
Using the PROSET-Linda Prototyping Languagefor Investigating MIMD Algorithmsfor Model Matching in 3-D Computer Vision?W. Hasselbring1 and R. B. Fisher21 Dept. of Computer Science, University of DortmundInformatik 10 (Software Technology), D-44221 Dortmund, GermanyTelephone: 49-(231)-755-4712, Fax: 49-(231)-755-2061email: willi@ls10.informatik.uni-dortmund.de2 Dept. of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United KingdomTelephone: 44-(31)-650-3098, Fax: 44-(31)-650-6899email: rbf@aifh.ed.ac.ukAbstract. This paper discusses the development of algorithms for par-allel interpretation-tree model matching for 3-D computer vision applic-ations such as object recognition. The algorithms are developed with aprototyping approach using ProSet-Linda. ProSet is a procedural pro-totyping language based on the theory of �nite sets. The coordinationlanguage Linda provides a distributed shared memory model, called tuplespace, together with some atomic operations on this shared data space.The combination of both languages, viz. ProSet-Linda, is designed forprototyping parallel algorithms.The classical control algorithm for symbolic data/model matching incomputer vision is the Interpretation Tree search algorithm. Parallel ex-ecution can increase the execution performance of model matching, butalso make feasible entirely new ways of solving matching problems. Inthe present paper, we emphasize the development of several parallel al-gorithms with a prototyping approach. The expected improvements at-tained by the parallel algorithmic variations for interpretation-tree searchare analyzed.Keywords: model-based vision, object recognition, parallel search, prototypingparallel algorithms.1 IntroductionThree-dimensional computer vision is commonly divided into several levels. Inthe research investigated at Edinburgh, low-level vision is concerned with pro-cessing range data acquired by a laser range scanner to eliminate noise [10].Medium-level vision is concerned with identifying geometric surfaces [22]. High-level vision tries, for example, to identify the shape and position of data objectsusing matched given model features. In the high-level component, �rst the model? In: Proc. IRREGULAR '95, Lecture Notes in Computer Science, Springer-Verlag,September 1995, Lyon, France. 1

invocation process pairs likely model and data features for further consideration[7]. Model matching then uses the candidate matches proposed by the invocationto form consistent groups of matches.The classical control algorithm for symbolic model matching in computervision is the Interpretation Tree search algorithm [13]. The algorithm searches atree of potential model-to-data correspondences, such that each node in the treerepresents one correspondence and the path of nodes from the current node backto the root of the tree is a set of simultaneous pairings. This model matchingalgorithm is a specialized form of the general AI tree search technique, wherebranches are pruned according to a set of consistency constraints according tosome (geometric) criterion. The goal of the search algorithm is to maximize theset of consistent model-to-data correspondences in an e�cient manner. Findingthese correspondences is a key problem in model-based vision, and is usually apreliminary step to object recognition, pose estimation, or visual inspection.Unfortunately, this algorithm has the potential for combinatorial explosion.To reduce the complexity, techniques for pruning the trees have been developed,thus limiting the number of candidate matches considered [13]. However, evenwith these e�ective forms of pruning, the algorithms still can have exponentialcomplexity, making the standard interpretation-tree search algorithms unsuit-able for use in scenes with many features.Parallel execution can increase the execution performance of model matching,but also allow entirely new ways of solving matching problems. As has been ob-served, it is only from new algorithms that orders of magnitude improvements inthe complexity of a problem can be achieved [3]. Thus, rapid prototyping of par-allel algorithms may serve as the basis for developing parallel, high-performanceapplications. In this paper, we present a methodology for the develop-ment of parallel high-level vision algorithms using a PROSET-Lindabased prototyping approach.Parallelism in low- and medium-level computer vision is usually programmedin a data-parallel way, for instance based on the computational model of cellularautomata [14]. For high-level symbolic computer vision, the data-parallel ap-proach is not appropriate, as symbolic computations have an irregular control
ow depending on the actual input data.Data parallelism is opposed to control parallelism, which is achieved throughmultiple threads of control, operating independently. The data-parallel approachlets programmers replace iteration (repeated execution of the same set of in-structions with di�erent data) with parallel execution. It does not address amore general case, however: performing many interrelated but di�erent opera-tions at the same time. This ability is essential for developing algorithms forhigh-level symbolic computer vision. The data-parallel programming model isbased on the single-program/multiple-data (SPMD) model as opposed to themultiple-instruction/multiple-data (MIMD) model.Developing parallel algorithms is in general considered an awkward under-taking. The goal of the ProSet-Linda approach is to partially overcome thisproblem by providing a tool for prototyping parallel algorithms [15]. To support2

