 

511±18 and 508±9 Ma on anatectic leucosomes which originated close to the peak of 

high-grade metamorphism.  

 

6.2 Fractional crystallisation and assimilation processes 

The chemical and isotopic composition of the grey granites is relatively homogenous 

with limited correlation of major and trace element composition with SiO2 suggest that 

the grey granites have undergone only limited fractional crystallization. Radiogenic 

isotope compositions are not correlated with major and trace element data indicating 

the absence of assimilation processes. Therefore, we will use these samples to 

constrain the nature of the sources (see below). 

 The red leucogranites (I and II) were formed at the time when high-grade 

metamorphic conditions occurred in the Central Zone of the Damara orogen. They 

are products of highly fractionated melts which is shown by their high Rb/Sr and low 

Zr/Hf ratios and strongly modified chondrite-normalized REE patterns. Linnen and 

Keppler (2002) showed that fractional crystallization of metaluminous to 

peraluminous granite magmas leads to a decrease of Zr/Hf ratio in the most 

fractionated melts. Furthermore, the normative composition (Table 4) of both 
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subtypes of red leucogranites plots close to the minimum composition in the 

experimental haplogranite system at ~ 2 kbar (Johannes and Holtz, 1996) (Fig 10). It 

is suggested, that the two subgroups likely represent different evolutionary stages of 

a single differentiation process in which the red leucogranites I are probably products 

of more advanced fractional crystallisation processes than the red leucogranites II. 

This is shown by the higher Rb/Sr and lower Zr/Hf ratios, the strong enrichment of 

Nb, Y and U and the prominent negative Eu anomaly of the red leucogranites I. The 

chondrite-normalized REE pattern of the red leucogranites I and II can be explained 

by combined crystal fractionation/accumulation processes including major rock 

forming and accessory minerals such as plagioclase, garnet, apatite and allanite. The 

depletion of LREE of both subtypes of red leucogranites may be due to allanite 

fractionation; the negative Eu anomalies are likely a result of plagioclase 

fractionation, which was more advanced for the red leucogranites I than for the red 

leucogranites II. The relatively strong enrichment of the HREE and Y of the red 

leucogranites I is likely due to garnet accumulation. The slight MREE depletion of the 

red leucogranites II may be due to apatite fractionation. Crustal contamination of the 

red leucogranites I and II is indicated by the occurrence of cordierite with sillimanite 

inclusions and biotite clusters which are both likely remnants of upper crustal pelites 

(Fig. 3). Furthermore, the 206Pb/204Pb-ratios of acid leached feldspars of the red 

leucogranites trend towards the composition of common pelitic metasediments from 

the Damara orogen (Fig 9). 

6.3 Source of the granites 

Slightly peraluminous granites like the grey granites can either form from 

metasedimentary or meta-igneous sources (Chappell et al., 1998; Chappell and 

White, 1992). The geochemical characteristics (enrichment of Ba and Rb relative to 

Sr, high K2O, low CaO) of the grey granites indicate a crustal source rock. High Na2O 

(> 3.5 wt.%), high CaO (>1.0 wt%) are unlike the values characteristic for pelitic 

sources (Na2O: < 3.5 wt. %, CaO: < 1.2 wt. %; Miller, 1985). Similarly, Sr (~150 ppm) 

and Ba (> 500 ppm) abundances are also not characteristic for a pelitic parent (Sr: 

70-100 ppm, Ba: 220-260 ppm; Miller, 1985). Comparison of the chemical 

composition of the grey granites with experimentally-derived partial melts (Patiño 

Douce, 1999) may suggest a greywacke source. Meta-greywackes from the Central 

Damara orogen have Na2O, K2O and CaO concentrations that are different to those 
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observed in metapelites (Na2O: c. 2.3 wt%, K2O: 2-3 wt%, CaO: 1.1-1.4 wt%; Jung et 

al., 1999). Although the Na2O and CaO concentrations roughly match the 

concentrations observed in the grey granites, the K2O abundances are too low to 

yield K2O-rich granitic melts. Similarly, the low Sr (60-70 ppm) and Ba (80-210 ppm) 

contents of common Damaran metagreywackes (Jung et al. 1999) makes it unlikely 

that partial melting of such rocks can yield granites with 500-600 ppm Ba and ~ 150 

ppm Sr. The largest problem is, that in the Damara orogen no metagreywackes have 

been observed that have εNd values around -16 to -18 and unradiogenic Pb isotope 

compositions with 206Pb/204Pb ratios < 17.1. Hence, a derivation of the grey granites 

by partial melting of Damaran greywackes is unlikely.  

 Another possibility to yield Ba- and Sr-rich granitic melts is partial melting of 

pre-existing orthogneisses of granodioritic composition. If correct, and if modification 

of the chemical composition by fractional crystallization processes is negligible, the 

chemical composition of the granites should match the composition of 

experimentally-derived liquids. In Fig. 11, the composition of experimentally-derived 

liquids derived by partial melting of biotite gneisses (Patiño Douce and Beard, 1995) 

is shown. A comparison of chemical compositions of the experimental runs and the 

grey granites shows a close match between natural and experimental compositions. 

Low molar Al2O3/(MgO+FeO) and molar CaO/(MgO+FeO) values of the grey granites 

indicate that moderately high temperatures of c. 900°C were attained (Fig. 12). This 

temperature agrees well with the temperature estimate for the grey granites based on 

Al/Ti systematics (c. 900±15°C; calculated using the linear regression equation for 

igneous rock melting of Jung and Pfänder, 2007) and apatite thermometry (c. 920°C; 

Harrison and Watson, 1984) but is higher than the highest calculated Zr saturation 

temperature (Watson and Harrison, 1983) of 810°C (Table 5). Low molar 

Al2O3/(MgO+FeO) values of the grey granites relative to experimental results indicate 

that melting likely took place at pressures less than 10 kbar (Fig. 12), indicating 

relatively shallow melting of basement material. The degree of melting can be 

estimated from comparison with experimental investigations (Patiño Douce and 

Beard, 1995) and was probably between 10-20%. A more precise estimate on the 

degree of melting is not possible, however, due to the fact that the grey granites plot 

at the low-SiO2 end defined by the experimental runs indicate that the degree of 

melting must be rather low. Experimental and thermal considerations indicated that 

20% partial melting is a minimum estimate (i.e. Clemens and Vielzeuf, 1987). 
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However, it should be noted that K2O abundances in granites may be sensitive to the 

degree of melting and early work by Roberts and Clemens (1993) and Clemens et al. 

(2011) indicated that high-K2O granites can only be derived by melting of medium- to 

high-K2O sources. Although the degree of melting can only be estimated indirectly by 

comparison with experimental data, it seems likely that the inferred parental melts of 

the grey granites were derived by moderate degrees of partial melting of a high-K2O 

source. 

