
Investigating Parallel Interpretation-Tree Model MatchingAlgorithms with ProSet-LindaW. HasselbringDept. of Computer Science, University of DortmundInformatik 10 (Software Technology), D-44221 Dortmund, GermanyTelephone: 49-(231)-755-4712, Fax: 49-(231)-755-2061email: willi@ls10.informatik.uni-dortmund.deR. B. FisherDept. of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United KingdomTelephone: 44-(31)-650-3098, Fax: 44-(31)-650-6899email: rbf@aifh.ed.ac.ukAbstractThis paper discusses the development of algorithms for parallel interpretation-treemodel matching for 3-D computer vision applications such as object recognition. Thealgorithms are developed with a prototyping approach using ProSet-Linda. ProSetis a procedural prototyping language based on the theory of �nite sets. The coordina-tion language Linda provides a distributed shared memory model, called tuple space,together with some atomic operations on this shared data space. The combination ofboth languages, viz. ProSet-Linda, is designed for prototyping parallel algorithms.The classical control algorithm for symbolic data/model matching in computer visionis the Interpretation Tree search algorithm. This algorithm has a high computationalcomplexity when applied to matching problems with large numbers of features. Thispaper examines parallel variations of this algorithm. Parallel execution can increase theexecution performance of model matching, but also make feasible entirely new ways ofsolving matching problems. In the present paper, we emphasize the development of par-allel algorithms with a prototyping approach, not the presentation of performance �guresdisplaying increased performance through parallel execution. The expected improvementsattained by the parallel algorithmic variations for interpretation-tree search are analyzed.The implementation of ProSet-Linda is brie
y discussed.Keywords: model-based vision, object recognition, parallel search, prototyping parallelalgorithms.

Contents1 Introduction 12 Prototyping Parallel Algorithms with ProSet-Linda 22.1 Basic Concepts : 22.2 Parallel Programming : 33 The Standard Interpretation-Tree Algorithm 54 Parallel Interpretation-Tree Search 65 Parallel Non-wildcard Search Tree Algorithms 65.1 The Sequential Non-wildcard Search Tree Algorithm : : : : : : : : : : : : : : 75.2 Parallel Complete Search Tree Algorithm : 85.3 Parallel First-Stop Search Tree Algorithm : 115.4 Evaluation : 136 Parallel Best Search Tree Algorithms 146.1 The Sequential Best-�rst Search Tree Algorithm : : : : : : : : : : : : : : : : 146.2 Parallel Optimum Search Tree Algorithm : 156.3 Parallel Best-First Search Tree Algorithm : 186.4 Evaluation : 237 Implementation of ProSet-Linda 248 Conclusions 27Acknowledgments 28References 29Appendices 31A Literate Programming with noweb 31B Reading the Output from the Model Invocation 32C Making Sets of Consistent Model-data Correspondences 36D Insertion of New Entries into a Distributed Priority Queue 37Index of De�nitions 39

1 IntroductionThree-dimensional computer vision is commonly divided into several levels. In the researchinvestigated at Edinburgh, low-level vision is concerned with processing range data acquiredby a laser range scanner to eliminate noise [9]. Medium-level vision is concerned with iden-tifying geometric surfaces [29]. High-level vision tries, for example, to identify the shape andposition of data objects using matched given model features. In the high-level components,�rst the model invocation process pairs likely model and data features for further conside-ration [5]. Model matching then uses the candidate matches proposed by the invocation toform consistent groups of matches.The classical control algorithm for symbolic model matching in computer vision is the Inter-pretation Tree search algorithm, as used by Grimson and Lozano-Perez [12]. The algorithmsearches a tree of potential model-to-data correspondences, such that each node in the treerepresents one correspondence and the path of nodes from the current node back to the rootof the tree is a set of simultaneous pairings. This model matching algorithm is a specializedform of the general AI tree search technique, where branches are pruned according to a setof consistency constraints according to some (geometric) criterion. The goal of the searchalgorithm is to maximize the set of consistent model-to-data correspondences in an e�cientmanner. Finding these correspondences is a key problem in model-based vision, and is usuallya preliminary step to object recognition, pose estimation, or visual inspection.Unfortunately, this algorithm has the potential for combinatorial explosion. To reduce thecomplexity, techniques for pruning the trees have been developed, thus limiting the numberof candidate matches considered. The main technique commonly used is based on pruningconstraints [12] (which locally reject pairings that are inconsistent, and hence eliminate all ofthe search that might further extend this inconsistent pairing) and early termination [11]. Thelatter stops search when a given number of pairings (a threshold) is reached. However, evenwith these e�ective forms of pruning, the algorithms still can have exponential complexity,making it unsuitable for use in scenes with many features.Parallel execution can increase the execution performance of model matching, but also inve-stigate entirely new ways of solving matching problems. As has been observed [2], it is onlyfrom new algorithms that orders of magnitude improvements in the complexity of a problemcan be achieved:\An idea that changes an algorithm from n2 to n logn operations, where n isproportionate to the number of input elements, is considerably more spectacularthan an improvement in machine organization, where only a constant factor ofrun-time is achieved." [2, page 250]Thus, rapid prototyping of parallel algorithms may serve as the basis for developing parallel,high-performance applications. In this paper, we present a methodology for thedevelopment of parallel high-level vision algorithms using a ProSet-Linda basedprototyping approach.Parallelism in low- and medium-level computer vision is usually programmed in a data-parallelway, for instance based on the computational model of cellular automata [14]. For high-levelsymbolic computer vision, the data-parallel approach is not appropriate, as symbolic compu-tations have an irregular control
ow depending on the actual input data. The underlying1

model of the data-parallel approach uses synchronous communication. The programmer of-ten has to think in simultaneities while constructing a program, because she or he oftenhas to focus on more than one process at a time. This complicates parallel programmingsigni�cantly.Data parallelism is opposed to control parallelism, which is achieved through multiple threadsof control, operating independently. The data-parallel approach lets programmers replaceiteration (repeated execution of the same set of instructions with di�erent data) with parallelexecution. It does not address a more general case, however: performing many interrelatedbut di�erent operations at the same time. This ability is essential in developing algorithmsfor high-level symbolic computer vision.Developing parallel algorithms is in general considered an awkward undertaking. The goal ofthe ProSet-Linda approach is to partially overcome this problem by providing a tool for pro-totyping parallel algorithms [15]. To support prototyping parallel algorithms, a prototypinglanguage should provide simple and powerful facilities for dynamic creation and coordina-tion of parallel processes. Process communication and synchronization in ProSet-Linda isreduced to concurrent access to a shared data pool, thus relieving the programmer from theburden of having to consider all process inter-relations explicitly. The parallel processes aredecoupled in time and space in a simple way: processes do not have to execute at the sametime and do not need to know each other's addresses (as it is necessary with message-passingsystems). The shared data pool in the Linda concept is called tuple space, because its accessunit is the tuple, similar to tuples in ProSet (see Section 2.1).Section 2 gives a brief introduction to the tool for implementing the parallel variations ofthe interpretation-tree tree search algorithm, viz. ProSet-Linda for prototyping parallel al-gorithms. Section 3 describes the standard interpretation-tree algorithm. Section 4 takesa general look at parallel interpretation-tree search. We do not parallelize the standardinterpretation-tree algorithm, but the non-wildcard and best-�rst alternatives in Sections 5and 6, respectively. Section 7 brie
y discusses the implementation of ProSet-Linda. Secti-on 8 draws some conclusions. The programs are programmed literately. Appendix A presentsa brief introduction to literate programming with noweb.2 Prototyping Parallel Algorithms with ProSet-LindaBefore presenting the implementation of the parallel interpretation-tree model matching al-gorithms, we have a look at ProSet-Linda as the language used for implementation. Theprocedural, set-oriented language ProSet [4] is a successor to SETL [26]. ProSet is anacronym for PROtotyping with SETs. The high-level structures that ProSet providesqualify the language for prototyping. Refer to [3] for a full account of prototyping with set-oriented languages. A case study for prototyping using SETL is documented in [20]. The useof SETL for prototyping algorithms for parallelizing compilers is described in [23].Section 2.1 introduces the basic concepts of ProSet and Section 2.2 gives a short descriptionof the features for parallel programming.2.1 Basic ConceptsProSet provides the data types atom, integer, real, string, Boolean, tuple, set, function,module, and instance. Modules may be instantiated to obtain module instances. It is a2

higher-order language, because functions and modules have �rst-class rights. ProSet isweakly typed, i.e., the type of an object is in general not known at compile time. Atomsare unique with respect to one machine and across machines. They can only be createdand compared for equality. Tuples and sets are compound data structures, the componentsof which may have di�erent types. Sets are unordered collections while tuples are ordered.There is also the unde�ned value om which indicates unde�ned situations.As an example consider the expression [123, "abc", true, f1.4, 1.5g] which creates atuple consisting of an integer, a string, a Boolean, and a set of two reals. This is an exampleof what is called a tuple former. As another example consider the set forming expressionf2*x: x in [1..10] | x>5g which yields the set f12, 14, 16, 18, 20g. Sets consistingonly of tuples of length two are called maps. There is no genuine data type for maps , becauseset theory suggests handling them this way.The control structures have ALGOL as one of its ancestors. There are if, case, loop, while,and until statements as usual, and the for and whilefound loops which are custom tailoredfor iteration over compound data structures. The quanti�ers (9, 8) of predicate calculus areprovided.2.2 Parallel ProgrammingIn ProSet, the concept of process creation via Multilisp's futures [13] is adapted to set-oriented programming and combined with the coordination language Linda [10] to obtainthe parallel programming language ProSet-Linda. Linda is a coordination language whichprovides means for synchronization and communication through so-called tuple spaces . Thesetuple spaces are virtual shared data spaces accessed by an associative addressing scheme.Synchronization and communication in ProSet-Linda are carried out through several atomicoperations: addition, removal, reading, and updates of individual tuples in tuple space. Lindaand ProSet both provide tuples; thus, it is quite natural to combine both models to form atool for prototyping parallel algorithms.The access unit in tuple space is the tuple. A tuple space may contain any number of copiesof the same tuple: it is a multiset, not a set. Process communication and synchronization inLinda is called generative communication, because tuples are added to, removed from, andread from tuple space concurrently. Synchronization is done implicitly. Reading access totuples in tuple space is associative and not based on physical addresses, but rather on theirexpected content described in templates. This method is similar to the selection of entriesfrom a data base. Refer to [1] for a full account of programming with Linda. ProSetsupports multiple tuple spaces. Atoms are used to identify tuple spaces uniquely.Multisets are a powerful data structure for parallel programming. Since a tuple space is amultiset of tuples, it may contain multiple copies of a tuple, whereas in a set each elementexists exactly once. Because of concurrent access by cooperating processes to a tuple space,it is necessary to have multisets and not sets for coordination. Multisets are, therefore, agood basis for communication between cooperating processes, because the data
ow is notrestricted unnecessarily. Furthermore, multisets are dynamic data structures that alleviatethe treatment of dynamically varying size problems. The bene�t of using multisets is thepossibility of describing compound data without any form of constraint or hierarchy betweenits components. This is also the case for sets, but not for data structures such as ordered3