prototyping parallel algorithms, a prototyping language should provide simpleand powerful facilities for dynamic creation and coordination of parallel pro-cesses.Section 2 gives a brief introduction to the tool for implementing the par-allel variations of the interpretation-tree search algorithm, viz. ProSet-Lindafor prototyping parallel algorithms. Section 3 takes a general look at parallelinterpretation-tree search. We do not parallelize the standard interpretation-tree algorithm, but the non-wildcard and best-�rst alternatives in Sects. 4 and 5,respectively. Section 6 evaluates the investigated algorithms. Section 7 discussesthe transformation of prototypes into e�cient implementations and Sect. 8 drawssome conclusions.2 Prototyping Parallel Algorithms with ProSet-LindaBefore presenting the implementation of the parallel interpretation-tree modelmatching algorithms, we have a look at ProSet-Linda as the language used forimplementation. The procedural, set-oriented languageProSet [5] is a successorto SETL [20]. ProSet is an acronym for PROtotyping with SETs. Thehigh-level structures that ProSet provides qualify the language for prototyping.Refer to [4] for a full account of prototyping with set-oriented languages and to[6, 18] for case studies for prototyping using SETL.2.1 Basic ConceptsProSet provides the data types atom, integer, real, string, Boolean, tuple, set,function, and module. ProSet is weakly typed, i.e., the type of an object is ingeneral not known at compile time. Atoms are unique with respect to one ma-chine and across machines. They can only be created and compared for equality.Tuples and sets are compound data structures, the components of which mayhave di�erent types. Sets are unordered collections while tuples are ordered.There is also the unde�ned value om which indicates unde�ned situations.As an example consider the expression [123, "abc", true, f1.4, 1.5g]which creates a tuple consisting of an integer, a string, a Boolean, and a set oftwo reals. This is an example of what is called a tuple former. As another ex-ample consider the set forming expression f2*x: x in [1..10] | x>5g whichyields the set f12, 14, 16, 18, 20g. The quanti�ers of predicate calculus areprovided (9, 8). The control structures have ALGOL as one of its ancestors.2.2 Parallel ProgrammingProcess communication and synchronization in ProSet-Linda is reduced to con-current access to a shared data pool, thus relieving the programmer from theburden of having to consider all process inter-relations explicitly. The parallelprocesses are decoupled in time and space in a simple way: processes do not haveto execute at the same time and do not need to know each other's addresses (as3

it is necessary with message-passing systems). Linda is a coordination languagewhich extends a sequential language by means for synchronization and commu-nication through so-called tuple spaces [12]. Synchronization and communicationin ProSet-Linda are carried out through several atomic operations: addition,removal, reading, and updates of individual tuples in tuple space. Linda andProSet both provide tuples; thus, it is quite natural to combine both mod-els to form a tool for prototyping parallel algorithms. The access unit in tuplespace is the tuple. Reading access to tuples in tuple space is associative and notbased on physical addresses, but rather on their expected content described intemplates. This method is similar to the selection of entries from a data base.ProSet supports multiple tuple spaces. SeveralProSet-Linda library functionsare provided for handling multiple tuple spaces dynamically.ProSet provides three tuple-space operations. The deposit operation de-posits a tuple into a tuple space:deposit ["pi", 3.14] at TS end deposit;TS is the tuple space at which the tuple ["pi", 3.14] has to be deposited.The fetch operation tries to fetch and remove a tuple from a tuple spacefetch ("name", ? x |(type $(2) = integer)) at TS end fetch;This template only matches tuples with the string "name" in the �rst �eld andinteger values in the second �eld. The symbol $may be used like an expression asa placeholder for the values of corresponding tuples in tuple space. The expres-sion $(i) then selects the ith element from these tuples. Indexing starts with 1.As usual in ProSet, | means such that. The optional l-values speci�ed in theformals (the variable x in our example) are assigned the values of the correspond-ing tuple �elds, provided matching succeeds. Formals are pre�xed by questionmarks. The selected tuple is removed from tuple space. The meet operation isthe same as fetch, but the tuple is not removed and may be changed:meet ("pi", ? x) at TS end meet;Changing tuples is done by specifying expressions intowhich speci�c tuple �eldswill be changed. Considermeet ("pi", ? into 2.0*3.14) at TS end meet;where the second element of the met tuple is changed into the value of theexpression 2.0*3.14. Tuples which are met in tuple space may be regarded asshared data since they remain in tuple space irrespective of changing them ornot.3 Parallel Interpretation-Tree SearchParallelism in a tree search algorithm can be obtained by searching the branchesof a tree in parallel. A simple approach would be to spawn a new process for each4