 Palaeoproterozoic Nd model ages, unradiogenic initial Nd isotope 

compositions and radiogenic Sr isotope compositions of the grey granites point to an 

ancient crustal source. Similar initial isotope values for different plutonic basement-

derived rocks from the Central Zone of the Damara orogen are known (McDermott et 

al., 1996; Jung et al., 2003) and demonstrate that large amounts of pre-Damara 

basement were reworked during the Damara orogeny. The Pb isotope composition of 

acid leached feldspars also support the idea that the precursor rock of the grey 

granites had an ancient history in an environment that was characterized by high 

U/Pb ratios. Feldspars have very low μ (238U/204Pb)- and ω (232Th/204Pb)- values and 

hence, their Pb isotope composition points to the initial Pb isotope composition at the 

time when the rock last equilibrated. For granites, this event is most likely the time of 

intrusion. All samples plot above the Pb evolution curve according to Stacey and 

Kramers (1975). The large variation in 207Pb/204Pb ratios at almost identical 

206Pb/204Pb ratios points to an ancient increase in the U/Pb ratio of the precursor of 

the grey granites. The unradiogenic 206Pb/204Pb ratios show that somewhere in the 

past, the source of the granites had undergone a stage where the U/Pb ratio of the 

source was lowered. As shown before, the grey granites have also higher 208Pb/204Pb 

ratios than the Stacey and Kramers (1975) model source. Relatively radiogenic 

208Pb/204Pb ratios are likely due to ancient Th/Pb fractionation in the source of the 

grey granites. These 207Pb/204Pb-208Pb/204Pb isotope characteristics, that reflect U/Pb 

and Th/Pb fractionation in the past, can be connected with major crust-modifying 

processes (high-grade metamorphism and melting) that affected the source of the 

granites.  

 The chemical composition of the red leucogranites does not directly mirror the 

composition of their source rocks as the rocks are strongly fractionated. Similar initial 

Nd isotope ratios and old Nd model ages of 2.0 - 2.4 Ga point to a source similar to 

the source of the grey granites. This assumption is confirmed by the Pb isotope ratios 
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of the least modified samples of the red leucogranites which plot close to the Pb-

isotope composition of the grey granites. From 207Pb/204Pb and 208Pb/204Pb isotope 

plots it is evident that the isotope composition of the leucogranites show a large 

variation in 206Pb/204Pb ratios. In particular, the array shown by the leucogranites 

point to the field occupied by Damaran metapelites (Jung, 2005), hence it is very 

likely that the leucogranites assimilated minor amounts of metapelitic material en 

route to the surface or during final emplacement. This is also compatible with the 

negative correlation between 87Sr/86Sr and 206Pb/204Pb (Fig. 13) in which the array 

depicted by the leucogranites evolves from high 87Sr/86Sr and low 206Pb/204Pb 

towards low 87Sr/86Sr and high 206Pb/204Pb. This correlation also shows that (i) the red 

leucogranite II has probably the same source as the grey granites and (ii) 

contamination involves less evolved metasedimentary rocks of the Kuiseb Formation 

(Jung, 2005) rather than evolved metasedimentary rocks of the Etusis or Khan 

Formations (McDermott and Hawkesworth, 1990) that contains a large amount of 

recycled basement rocks. The inferred assimilation scenario is also compatible with 

the presence of cordierite with sillimanite inclusions and associated biotite clusters in 

these granites.  

 Although the correlations between 207Pb/204Pb and 206Pb/204Pb and also 

between 87Sr/86Sr and 206Pb/204Pb indicate assimilation processes, it is pertinent to 

ask why we see overall weak evidence for assimilation, although the isotopic and 

elemental contrast between the end members should be significant. The basement 

beneath the Damara orogen and the overlying sedimentary sequences have fairly 

high Sr and Nd abundances whereas Sr and Nd isotope compositions vary from 

strongly to moderately evolved. The grey granites have the highest Nd and Sr 

abundances and show virtually no signs of assimilation. The leucogranites have very 

low Nd and Sr abundances and assimilation of metasedimentary rocks or melts 

thereof with elevated Nd and Sr abundances (Jung 2005) must have a profound 

effect on the isotope compositions of the red leucogranites; yet very little field and 

petrographic evidence is observed. It seems that assimilation was very minor (a few 

percent), hence having little impact on the isotope composition. 

 

7. Summary and conclusion 
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Two different types of granites intruded into the basement-dominated Kubas area 

(Central Damara orogen, Namibia). The syn-orogenic grey granites intruded at ~550 

Ma and are among the oldest granites formed in the Damara orogen. They are 

probably uncontaminated; their chemical composition is relatively homogenous and 

hence, their composition likely mirrors their source which is assumed to be ancient 

pre-Damara basement. Based on a fairly good correlation of chemical data from 

experimental investigations and the grey granites, the source is likely a common 

biotite-bearing gneiss of granodioritic composition. The unradiogenic Pb isotope 

composition obtained on feldspar separates as well as evolved initial Sr and Nd 

isotopic compositions and inherited ancient U-Pb zircon ages also points to a pre-

Damara basement source. 

 The red leucogranites are subdivided into two subgroups because of different 

trace element compositions. They formed at ~510 Ma at the time when high-grade 

peak metamorphic conditions prevailed in the Central Zone of the Damara orogen. 

Both subgroups of the red leucogranites likely formed from a source similar to the 

source of the grey granites. The chemical composition of both leucogranite 

subgroups changed after melt formation due to fractional crystallization processes; 

the red leucogranites I are likely products of more advanced differentiation processes 

than the red leucogranites II. During movement through or stagnation within the 

crust, minor assimilation of mid crustal metapelites occurred. 

 An important point to consider is why are there two separate melting events, 

separated by c. 40-50 Ma and why are the melting products somewhat different. 

Geochronological data obtained on metamorphic rocks and early syn-orogenic 

granites indiate that a first peak of metamorphism occurred at c. 540 Ma (Jung and 

Mezger, 2003) or slightly earlier (Longridge et al., 2011). This first metamorphic peak 

is associated with crustal thickening and shortening (Johnson et al., 2006; Longridge 

et al. 2011) and the grey granites are likely an outcome of this orogenic event where 

suitable basement sources are depressed at greater depths and hence were 

subjected to higher temperatures. The main peak of metamorphism (or a second 

peak related to reheating) occurred probably at c. 500 Ma (Jung and Mezger, 2003; 

Jung and Hellebrand, 2006, Jung et al. 2009; Longridge et al., 2011). At this time, 

lower granulite facies conditions were reached at mid-crustal levels and the red 

leucogranites studied here are melting products of fusible basement lithologies which 

are now, due to orogenic folding and stacking of crustal sheets, part of the mid crust. 
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The leucogranites are highly fractionated rocks but their precursor granites must be 

similar in composition than the grey granites, at least from an isotope persepective. 