lists which impose an ordering on the elements. Consequently, multisets allow a high degreeof parallelism for cooperating processes.Several ProSet-Linda library functions are provided for handling multiple tuple spaces dy-namically. The function CreateTS(limit) creates a new tuple space and returns its identity(an atom). Since one can have exclusive access to a fresh tuple-space identity, CreateTSsupports information hiding. As mentioned above, atoms are unique for one machine andacross machines. The integer parameter limit speci�es a limit on the expected or desiredsize of the new tuple space. It provides an indication of the total number of passive and activetuples which are allowed in a tuple space concurrently. CreateTS(om) would instead indicatethat the expected or desired size is not limited. The function ExistsTS(TS) yields true, ifTS is an atom that identi�es an existing tuple space, it is false otherwise. The functionClearTS(TS) removes all tuples from the speci�ed tuple space. The function RemoveTS(TS)calls ClearTS(TS) and removes TS from the list of existing tuple spaces.ProSet provides three tuple-space operations. The deposit operation deposits a tuple intoa tuple space:deposit ["pi", 3.14] at TS end deposit;TS is the tuple space at which the tuple ["pi", 3.14] has to be deposited. The fetchoperation tries to fetch and remove a tuple from a tuple space:fetch ("pi", ? x) at TS end fetch;The template ("pi", ? x) only matches tuples with the string "pi" in the �rst andanything in the second �eld. The templates are enclosed in parentheses and not in bracketsin order to set the templates apart from tuples. The optional l-values speci�ed in the formals(the variable x in our example) are assigned the values of the corresponding tuple �elds,provided matching succeeds. Formals are pre�xed by question marks. The selected tuple isremoved from tuple space. Another example for a fetch operation with a single templatefollows:fetch ("name", ? x |(type $(2) = integer)) at TS end fetch;This template only matches tuples with the string "name" in the �rst �eld and integer valuesin the second �eld. The symbol $ may be used like an expression as a placeholder for thevalues of corresponding tuples in tuple space. The expression $(i) then selects the ithelement from these tuples. Indexing starts with 1. It is only allowed to use the symbol $this way in expressions that are part of templates. As usual in ProSet, | means such that.The Boolean expression after | may be used to customize matching by restricting the setof possibly matching tuples. The selected tuple is removed from tuple space. If no elsestatements are speci�ed as in the above example then the statement suspends until a matchoccurs. If statements are speci�ed for the selected template, these statements are executed.An example with multiple templates, associated statements, and an else statement follows:fetch ("name", ? x |(type $(2) = integer)) => put("Integer fetched");xor ("name", ? x |(type $(2) = set)) => put("Set fetched");at TSelse put("Nothing fetched");end fetch;This statement fetches at most one tuple. The meet operation is the same as fetch, but thetuple is not removed and may be changed: 4

meet ("pi", ? x) at TS end meet;Changing tuples is done by specifying expressions into which speci�c tuple �elds will bechanged. Considermeet ("pi", ? into (2.0 * $(2))) at TS end meet;where the value of the second element of the met tuple is doubled. This statement changesat most one tuple. Tuples which are met in tuple space may be regarded as shared data sincethey remain in tuple space irrespective of changing them or not. For a detailed discussion ofprototyping parallel algorithms in set-oriented languages refer to [17].3 The Standard Interpretation-Tree AlgorithmConsider a set f di g of D data features and a set f mi g of M model features. The root ofthe interpretation tree has no pairings. The �rst level expands the root node to pair all of theM model features with data feature d1. The second level in the tree expands each of thesenodes to pair all model features with data feature d2 (multiple use of a given mi is allowed),and so on. The expansion continues for all D data features. At each node at level k in thetree, therefore, there is a hypothesis with k features matched. Figure 1 displays an example.(d1; m1)(d2; m1) (d2; m2) (d1; m2)(d2; m1) (d2; m2)Figure 1: An example for the standard interpretation tree with data featuresfd1; d2g and model features fm1; m2g.If this interpretation tree is explored completely, there are MD \leaf" nodes (complete inter-pretations) at the bottom of the tree andDXi=0M i = MD+1 � 1M � 1 := MDnodes in the full tree. If either M or D are of any reasonable size (e.g. larger than 5 as isusual in practical cases), then we can expect to have excessively large search trees.An additional complication is that one usually wishes to include at each level of the treea \wildcard" feature that will match with any other feature. This is necessary because itmay not always be possible to �nd a model feature that matches a given data feature atthe current level of the tree (because of fragmentation, bad segmentation, noise, unrelatedfeatures, occlusion, etc.). This increases the number of leaf nodes to (M + 1)D.5

One way to reduce the amount of searching is to `prune whole branches of the tree', byshowing that a given pairing or sequence of pairings is inconsistent. In consequence, alldescendents from that node in the tree will also be inconsistent and need not be explored.The most common approach uses unary and binary pruning constraints. Unary constraintseliminate model-to-data pairings when some shared property is inconsistent (see also Appen-dix B). Binary constraints eliminate hypotheses when a relative property between a pair ofmodel features is inconsistent with the same property between the corresponding pair of datafeatures (see also Appendix C).When wildcards are allowed, examination of the search process shows there are several sourcesof wasted e�ort. The algorithm could then accept an exponential number of correctly mat-chable features. One key term is 2C , arising from the power set of the C matchable features.This complexity occurs because each matchable data feature can be either matched with thecorrect model feature or the wildcard. Examination of a typical search tree shows that mostof the tree consists of paths containing either members of this power set or many wildcards.Another source of wasted e�ort is the re-exploration of identical subtrees under each initialset of matches. A number of matching algorithms which reduce this wasted exploration havebeen developed [7].4 Parallel Interpretation-Tree SearchParallelism in a tree search algorithm can be obtained by searching the branches of the treein parallel. A simple approach would be to spawn a new process for each subtree to beevaluated. This approach would not work well since the amount of parallelism is determinedby the input data and not by, for instance, the number of available processors.The programs which will be presented in the following sections are master-worker applications(also called task farming). In a master-worker application, the task to be solved is partitionedinto independent subtasks. These subtasks are placed into a tuple space, and each processin a pool of identical workers then repeatedly retrieves a subtask description from the tuplespace, solves it, and puts the solutions into the tuple space. The master process then collectsthe results. An advantage of this programming approach is easy load balancing because thenumber of workers is variable and may be set to the number of available processors.Similar to seqential tree search, it is in general not necessary to search the entire tree: boundingrules avoid searching the entire tree. For interpretation-tree model matching, the boundingrules are de�ned by geometric constraints (see Appendix C) and termination thresholds toprune entire subtrees.5 Parallel Non-wildcard Search Tree AlgorithmsWe will now discuss parallel variations of the sequential non-wildcard search tree algorithm,which is introduced in Section 5.1. Section 5.2 presents a parallel non-wildcard completesearch tree algorithm which �nds all satisfactory matches. A match is satisfactory when thetermination number of matched features has been reached.The sequential non-wildcard search tree algorithm stops when the �rst satisfactory match hasbeen found. It does not search for all solutions. Section 5.3 presents a parallel non-wildcard6

search tree algorithm which stops, when the �rst satisfactory match has been found. Thisalgorithm is quite similar to the sequential non-wildcard search tree algorithm, but the treeis searched in a non-deterministic order and not depth-�rst following the leftmost branches�rst.5.1 The Sequential Non-wildcard Search Tree AlgorithmAs many of the nodes in the standard interpretation tree algorithm arise because of the useof wildcards, an alternative search algorithm explores the same search space, but it doesnot use a wildcard model feature to match otherwise unmatchable data features [6]. Thetree in Figure 2 displays an example non-wildcard interpretation tree. With the sequentialalgorithm, the tree is searched depth-�rst following the leftmost branches �rst (no pruningis shown here to illustrate the shape of the tree).(d1; m2)(d2; m1)(d4; m5) (d2; m4)(d4; m5) (d4; m5) (d2; m1)(d4; m5) (d2; m4)(d4; m5) (d4; m5)Figure 2: An example for the non-wildcard interpretation tree for
 =[s1; s2; s3; s4] = [(d1; m2); (d2; m1); (d2; m4); (d4; m5)].The essence of the di�erence between the standard interpretation-tree and the non-wildcardinterpretation-tree algorithm is that the search process skips over all data pairings that usea wildcard, to consider the next true data-model feature pairing. This results in a
atteningof the search tree. The algorithm has two phases:1. The tuple
 = [sk] = [(di(k); mj(k))]; k = 1::N of all pairs of features satisfying the unarypairing constraints is formed, such that if sr is before ss (i.e. r < s), then i(r) � i(s),and if i(r) = i(s), then j(r) < j(s).With the non-wildcard interpretation-tree algorithm, the ordering is determined by theindex numbers of the data features. With the best-�rst interpretation-tree algorithm,the ordering is determined by the plausibilities (see Section 6.1 and Appendix B).2. The search tree is explored such that each extension of a branch is formed by appendingnew entries from
, subject to the constraints that (1) each data feature appears atmost once on a path through the tree and (2) the data features are used in order (withgaps allowed). 7