subtree to be evaluated. This approach would not work well since the amount ofparallelism is determined by the input data and not by, for instance, the numberof available processors.The programs which will be presented in the following sections are master-worker applications (also called task farming). In a master-worker application,the task to be solved is partitioned into independent subtasks. These subtasksare placed into a tuple space, and each process in a pool of identical workersthen repeatedly retrieves a subtask description from the tuple space, solves it,and puts the solutions into a tuple space. The master process then collectsthe results. An advantage of this programming approach is easy load balancingbecause the number of workers is variable and may be set to the number ofavailable processors.Similar to sequential tree search, it is in general not necessary to search theentire tree: bounding rules avoid searching the entire tree.4 Parallel Non-wildcard Search Tree AlgorithmsAs many of the nodes in the standard interpretation tree algorithm arise be-cause of the use of wildcards, an alternative search algorithm explores the samesearch space, but it does not use a wildcard model feature to match otherwise un-matchable data features [8]. The tree in Fig. 1 displays an example non-wildcardinterpretation tree. In a sequential algorithm, the tree is searched depth-�rst fol-lowing the leftmost branches �rst (no pruning is shown here to illustrate theshape of the tree). The tuple
 is the output of model invocation.(d1;m2)(d2;m1)(d4;m5) (d2;m4)(d4;m5) (d4;m5) (d2;m1)(d4;m5) (d2;m4)(d4;m5) (d4;m5)Fig. 1.An example interpretation tree for
 = [(d1;m2); (d2;m1); (d2;m4); (d4;m5)].The di are data features and the mi are model features. The root of the inter-pretation tree has no pairings. Each data feature appears (in order) at most oncein a branch. At each node at level k in the tree, therefore, there is a hypothesiswith k features matched.Section 4.1 presents a parallel non-wildcard complete search algorithm which�nds all satisfactory matches. A match is satisfactory when the termination5

number of matched features has been reached.The sequential non-wildcard search tree algorithm stops when the �rst satis-factory match has been found [8]. It does not search for all solutions. Section 4.2presents a parallel non-wildcard search tree algorithm which stops when the �rstsatisfactory match has been found.4.1 Parallel Complete Search Tree AlgorithmThis section discusses a parallel master-worker implementation of the non-wild-card search tree algorithm which provides all satisfactory matches.Model invocation uses model and data properties to pair likely model anddata features for further consideration [7]. It produces a sorted list of consistentmodel-to-data pairs (modeli; datai; Ai) where Ai is the compatibility measure(plausibility) of the features modeli and datai. The pair list is initially sortedwith larger Ai values at the top. The hypotheses from the model invocation arestored as a tuple in the variable Hypotheses.Figure 2 displays the coarse structure of the master-worker program. Arrowsindicate access to the tuple spaces. These access patterns are only shown for oneof the identical worker processes.
master

worker

worker

. . . .

[task]

[result]

[finished]

WORK

RESULT

[task]
deposit

de
po

sitmee
t

fetch

fetch

deposit

fetch

depositFig. 2. The coarse structure of the master-worker program.In this paper, only small parts of the code can be presented. Refer to [16] forthe complete description. We use two tuple spaces. One for the work tasks (WORK)and one for the results (RESULT). The number of worker processes NumWorker isan argument to the main program. This could be, for instance, the number ofavailable processors. The termination threshold for satisfactory matches is thenext argument to the main program. The master (the main program) spawnsNumWorker worker processes to do the work and puts the initial task tuples intotuple space WORK. These initial tasks represent the nodes at the �rst level of theinterpretation-tree. Then, the master initializes a shared counter for the numberof �nished workers at tuple space RESULT and waits until all workers have donetheir work (by executing a blocking fetch until the number of �nished worker6