There is no reason to believe that the contrasting chemical composition of both 

granite types is related to different genetic processes during melting, instead the 

chemical composition of the red leucogranites has been achieved due to extensive 

fractional crystallisation of an unexposed primary granite magma. The observation 

that two apparently similar granites are generated at two different times can be 

explained with the presence of limited amounts of water in the early history that aided 

melting of felsic basement rocks producing the grey granites. Later, when much of 

the water was expelled, more melting was possible due to rising metamorphic 

temperatures but apparently only limited amounts of granite was produced at that 

time. Note, however, that during the melting events both types of granitic melts were 

likely not water-saturated as those melts are unable to move through the crust. It is 

concluded that the grey granites are related to crustal thickening and heating of mid-

crustal levels whereas the precursor rocks of the red leucogranites are related to 

crustal shearing and probably limited extension (Longridge et al., 2011). 

 Two main factors may have controlled the generation of granitic melts in the 

central part of the Damara orogen, (i) considerable crustal thickening and (ii) the 

radiogenic character and high heat productivity of the protoliths involved in granite 

genesis. The composition of the crust in the Damara orogen is essentially felsic and, 

as a consequence, this crust was likely characterized by high radioactive heat 

production during orogeny. Haack et al. (1983) calculated average heat production 

ratios of 2.5-8.8 µW m-3 for meta-igneous rocks from the Damara orogen. These 

values are much higher than those used in theoretical models of anatexis in 

tectonically thickened crust (England and Thompson, 1986; 0.9-1.3 µW m-3). 

According to England and Thompson (1986), a 50% increase in internal heat 

production raises peak temperatures by 150-200oC at the bottom of the crust and 

thickening of 1.5 to 2 times the crust must result in widespread anatexis at mid-

crustal levels. It is also predicted that melting events lag behind initiation of thrusting 

several tens of millions of years (Patiño Douce et al., 1990; Zen, 1988). The amount 

of time depends on the number and thickness of depressed thrust sheets, the 

duration of the thickening event, the initial temperatures and the amount of water 

present. Although there are a number of uncertainties, such a view is compatible with 

the observation that the main period of crustal melting at c. 500 Ma (Jung and 
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Hellebrand, 2006; Jung et al., 2000; Jung and Mezger, 2003) in the Damara orogen 

occurred ~ 30-40 Ma after the first peak of metamorphism which occurred at c. 540 

Ma or slightly earlier (Jung, 2000; Jung and Mezger, 2003; Longridge et al. 2011). It 

is therefore very likely that the Damaran Pan-African continental crust was enriched 

in heat-producing elements, making it a good candidate for the massive production of 

granite during an orogeny in which existing temperature gradients will be steepened 

by the high radioactivity of depressed upper crustal rocks. 
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Appendix A. Analytical techniques 

Granite samples of c. 3-5 kg were crushed to powder using a jaw crusher, rod mill 

and a vibration disk mill with an agate grinding set. Mineral fractions in the grain size 

of 100 - 300 µm were separated by sieving of the coarse granular material available 

after crushing with the rod mill. Magnetically susceptible minerals were removed with 

a Frantz® magnetic separator. Zircon was isolated through density separation with 

methylene iodide and c. 25 - 50 mg of high purity K-feldspar were separated from the 

less dense fraction by hand picking. 

 Uranium-Pb ages were measured by laser ablation ICP-MS at the Institut für 

Mineralogie, Westfälische Wilhelms-Universität, Münster with a ThermoFinnigan 

Element2 sector field ICP-MS coupled to a New Wave UP193HE ArF Excimer laser 

system. Details of operation conditions can be found in Kooijman et al. (2012). 

Before U-Pb analysis of the zircon grains, back scattered electron (BSE) and 

cathodoluminescenece (CL) images were taken with a JXA 8900 Superprobe 

electron microprobe.  

 Major elements and some trace elements were measured on fused lithium-

tetraborate glass beads by standard XRF techniques using a Panalytical MagixPro at 

the Institut für Mineralogie, Universität Hamburg. Prior to analysis, loss on ignition 

(LOI) was determined gravimetrically after heating the samples at c. 1000°C for 3 

hours in a muffle furnace. For some samples (02/Ku01-06, 09/Ku01, 09Ku09, 

09Ku11, 02/Ku08, 02/Ku09, 02/Ku11, 02/Ku12, 09/Ku02, 09/Ku04 and 09/Ku05) 

trace elements including REE were measured at Actlabs, Canada via ICP-MS. 

Accuracy of the analyses was tested against several international rock standards. 

The precision of the XRF data is c. 1% for major elements and 5-10 % for trace 

elements at concentrations above 100 ppm and 10-20 % for concentrations less than 

100 ppm (see Table 1). The precision of trace element measurements by ICP-MS is 

estimated to be 5-10% (Table 1).  

 For Rb-Sr and Nd whole rock isotope analysis the samples were digested in 

concentrated HF-HNO3 in 3 ml Savillex® screw top PFA vials using standard 

techniques; samples analyzed via isotope dilution were spiked with a mixed 87Rb/84Sr 

tracer prior to digestion. Dissolved samples were dried and redissolved with 2.5 N 

HCl. Strontium and REE were separated with standard cation exchange columns 

using DOWEX® AG 50 W-X 12 or AG 50 W-X 8. Neodymium was separated by 

using HDEHP coated Teflon® columns using 0.12 N HCl. For Rb and Sr isotope 
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analysis via isotope dilution analysis the dried samples were redissolved in ~3 N 

HNO3 and loaded onto Teflon® micro columns filled with EICHROM® Sr resin. 

Rubidium was rinsed from the columns with ~3 N HNO3, dried and loaded with H2O 

onto Re-double filaments; no further purification of Rb was undertaken before 

analysis. Strontium was rinsed with H2O from the same micro columns. Strontium 

was loaded with a TaF5 activator onto W single filaments. Nd was run with Re double 

filaments. 