5.2 Parallel Complete Search Tree AlgorithmThis section presents a parallel implementation of the non-wildcard complete search treealgorithm given in Section 5.1 which provides all satisfactory matches.The main program for the parallel non-wildcard complete search tree model matching is themaster process:hNon-wildcard complete search tree main program 8ai�program Complete;hTuple space declarations 8bihHypotheses from the model invocation 8cibegin -- The master (main program):hGet the number of worker processes 8dihGet the termination threshold 9aihSpawn the worker processes 9bihDeposit the initial task tuples 9cihInitialize the number of �nished workers 9dihLet the worker processes start working 9eihWait for the workers to �nish 9fihFetch the results for complete search 10ai-- The procedure declarations:hWorker procedure for non-wildcard search 10bihProcedure for reading the hypotheses from the invocation 32iend Complete;In contrast to Pascal or Modula, in ProSet the main program precedes the proceduredeclarations to support a top-down presentation.This paper has been processed with the literate programming tool noweb to implement andpresent the program code. Refer to Appendix A for a brief introduction to reading literateprogrammed code which has been written with noweb. In summary, this approach allowsone to associate code and descriptive text in the same document, and then extract the codeportion to create executable text.We use two tuple spaces. One for the work tasks and one for the results:hTuple space declarations 8bi�visible constant WORK := CreateTS(om), -- for the work tasksRESULT := CreateTS(om); -- for the resultsThe hypotheses from the model invocation are read by the procedure GetHypos from standardinput (see Appendix B). These form the initial set
.hHypotheses from the model invocation 8ci�visible constant hypos := GetHypos (); -- visible for the worker processesNote that the plausibilities from the invocation are not considered with non-wildcard treesearch. For simplicity the procedure GetHypos is used for both the non-wildcard tree searchand the best-�rst tree search. The latter uses the plausibilities (see Section 6).The number of worker processes is an argument to the main program. This could be, forinstance, the number of available processors:hGet the number of worker processes 8di�NumWorker := argv(2); -- This is a string. Convert it to an integer via C's atoi:NumWorker := c_fct_call atoi (NumWorker : c_string) c_integer;8

The termination threshold for satisfactory matches is the next argument to the main program.It has to be less than or equal to the number of data features:hGet the termination threshold 9ai�Threshold := argv(3); -- This is a string. Convert it to an integer via C's atoi:Threshold := c_fct_call atoi (Threshold : c_string) c_integer;if (Threshold < 2) _ (#fx(1): x 2 hyposg < Threshold) thenput("The termination threshold is not acceptable!");stop;end if;The # operator returns the number of elements contained in a compound data structure.Note, that in a set each contained element exists exactly once.The master spawns NumWorker worker processes to do the work:hSpawn the worker processes 9bi�for i 2 [1..NumWorker] dok closure Worker (i, Threshold); -- Spawn the worker processesend for;The jj operator spawns a new process. The closure operator assures that the spawnedprocedure Worker has no side e�ects on global variables. See [17] for details.The master puts the initial task tuples into tuple space WORK:hDeposit the initial task tuples 9ci�for Entry 2 hypos dodeposit [fEntryg] at WORK end deposit;end for;For the example tree of Figure 2, these initial task tuples are (the plausibilities from theinvocation are not displayed here):[{1,"m_2"}], [{2,"m_1"}], [{2,"m_4"}], [{4,"m_5"}]These initial tasks are the nodes at the �rst level of the interpretation-tree.After depositing the initial task tuples, the master initializes a shared counter for the numberof �nished workers at tuple space RESULT:hInitialize the number of �nished workers 9di�deposit ["Finished Workers", 0] at RESULT end deposit;After initializing the tuple spaces, the workers are enabled to start their work:hLet the worker processes start working 9ei�deposit ["start", "now"] at WORK end deposit; -- Start the workersAlternatively, we could omit the ["start", "now"] tuple entirely and spawn the workersdirectly after depositing the initial tasks (and let them start working immediately). However,for testing with small input data sets, it is useful to defer the workers.After spawning the workers and initializing the tasks, the master waits until all workers havedone their work (by executing a blocking fetch until the number of �nished worker processesequals NumWorker):hWait for the workers to �nish 9fi�fetch ("Finished Workers", NumWorker) at RESULT end fetch;9

Then the master fetches the possible matches from tuple space RESULT and writes the resultsto standard output:hFetch the results for complete search 10ai�loopfetch (? Match) at RESULTelse quit; -- No more results: quit the loopend fetch;put("Match = ", Match);end loop;For the example tree of Figure 2 with Threshold equal to 3 the program prints out (theplausibilities from the invocation are not displayed here):Match = { [1,"m_2"],[2,"m_4"],[4,"m_5"] }Match = { [1,"m_2"],[2,"m_1"],[4,"m_5"] }This was the implementation of the master process (the main program). Now let us look atthe worker procedure. Each worker �rst waits to be enabled and then executes in an endlessloop:hWorker procedure for non-wildcard search 10bi�procedure Worker (i, Threshold);beginhWait to be enabled 10ciloophFetch task 10dihEvaluate task for non-wildcard search 11biend loop;hProcedure for consistency check 36aihAuxiliary procedure inc2 11aiend Worker;To become enabled each worker waits to meet the tuple ["start", "now"]:hWait to be enabled 10ci�meet ("start", "now") at WORK end meet;Each worker �rst checks whether there are more task tuples in tuple space WORK, and termi-nates when there is no more work to do:hFetch task 10di�fetch (? MyPath) at WORKelse -- increase the number of �nished workers:meet ("Finished Workers", ? into closure inc2($)) at RESULT end meet;return;end fetch;Before termination, the shared counter "Finished Workers" in tuple space RESULT is incre-mented to indicate the termination to the master.In principle it should be possible to write simply \into $(2)+1" within the above meetoperation. For a tuple T, the expression T(i) selects the ith element from T. Indexing startswith 1. Unfortunately, the current version of the ProSet compiler only accepts simple10

functions calls of the form \closure inc2($)" after into and | in templates. Therefore, wehave to write the auxiliary function inc2:hAuxiliary procedure inc2 11ai�procedure inc2 (x); beginreturn x(2)+1;end inc2;This syntactical restriction in the current version of the ProSet compiler should be removedin the near future.As explained in Section 5.1, each extension of a branch in the interpretation-tree is formed byappending new entries from
, subject to the constraints that (1) each data feature appearsat most once on a path through the tree and (2) the data features are used in order (withgaps allowed). The condition in the following for loop ensures that these constraints aresatis�ed:hEvaluate task for non-wildcard search 11bi�hCheck for termination for non-wildcard search 11cifor Entry 2 hypos j (8 x 2 MyPath j (Entry(1) > x(1))) doif Consistent (MyPath, Entry) thendeposit [MyPath with Entry] at TargetTS end deposit;end if;end for;ProSet's with operator adds an elements to a set or to the end of a tuple.Starting from a branch ending with pair s� (or nothing at the root of the tree), all pairs s�+1: : : sN are possible extensions to the branch. Only extensions that satisfy the normal binaryconstraints are accepted (see the de�nition of Consistent in Appendix C). Extension stopswhen the termination threshold of matches is reached. The following code checks whetherwe have enough matches:hCheck for termination for non-wildcard search 11ci�if #MyPath � Threshold-1 then-- We have a satisfactory match except for one data feature:TargetTS := RESULT;else-- Deposit a new task for the workers:TargetTS := WORK;end if;TargetTS then indicates whether we have a new work task or a new result.Figure 3 displays the coarse structure of the master-worker program. Arrows indicate accessto the tuple spaces. These access patterns are only shown for one of the identical workerprocesses.5.3 Parallel First-Stop Search Tree AlgorithmThis section presents a parallel non-wildcard search tree algorithm which stops the programwhen the �rst satisfactory match has been found. This algorithm is quite similar to the se-quential non-wildcard search tree algorithm, but the tree is not searched depth-�rst followingthe leftmost branches �rst. 11

master

worker

worker

. . . .