processes equals NumWorker). Then the master fetches the possible matches fromRESULT.This was a sketch of the implementation of the master process (the mainprogram). Now let us look at the worker procedure. Each worker executes in aloop in which it �rst checks whether there are more task tuples in tuple spaceWORK, and terminates when there is no more work to do. Before termination, theshared counter for the number of �nished workers in RESULT is incremented toindicate the termination to the master.Each extension of a branch in the interpretation-tree is formed by appendingnew entries from
, subject to the constraints that (1) each data feature appearsat most once on a path through the tree and (2) the data features are used inorder (with gaps allowed). The condition in the following for loop of the workerensures that these constraints are satis�ed:for Entry in Hypotheses | (forall x in MyPath | (Entry(1) > x(1))) doif Consistent (MyPath, Entry) thendeposit [MyPath + {Entry}] at TargetTS end deposit;end if;end for;The set of pairs MyPath represents the current partial branch in the tree. Thecondition Entry(1) > x(1) enforces the data feature ordering constraint. Onlyextensions that satisfy the normal binary constraints are accepted (Consistentchecks this). Extension stops when the termination threshold of matches isreached. Beforehand, TargetTS has been set to indicate whether we have a newincomplete work task (TargetTS is WORK) or a new satisfactory result (TargetTSis RESULT).4.2 Parallel First-Stop Search Tree AlgorithmThis section brie
y describes a parallel non-wildcard search tree algorithmwhichstops the program when the �rst satisfactory match has been found. This al-gorithm is quite similar to the sequential non-wildcard search tree algorithm,but the tree is searched in a non-deterministic order and not depth-�rst follow-ing the leftmost branches �rst.Synchronization between the master and the workers is achieved when the�rst satisfactory match has been found. Provided that there exist at least oneconsistent match, the master need not wait until all tasks are evaluated as is thecase with the parallel non-wildcard complete search tree algorithm of Sect. 4.1.The master waits for the �rst satisfactory match to be deposited by a worker atRESULT. For a detailed discussion of this program refer to [16].5 Parallel Best Search Tree AlgorithmsThe best-�rst search tree algorithm [8] assumes that it is possible to evaluate howwell sets of model features match sets of data features (based on the plausibilitiesfrom the invocation and consistency measures as the set sizes grow). As any7

real problem is likely to provide some useful heuristic ordering constraints, thepotential for speeding up the matching process is large.In contrast to the non-wildcard algorithms (see Sect. 4), with the best-�rstalgorithms we are interested in both the cost of a path to a solution (i.e. we wishto minimize the time to �nding a solution) as well as the quality of the solution.Both algorithms use the same tree structure (see Fig. 1), but the portion exploredmay be di�erent.Section 5.1 presents a parallel search tree algorithm which provides the op-timal match where each data feature is mapped to a model feature when con-sidering plausibilities for the data/model feature pairs. The sequential best-�rstsearch tree algorithm searches for the �rst plausible solution (usually not theoptimal solution). Section 5.2 presents a parallel best-�rst search tree algorithm.5.1 Parallel Optimum Search Tree AlgorithmOne parallel search tree algorithm �nds the optimal match where a satisfactorynumber of data features is mapped to model features when considering plausib-ilities for the data/model feature pairs.In addition to putting the initial task tuples into WORK, and initializing ashared counter for the number of �nished workers at WORK, the master initializesan empty result set with plausibility 0:0 at tuple space RESULT (the currentoptimum). After spawning the workers, the master waits until all workers havedone their work, and then fetches the optimal match from RESULT.The algorithm assumes that the plausibility evaluation is monotonically de-creasing as the path length increases. First the worker computes the plausibilityof its own path of matches and reads the plausibility of an already known satis-factory match from RESULT, and compares it with the plausibility of its own (notyet satisfactory) match. If its own plausibility is lower than the plausibility ofan already known satisfactory match, the worker continues to fetch another tasktuple (according to the bounding rule). Otherwise, the worker checks whetherthe length of its partial match is already a satisfactory match but one. If so, itchanges the optimal match in RESULT to its own evaluated match (extended to asatisfactory match). This algorithm is essentially a branch-and-bound algorithm[19]. For a detailed discussion of the task evaluation refer to [16].5.2 Parallel Best-First Search Tree AlgorithmAn alternative parallel best-�rst search tree algorithm terminates at the �rstsatisfactory match. The central data structure is a distributed priority queueof entries of the following form, sorted by the estimated evaluation of the nextpotential extension:(Si = fpairi1 ; pairi2; : : : pairing; g(Si);m; f(Si [fpairmg))where Si is a set of n mutually compatible model-to-data pairs (a partial branchin the tree), g(Si) is the actual evaluation of Si, m indicates that pairm is the8

