
Towards a Dependability Control Center
for Large Software Landscapes

Florian Fittkau
Software Engineering Group

Kiel University, Kiel, Germany

Email: ffi@informatik.uni-kiel.de

Phone / Fax: +49 431 880 4467 / 7617

André van Hoorn
Reliable Software Systems Group

University of Stuttgart, Stuttgart, Germany

Email: van.hoorn@informatik.uni-stuttgart.de

Phone / Fax: +49 711 685 88 252 / 472

Wilhelm Hasselbring
Software Engineering Group

Kiel University, Kiel, Germany

Email: wha@informatik.uni-kiel.de

Phone / Fax: +49 431 880 3734 / 7617

Abstract—Manual management of dependability while oper-
ating large software systems — including failure detection, di-
agnosis, repair, and prevention activities — is time-consuming
and error-prone. Various automatic approaches supporting these
activities have been proposed, e.g., to detect and diagnose
performance degradation effects caused by software aging and
to execute reactive or proactive rejuvenation actions. However,
users often mistrust fully-automatic dependability management
approaches due to a lack of control over the change actions
conducted to the business-critical software landscape. Building
trust for automatic systems is challenging.

In this paper, we present our envisioned control center
for a semi-automatic management of large software landscapes,
featured by a graphical user interface including interactive system
visualizations. The control center will provide a reusable platform
for integrating techniques for dependability management, includ-
ing monitoring, and analyzing a system’s dependability during
production as well as for planning and executing reactive or
proactive change actions to the software landscape.

Keywords—Control center, software visualization, semi-
automatic approach, dependability management, MAPE-K.

I. INTRODUCTION

To name just one example for a threat to system dependabil-
ity, software aging is a well-known problem when operating
software systems. Example causes for software aging include
memory leaking or unterminated threads. Software rejuvena-
tion approaches are aimed at removing those effects before
failures occur. [1]. However, it can be tedious to manually
inspect the threatening failures in large software landscapes.
Hence, automatic techniques have been proposed to diagnose,
and resolve problems at runtime. They can be roughly grouped
into the four phases of the MAPE-K [2] control loop from
autonomic computing and self-adaptive software, i.e., moni-
toring, analysis, planning, and execution. Typically, the overall
strategy is to fulfill high-level goals — e.g., with respect to
avoiding violations of SLAs — by continuously monitoring
measures of interest and to react to present or predicted
violations. From our experience, users often mistrust such
fully-automatic systems. Building trust is an open research
challenge [2] in this area. Users are missing the control of
the automatic changes conducted to the software landscape.

To tackle this problem, we envision a semi-automatic
dependability control center for large software landscapes
focusing on business critical systems. Our control center will
provide a platform that features a reusable GUI to integrate

tools and techniques that take part in the MAPE-K control
cycle in a semi-automatic fashion. The control center is
designed for extensibility by providing a plug-in architecture
enabling the integration into visualization perspectives. With
respect to visualization of software runtime behavior, our
previous work has focused on providing different statically
generated levels of visualization ([3], [4]). This can become
tedious, if the software landscape provides thousands of those
levels. Therefore, our envisioned control center will provide
interactive live visualization of the system topology, including
QoS-relevant information, e.g., useful for detecting, diagnos-
ing, and resolving failures. The control center will be part of
our ExplorViz [5] approach for comprehending large software
landscapes based on live trace visualization.

The contribution of this paper is the envisioned semi-
automatic control center enabling a visual integration of tools
and techniques supporting the full MAPE-K cycle. The control
center will be presented based on a running software aging
and rejuvenation usage scenario. The plug-in architecture will
be sketched including the description of example plug-ins for
dependability management from our previous work.

The remainder of this paper is organized as follows.
Section II provides a brief overview of the ExplorViz approach.
We will present the envisioned control center in Section III.
Related work will be discussed in Section IV. Section V draws
the conclusions and outlines future work.

II. EXPLORVIZ

Our ExplorViz [5] approach,1 which builds the foundation
of our control center, enables live trace visualization for
comprehension of large software landscapes. In ExplorViz,
every application in the software landscape is monitored. The
monitored data is processed using a master-worker pattern. A
model representation of the software landscape is created and
updated from these traces. Afterwards, the landscape model is
used to visualize the software landscape in different views.