[task]

[result]

[finished]

WORK

RESULT

[task]
deposit deposit

de
po

sitm
ee

t

fetch

fetch

deposit

fetch

Figure 3: The coarse structure of the master-worker program.The main program for the parallel non-wildcard �rst-stop search tree model matching follows:hFirst-stop non-wildcard search tree main program 12ai�program FirstStop;hTuple space declarations 8bihHypotheses from the model invocation 8cibegin -- The master (main program):hGet the number of worker processes 8dihGet the termination threshold 9aihSpawn the worker processes 9bihDeposit the initial task tuples 9cihInitialize the number of �nished workers 9dihLet the worker processes start working 9eihFetch the �rst result 12bi-- The procedure declarations:hWorker procedure for non-wildcard search 10bihProcedure for reading the hypotheses from the invocation 32iend FirstStop;The program structure is quite similar to the complete search program (see the chunk indices).The worker procedure is identical. Instead of fetching all satisfactory matches, the masterfetches the �rst satisfactory match from tuple space RESULT and writes the result to standardoutput, provided that there exists at least one consistent match:hFetch the �rst result 12bi�fetch (? FirstMatch)) put("First match = ", FirstMatch);xor ("Finished Workers", NumWorker)) put("No consistent match found");at RESULTend fetch;Note, that a parallel program terminates when all its sequential processes have terminated. InProSet, termination of the main program (here the master) terminates the entire application12

and thus all spawned worker processes.Synchronization between the master and the workers is achieved when the �rst satisfactorymatch has been found. Provided that there exist at least one consistent match, the masterneed not wait until all tasks are evaluated as is the case with the parallel non-wildcardcomplete search tree algorithm of Section 5.2.5.4 EvaluationThe parallel non-wildcard complete search tree algorithm provides all satisfactory matches.If we neglect pruning of inconsistent branches, the number of evaluated nodes is proportionalto HT withH = Number of hypotheses from the model invocationT = Termination thresholdThe time to evaluate these nodes with the sequential algorithm is proportional toHT , whereasthe time to evaluate these nodes with the parallel algorithm is proportional to HTW withW = Number of worker processesbecause the worker processes evaluate the branches of the tree in parallel. However, the actualamount of parallelism may be restricted by the branching factor of the tree and contentioncaused by competing access to the tuple spaces. In principle, the situation for the abovecalculation does not change when considering pruning of inconsistent branchesWith the non-wildcard algorithm, the second and third levels of the search tree representmatches that use several non-wildcard pairings. The binary constraints eliminate almostall false pairings quickly [7]. The trade-o� is that the branching factor of the non-wildcardtree is H instead of the number of data features as with the standard interpretation-treealgorithm (see Section 3), but the depth of the tree for any false sets of matches is usuallyvery shallow. Therefore, the parallel non-wildcard complete search algorithm allows a highamount of parallelism because of the large branching factor of the tree.The parallel �rst-stop search algorithm is quite similar to the sequential non-wildcard searchtree algorithm. The tree is not searched depth-�rst following the leftmost branches �rst, butin parallel in a non-deterministic order.For the sequential algorithm, the time to �nd the �rst match is highly data dependent. If, forinstance, the left-most branch represents a satisfactory match, the sequential algorithm willprobably be faster than the parallel algorithm, because the parallel algorithm will probablynot follow the left-most branch �rst. However, consider the example interpretation tree withtwo paths with satisfactory matches in Figure 4. The satisfactory branches are marked byblack circles. Here, the sequential algorithm �rst evaluates the unsatisfactory left branchesbefore �nding the left-most satisfactory match. The parallel algorithmmay �nd a satisfactorymatch earlier, but this is not de�nite since the evaluation order is non-deterministic. Sincethe non-wildcard algorithms do not consider any valuation for the data/model feature pairs,nothing can guide the workers to follow the most promising branches.It would be possible to extend the parallel �rst-stop search algorithm such that it searchesthe tree depth-�rst rather than in an arbitrary order. This would improve the probability of�nding satisfactory branches earlier, but still the sequential algorithm may be faster.13

��� �� � ��� � ��� � �� ���� �� ��� ��� �� � ��� � ��� �� ��� � �� �� �� �� � �� �Figure 4: A search tree. The black circles indicate satisfactory matches.This raises the question whether it pays to parallelize the tree search when we are onlyinterested in obtaining any satisfactory match. The situation changes to some extent whenwe are interested in obtaining a good satisfactory match (see the next section).6 Parallel Best Search Tree AlgorithmsUsing the plausibilities for the model-to-data pairings of the model invocation (see Appen-dix B), it is possible to de�ne best-search algorithms for interpretation-tree matching. Secti-on 6.1 takes a short look at sequential best-�rst search tree algorithms. Section 6.2 presentsa parallel search tree algorithm which provides the optimal match where each data feature ismapped to a model feature when considering plausibilities for the data/model feature pairs.The sequential best-�rst search tree algorithm searches for the �rst plausible solution (usuallynot the optimal solution). Section 6.3 presents a parallel best-�rst search tree algorithm.6.1 The Sequential Best-�rst Search Tree AlgorithmThe best-�rst search tree algorithm [7] assumes that it is possible to evaluate how well sets ofmodel features match sets of data features (these are the plausibilities from the invocation,see Appendix B), and also to estimate the bene�t of adding additional feature matches to anexisting set of matches. This evaluation can then be used as the basis of a best-�rst matchingalgorithm that investigates hypotheses in order of the best estimated evaluation. As anyreal problem is likely to provide some useful heuristic ordering constraints, the potential forspeeding up the matching process is large.In contrast to the non-wildcard algorithms (Section 5.1), with the best-�rst algorithms weare interested in both the cost of a path to a solution (i.e. we wish to minimize the time to�nding a solution) as well as the quality of the solution. Both algorithms use the same treestructure (see Figure 2 on page 7), but the portion explored may be di�erent.As with the sequential non-wildcard algorithm, exploration terminates whenever a su�cientlylarge set of consistent matches is found (termination threshold), or whenever it is impossibleto extend the current set of matches to the required number. Refer to [7] for a detaileddiscussion of sequential best-�rst search tree algorithms.14

6.2 Parallel Optimum Search Tree AlgorithmThis section presents a parallel search tree algorithm which provides the optimal matchwhere a satisfactory number of data features is mapped to model features when consideringplausibilities for the data/model feature pairs. The main program follows:hOptimum search tree main program 15ai�program Optimum;hTuple space declarations 8bihHypotheses from the model invocation 8cibegin -- The master (main program):hGet the number of worker processes 8dihGet the termination threshold 9aihSpawn the worker processes 9bihDeposit the initial task tuples 9cihInitialize the result for optimum search 15bihInitialize the number of �nished workers 9dihLet the worker processes start working 9eihWait for the workers to �nish 9fihFetch the result for optimum search 15ci-- The procedure declarations:hWorker procedure for optimum search 16aihProcedure for reading the hypotheses from the invocation 32iend Optimum;In addition to putting the initial task tuples into tuple space WORK, and initializing a sharedcounter for the number of �nished workers at tuple space WORK, the master initializes anempty result set with plausibility 0:0 at tuple space RESULT:hInitialize the result for optimum search 15bi�deposit ["Optimum", fg, 0.0] at RESULT end deposit;After spawning the workers, the master waits until all workers have done their work, and thenthe master fetches the optimal match from tuple space RESULT and prints an appropriatemessage to standard output:hFetch the result for optimum search 15ci�fetch ("Optimum", ? Match, ? Plausibility) at RESULT end fetch;if Plausibility = 0.0 thenput("There exists no plausible match!");elseput("Optimal match = ", Match);put("Plausibility = ", Plausibility);end if;Again, each worker �rst waits to be enabled and checks whether there are more task tuples intuple space WORK, and terminates when there is no more work to do. Otherwise, the workeragain executes in an endless loop: 15

hWorker procedure for optimum search 16ai�procedure Worker (i, Threshold);hVisibility de�nitions for auxiliary procedures for optimum search 17dibeginhWait to be enabled 10ciloophFetch task 10dihCheck whether we can prune this subtree 16bihEvaluate task for optimum 16diend loop;hProcedure for consistency check 36aihAuxiliary procedure inc2 11aihAuxiliary procedure getMyPath 17bihAuxiliary procedure getMyPlausibility 17cihAuxiliary procedure greater 17eihAuxiliary procedure lower-equal 18aiend Worker;Each worker checks whether the plausibility of its current partial match (stored in MyPath) islower than the plausibility of an already known satisfactory match: if so, the worker discardsthis partial match (according to the bounding rule) and continues to fetch another tasktuple. The algorithm assumes that the plausibility evaluation is monotonically decreasingas the path length increases. First the worker computes the plausibility of its own path ofmatches:hCheck whether we can prune this subtree 16bi�MyPlausibility := 1.0;for x 2 MyPath doMyPlausibility *:= x(3);end for;Then the worker reads the plausibility of an already known optimal satisfactory match (thisplausibility is initially equal to 0:0, when no satisfactory match has been found so far) andcompares it with the plausibility of its own (not satisfactory) match. If its own plausibilityis lower than the plausibility of an already known satisfactory match, the worker continuesto fetch another task tuple:hCheck whether we can prune this subtree 16bi+�meet ("Optimum", ?, ? OptimumPlausibility) at RESULT end meet;if OptimumPlausibility � MyPlausibility thencontinue; -- there exists already a better satisfactory match:-- we prune this subtreeend if;If the plausibility of the partial match exceeds that of an already known satisfactory match,the worker checks whether the length of its partial match is already a satisfactory match butone:hEvaluate task for optimum 16di�if #MyPath < Threshold-1If the partial match is not a satisfactory match but one, the worker deposits new task tuplesinto tuple space WORK extended by one pair: 16

hEvaluate task for optimum 16di+�thenfor Entry 2 hypos j (8 x 2 MyPath j (Entry(1) > x(1))) do-- Deposit a new task for the workers:if Consistent (MyPath, Entry) thendeposit [MyPath with Entry] at WORK end deposit;end if;end for;Again, only extensions that satisfy the normal binary constraints are accepted (see Appen-dix C).If the partial match is already a satisfactory match but one, the worker changes the optimalmatch in tuple space RESULT with a changing meet operation to a satisfactory match basedon its own match, provided that these satisfactory matches still have the highest plausibility:hEvaluate task for optimum 16di+�else-- We have a satisfactory path but one:for Entry 2 hypos j (8 x 2 MyPath j (Entry(1) > x(1))) doif Consistent (MyPath, Entry) then-- Change the optimum to our path if it is still the best one:NextEntry := Entry; -- To make it visible for the auxiliary proceduresmeet ("Optimum", ? into closure getMyPath($),? into closure getMyPlausibility($)j closure greater($))xor ("Optimum", ?, ? j closure lower_equal($))at RESULTend meet;end if;end for;end if;Again, we need some auxiliary procedures to compute the new values for the optimal match:hAuxiliary procedure getMyPath 17bi�procedure getMyPath (x); beginreturn MyPath with NextEntry;end getMyPath;hAuxiliary procedure getMyPlausibility 17ci�procedure getMyPlausibility (x); beginreturn MyPlausibility � NextEntry(3);end getMyPlausibility;These procedures need access to the actual values of the variables MyPath, MyPlausibilityand NextEntry. Therefore, these variables are declared to be visible to the local procedures:hVisibility de�nitions for auxiliary procedures for optimum search 17di�visible MyPath, MyPlausibility, NextEntry;Additionally, we need some auxiliary procedures to check the template conditions:hAuxiliary procedure greater 17ei�procedure greater (x); beginreturn (MyPlausibility � NextEntry(3)) > x(3);end greater; 17