next extension of Si to be considered, and f(Si [fpairmg) is the estimatedevaluation of that extension. The priority queue is sorted with larger f() valuesat the top.In addition to putting the initial task tuples into tuple space WORK, and initial-izing a shared counter for the number of �nished workers, the master initializesthe top of the priority queue at tuple space WORKwith components (fg; 1:0; 1; A1):deposit [1, 0, {}, 1.0, 1, Hypotheses(1)(3)] at WORK end deposit;Each entry of the priority queue is stored as a tuple in WORK. The �rst componentindicates the pointer to the corresponding entry. The integer 1 indicates the topof the queue. The second component points to the next entry. The integer 0indicates the end of the queue. Figure 3 illustrates the structure of this queue.
.
.
.
.
.

0

1

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

...

lastfirstFig. 3. The distributed priority queue for parallel best-�rst search.The integer values 1 and 0 are used to indicate the top and the end of the queue,respectively. The intermediate entries are identi�ed by the contained atoms. We useblack circles to represent the atoms. A link between two atoms means that these twoatoms are equal. Note, that the atoms are not the addresses of the respective entries,but rather the identi�cation of the entries (distributed pointers which are independentof memory addresses to allow access from di�erent processors).The expression Hypotheses(1)(3) selects the plausibility for the highestrated hypothesis from the model invocation (this is A1). The hypotheses areinitially sorted by the model invocation.Again, each worker executes in a loop and �rst pops the top of the priorityqueue (Si; g(Si);m; f(Si [fpairmg)) at tuple space WORK:fetch (1, ? second, ? S_i, ? g, ? m, ? f) at WORK end fetch;if second /= 0 then-- The second entry becomes the first one through a changing meet:meet (? into 1, ?, ?, ?, ?, ? | $(1)=second) at WORK end meet;end if; 9

After popping the top of the priority queue, other worker processes can work inparallel on the tail of the queue to allow parallel access to the distributed queue,provided that there exists a tail.If not rejected by consistency checks, early termination or non-existence offurther hypotheses, the worker generates the next descendant of the successfulextension:(Si [fpairmg; g(Si [fpairmg);m+ 1; f(Si [fpairmg [fpairm+1g))plus the next descendant of the parent:(Si; g(Si);m+ 1; f(Si [fpairmg))to be inserted into priority queue.Insertion of the next descendant of the successful extension is done by theInsert function, which enters the new node into the appropriate priority posi-tion, provided that the priority queue contained more than one entry:if second /= 0 thenInsert (1, S_i + {Hypotheses(m)}, g, m+1, f);elsenext := newat(); -- A new 'distributed pointer'deposit [1, next, S_i + {Hypotheses(m)}, g, m+1, f] at WORK end deposit;end if;If the priority queue contained only the popped entry (the variable second indic-ates this), we directly deposit the new entry as the top of the priority queue. Thenext entry then obtains the atom next as its identity. ProSet's built-in func-tion newat returns a new atom. The next descendant of the parent is insertedaccordingly.The algorithmneeds two evaluation functions, f() for the estimated new stateevaluation and g() for the actual state evaluation. The f() evaluation functiongives longer branches higher evaluations to direct the workers to search the treedepth-�rst. As with the �rst-stop algorithm (see Sect. 4.2), the master waits forthe �rst satisfactory match to be deposited by a worker at RESULT.The priority queue is stored as a distributed data structure [17] in tuplespace WORK. Distributed data structures may be examined and manipulated bymultiple processes simultaneously. In this case, multiple processes can work inde-pendently on di�erent partitions of the queue. The individual entries are linkedtogether by means of ProSet's atoms. ProSet does not support pointers asthey are known in Modula, C or similar procedural languages. As mentioned inSection 2.1, atoms are unique with respect to one machine and across machines(they contain the host and process identi�cation, creation time, and an integercounter). Atoms can only be created and compared for equality. We use them asdistributed pointers which are independent of the processor's memory addresses.Note, that multiple processes can work independently on di�erent partitions ofthe queue. The insertion procedure of new entries into the distributed priorityqueue Insert is presented in [16]. A variety of other data structures, such asdistributed priority sorted heaps or distributed sorted trees, could be used toimplement the priority queue. 10