Since it is designed for large software landscapes, it focuses
on providing an overview, showing details on demand through
interaction. Furthermore, it features a 2D landscape-level view
where each application in the software landscape is visualized.
For each application, a 3D component-level view utilizing the
city metaphor [6] is provided. For further details about our
approach, we refer to [5].

1http://www.explorviz.net

1



III. CONTROL CENTER

This section describes our envisioned semi-automatic control
center for large software landscapes by demonstrating its
use based on a common scenario (Section III-A), sketching
the plug-in architecture enabling custom extensions (Sec-
tion III-B), and exemplifying this extensions mechanism based
on approaches from our previous work (Section III-C).

A. Usage Scenario

This section aims to introduce our semi-automatic control
center concept based on a common threat and management
strategy for system dependability: software aging and rejuve-
nation. Software aging denotes the phenomenon that software
components, when executed over a longer period of time, tend
to show degradation effects [7]. These can manifest themselves
in slightly increasing response times or memory consumption.
Possible causes are software bugs, e.g., unreleased resources,
whose impact accumulates over time. A common reactive or
proactive resolution strategy, known as software rejuvenation,
is the restart of selected system components.

As an example software landscape, we utilize a system that
provides publication workflows for scientific data, called Pub-
Flow.2 It comprises a heterogeneous architecture of distributed
applications and hence provides a well-fitting example system
for our usage scenario. We assume that the response times of a
PubFlow service increase over time and threaten the fulfillment
of SLAs. The causing application needs to be determined,
and a restart of this application needs to be planned and
executed. In the remainder of this section, we describe our
envisioned control center according to the activities involved in
maintaining the dependability of this software landscape, i.e.,
viewing the symptoms (symptoms perspective), determining
the root cause (diagnosis perspective), planning a counter-
measure (planning perspective), and executing it (execution
perspective).

Fig. 1. Mockup of the symptoms perspective visualizing PubFlow. The Neo4J
and Provenance applications are marked with a warning symbol.

1) Detecting Problems: The symptoms perspective is the
control center’s starting perspective. It provides an overall view
on the software landscape, including notifications provided by
control center plug-ins. The user can observe the execution
of the monitored applications and monitor their status with

2http://www.pubflow.de

respect to dependability. Using ExplorViz’s interactive visual-
ization concepts, it is possible to dive into single applications
to get a component-level view. This will be exemplified for
the following diagnosis perspective.

Figure 1 shows a mockup of the symptoms perspective
including a visualization of the PubFlow system. When an
abnormal state is detected or predicted by a plug-in, the
corresponding application is marked with a warning symbol. In
this case, we perceive that both the Neo4J and the Provenance
application are marked with a warning sign as a hint for further
investigation. After hovering over one of the warning icons,
the message ”Warning: The response times are abnormal for
Mondays at this time.” is displayed.

2) Diagnosing the Root Cause: As we want to find the root
cause of this warning, we open the control center’s diagnosis
perspective. Here, the user is guided by automatic tools to find
the root cause of a dependability problem — as opposed to the
previously described perspective showing only its symptoms.
Similar to the symptoms perspective, notifications are provided
by respective plug-ins.

(a) Component-level view of Neo4J with warning sign on
component kernel

(b) Opened kernel component with warning sign on
component impl

Fig. 2. Mockup of component-level views of Neo4J

In our scenario, a diagnosis tool marks the Neo4J appli-
cation as the root cause of the abnormal behavior. We want
to further investigate this circumstance and thus jump into the
application to get a detailed view which component is causing
the abnormal response times. Figure 2 shows a mockup of
the component-level view of Neo4J. The component kernel
is marked with a warning sign. By jumping further into
the kernel, we can see that the subcomponent impl is
responsible for the warning.