hAuxiliary procedure lower-equal 18ai�procedure lower_equal (x); beginreturn (MyPlausibility � NextEntry(3)) � x(3);end lower_equal;6.3 Parallel Best-First Search Tree AlgorithmThis section presents a parallel best-�rst search tree algorithm, which terminates at the �rstsatisfactory match. The main program follows:hBest-�rst search tree main program 18bi�program BestFirst;hTuple space declarations 8bihHypotheses from the model invocation 8cihDeclaration of the
oat function 21cibegin -- The master (main program):hGet the number of worker processes 8dihGet the termination threshold 9aihSpawn the worker processes 9bihDeposit the initial task tuples 9cihInitialize the priority queue 18cihInitialize the number of �nished workers 9dihInitialize the number of visited nodes 23aihLet the worker processes start working 9eihFetch the result for best-�rst search 19aihPrint the number of visited nodes 23ci-- The procedure declarations:hWorker procedure for best-�rst search 19bihProcedure for reading the hypotheses from the invocation 32iend BestFirst;The number of visited nodes is printed for statistical purposes (see Section 6.4).The central data structure is a distributed priority queue of entries of the following form,sorted by the estimated evaluation of the next potential extension:(Si = fpairi1; pairi2; : : :pairing; g(Si); m; f(Si [fpairmg))where Si is a set of n mutually compatible model-to-data pairs, g(Si) is the actual evaluationof Si,m indicates that pairm is the next extension of Si to be considered, and f(Si[fpairmg)is the estimated evaluation of that extension. The priority queue is sorted with larger f()values at the top.In addition to putting the initial task tuples into tuple space WORK, and initializing a sharedcounter for the number of �nished workers, the master initializes the top of the priority queueat tuple space WORK with entry (fg; 1:0; 1; A1):hInitialize the priority queue 18ci�deposit [1, 0, fg, 1.0, 1, hypos(1)(3)] at WORK end deposit;Each entry of the priority queue is stored as a tuple in WORK. The �rst component indicatesthe pointer to the corresponding entry. The integer 1 indicates the top of the queue. Thesecond component points to the next entry. The integer 0 indicates the end of the queue.18

Figure 5 on page 22 illustrates the structure of this queue. We shall describe the queuestructure later in this section.The expression hypos(1)(3) selects the plausibility for the highest rated hypothesis from themodel invocation (this is A1). The hypotheses are initially sorted by the model invocation.See also Appendix B.After spawning the workers, the master waits until the �rst worker delivers a match at tuplespace RESULT and prints an appropriate message to standard output, provided that thereexists at least one consistent match:hFetch the result for best-�rst search 19ai�fetch ("Best", ? Match, ? Plausibility)) put("Best-first match = ", Match);put("Plausibility = ", Plausibility);xor ("Finished Workers", NumWorker)) put("No consistent match found");at RESULTend fetch;Again, each worker �rst waits to be enabled and then executes in an endless loop:hWorker procedure for best-�rst search 19bi�procedure Worker (i, Threshold);hVisibility de�nitions for auxiliary procedures for best-�rst 20cihDeclaration of the
oat function 21cibeginhWait to be enabled 10ciloophPop priority queue top 19cihIncrement the number of visited nodes 23bihCheck for termination for best-�rst search 20dihEvaluate task for best-�rst 20eiend loop;hProcedure for consistency check 36aihProcedure for insertion into the priority queue 37aihAuxiliary procedure inc2 11aihAuxiliary procedure First 20aihAuxiliary procedure IsSecond 20biend Worker;Each worker then pops the top of the priority queue (Si; g(Si); m; f(Si [fpairmg)) at tuplespace WORK:hPop priority queue top 19ci�fetch (1, ? second, ? S_i, ? gS_i, ? m, ? fS_iPair_m) at WORK end fetch;if second 6= 0 then-- The second entry becomes the �rst one:meet (? into closure First($), ?, ?, ?, ?, ? j closure IsSecond($))at WORKend meet;end if;After popping the top of the priority queue, other worker processes can work in parallel onthe tail of the queue, provided that there exists a tail.19

Again, we need some auxiliary procedures to compute the integer value 1 and to �nd thesecond entry in the queue (this shortcoming in the current version of the ProSet compileris annoying, but it is just a syntactic restriction):hAuxiliary procedure First 20ai�procedure First(x); beginreturn 1;end First;hAuxiliary procedure IsSecond 20bi�procedure IsSecond (x); beginreturn x(1)=second;end IsSecond;Procedure IsSecond needs access to the actual value of the variable second. Therefore, thisvariable is declared to be visible to local procedures:hVisibility de�nitions for auxiliary procedures for best-�rst 20ci�visible second;Extension stops when the termination threshold of matches is reached:hCheck for termination for best-�rst search 20di�if #S_i � Threshold thendeposit ["Best", S_i, gS_i] at RESULT end deposit;return;end if;or when there are no more hypotheses from the model invocation left:hEvaluate task for best-�rst 20ei�if m+1 > #hypos then-- No more hypotheses from the model invocation left:if second 6= 0 thencontinue; -- Evaluate the rest of the priority queueelse-- Nothing more to do:meet ("Finished Workers", ? into closure inc2($)) at RESULT end meet;return;end if;else-- We have to evaluate the next hypothesis:Only extensions that satisfy the normal binary constraints (see Appendix C) and the orderingconstraints (see Section 5.1) are accepted:hEvaluate task for best-�rst 20ei+�if Consistent(S_i, hypos(m)) ^ (8 x 2 S_i j (hypos(m)(1) > x(1))) thenhGenerate next descendent of successful extension 21aiend if;hGenerate the next descendent of the original popped node 22aiend if;If not rejected by consistency checks, early termination or non-existence of further hypotheses,we generate the next descendent of the successful extension:(Si [fpairmg; g(Si [fpairmg); m+ 1; f(Si [fpairmg [fpairm+1g))20

to be inserted into priority queue.The algorithm needs two evaluation functions, f() for the estimated new state evaluation andg() for the actual state evaluation. For the above new extension the g() function is set to:g(Si [fpairmg) = g(Si) �AmThis is one possible state evaluation function. With the sequential best-�rst algorithms, otherstate evaluation functions have been investigated [7]. We compute the above state evaluationfunction as follows:hGenerate next descendent of successful extension 21ai�g := gS_i � hypos(m)(3);The f() evaluation function is:f(Si [fpairmg [fpairm+1g) = (size(Si [fpairmg)� 1) + g(Si [fpairmg) �Am+1= size(Si) + g(Si [fpairmg) �Am+1We compute this as follows:hGenerate next descendent of successful extension 21ai+�f := float(#S_i) + g � hypos(m+1)(3);The addition of the length of the branch so far gives longer branches higher evaluations todirect the workers to search the tree depth-�rst. The g() function is monotonically decreasingas the path length increases.The standard ProSet function float converts an integer into a real number. It has to beloaded from ProSet's standard library in the following way:hDeclaration of the
oat function 21ci�persistent constant float : "StdLib";The Insert function enters the new node into the appropriate priority position, providedthat the priority queue contained more than one entry:hGenerate next descendent of successful extension 21ai+�if second 6= 0 thenInsert (1, S_i with hypos(m), g, m+1, f);elsenext := newat(); -- A new 'distributed pointer'deposit [1, next, S_i with hypos(m), g, m+1, f] at WORK end deposit;end if;If the priority queue contained only the popped entry (the variable second indicates this), wedirectly deposit the new entry as the top of the priority queue. The next entry then obtainsthe atom next as its identity (see below). ProSet's built-in function newat returns a newatom.To update the old state we generate the next descendent of the original popped node:(Si; g(Si); m+ 1; f(Si [fpairm+1g))For this new extension the f() evaluation function is:f(Si [fpairm+1g) = (size(Si)� 1) + g(Si) �Am+121

.
.
.
.
.

0

1
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

...

lastfirstFigure 5: The distributed priority queue for parallel best-�rst search.The integer values 1 and 0 are used to indicate the top and the end of the queue, re-spectively. The intermediate entries are identi�ed by the contained atoms. We use blackcircles to represent the atoms. A link between two atoms means that these two atoms areequal. Note, that the atoms are not the addresses of the respective entries, but ratherthe identi�cation of the entries (distributed pointers).We compute this as follows:hGenerate the next descendent of the original popped node 22ai�f := float(#S_i - 1) + gS_i * hypos(m+1)(3);and insert the new entry into the priority queue as before:hGenerate the next descendent of the original popped node 22ai+�if second 6= 0 thenInsert (1, S_i, gS_i, m+1, f);elseif next = om then-- There was no descendent of successful extension:next := 1;end if;deposit [next, 0, S_i, gS_i, m+1, f] at WORK end deposit;end if;The priority queue is stored as a distributed data structure [18] in tuple space WORK. Distribu-ted data structures may be examined and manipulated by multiple processes simultaneously.The individual entries are linked together by means of ProSet's atoms. ProSet does notsupport pointers as they are known in Modula, C or similar procedural languages. As mentio-ned in Section 2.1, atoms are unique with respect to one machine and across machines (theycontain the host and process identi�cation, creation time, and an integer counter). Atomscan only be created and compared for equality. We use them as distributed pointers whichare independent of the processor's memory addresses. The integer values 1 and 0 are usedto indicate the top and the end of the queue, respectively. Figure 5 illustrates the structureof this queue. Note, that multiple processes can work independently on di�erent partitionsof the queue. The procedure Insert for insertion of new entries into the distributed priorityqueue is presented in Appendix D. A variety of other data structures, such as distributed22