6 EvaluationThe parallel complete search tree algorithm. The parallel non-wildcardcomplete search tree algorithm provides all satisfactory matches. If we neglectpruning of inconsistent branches, the number of evaluated nodes is proportionalto HT where H is the number of hypotheses from the model invocation and Tis the termination threshold. The time to evaluate these nodes with the sequen-tial algorithm is proportional to HT , whereas the time to evaluate these nodeswith the parallel algorithm is proportional to HTW where W is the number ofworker processes, since the worker processes evaluate the branches of the treein parallel. However, the actual amount of parallelism may be restricted by thebranching factor of the tree and contention caused by competing access to thetuple spaces. In principle, the situation for the above calculation does not changewhen considering pruning of inconsistent branchesWith the non-wildcard algorithm, the second and third levels of the searchtree represent matches that use several non-wildcard pairings. The binary con-straints eliminate almost all false pairings quickly [8]. The trade-o� is that thebranching factor of the non-wildcard tree is H instead of the number of datafeatures as with the standard interpretation-tree algorithm, but the depth of thetree for any false sets of matches is usually very shallow. Therefore, the paral-lel non-wildcard complete search algorithm allows a high amount of parallelismbecause of the large branching factor of the tree.The parallel �rst-stop search algorithm. The parallel �rst-stop search al-gorithm is quite similar to the sequential non-wildcard search tree algorithm.The tree is not searched depth-�rst following the leftmost branches �rst, but inparallel in a non-deterministic order.For the sequential algorithm, the time to �nd the �rst match is highly datadependent. If, for instance, the left-most branch represents a satisfactory match,the sequential algorithm will probably be faster than the parallel algorithm, be-cause the parallel algorithm will probably not follow the left-most branch �rst.The parallel algorithmmay �nd a satisfactory match earlier, but this is not def-inite since the evaluation order is non-deterministic. However, the mean time to�nding a solution is improved in proportion to the number of workers. Since thenon-wildcard algorithms do not consider any valuation for the data/model fea-ture pairs, nothing can guide the workers to follow the most promising branches.This raises the question whether it pays to parallelize the tree search whenwe are only interested in obtaining any satisfactory match. If there are manypossible solutions, then this parallel algorithm is unlikely to make dramaticimprovements; however, if there are few solutions, then the speedup should benearly linear in the number of workers. The situation changes to some extentwhen we are interested in obtaining a good satisfactory match.The parallel optimum search algorithm. This algorithm searches in par-allel the same tree as a similar sequential branch-and-bound algorithm would11

search. The bounding rules apply to parallel search in the same way as theyapply to sequential search (branch-and-bound). Therefore, the parallel optimumsearch algorithm can be compared to a similar sequential branch-and-bound al-gorithm in much the same way as the parallel non-wildcard complete search treealgorithm of Sect. 4.1 can be compared to a sequential non-wildcard algorithmwhich provides all satisfactory matches (see above).The parallel best-�rst algorithm. For testing this algorithm, the outputfrom the low- and medium-level components of the IMAGINE2 system [9] forthe range image of a workpiece is used. Some experimental results for the parallelbest-�rst search algorithm are displayed in Fig. 4. Figure 4a shows the numberof visited nodes in relation to the number of workers and Fig. 4b shows thenumber of visited nodes per worker in relation to the number of workers. Tis the termination threshold for satisfactory matches. The zigzag line is dueto non-determinism, but the tendency is obvious. The number of visited nodesper worker converges to approximately T2 as the number of workers increases.Therefore, the addition of worker processes increases the search space.
0

10
20
30
40
50
60
70
80
90

0 5 10 15 20 25

E
va

lu
at

ed
 n

od
es

Number of workers

(a)

’T=6’
’T=5’
’T=4’
’T=3’
’T=2’

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

N
od

es
 p

er
 w

or
ke

r

Number of workers

(b)