 Strontium isotope whole rock analyses were carried out at the Institut für 

Mineralogie, Westfälische Wilhelms-Universität Münster with a Finnigan Triton 

multicollector thermal ionization mass spectrometer (MC-TIMS) (samples 02/Ku01, 

02/Ku02, 02/Ku04, 02/Ku05, 02/Ku06, 02/Ku08, 02/Ku09, 02/Ku11, 02/Ku12) and at 

the Institut für Mineralogie, Freiberg with a Finnigan MAT262 MC-TIMS (samples 

02/Ku03, 09/Ku01, 09/Ku02, 09/Ku04, 09/Ku05, 09/Ku09, 09/Ku11). The 

reproducibility of Sr-standard NBS987 was 87Sr/86Sr = 0.710213 ± 0.000007 (2σ, 

n=10) at Münster and 87Sr/86Sr = 0.710217 +- 0.000051 (2σ, n = 4) at Freiberg. 

Furthermore, the 87Rb/86Sr-ratios of leucogranite samples (02/Ku01 - 06, 09/Ku01, 

09/Ku09, 09/Ku11) were determined via isotope dilution analysis at the Institut für 

Mineralogie, Freiberg using a mixed 87Rb/84Sr tracer. Sm-Nd whole rock isotope 

analyses were carried out at the Institut für Mineralogie, Westfälische Wilhelms-

Universität Münster and at GEOMAR (Kiel), each with a Finnigan Triton MC-TIMS. 

Reproducibility of the La Jolla Nd-standard was 143Nd/144Nd = 0.511859 +- 0.000007 

(2σ, n = 10) at Münster and 143Nd/144Nd = 0.511850 +- 0.000003 (2σ, n = 5) at Kiel. 

Strontium isotope ratios are normalized to 86Sr/88Sr = 0.1194 and Nd isotope ratios 

are normalized to 146Nd/144Nd = 0.7219. 

 Lead isotope analyses of high-purity feldspar separates were carried out at the 

Institut für Mineralogie, Westfälische Wilhelms-Universität Münster with a VG Sector 

54 MC-TIMS (samples 02/Ku01, 02 Ku02, 02/Ku04, 02Ku05, 02/Ku06, 02/Ku08, 

02/Ku09, 02/Ku11, 02/Ku12, M64, M68, M73) and at GEOMAR (Kiel) (samples 

02/Ku03, 09/Ku01, 09/Ku04, 09/Ku09, 09Ku11). At both institutes, c. 25 mg 

separated feldspar were washed with a HCl-HNO3 (3:1) solution on a hotplate for 

several hours to remove unsupported lead. After rinsing several times with ultrapure 

H2O, feldspar was leached twice with a mixture of concentrated HF and HNO3 and 

was subsequently, dissolved in concentrated HF and dried afterwards. After this 

treatment, the samples were redissolved in 6 N HCl and dried again. Separation of 
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Pb was carried out with Teflon® micro columns filled with DOWEX® AG 1 X 8 resin 

using established HBr/HCl techniques. Lead was load onto Re single filaments with 

silica gel and H3PO4. Lead analyses were corrected for mass fractionation with a 

factor of 0.11% per amu for analyses obtained in Münster and 0.12% per amu for 

analyses obtained at GEOMAR Kiel. 
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Abstract  

Major and trace element and Nd, Sr and Pb isotope data from c. 550 Ma-old grey 

granites and c. 510 Ma-old red leucogranites of the high-grade central part of the 

Damara orogen (Namibia) indicate a dominantly deep crustal origin. Moderately 

peraluminous grey granites are isotopically evolved (initial εNd: c. -17) and were likely 

derived from meta-igneous sources with late Archaean to Paleoroterozoic crustal 

residence ages. Based on a comparison with experimental results, the granites were 

derived by partial melting of a granodioritic biotite gneiss at c. 900-950oC and less 

than 10 kbar. Slightly peraluminous red leucogranites are also isotopically evolved 

(initial εNd: -15 to -18) but have undergone extensive crystal fractionation coupled with 

minor contamination of mid crustal meta-pelitic material. Major and trace element 

data do not support closed-system fractional crystallization processes for all samples, 

however, some chemical features underline the importance of crystal fractionation 

processes especially for the leucogranites. Isotope data do not support mixing of 

different crust-derived melts or assimilation of crustal rocks by a mafic magma on a 

large scale. For the grey granites, unradiogenic Pb isotope compositions with 

substantial variation in 207Pb/204Pb at almost constant 206Pb/204Pb, strongly negative 

εNd values and moderately radiogenic Sr isotope compositions argue for an 

undepleted nature of the source. High Rb/Sr ratios of the red leucogranites permit a 

comparison with the grey granites but similar initial εNd values indicate that the source 

of these granites is not fundamentally different to the source of the grey granites. The 

most acceptable model for both granite types involves partial melting of meta-

igneous basement rocks of Archaean to Proterozoic age. The consistency of the 

chemical data with a crustal anatectic origin and the observation that the grey 

granites intruded before the first peak of high-grade regional metamorphism suggests 

that they intruded simultaneously with crustal thickening. The red leucogranites are 

interpreted to be a result of crustal melting during the main peak of regional 

metamorphism. The heating events that promoted melting of fertile deep-crustal 

rocks might have been caused by the inferred high heat productivity of heat-

producing radioactive elements (Th, U, K) together with crustal thickening during the 

main periods of orogeny. 
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Fig. 1. Generalized geological map (modified after Jung and Mezger, 2003) showing the study area within the 

Central Zone of the Damara orogen, Namibia. Abbreviations in inset: KZ: Kaoko Zone, NP: Northern Platform, 

NZ: Northern Zone, nCZ: northern Central Zone, sCZ: southern Central Zone, SZ: Southern Zone, SMZ: Southern 

Margin Zone. Isograd map (Hartmann et al., 1983) gives the distribution of regional metamorphic isogrades 

within the southern and central Damara orogen. Isograds: (1) biotite-in, (2) garnet-in, (3) staurolite-in, (4) 

kyanite-in, (5) cordierite-in, (6) andalusite ↔ sillimanite, (7) sillimanite-in according to staurolite-breakdown, 

(8) partial melting due to: muscovite + plagioclase + quartz + H2O ↔ melt + sillimanite, (9) K-feldspar + 

cordierite-in (10) partial melting due to: biotite + K-feldspar + plagioclase + quartz + cordierite ↔ melt + 

garnet. W: Walvisbay, S: Swakopmund, Wh: Windhoek. 

Fig. 2. Simplified geological map of the study area (modified after Schreiber, 1996). Area denoted with dashed 

line indicates approximate area of M samples. Sample localities are explained in table 1. 

Fig 3. Optical photomicrographs (crossed polarizers). (a) Cordierite with sillimanite inclusions in red 

leucogranite II, (b) biotite cluster in red leucogranite I. Crd: Cordierite, Sil: Sillimanite as fibrolite, Bt: Biotite. 