priority sorted heaps or distributed sorted trees, could be used to implement the priorityqueue.6.4 EvaluationThe optimum search algorithm is essentially a branch-and-bound algorithm [21]. The parallelalgorithm searches the same tree as a similar sequential branch-and-bound algorithm wouldsearch, but the tree is searched in parallel. The bounding rules apply to parallel search inthe same way as they apply to sequential search. Therefore, the parallel optimum searchalgorithm can be compared to a similar sequential branch-and-bound algorithm in much thesame way as the parallel non-wildcard complete search tree algorithm of Section 5.2 can becompared to a sequential non-wildcard algorithm which provides all satisfactory matches.Refer to Section 5.4 for details.To evaluate the parallel best-�rst search algorithm, we apply our program to some real dataand count the number of visited nodes. The number of visited nodes is initialized by themaster:hInitialize the number of visited nodes 23ai�deposit ["Visited Nodes", 0] at RESULT end deposit;Each worker increments the shared counter "Visited Nodes" in tuple space RESULTwheneverit evaluates a node:hIncrement the number of visited nodes 23bi�meet ("Visited Nodes", ? into closure inc2($)) at RESULT end meet;After printing the result, the master prints the number of visited nodes to standard output:hPrint the number of visited nodes 23ci�fetch ("Visited Nodes", ? NumNodes) at RESULT end fetch;put("Number of visited nodes = ", NumNodes);put("Number of visited nodes per worker = ", float(NumNodes)/float(NumWorker));For testing, the range image of the workpiece displayed in Figure 6 is used. This range imagehas been processed by the low- and medium-level components of the IMAGINE2 system [8].The corresponding output of the model invocation is displayed in Figure 7. The experimentalresults for the parallel best-�rst search algorithm are displayed in Figures 8 and 9. Figure 8shows the number of visited nodes in relation to the number of workers and Figure 9 showsthe number of visited nodes per worker in relation to the number of workers. T is thetermination threshold for satisfactory matches. The zigzag line is due to non-determinism, butthe tendency is obvious. The number of visited nodes per worker converges to approximatelyT2 as the number of workers increases. Therefore, the addition of worker processes increasesthe search space.The parallel best-�rst algorithm appears to be a good compromise between the parallel op-timum search algorithm and the sequential best-�rst algorithm. It is not necessarily muchfaster than the sequential best-�rst algorithm, but can produce better results within the sameor even a shorter time. The f() function for the estimated new state evaluations directs theworkers to search the tree depth-�rst, which increases the probability of �nding a satisfacto-ry match earlier. The workers are guided by the plausibilities to follow the most promisingbranches. 23

The other main observation to make at this point is: because the sequential variations ofinterpretation-tree model matching algorithm were presented in a set-oriented way [7], itwas quite straightforward to implement them and the alternative parallel implementationsin ProSet and then compare them, in only a few weeks.7 Implementation of ProSet-LindaThis section brie
y discusses the evolving implementation of ProSet-Linda. We implementProSet-Linda in a somewhat unconventional way: the informal speci�cation is followed bya formal speci�cation, which serves as the basis for a prototype implementation before theproduction-level implementation is undertaken. Applying formal methods early in the designstage of software systems can increase the designer's productivity by clarifying issues andeliminating errors in the design. A formal development process is more expensive in termsof time and education, but much cheaper in terms of maintenance. There may be bugs, butthey are less likely to be at the conceptual level.The formal speci�cation of the semantics of ProSet-Linda has been presented by meansof the formal speci�cation language Object-Z and a prototype for a subset has been im-plemented from the formal speci�cation with ProSet itself [16, 17]. The prototype allowsimmediate validation of the speci�cation by execution. It is not possible to check the corre-spondence between informal requirements and formal speci�cations formally by veri�cation.The prototype enables us to avoid the large time lag between speci�cation of a system andits validation in the traditional model of software production using the life cycle approach.In the �rst C implementation of ProSet-Linda, the SunOSTM 4.1.3 Lightweight ProcessesLibrary [27] is used to implement process creation and synchronization. This LightweightProcesses Library only allows quasi-parallel execution on single processor workstations. TheC implementation is based on the ProSet prototype implementation (the ProSet compilertranslates ProSet into C). In many current operating systems the lightweight process orthread has emerged as a useful representation of computational activity. Lightweight processesrepresent multiple threads of control which share the address space of a single heavyweightprocess. Lightweight processes usually cooperate closely and frequently with each other andare typically used to implement parts of a program which are best executed concurrently. Inoperating systems like Unix lightweight processes are provided to heavyweight processes bya library which allows the user to execute functions as lightweight processes. Refer to [28,Section 12.1] for an introduction to lightweight processes.The next implementation was developed for the MeikoTM CS-2 Computing SurfaceTM at theEdinburgh Parallel Computing Centre. This Computing Surface contains 22 SparcTM pro-cessors connected by an high-speed multi-stage switch network. The CS-2 runs SolarisTM 2.3(a synonym for SunOSTM 5.3). The re-implementation under SolarisTM 2.3 uses SUNTM'sMulti-thread Architecture [24]. This implementation also allows real parallel execution onmulti-processor SparcStationsTM. We use ProSet-Linda on a SparcStationTM 10/512 withtwo processors. On these multi-processor SparcStationsTM the tuple spaces are stored inshared memory.The CS-2 does not support physically shared memory across processors. On distributed me-mory architectures, a general problem for implementations of Linda is to provide a map fromthe virtual shared memory model to physical distributed memory architectures. Therefore,e�cient and reliable implementations of Linda on physical distributed memory architectures24

Figure 6: The range image of a workpiece used for testing.
Surfhyp plaus 0.824106 context 2 is bae_slopeSurfhyp plaus 0.819578 context 1 is bae_sideSurfhyp plaus 0.819311 context 1 is bae_topSurfhyp plaus 0.798547 context 2 is bae_hole_sideSurfhyp plaus 0.555499 context 3 is bae_topSurfhyp plaus 0.553070 context 5 is bae_rect_60x40Surfhyp plaus 0.553070 context 5 is bae_2hole60x40Surfhyp plaus 0.447979 context 3 is bae_sideSurfhyp plaus 0.421752 context 6 is bae_rect_10x60Surfhyp plaus 0.388516 context 2 is bae_sideSurfhyp plaus 0.338191 context 2 is bae_topSurfhyp plaus 0.309805 context 7 is bae_rect_60x20Surfhyp plaus 0.305297 context 1 is bae_hole_sideSurfhyp plaus 0.191674 context 5 is bae_prowSurfhyp plaus 0.134297 context 1 is bae_slopeFigure 7: The output of IMAGINE2's model invocation for the range image inFigure 6. See Appendix B for a description of the notation used.25

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

N
um

be
r

of
 e

va
lu

at
ed

 n
od

es

Number of workers

’T=6’
’T=5’
’T=4’
’T=3’
’T=2’

Figure 8: The number of evaluated nodes depending on the number of workersfor parallel best-�rst search.
0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

N
um

be
r

of
 e

va
lu

at
ed

 n
od

es
 p

er
 w

or
ke

r

Number of workers

’T=6’
’T=5’
’T=4’
’T=3’
’T=2’

Figure 9: The number of evaluated nodes per worker depending on the numberof workers for parallel best-�rst search.26

are in general a great challenge for the implementor. Implementation techniques for physicaldistributed memory architectures range from ones where the tuple space is replicated on eachnode to those where each tuple resides on exactly one node. The implementation techniquesmay be classi�ed as follows:1. Central store with server process2. Replication of the entire tuple space at each node3. Distribution of the tuple space over the net with unique copies of each tuple4. Mixture of these techniquesA central store may very quickly become both a computational and a communicational bott-leneck. Therefore, our �rst implementation on the CS-2 replicates the tuple spaces on eachprocessor by means of the Elan widget library for the CS-2 [22]. This library supports virtualshared memory on the operating system level. The virtual shared memory is consistently re-plicated on each processor belonging to an application program. Updates are performed withatomic broadcast operations. The CS-2 supports the single-program multiple-data (SPMD)model for parallel application programs. For ProSet-Linda programs, each process is star-ted in suspended mode except for the main process (executing the main program). Eachprocess contains a server thread to carry out the communication with other processes of theapplication. New threads can then be created on other processors via appropriate requeststo the corresponding server threads (remote thread execution). Accordingly, requests fortuple-space operations are accomplished via appropriate requests to the server threads.However, a distribution of tuple spaces over the nodes in a parallel system in one form oranother is the most promising implementation technique on distributed memory architecturesfor Linda's tuple spaces. This is due to several reasons. First, memory is saved and second,the overhead for guaranteeing the consistency of the replicated tuple spaces is absent. Fur-thermore, any Linda implementation that can scale to large machines must distribute tuplespace, so as to avoid node contention. This distributes the cost of handling tuple operati-ons across all nodes in the system. The remaining problem is how to distribute the tuplespace. Multiple tuple spaces, as they are supported in ProSet, provide a direct approachfor distributing the tuple spaces on a distributed memory architecture. Additionally, therepresentation of individual tuple spaces can be customized according to their contents andusage. However, a replication of individual tuple spaces may also be useful. This would makeread operations cheap and write operations more expensive for replicated tuple spaces. Suchadvanced implementations for ProSet-Linda are the subject for further research.8 ConclusionsWe discussed the development of algorithms for parallel interpretation-tree model matchingfor 3-D computer vision applications with ProSet-Linda. Prototypes for the following algo-rithms have been developed:� The parallel complete search tree algorithm.� The parallel �rst-stop search tree algorithm.27