’T=6’
’T=5’
’T=4’
’T=3’
’T=2’Fig. 4. The experimental results for the parallel best-�rst search algorithm.The parallel best-�rst algorithm appears to be a good compromise betweenthe parallel optimum search algorithm and the sequential best-�rst algorithm.It is not necessarily much faster than the sequential best-�rst algorithm, butcan produce better results within the same or even a shorter time. The f()function for the estimated new state evaluations directs the workers to searchthe tree depth-�rst, which increases the probability of �nding a satisfactorymatch earlier. The workers are guided by the plausibilities to follow the mostpromising branches. 12

7 Transforming the Prototype Implementation into anE�cient ImplementationAs a consequence of our evaluation, in a successor project the prototype of theparallel best-�rst algorithmwill be transformed into an e�cient implementation.In a �rst step, the ProSet-Linda prototype is transformed into a C-Linda im-plementation [21]. With Linda, it is easy to program with di�erent styles, e.g.with distributed data structures, active data structures and message passing [2].The C-Linda implementation will be programmed in a message-passing styleto serve as a preliminary step for a message-passing implementation with anMPI library (Message Passing Interface [11]). We then use the CHIMP/MPI(Common High-Level Interface to Message Passing) [1] implementation at theEdinburgh Parallel Computing Centre, which is an e�cient implementation ofthe MPI standard. CHIMP/MPI supports Sun, Silicon Graphics, IBM, and DECworkstations as well as Sequent Symmetry and Meiko Transputer/i860/SPARCComputing Surfaces. This CHIMP/MPI implementationwill be used to compareperformance of the algorithm on di�erent parallel computing systems.Note that this transformation is done by hand and not supported by a com-piler or other tools. We do not believe that such transformations can be donefully automatically, but some kind of tool support is conceivable. Before buildingtransformation tools we would like to gain some insights into the requirements onsuch tools through practical experience. Another project is underway to imple-ment the Cowichan Problems [23] | a set of problems for assessing the usabilityof parallel programming systems |with the same development process to obtaina greater range of practical experiences with our approach.8 ConclusionsWe discussed the development of algorithms for parallel interpretation-tree modelmatching for 3-D computer vision applications with ProSet-Linda. Prototypesfor four parallel algorithms have been developed and evaluated.The evaluation showed that not all algorithmic variations are good candidatesfor parallelization. An application area for prototyping is to carry out feasibilitystudies. If we had implemented the algorithms directly with a production lan-guage, for example C with extensions for message passing, the implementatione�ort would have been higher. However, the exact savings in time cannot bepresented: This would require a similar project without prototyping for compar-ison.The other main observation to make at this point is: because the sequentialvariations of interpretation-tree model matching algorithm were presented ina set-oriented way [8], it was quite straightforward to implement them and thealternative parallel implementations in ProSet and then compare them, in onlya few weeks. The four presented programs are complete executable prototypes forthe developed algorithms. They could be regarded as executable speci�cations.13