Fig. 4. Concordia diagrams showing U-Pb zircon ages for the grey granites derived by LA-ICPMS. (a) All 

measured concordant ages between 2.1 Ga and 490 Ma, (b) concordant ages between 2.1 and 1.7 Ga, (c) 

concordant age of 1025 ± 17 Ma, (d) concordant age of 553.3 ± 8.4 Ma, (e) concordant age of 502.4 ± 9.0 Ma.   

Fig. 5. Rb-Sr whole rock isochron for the red leucogranites I. Also shown is the Rb-Sr isotope composition of the 
red leucogranites II, plotting close to the isochron defined by the red leucogranites I. 

Fig 6. (a) Major element plots and (b) selected trace element plots vs. SiO2 for the grey granites and the red 

leucogranites I and II. 

Fig 7. Chondrite-normalized REE plots for (a) grey granites, (b) red leucogranites I and (c) red leucogranites II. 

Normalization factors according to Boynton (1984). 

Fig 8. εNd(550 Ma) vs. 
87

Sr/
86

Sr(550 Ma) diagram for grey granites and red leucogranites I and II of the Kubas 

igneous complex. Also shown is the composition of basement derived granites from the Khan area (Jung et al., 

2003). Data for Damaran metasedimentary rocks are from Jung et al. (2003), Jung (2005) and McDermott and 

Hawkesworth (1990); data for basement rocks of the Kaoko belt are from Seth et al. (2002). 

* initial Sr ratios and εNd-values of the red leucogranites are calculated to an initial age of 513 Ma 

Fig 9. Plot of 
207

Pb/
204

Pb and 
208

Pb/
204

Pb vs. 
206

Pb/
204

Pb isotope ratios of acid leached feldspar from the grey 

granites and the red leucogranites I and II of the Kubas igneous complex, Damaran metasedimentary rocks 

(Jung, 2005) and basement derived granites from the Khan area (Jung et al., 2003). One curve (dark spots) 

represents the average Pb growth curve according to Stacey and Kramers (1975), the other curve (bright spots) 

represents Pb evolution with higher μ (
238

U/
204

Pb) and higher ω (
232

Th/
204

Pb) values than shown by the Stacey 

and Kramers model. Tick marks represent 100 Ma intervals. 

Fig 10. Normative Qz-Ab-Or compositions of the grey granites and red leucogranites I and II. Phase relations for 

the water saturated haplo granite system at 1, 2, 5, 10 and 20 kbar are according to Johannes and Holtz (1996). 

Fig 11. Plots of Al2O3, MgO, Na2O+K2O, TiO2 vs. SiO2 for the grey granites of the Kubas igneous complex and for 

experimental melts derived by partial melting of biotite gneisses according to Patiño Douce and Beard (1995). 

Fig 12. Plots of Al2O3/(MgO+FeO)molar vs. pressure and CaO/(MgO+FeO)molar vs. temperature for 

experimentally-derived liquids derived by partial melting of biotite gneisses (Patiño Douce and Beard, 1995). 

Also shown is the variation of the chemical composition of the grey granites. 

Fig 13. Plot of 
206

Pb/
204

Pb vs. 
87

Sr/
86

Sr (init.) for the red leucogranites I and II and the grey granites.  Data for 

Damaran metasedimentary rocks are from Jung (2005).
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grey granites and the red leucogranites I and II of the Kubas pluton.  

Rock type   Red leucogranites I         Red leucogranites II 
Sample 02/Ku01 02/Ku02 02/Ku03 02/Ku04 02/Ku05 02/Ku06 09/Ku01 09/Ku09 09/Ku11 

GPS 22°16´47 22°16´47 22°16´47 22°17´19 22°17´19 22°17´19 22°22´31 22°15´55 22°14´08 

15°35´06 15°35´06 15°35´06 15°35´20 15°35´20 15°35´20 15°36´24 15°38.25 15°38´30 
Sample locality 
in Fig 2 