� The parallel optimum search tree algorithm.� The parallel best-�rst search tree algorithm.The sequential algorithmic variations of interpretation-tree model matching are presentedin [7] in a somewhat set-oriented way. Therefore, it was quite straightforward to write thecomputational parts of the parallel variations based on this speci�cation with the set-orientedlanguage ProSet. However, the four presented programs are complete executable prototypesfor the developed algorithms. They could be regarded as executable speci�cations .The evaluation showed that not all algorithmic variations are good candidates for paralle-lization. An application area for prototyping is to carry out feasibility studies . If we hadimplemented the algorithms directly with a production language, for example C with exten-sions for message passing, the implementation e�ort would have been somewhat higher. Theimplementation of the four prototypes required just a few weeks.This is what prototyping is about: experimenting with ideas for algorithms and evaluatingthem. Purely theoretic evaluations are often not possible in practice.The main contribution of this paper are the presented techniques for parallelization ofinterpretation-tree model matching and the evaluation of these techniques. It is also a casestudy for prototyping of parallel algorithms.AcknowledgmentsThis work has been supported by the TRACS program funded by the Human Capital andMobility program of the European Commission (contract number ERB-CHGE-CT92-0005),and the Universities of Dortmund and Edinburgh.The authors would like to thank Andrew Fitzgibbon for the help with the IMAGINE2 system,Philippe Fillatreau and Josef Hebenstreit for the discussions on object recognition, and PeterMaccallum and Neil MacDonald for support with the Edinburgh Parallel Computing Centrefacilities.
28

References[1] N. Carriero and D. Gelernter. How to write parallel programs. MIT Press, 1990.[2] J. Cocke. The search for performance in scienti�c processors. Communications of theACM, 31(3):249{253, 1988.[3] E.-E. Doberkat and D. Fox. Software Prototyping mit SETL. Leitf�aden und Monogra-phien der Informatik. Teubner-Verlag, 1989.[4] E.-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers, and C. Pahl.ProSet | A Language for Prototyping with Sets. In N. Kanopoulos, editor, Proc.Third International Workshop on Rapid System Prototyping, pages 235{248, ResearchTriangle Park, NC, June 1992. IEEE Computer Society Press.[5] R.B. Fisher. Model invocation for three dimensional scene understanding. In J. McDer-mott, editor, Proc. 10th International Joint Conference on Arti�cial Intelligence, pages805{807. Morgan Kaufmann, 1987.[6] R.B. Fisher. Non-wildcard matching beats the interpretation tree. In Proc. BritishMachine Vision Conference (BMVC92), pages 560{569, Leeds, UK, September 1992.[7] R.B. Fisher. Best-�rst and ten other variations of the interpretation-tree model matchingalgorithm. DAI Research Paper No. 717, Dept. of Arti�cial Intelligence, University ofEdinburgh, Edinburgh, UK, September 1994.[8] R.B. Fisher, A.W. Fitzgibbon, M. Waite, E. Trucco, and M.J.L Orr. Recognition ofcomplex 3-D objects from range data. In S. Impedovo, editor, Progress in Image Analysisand Image Processing III (Proc. 7th International Conference on Image Analysis andProcessing), pages 509{606, Monopoli, Bari, Italy, September 1993.[9] R.B. Fisher, D.K. Naidu, and D. Singhal. Rejection of spurious re
ections in structu-red illumination range �nders. In Proc. 2nd Conference on Optical 3D MeasurementTechniques, Zurich, Switzerland, October 1993.[10] D. Gelernter. Generative communication in Linda. ACM Transactions on ProgrammingLanguages and Systems, 7(1):80{112, January 1985.[11] W.E.L. Grimson. Object Recognition By Computer: The Role of Geometric Constraints.MIT Press, 1990.[12] W.E.L. Grimson and T. Lozano-Perez. Model-based recognition and localization fromsparse range or tactile data. International Journal of Robotics Research, 3:3{35, 1984.[13] R.H. Halstead. Multilisp: A language for concurrent symbolic computation. ACMTransactions on Programming Languages and Systems, 7(4):501{538, October 1985.[14] W. Hasselbring. CELIP: A cellular language for image processing. Parallel Computing,14(5):99{109, May 1990.[15] W. Hasselbring. Prototyping parallel algorithms with ProSet-Linda. In J. Volkert,editor, Parallel Computation (Proc. Second International ACPC Conference), volume734 of Lecture Notes in Computer Science, pages 135{150, Gmunden, Austria, October1993. Springer-Verlag. 29

[16] W. Hasselbring. Animation of Object-Z speci�cations with a set-oriented prototypinglanguage. In J.P. Bowen and J.A. Hall, editors, Z User Workshop (Proc. Eighth ZUser Meeting), Workshops in Computing, pages 337{356, Cambridge, UK, June 1994.Springer-Verlag.[17] W. Hasselbring. Prototyping Parallel Algorithms in a Set-Oriented Language. PhDthesis, Department of Computer Science, University of Dortmund, 1994. (Published byVerlag Dr. Kova�c, Hamburg).[18] M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum. Experience with the distributed datastructure paradigm in Linda. In USENIX/SERCWorkshop on Experiences with BuildingDistributed and Multiprocessor Systems, pages 175{191, Ft. Lauderdale, FL, October1989.[19] D.E. Knuth. The WEB for structured documentation. Technical Report 980, StanfordComputer Science, Stanford, CA, September 1993.[20] P. Kruchten, E. Schonberg, and J. Schwartz. Software prototyping using the SETLprogramming language. IEEE Software, 1(4):66{75, October 1984.[21] E.L. Lawler and D.E.Wood. Branch-and-bound methods: a survey. Operations Research,14(4):699{719, July 1966.[22] Meiko Limited, Bristol, UK. Elan Widget Library, 1993.[23] D.A. Padua, R. Eigenmann, J. Hoe
inger, P. Petersen, P. Tu, S. Weatherford, andK. Faigin. Polaris: A new-generation parallelizing compiler for MPPs. CSRD ReportNo. 1306, University of Illinois at Urbana-Champaign, Urbana, IL, June 1993.[24] M.L. Powell, S.R. Kleinman, S. Barton, D. Shah, D. Stein, and M. Weeks. SunOS Multi-thread Architecture. In Proc. USENIX Winter '91 Technical Conference, Dallas, TX,1991.[25] N. Ramsey. Literate programming simpli�ed. IEEE Software, 11(5):97{105, September1994.[26] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets{ An Introduction to SETL. Springer-Verlag, 1986.[27] Sun Microsystems Inc. Programming Utilities & Libraries, 1990.[28] A.S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.[29] E. Trucco and R.B. Fisher. Computing surface-based representations from range images.In Proc. IEEE International Symposium on Intelligent Control (ISIC-92), pages 275{280, Glasgow, UK, August 1992.
30

A Literate Programming with nowebThis paper has been processed with the literate programming tool noweb [25] which is basedon Knuth's WEB [19]. Literate programmers interleave source code and descriptive text in asingle document. Knuth's WEB is a tool for writing literate Pascal programs. Ramsey's nowebis independent of the target programming languages (for that reason it is pre�xed with no).Here, we use it for two programming languages, viz. ProSet and C, within one document.noweb is designed around one idea: writing named chunks of code in any order, with inter-leaved documentation. Like WEB, and like all literate-programming tools, it can be used towrite a program in pieces and to present those pieces in an order that helps to explain theprogram. A noweb �le is a sequence of chunks, which may appear in any order. A chunk maycontain code or documentation. Code chunks begin withhChunk name 31ai�on a line by itself. The index 31a is automatically inserted to indicate that this chunk isthe �rst chunk de�ned on page 31. Documentation chunks are anonymous. Chunks areterminated by the beginning of another chunk, or by end of �le. Documentation chunkscontain text. If several code chunks have the same name, they are concatenated to producea single chunk. A code chunk is inserted into another chunk by omitting the � sign:hChunk name 31aiThe program notangle then extracts the code from the document, and noweave outputs aLATEX �le with source code and descriptive text. noweave allows one to customize the outputof keywords and special symbols within code chunks. ProSet's keyword forall, for instance,is displayed within this document as 8. The operator >= is displayed as �. Keywords whichare not replaced by mathematical symbols are printed in bold face, comments in roman,and the rest in typewriter font. notangle ignores these translations when extracting thecode for subsequent compilation. For an account of literate programming with noweb referto [25].Program components which are not contained within code chunks are displayed in typewriter font. noweave does not customize the output of keywords and special symbols outsidecode chunks.An index to objects de�ned within the code chunks (procedures, variables etc.) can be foundat the end of this document. Unfortunately, noweb sorts lower case letters behind capitalletters.
31

B Reading the Output from the Model InvocationThe model invocation uses model and data properties to pair likely model and data featuresfor further consideration. The model invocation process compares the expected and observedproperties of features and locally related pairs of features, and assigns a match score basedon the closeness of match [5]. It produces a sorted list of consistent model-to-data pairs:pairi = (modeli; datai; Ai)where Ai is the compatibility measure (plausibility) of the features modeli and datai. Thepair list is initially sorted with larger Ai values at the top.The corresponding output from the model invocation in the IMAGINE2 system [8] is a listof lines of the form:Surfhyp plaus 0.824106 context 2 is bae_slopeSurfhyp, plaus, context and is are keywords. The integer 2 is the data feature and thestring bae_slope is the model feature name. The real number 0.824106 de�nes the plausi-bility for this data/model feature pair. The plausibility is a value between �1:0 and 1:0, butmodel invocation only selects pairs for further matching whose plausibility lies between 0:0and 1:0. The procedure GetHypos reads this list from standard input:hProcedure for reading the hypotheses from the invocation 32i�@include "gethypos.h"procedure GetHypos ();beginresult := []; -- initialize the result tuplewhile NOT_EOF doGET_TOKEN; -- skip 'Surfhyp'GET_TOKEN; -- skip 'plaus'p := GET_PLAUSIBILITY;GET_TOKEN; -- skip 'context'd := GET_DATA;GET_TOKEN; -- skip 'is'm := GET_MODEL;result with:= [d,m,p];end while;return result;end GetHypos;The header �le gethypos.h de�nes the GET_* and NOT_EOF macros (see below).The above-mentioned input line is translated into the following ProSet tuple representation:[2, "bae_slope", 0.824106] 32