2



Fig. 3. Mockup of average response times (bars) and corresponding anomaly
scores (upper part) for the impl component

To get further insights, we analyze the average response
time of the impl component. The average response time and
its corresponding anomaly score are sketched in Figure 3. The
gray bars represent the average response times in time windows
of five minutes. The green series in the plot represents the
predicted response time basing on past behavior. The anomaly
score is shown by a blue line chart above the bar chart. The
thresholds for a warning and for an error are displayed in
yellow and red. From the current rising response times and
the normal nearly constant response times — assuming other
parameters like the workload intensity to be constant — we
conclude that a software aging problem exists and thus we
have to trigger proactive countermeasures to ensure the QoS.

3) Planning Change: After the diagnosis, we want to act
proactively to ensure that the failure will not occur. For this
purpose, we envision a semi-automatic planning perspective
for defining or changing an adaptation plan. Two possibilities
for the opening of the planning perspective will exist. The
first one is by manually creating a reconfiguration plan. The
second one is an automatic suggestion by a plug-in on how to
reconfigure the software landscape if needed. It first states the
low QoS results and a short summary of how it is suggested
to adapt the landscape. As a further indicator, the new QoS
results and the resulting costs are displayed, e.g., by using
model-based software performance prediction techniques [8].
The user has the ability to directly execute this plan or to
manually refine the plan.

In our scenario, a dialog is shown reading ”The software
landscape violates its requirements for response times. It is
suggested to start a new node of type ’m1.small’ with the
application ’Neo4J’ on it. After the change, the response time
is improved and the operating costs increase by 5 Euro per
hour”. We choose to manually adapt the plan which opens the
planning perspective. After opening the planning perspective,
the reconfiguration plan that was computed by a plug-in is
displayed (Figure 4).

In the planning perspective, the user has the possibility to
manually refine the reconfiguration plan. The possibilities in
the planning perspective are sketched in Figure 5. The user
can, for instance, restart, terminate, or replicate applications.
In our scenario, we have expert knowledge about the situation
such that we know that the existing Neo4J application can
simply be restarted to act against the software aging. Thus,
we rely on our knowledge that the Neo4J application is not
critical and can be restarted without violating the SLAs.

Fig. 4. Mockup of planning perspective

(a) Node context menu (b) Application context menu

Fig. 5. Mockup of reconfiguration options in planning perspective

4) Executing Change: The actual execution of the recon-
figuration plan is triggered by pressing an execute button in the
planning perspective. The tool used for this execution should
provide a transactional way for this step. If the transaction fails,
it should rollback the transaction and a message to the control
center should be triggered. After triggering the execution, the
execution perspective is opened. During the actual execution of
the plan, the execution perspective shows what is planned and
what has already been conducted. In our example, a restart of
the Neo4J application is triggered and during the restart of the
application, the perspective shows a blinking Neo4J application
indicating that the application is currently starting.

B. Plug-In Architecture

The control center will provide extension points such that plug-
ins can contribute to each described perspective. Furthermore,
all plug-ins can read and update the model representation of
the software landscape as provided by ExplorViz. The model
representation of the software landscape holds entities, like
nodes, applications, or generic meta-data for each entity.

Symptoms and diagnosis plug-ins can perform their anal-
ysis on the data from the landscape model repository. To
visualize their results, they can enrich the visualization by,
for instance, marking applications with warning or error signs.
Plug-ins for planning or executing reconfigurations can provide
their adaptation plan to ExplorViz for visualization and can
enrich the planning perspective by, for instance, context menu
entries.

3



In addition to the contribution to perspectives, plug-ins can
contribute to the monitoring process since some information
might be unavailable in the landscape model and has to be
gathered from the running applications. In our envisioned
control center, all applications in the software landscape will
be monitored. This can be conducted with, for instance,
Kieker [4]. From the monitoring data, we create and update
the former mentioned model representation of the software
landscape including structural and behavioral aspects. For
the contribution to the monitoring process, the plug-ins can
provide filter components which fit into the pipe-and-filter
architecture of our monitoring data processing.

C. Prototype Plug-ins

In this section, we briefly outline three approaches that we will
integrate into the control center by developing respective plug-
ins. Note that each of these approaches is a result of our own
previous work. However, in our future work, we will extend
the set of plug-ins to integrate work by others.