F F F E E E  L G C 

SiO2 75.25 76.56 76.49 75.89 76.13 74.87 73.74 76.35 76.78 

TiO2 0.01 0.01 0.01 0.02 0.01 0.01 0.05 0.04 0.06 

Al2O3 13.41 13.51 13.43 13.48 13.42 13.30 15.10 13.56 13.30 

Fe2O3 (total) 0.76 0.88 0.87 0.90 0.76 0.80 0.96 0.48 0.52 

MnO 0.14 0.08 0.14 0.07 0.11 0.10 0.20 0.01 0.02 

MgO 0.04 0.04 0.04 0.05 0.04 0.03 0.20 0.05 0.05 

CaO 0.54 0.45 0.54 0.71 0.63 0.65 0.63 1.13 0.85 

Na2O 3.97 4.12 4.11 3.97 4.20 4.12 3.76 3.38 3.95 

K2O 4.61 4.40 4.36 4.50 4.20 4.29 4.67 4.91 4.33 

P2O5 0.04 0.02 0.02 0.06 0.01 0.05 0.19 0.01 0.02 

LOI 0.59 0.63 0.63 0.39 0.46 0.30   0.82 0.43 0.49 

total 99.36 100.70 100.64 100.04 99.97 98.52 100.32 100.35 100.37 

ASI 1.07 1.09 1.08 1.06 1.06 1.06 1.22 1.05 1.04 

K2O/Na2O 1.16 1.07 1.06 1.13 1.00 1.04 1.24 1.45 1.10 

Sc   10 10 7 14 12 9 8 7 7 

V   <5 <5 <5 <5 <5 <5 <5 <5 <5 

Ga   22 23 23 22 23 23 19 17 19 

Rb   406 411 410 395 409 424 204 231 304 

Sr   9 10 8 15 6 14   41 55 18 

Y   119 86 117 65 111 86   10 20 30 

Zr   67 63 67 72 68 59   43 73 47 

Nb   47 56 50 39 46 45   8 10 22 

Ba   63 25 42 90 25 17   136 71 33 

Hf   4.8 4.6 4.7 4.5 4.7 4.3   2.0 4.1 2.7 

Pb   66 63 61 68 63 67   40 50 65 

Th   21.5 23.4 22.8 25.6 19.7 18.7   5.1 23.8 30.1 

U   12.3 11.5 12.0 9.8 8.6 28.6   3.7 7.4 7.9 
                        
Rb/Sr   45.11 41.10 51.25 26.33 68.17 30.29   4.98 4.20 16.89 

Rb/Ba   6.44 16.44 9.76 4.39 16.36 24.94   1.50 3.25 9.21 

Sr/Ba   0.14 0.40 0.19 0.17 0.24 0.82   0.30 0.77 0.55 

Zr/Hf   13.96 13.70 14.26 16.00 14.47 13.72 21.50 17.80 17.41 
  

La   9.9 6.5 7.4 10.5 7.0 5.9   5.5 4.4 4.7 

Ce   14.5 14.8 17.3 25.9 14.0 14.3   12.5 10.0 13.5 

Pr   2.8 2.3 2.5 3.3 2.2 2.0   1.4 1.5 1.2 

Nd   13.8 10.7 12.4 14.1 10.5 8.8   4.6 6.8 5.2 

Sm   8.3 5.7 8.4 6.1 7.5 5.3   1.3 2.4 2.2 

Eu   0.2 0.1 0.1 0.1 0.1 0.1   0.2 0.5 0.3 

Gd   14.5 9.0 14.5 7.5 14.1 8.5   1.2 2.5 2.7 

Tb   3.1 1.9 3.2 1.6 2.9 1.9   0.3 0.5 0.6 

Dy   21.3 14.3 21.7 11.4 19.0 13.5   1.7 3.4 4.4 

Ho   4.6 3.1 4.4 2.3 3.8 3.0   0.3 0.7 1.0 

Er   14.0 9.4 12.8 6.9 11.3 9.6   1.0 2.2 3.2 

Tm   2.1 1.4 1.9 1.0 1.7 1.5   0.2 0.4 0.5 

Yb   13.9 9.0 11.7 6.7 10.6 10.4   1.3 2.4 3.9 

Lu   2.17 1.39 1.80 1.01 1.61 1.63   0.21 0.40 0.67 
                        

Eu/Eu
*
   0.07 0.04 0.03 0.05 0.02 0.02   0.51 0.61 0.39 

LaN/SmN   1.50 0.72 0.55 1.08 0.59 0.70   2.66 1.15 1.34 

LaN/YbN   0.48 0.49 0.43 1.06 0.45 0.38   2.85 1.24 0.81 

GdN/LuN   0.83 0.80 1.00 0.92 1.09 0.65   0.71 0.78 0.50 
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Table 1 (continued) 

Rock type   Grey granites    
Sample 02/Ku08 02/Ku09 02/Ku11 02/Ku12 09/Ku02 09/Ku04 09/Ku05  JR-1 recomm. 

   

GPS 22°16´07 22°10´47 22°14´13 22°14´13 22°21´17 22°20´08 22°16´39    

15°38´15 15°36´38 15°38´18 15°38´18 15°35´50 15°35´14 15°35´02    

Sample locality 
in Fig 2 

H A B B K J D 
   

            
SiO2 71.40 69.55 71.31 72.47 70.45 71.58 71.00    

TiO2 0.37 0.36 0.35 0.38 0.42 0.40 0.37    

Al2O3 14.29 14.37 14.36 14.56 14.53 14.87 14.59    

Fe2O3 (total) 2.55 2.46 2.48 2.76 3.07 3.02 2.68    

MnO 0.05 0.05 0.05 0.06 0.06 0.06 0.05    

MgO 0.86 0.70 0.71 0.78 0.87 0.80 1.03    

CaO 1.97 1.93 1.83 1.93 2.06 1.67 2.02    

Na2O 3.23 3.23 3.14 3.18 2.95 3.16 3.36    

K2O 4.32 4.70 4.76 4.55 4.84 4.42 4.64    

P2O5 0.08 0.10 0.10 0.14 0.12 0.11 0.10    

LOI 0.67 0.69 0.57 0.63 0.67 0.78 0.70    

total 99.79 98.14 99.66 101.44 100.04 100.87 100.54    

   
ASI 1.05 1.03 1.05 1.07 1.05 1.14 1.03    

K2O/Na2O 1.34 1.46 1.52 1.43 1.64 1.40 1.38    

   
Sc   5 9 11 5 11 9 15    

V   29 29 27 28 31 28 29  7  

Ga   20 20 20 21 20 22 20  17 17.6 

Rb   248 235 236 243 248 247 230  254 257 

Sr   145 140 133 140 170 140 143  30 30 

Y   15 24 21 20 18 15 20  45.8 45,4 

Zr   111 180 162 176 219 199 163  97 101 

Nb   16 18 19 18 19 22 18  16 15.5 

Ba   630 597 555 595 656 490 591  51 40 

Hf   3.1 5.0 4.8 5.0 5.9 5.6 4.7  4.5 4.67 

Pb   35 39 40 37 39 36 35  20 19.1 

Th   23.4 21.5 28.4 29.7 35.6 32.0 24.9  26.8 26.5 

U   3.4 4.0 7.6 5.2 3.1 4.6 6.2  9.3 9 

                     
Rb/Sr   1.71 1.68 1.77 1.74 1.46 1.76 1.61    

Rb/Ba   0.39 0.39 0.43 0.41 0.38 0.50 0.39    

Sr/Ba   0.23 0.23 0.24 0.24 0.26 0.29 0.24    

Zr/Hf      36.00 33.75 35.20 37.12 35.54 34.68    

             
La   44.6 40.2 44.1 49.1 62.6 60.6 47.7  20 .7 19 .7 

Ce   86.5 77.6 87.2 94.3 126.0 123.0 93.1  48.3 47.1 

Pr   9.2 8.4 9.5 10.1 13.5 13.3 10.0  5 .47 5.62 

Nd   31.8 29.9 34.3 36.0 47.6 47.6 35.1  23.2 23.5 

Sm   5.5 6.0 7.0 6.5 7.9 8.0 6.3  5.8 6.07 

Eu   0.9 0.9 0.9 0.9 1.1 1.0 1.0  0.28 0.3 

Gd   3.9 4.9 5.2 4.6 5.2 5.1 4.5  5.57 5.24 

Tb   0.6 0.8 0.8 0.7 0.7 0.6 0.7  1.02 1.02 

Dy   3.0 4.5 4.3 3.7 3.6 3.2 3.7  5.69 5.78 

Ho   0.6 0.8 0.8 0.7 0.7 0.6 0.7  1.21 1.1 

Er   1.5 2.3 2.2 2.0 1.8 1.5 2.0  4.03 3.78 

Tm   0.2 0.3 0.3 0.3 0.3 0.2 0.3  0.7 0.67 

Yb   1.4 2.2 2.3 2.0 1.7 1.2 1.9  4.8                                                                                                                          4.49 

Lu   0.23 0.34 0.38 0.33 0.28 0.18 0.30  0.70 0.71 

                     
Eu/Eu

*
   0.61 0.53 0.45 0.53 0.54 0.47 0.55    

LaN/SmN   5.10 4.21 3.96 4.75 4.98 4.76 4.76    

LaN/YbN   21.48 12.32 12.93 16.55 24.83 34.05 16.93    

GdN/LuN   2.11 1.79 1.70 1.73 2.31 3.52 1.86    
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Table 2. LA-ICP-MS U-Pb zircon analyses for the grey granites of the Kubas pluton (samples 02/Ku07 and 

02/Ku08).  