The output from the invocation is read in by C functions. They are called via ProSet'sinterface to C:hMacros for getting the hypos 33ai�@define NOT_EOF (c_fct_call check_input() c_string) 6= "EOF"@define GET_TOKEN c_fct_call get_token()@define GET_DATA c_fct_call get_data() c_integer@define GET_MODEL c_fct_call get_model() c_string@define GET_PLAUSIBILITY c_fct_call get_plausibility() c_realThese @defines are similar to C's #defines. This chunk is tangled into �le gethypos.h.The corresponding C pro�les:hC headers for getting the hypos 33bi�extern char *check_input();extern void get_token();extern int get_data();extern char * get_model();extern double get_plausibility();This chunk is tangled into �le get.h.The C functions:hC functions for getting the hypos 33ci�#include <stdio.h>#include "get.h"#define MAXBUF 128static char buffer [MAXBUF];hCheck for input 33dihGet next token 34dihGet data feature 34aihGet model feature 34bihGet plausibility 34ciThis chunk is tangled into �le get.c.Check for end of �le:hCheck for input 33di�char *check_input(){ char ch;if ((ch = getc(stdin)) == EOF){ return "EOF";}else{ ungetc (ch, stdin);return "NOT_EOF";}} 33

Get the index of the next data feature:hGet data feature 34ai�int get_data (){ get_token ();return atoi (buffer);}Get the name of the next model feature:hGet model feature 34bi�char * get_model (){ get_token ();return buffer;}Get the
oat value of the next plausibility:hGet plausibility 34ci�double get_plausibility (){ double ret;get_token ();if (sscanf (buffer, "%lf", &ret) == 0){ fprintf (stderr, "get_plausibility: error from sscanf\n");exit (1);}return ret;}Store the next token into the buffer:hGet next token 34di�void get_token (){ char ch;register i;hSkip white spaces 34eihRead token into bu�er 35i}hSkip white spaces 34ei�do /* skip white spaces: */{ if ((ch = getchar()) == EOF){ fprintf (stderr, "get_token: found unexpected EOF\n");exit (1);}}while (isspace(ch)); 34

hRead token into bu�er 35i�for (i = 0; !isspace(ch); i++){ if (i >= MAXBUF){ fprintf (stderr, "get_token: buffer overflow\n");exit (1);}buffer [i] = ch;if ((ch = getchar()) == EOF){ fprintf (stderr, "get_token: found unexpected EOF\n");exit (1);}}buffer [i] = '\0'; /* terminate string */

35

C Making Sets of Consistent Model-data CorrespondencesThe model invocation evaluates unary and binary geometric constraints for model/data fea-ture pairs (see Appendix B). There exist additional binary constraints for combinations ofmodel/data pairs. For example, Grimson and Lozano-Perez [12] provide a set of binary cons-traints useful for three-dimensional scene analysis, based on pairwise consistency constraints ,that compare quantities such as relative distance, orientation and direction. Of particularimportance is the local nature of the consistency tests, based on the assumption that a fewsimple, fast tests on partially generated hypotheses will eliminate large numbers of globallyinconsistent hypotheses. Position estimates can be used to identify features that are visiblefrom the given position, and to eliminate features unlikely to be observed. The model surfacepatches and the estimated position can be used to determine whether the surface patch isback-facing (not visible).The procedure Consistent checks whether a given pair is consistent with each pair in thepath so far:hProcedure for consistency check 36ai�procedure Consistent (PathSoFar, Pair);beginfor p 2 PathSoFar doif : ConsistentPair (p, Pair) thenreturn false;end if;end for;return true;hProcedure for consistency check of two pairs 36biend Consistent;The procedure ConsistentPair checks whether two given pairs are consistent with respectto some geometric constraints (a probabilistic simulation):hProcedure for consistency check of two pairs 36bi�procedure ConsistentPair (p1, p2);beginreturn random(1.0) < 0.8 ;end ConsistentPair;For comparison of the di�erent algorithms, we just use a random value to determine theconsistency. The emphasis of the present paper is the parallel interpretation-tree search, andnot the evaluation of geometric constraints, whose description and implementation wouldextend to a report by itself.
36

D Insertion of New Entries into a Distributed Priority QueueThe procedure Insert inserts a new entry into the distributed priority queue of Section 6.3:hProcedure for insertion into the priority queue 37ai�procedure Insert (actual, newS_i, newg, newm, newf);beginhPop top of actual queue 37biif newf � fS_iPair_m thenif next 6= 0 thenhInsert before actual entry 37cielsehInsert at end of queue before actual entry 37diend if;elseif next 6= 0 thenhInsert behind actual entry 38aielsehInsert at end of queue behind actual entry 38biend if;end if;end Insert;The workers call Insert always with the pointer to the top of the priority queue (indicatedby the integer 1). Insert may call itself recursively with pointers to tails of the queue. First,the top of the actual queue is popped:hPop top of actual queue 37bi�fetch (actual, ? next, ? S_i, ? gS_i, ? m, ? fS_iPair_m)at WORKend fetch;The top of the actual queue is fetched and not just met to guarantee the integrity of the dis-tributed queue. Fetching and returning the entries is a somewhat ine�cient implementationof locking. In a production level implementation with, for example, C/C++ with parallelextensions (e.g. C-Linda or message passing) some semaphore mechanism might work moree�ciently. In this paper we concentrate on the development of ideas for parallel algorithms,not the development of the most e�cient implementation at �rst (this is prototyping).If the evaluation of the new entry (newf) is higher than or equal to the evaluation of theactual entry in the queue (fS_iPair_m) and the actual entry is not the last entry in thequeue (next not equal to 0), then the new entry is inserted in front of the actual entry:hInsert before actual entry 37ci�deposit [actual, next, newS_i, newg, newm, newf]at WORKend deposit;Insert (next, S_i, gS_i, m, fS_iPair_m);If the evaluation of the new entry (newf) is higher than or equal to the evaluation of theactual entry in the queue (fS_iPair_m) and the actual entry is the last entry in the queue,then the new entry is inserted in front of the actual entry at end of the queue:37

hInsert at end of queue before actual entry 37di�next := newat(); -- We need a new pointerdeposit [actual, next, newS_i, newg, newm, newf]at WORKend deposit;deposit [next, 0, S_i, gS_i, m, fS_iPair_m]at WORKend deposit;If the evaluation of the new entry (newf) is lower than the evaluation of the actual entry inthe queue (fS_iPair_m) and the actual entry is not the last entry in the queue (next notequal to 0), then the new entry is inserted into the tail behind the actual entry:hInsert behind actual entry 38ai�deposit [actual, next, S_i, gS_i, m, fS_iPair_m]at WORKend deposit;Insert (next, newS_i, newg, newm, newf);If the evaluation of the new entry (newf) is lower than the evaluation of the actual entry inthe queue (fS_iPair_m) and the actual entry is the last entry in the queue, then the newentry is inserted at end of queue behind the actual entry:hInsert at end of queue behind actual entry 38bi�next := newat();deposit [actual, next, S_i, gS_i, m, fS_iPair_m]at WORKend deposit;deposit [next, 0, newS_i, newg, newm, newf]at WORKend deposit;

38

Index of De�nitionsBestFirst: 18bComplete: 8aConsistent: 11b, 16e, 17a, 20f, 36aConsistentPair: 36a, 36bFirst: 12b, 19c, 20a, 20bFirstMatch: 12bFirstStop: 12aGET DATA: 32, 33aGET MODEL: 33aGET PLAUSIBILITY: 33aGET TOKEN: 33aGetHypos: 8c, 32Insert: 21d, 22b, 37a, 37c, 38aIsSecond: 19c, 20bMatch: 10a, 15c, 19aMyPath: 10d, 11b, 11c, 16b, 16d, 16e, 17a, 17b, 17dMyPlausibility: 16b, 16c, 17c, 17d, 17e, 18aNOT EOF: 32, 33a, 33dNextEntry: 17a, 17b, 17c, 17d, 17e, 18aNumNodes: 23cNumWorker: 8d, 9b, 9f, 12b, 19a, 23cOptimum: 15a, 15b, 15c, 16c, 17aOptimumPlausibility: 16cPlausibility: 15c, 19aRESULT: 8b, 9d, 9f, 10a, 10d, 11c, 12b, 15b, 15c, 16c, 17a, 19a, 20d, 20e, 23a, 23b, 23cS i: 19c, 20d, 20f, 21b, 21d, 22a, 22b, 37b, 37c, 37d, 38a, 38bTargetTS: 11b, 11cThreshold: 9a, 9b, 10b, 11c, 16a, 16d, 19b, 20dWORK: 8b, 9c, 9e, 10c, 10d, 11c, 16e, 18c, 19c, 21d, 22b, 37b, 37c, 37d, 38a, 38bWorker: 9b, 10b, 16a, 19bbuffer: 33c, 34a, 34b, 34c, 35check input: 33a, 33b, 33dfS iPair m: 19c, 37a, 37b, 37c, 37d, 38a, 38bfloat: 21b, 21c, 22a, 23cgS i: 19c, 20d, 21a, 22a, 22b, 37b, 37c, 37d, 38a, 38bgetMyPath: 17a, 17b, 17cgetMyPlausibility: 17a, 17cget model: 33a, 33b, 34bget plausibility: 33a, 33b, 34cget token: 33a, 33b, 34a, 34b, 34c, 34d, 34e, 35greater: 17a, 17e, 18ahypos: 8c, 9a, 9c, 11b, 16e, 17a, 18c, 20e, 20f, 21a, 21b, 21d, 22ainc2: 10d, 11a, 20e, 23blower equal: 17a, 18am: 19c, 20e, 20f, 21a, 21b, 21d, 22a, 22b, 32, 37b, 37c, 37d, 38a, 38bsecond: 19c, 20b, 20c, 20e, 21d, 22b 39