1) ΘPAD: The ΘPAD approach — short for online per-
formance anomaly detection — aims to detect anomalies in
performance observations, e.g., unexpectedly high method
response times. The general procedure performed by ΘPAD
is that it (i) extracts a time series from incoming observations,
(ii) forecasts expected future observations based on time series
analysis, and (iii) computes an anomaly score by comparing
forecasts and actual measurements. ΘPAD is a result of [9]
and part of the Kieker monitoring framework [4]. With respect
to the control center, an ΘPAD plug-in contributes to the
symptoms perspective.

2) RanCorr: Based on component anomaly scores — e.g.,
provided by ΘPAD — RanCorr [3] localizes the root cause of
problems by correlating the anomaly scores with architectural
information in form of calling dependencies. RanCorr will con-
tribute to the diagnosis perspective by providing information
on problem root causes. The static visualization of RanCorr
results described in [3] will then be reimplemented based on
ExplorViz’s interactive visualization capabilities.

3) SLAstic: SLAstic [10] is a MAPE-K framework for
online capacity management of component-based software
systems. Based on monitoring and predicting the current and
future performance and efficiency measures, SLAstic plans and
executes system adaptations, e.g., starting or stopping server
nodes, or replication and migrating software components.
SLAstic contributes to the planning and execution perspectives
of the control center.

IV. RELATED WORK

Work that is related to our control center approach comes
from the areas of cloud management, APM, and MAPE-
K tools. Amazon CloudWatch or the auto-scaling feature of
Microsoft Azure provide management for capacity adaptation
in the cloud. The user can specify rules that lead to starting
or terminating cloud instances. In contrast to our envisioned
control center, those tools provide no manual refinement of

the reconfiguration plan and to the best of our knowledge
no visualization of the execution of the plan. A further class
are application performance monitoring (APM) [11] tools like
AppDynamics, ExtraHop, or CA Wily Introscope. To the best
of our knowledge, most APM tools only provide monitoring
and reactive analysis of the software systems. Especially,
they often do not provide capabilities to influence the system
like, for instance, replicating over-utilized components. Many
MAPE-K control loop tools [2], like Rainbow or TRAP,
exist. A large part is focusing on automatically adapting the
software systems to the environment and do not provide a
semi-automatic approach for building trust in the system like
our envisioned control center. Furthermore, most of them do
not provide a visualization.

V. CONCLUSIONS

In this paper, we presented our envisioned semi-automatic
control center for cloud dependability. The control center
serves to provide a visual plug-in-based integration platform
for dependability management approaches, including activities
like problem detection, diagnosis, and resolution. It builds
on our ExplorViz aproach for online trace visualization. We
exemplified the usage by integrating approaches from our
previous work for performance anomaly detection, diagnosis,
planning, and adaptation. In our future work, we will provide
an implementation for our control center concept and aim to
develop plug-ins to integrate a number of reasonable depend-
ability management approaches.

REFERENCES

[1] A. Avritzer, A. Bondi, and E. J. Weyuker, “Ensuring system perfor-
mance for cluster and single server systems,” J. Syst. Softw., vol. 80,
no. 4, pp. 441–454, 2007.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1–14:42, 2009.

[3] N. S. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring, “Auto-
matic failure diagnosis in distributed large-scale software systems based
on timing behavior anomaly correlation,” in Proc. CSMR 2009. IEEE,
2009, pp. 47–57.

[4] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
Proc. ICPE 2012. ACM, 2012, pp. 247–248.

[5] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visu-
alization for comprehending large software landscapes: The ExplorViz
approach,” in Proc. VISSOFT 2013, 2013.

[6] C. Knight and M. Munro, “Virtual but visible software,” in Proc. IV
2000, 2000, pp. 198–205.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, 2004.

[8] V. Cortellessa, A. Di Marco, and P. Inverardi, Model-based software
performance analysis. Springer, 2011.

[9] T. C. Bielefeld, “Online performance anomaly detection for large-scale
software systems,” Diploma Thesis, Kiel University, Germany, 2012.

[10] R. von Massow, A. van Hoorn, and W. Hasselbring, “Performance
simulation of runtime reconfigurable component-based software archi-
tectures,” in Proc. ECSA 2011. Springer, 2011, pp. 43–58.

[11] J. Kowall and W. Cappelli, “Gartner’s magic quadrant for application
performance monitoring,” 2013.

4