Analyis Ratios 
 
         Rho   Ages (Ma)         

name 
206

Pb/ ±2σ 
207

Pb/ ±2σ 
207

Pb/ ±2σ 
  

206
Pb/ ±2σ 

207
Pb/ ±2σ 

207
Pb/ ±2σ 

  
238

U   
235

U   
206

Pb     
 

238
U   

235
U   

206
Pb   

               ~2.1 - ~1.7 Ga 
             Ku07-4-1 0.385 0.011 6.763 0.215 0.1275 0.0019 0.88 

 
2099 50 2081 28 2064 26 

Ku07-16-1 0.306 0.015 4.534 0.285 0.1076 0.0040 0.80 
 

1720 76 1737 52 1759 68 

Ku07-17-1 0.340 0.010 5.327 0.176 0.1135 0.0015 0.91 
 

1889 50 1873 28 1856 24 

Ku07-33-1 0.367 0.017 6.240 0.306 0.1233 0.0021 0.94 
 

2015 80 2010 43 2005 30 

Ku07-37-1 0.367 0.015 6.224 0.268 0.1230 0.0016 0.95 
 

2015 71 2008 38 2000 23 

Ku07-40-1 0.387 0.018 7.067 0.350 0.1324 0.0024 0.93 
 

2110 83 2120 44 2130 32 

Ku08-13-2 0.368 0.012 6.432 0.242 0.1266 0.0021 0.90 
 

2022 59 2037 33 2051 29 

~1 Ga 
              Ku07-3-1 0.180 0.011 1.836 0.129 0.0741 0.0027 0.86 

 
1065 59 1058 46 1044 74 

Ku07-31-1 0.168 0.008 1.697 0.084 0.0733 0.0013 0.93 
 

1001 43 1007 32 1022 36 

Ku07-39-1 0.175 0.007 1.760 0.079 0.0731 0.0012 0.94 
 

1037 40 1031 29 1017 33 

~550 Ma 
              Ku07-27-1 0.091 0.003 0.738 0.034 0.0587 0.0016 0.81 

 
563 21 561 20 556 59 

Ku07-41-2 0.089 0.005 0.719 0.045 0.0585 0.0022 0.81 
 

550 27 550 27 549 82 

Ku08-1-1 0.089 0.004 0.725 0.035 0.0587 0.0014 0.86 
 

552 22 553 20 556 52 

Ku08-3-1 0.088 0.004 0.710 0.036 0.0585 0.0015 0.86 
 

544 23 545 21 549 56 

Ku08-4-1 0.091 0.004 0.723 0.034 0.0579 0.0012 0.90 
 

559 22 552 20 526 45 

Ku08-10-1 0.090 0.004 0.729 0.034 0.0587 0.0015 0.84 
 

556 21 556 20 556 56 

~500 Ma 
              Ku07-11-1 0.080 0.002 0.646 0.028 0.0588 0.0022 0.54  494 11 506 17 559 80 

Ku07-23-2 0.083 0.003 0.656 0.038 0.0573 0.0027 0.60 
 

515 17 512 23 503 104 

Ku08-7-1 0.082 0.005 0.643 0.040 0.0572 0.0013 0.93   506 28 504 25  499  50 
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Table 3. Rb-Sr, Sm-Nd whole rock data and Pb-isotope ratios obtained on acid-leached K-feldspar from grey 

granites and red leucogranites I and II from the Kubas pluton. 

  
87

Sr/
86

Sr (m) 
87

Sr/
86

Sr (i) 
87

Rb/
86

Sr  Rb (ppm) Sr (ppm)   
143

Nd/
144

Nd (m) 
147

Sm/
144

Nd 
143

Nd/
144

Nd (i)  εNd (i) T DM   
206

Pb/
204

Pb 
207

Pb/
204

Pb 
208

Pb/
204

Pb 

Red leucogranites I                             

02/Ku01 1.947206(24) 0.7273 166.8 435.3 8.459 
 

0.512426(10) 0.3791 0.511152 -16.1 2.3 
 

17.934 15.630 38.228 

02/Ku02 1.711835(23) 0.7229 135.3 426.7 10.03 
 

0.512268(07) 0.3358 0.511140 -16.3 2.3 
 

17.959 15.667 38.248 

02/Ku03 1.958474(47) 0.7345 167.4 426.1 8.259 
 

0.512547(03) 0.4270 0.511112 -16.9 2.4 
 

17.494 15.637 38.129 

02/Ku04 1.556693(26) 0.7389 111.9 424.1 11.87 
 

0.512046(06) 0.2727 0.511130 -16.6 2.4 
 

17.321 15.579 37.957 

02/Ku05 3.622665(25) 0.7440 393.7 442.8 4.189 
 

0.512648(09) 0.4503 0.511134 -16.5 2.3 
 

17.376 15.618 38.030 

02/Ku06 1.464660(16) 0.7345 99.87 448.2 13.95 
 

0.512388(13) 0.3796 0.511112 -16.9 2.4 
 

17.382 15.583 37.939 

Red leucogranites II                             

09/Ku01 0.823526(11) 0.7123 15.22 211.6 40.68 
 

0.511880(01) 0.1781 0.511282 -13.6 2.1 
 

18.053 15.677 38.161 

09/Ku09 0.811141(14) 0.7205 12.40 235.2 55.44 
 

0.511943(03) 0.2225 0.511195 -15.3 2.3 
 

17.171 15.600 38.016 

09/Ku11 1.101503(19) 0.7201 52.17 319.1 18.38 
 

0.511894(01) 0.2667 0.510998 -19.1 2.5 
 

17.237 15.599 38.093 

Grey granites                             

02/Ku08 0.757758(11) 0.7197 4.851 248 145 
 

0.511495(04) 0.1090 0.511100 -16.6 2.2 
 

17.021 15.611 38.166 

02/Ku09 0.756033(10) 0.7187 4.760 235 140 
 

0.511577(05) 0.1265 0.511119 -16.1 2.4 
 

16.996 15.581 38.089 

02/Ku11 0.757818(09) 0.7184 5.033 236 133 
 

0.511580(03) 0.1286 0.511114 -16.2 2.5 
 

17.041 15.600 38.138 

02/Ku12 0.758407(10) 0.7198 4.923 243 140 
 

0.511524(07) 0.1138 0.511112 -16.3 2.2 
 

17.017 15.598 38.122 

09/Ku02 0.751152(19) 0.7187 4.135 248 170 
 

0.511437(02) 0.1046 0.511058 -17.4 2.2 
    09/Ku04 0.759106(12) 0.7199 5.005 247 140 