One of the goals of the successor project will be to compare performance ofthe algorithm with that predicted by the prototype. This is what prototyping isabout: experimenting with ideas for algorithms and evaluating them to make theright decisions for the next steps in the development. Purely theoretic evaluationsare often not possible in practice. The main contribution of this paper are thepresented techniques for parallelization of interpretation-tree model matchingand the evaluation of these techniques. It is also a case study for prototyping ofparallel algorithms.AcknowledgmentsThis work has been supported by the TRACS program funded by the HumanCapital and Mobility program of the European Commission (contract numberERB-CHGE-CT92-0005), and the Universities of Dortmund and Edinburgh.The authors would like to thank Andrew Fitzgibbon for the help with theIMAGINE2 system, Philippe Fillatreau and Josef Hebenstreit for the discussionson object recognition, Peter Maccallum and Neil MacDonald for support withthe Edinburgh Parallel Computing Centre facilities, and Henri Bal and PeterMaccallum for the comments on drafts of this paper.References1. R. Alasdair, A. Bruce, J.G. Mills, and A.G. Smith. CHIMP/MPI User Guide.Technical Report EPCC-KTP-CHIMP-V2-USER 1.2, Edinburgh Parallel Comput-ing Centre, Edinburgh, UK, June 1994.2. N. Carriero and D. Gelernter. How to write parallel programs. MIT Press, 1990.3. J. Cocke. The search for performance in scienti�c processors. Communications ofthe ACM, 31(3):249{253, 1988.4. E.-E. Doberkat and D. Fox. Software Prototyping mit SETL. Leitf�aden und Mono-graphien der Informatik. Teubner-Verlag, 1989.5. E.-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers, andC. Pahl. ProSet | A Language for Prototyping with Sets. In N. Kanopoulos,editor, Proc. Third International Workshop on Rapid System Prototyping, pages235{248, Research Triangle Park, NC, June 1992.6. K.A. Faigin, S.A. Weatherford, J.P. Hoe
inger, D.A. Padua, and P.M. Petersen.The Polaris Internal Representation. International Journal of Parallel Program-ming, 22(5):553{586, 1994.7. R.B. Fisher. Model invocation for three dimensional scene understanding. InJ. McDermott, editor, Proc. 10th International Joint Conference on Arti�cial In-telligence, pages 805{807. Morgan Kaufmann, 1987.8. R.B. Fisher. Best-�rst and ten other variations of the interpretation-tree modelmatching algorithm. DAI Research Paper No. 717, Dept. of Arti�cial Intelligence,University of Edinburgh, Edinburgh, UK, September 1994.9. R.B. Fisher, A.W. Fitzgibbon, M. Waite, E. Trucco, and M.J.L Orr. Recognitionof complex 3-D objects from range data. In S. Impedovo, editor, Proc. 7th Inter-national Conference on Image Analysis and Processing, pages 509{606, Monopoli,Bari, Italy, September 1993. 14

10. R.B. Fisher, D.K. Naidu, and D. Singhal. Rejection of spurious re
ections in struc-tured illumination range �nders. In Proc. 2nd Conference on Optical 3D Measure-ment Techniques, Zurich, Switzerland, October 1993.11. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.Technical Report CS-94-230, University of Tennessee, Computer Science Depart-ment, Knoxville, TN, May 1994. (published in the International Journal of Super-computing Applications, Volume 8, Number 3/4, 1994).12. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-gramming Languages and Systems, 7(1):80{112, January 1985.13. W.E.L. Grimson. Object Recognition By Computer: The Role of Geometric Con-straints. MIT Press, 1990.14. W. Hasselbring. CELIP: A cellular language for image processing. Parallel Com-puting, 14(5):99{109, May 1990.15. W. Hasselbring. Prototyping parallel algorithms with ProSet-Linda. In J. Vol-kert, editor, Parallel Computation (Proc. Second International ACPC Conference),volume 734 of Lecture Notes in Computer Science, pages 135{150, Gmunden, Aus-tria, October 1993. Springer-Verlag.16. W. Hasselbring and R.B. Fisher. Investigating parallel interpretation-tree modelmatching algorithms with ProSet-Linda. DAI Research Paper No. 722, Universityof Edinburgh, Dept. of Arti�cial Intelligence, Edinburgh, UK, December 1994.(also available as Software-Technik Memo Nr. 77, University of Dortmund).17. M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum. Experience with the distributeddata structure paradigm in Linda. In USENIX/SERC Workshop on Experienceswith Building Distributed and Multiprocessor Systems, pages 175{191, Ft. Lauder-dale, FL, October 1989.18. P. Kruchten, E. Schonberg, and J.T. Schwartz. Software prototyping using theSETL programming language. IEEE Software, 1(4):66{75, October 1984.19. E.L. Lawler and D.E. Wood. Branch-and-bound methods: a survey. OperationsResearch, 14(4):699{719, July 1966.20. J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming withSets { An Introduction to SETL. Springer-Verlag, 1986.21. Scienti�c Computing Associates, New Haven, CT. C-Linda User's Guide & Ref-erence Manual, 1992.22. E. Trucco and R.B. Fisher. Computing surface-based representations from rangeimages. In Proc. IEEE International Symposium on Intelligent Control (ISIC-92),pages 275{280, Glasgow, UK, August 1992.23. G.V. Wilson. Assessing the usability of parallel programming systems: TheCowichan problems. In Proc. IFIP WG10.3 Working Conference on ProgrammingEnvironments for Massively Parallel Distributed Systems, Monte Verita, Ascona,Switzerland, April 1994. Birkh�auser Verlag AG.This article was processed using the LATEX macro package with LLNCS style15