 
0.511431(03) 0.1059 0.511047 -17.6 2.2 

 
17.104 15.589 38.154 

09/Ku05 0.756103(16) 0.7203 4.561 230 143 
 

0.511519(02) 0.1131 0.511109 -16.4 2.2 
    M64     * 0.757412(09) 0.7175 5.097 239 133 

 
0.511527(04) 0.11 0.511156 -16.0 2.2 

 
17.020 15.597 38.099 

M68     * 0.760666(10) 0.7151 5.812 254 124 
 

0.511526(05) 0.11 0.511155 -16.0 2.2 
 

17.047 15.576 38.051 

M73     * 0.753718(10) 0.7163 4.773 234 139 
 

0.511508(07) 0.11 0.511137 -16.4 2.2 
 

16.999 15.557 37.977 

Analytical methods are described in Appendix A. Uncertainties for the 
87

Sr/
86

Sr and 
143

Nd/
144

Nd isotope ratios 

are 2σ errors in the last two digits. Calculation of εNd values is relative to CHUR according to Jacobsen and 

Wasserburg (1980). Nd model age (TDM) calculation is according to Michard et al. (1985). Samples with 
147

Sm/
144

Nd > 0.13 are corrected using the correction procedure of Milisenda et al. (1994).  

* 
87

Rb/
86

Sr ratios are calculated from XRF-data; for 
147

Sm/
144

Nd a ratio of 0.11 is assumed. Both are not treated 

in the text.  
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Table 4. CIPW normative composition of the red leucogranites I and II and the grey granites. Values are 

calculated with the GCDkit program (JanouŠek et al., 2006). 

  Q C Or Ab An Hy Mt Il Hm Ru Ap Sum 

Red leucogranites I 
          02/Ku01 33.41 1.00 27.24 33.59 2.42 0.10 0.43 0.02 0.47 0.00 0.10 98.77 

02/Ku02 34.79 1.20 26.00 34.86 2.10 0.10 0.23 0.02 0.72 0.00 0.05 100.07 

02/Ku03 34.74 1.02 25.77 34.78 2.55 0.10 0.43 0.02 0.58 0.00 0.05 100.01 

02/Ku04 34.15 0.93 26.59 33.59 3.13 0.13 0.17 0.04 0.78 0.00 0.14 99.65 

02/Ku05 34.24 0.84 24.82 35.54 3.06 0.10 0.33 0.02 0.53 0.00 0.02 99.51 

02/Ku06 33.19 0.82 25.35 34.86 2.90 0.08 0.30 0.02 0.60 0.00 0.12 98.22 

Red leucogranites II 
          09/Ku01 32.88 3.17 27.60 31.82 1.88 0.50 0.51 0.10 0.61 0.00 0.45 99.51 

09/Ku09 35.43 0.65 29.02 28.60 5.54 0.13 0.00 0.02 0.48 0.03 0.02 99.92 

09/Ku11 35.39 0.62 25.59 33.42 4.09 0.13 0.00 0.04 0.52 0.04 0.05 99.88 

Grey granites          

02/Ku08 30.80 0.91 25.53 27.33 9.25 2.14 0.00 0.11 2.55 0.31 0.19 99.13 

02/Ku09 27.88 0.70 27.78 27.33 8.92 1.74 0.00 0.11 2.46 0.30 0.24 97.46 

02/Ku11 30.13 0.95 28.13 26.57 8.43 1.77 0.00 0.11 2.48 0.29 0.24 99.10 

02/Ku12 31.66 1.23 26.89 26.91 8.66 1.94 0.00 0.13 2.76 0.31 0.33 100.82 

09/ku02 29.39 0.98 28.60 24.96 9.44 2.17 0.00 0.13 3.07 0.35 0.28 99.38 

09/Ku04 31.82 2.11 26.12 26.74 7.57 1.99 0.00 0.13 3.02 0.33 0.26 100.10 

09/Ku05 28.12 0.61 27.42 28.43 9.37 2.57 0.00 0.11 2.68 0.31 0.24 99.85 

02/Ku07 28.83 0.73 24.53 28.35 9.39 2.07 0.00 0.17 2.69 0.30 0.28 97.33 

02/Ku10 30.13 0.87 27.13 27.50 8.38 1.77 0.00 0.11 2.47 0.28 0.24 98.87 

09/Ku07 30.39 1.45 27.36 26.23 8.21 2.52 0.00 0.11 2.69 0.32 0.33 99.61 

09/Ku08 29.56 1.18 25.12 28.77 9.38 2.69 0.00 0.11 2.85 0.31 0.21 100.19 

09/Ku10 29.65 0.71 27.60 27.59 8.44 2.32 0.00 0.11 2.55 0.28 0.28 99.53 

M64 29.19 0.57 27.07 27.42 9.53 1.92 0.00 0.11 2.62 0.31 0.21 98.95 

M66 28.86 0.72 27.07 27.42 9.68 2.09 0.00 0.11 2.60 0.31 0.21 99.08 

M68 30.92 0.74 27.95 26.91 8.84 1.72 0.00 0.11 2.52 0.29 0.21 100.22 

M70 31.46 0.58 29.84 25.39 8.66 1.74 0.00 0.11 2.56 0.29 0.19 100.82 

M71 28.90 0.64 27.19 27.50 9.88 2.17 0.00 0.11 2.68 0.32 0.21 99.60 

M73 27.17 0.54 28.01 27.08 9.62 2.24 0.00 0.13 2.81 0.32 0.24 98.16 
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Table 5. Temperature estimates for the grey 

granites based on Al/Ti systematics and 

apatite and zircon saturation thermometry. 

  TZr TAp TAl-Ti 

02/Ku08 745 896 891 

02/Ku09 781 900 888 

02/Ku11 778 918 885 

02/Ku12 787 964 892 

09/Ku02 780 928 902 

09/Ku04 806 930 895 

09/Ku05 773 914 889 

02/Ku07 801 918 897 

02/Ku10 780 917 883 

09/Ku07 786 951 892 

09/Ku08 776 907 888 

09/Ku10 765 938 883 

M64 778 902 891 

M66 774 901 890 

M68 780 917 886 

M70 781 912 887 

M71 771 904 892 

M73 772 899 895 

(See text for details)  
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Highlights 

 Pan-African granite intrusion in the high-grade central part of the Damara orogen 

(Namibia) 

High-temperature partial melting of meta-igneous basement rocks of Archean to 

Proterozoic age  

Granite intrusion simultaneously with crustal thickening at c. 550 Ma, before the first 

peak of high-grade regional metamorphism 

Formation of leucogranites during the main peak of regional metamorphism at c. 510 

Ma 




