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Abstract The ever increasing impact of the marine

industry and transport on vulnerable sea areas puts the

marine environment under exceptional pressure and calls

for inspired methods for mitigating the impact of the

related risks. We describe a method for preventive reduc-

tion of remote environmental risks caused by the shipping

and maritime industry that are transported by surface cur-

rents and wind impact to the coasts. This method is based

on characterizing systematically the damaging potential of

the offshore areas in terms of potential transport to vul-

nerable regions of an oil spill or other pollution that has

occurred in a particular area. The resulting maps of prob-

abilities of pollution to be transported to the nearshore and

the time it takes for the pollution to reach the nearshore are

used to design environmentally optimized fairways for the

Gulf of Finland, Baltic Proper, and south-western Baltic

Sea.
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INTRODUCTION

Traditionally risks related to maritime industry are asso-

ciated with potential accidents (ship collisions, sinking or

grounding, leaks from oil platforms, etc.) that may lead to

loss of lives or property, or to environmental pollution. The

management of the related environmental risks has been

mostly focused on small areas around the installation or the

ship in question. An intrinsic feature of the ocean envi-

ronment is that various meteorological and oceanic factors

(such as currents, winds or waves, called met-ocean drivers

below) can transport various impacts over long distances.

For example, exhaust emissions (Hobbs et al. 2000),

external noise (Slabbekoorn et al. 2010; Merchant et al.

2012), litter and debris (Pichel et al. 2007), and especially

oil or chemical pollution may cause large-scale conse-

quences. Large accidents provide substantial risks to the

ecosystem even in seemingly remote and safe locations as

demonstrated, for example, by the recent Gulf of Mexico

oil spill (Camilli et al. 2010) or Tohoku tsunami (Bagu-

layan et al. 2012).

This component of environmental risk is exceptionally

important in small seas that host intense ship traffic such as

the Baltic Sea. At present this sea accounts for up to 15 %

of the world’s international ship cargo transportation.

Sustainable management of this traffic flow is a major

challenge there. The largest threat to this region is oil

transportation that has increased by more than a factor of

two from year 2000 to 2006 (Knudsen 2010).

The traditionally used approach to manage potential

maritime pollution is to develop proper decision support

systems and quick remedial action plans for the event of an

accident (e.g., Keramitsoglou et al. 2003; Kostianoy et al.

2008). Another approach is the preventive planning strat-

egy; for instance, the optimization of the shipping routes

(Schwehr and McGillivary 2007), dynamical relocation of

tugboats (Eide et al. 2007), or designation of possible

policies and regulations (Ko and Chang 2010; Hassler

2011; Rusli 2012). Their aim is to account for the effect

that a pollution accident would incur before it actually

happens.

A commonly accepted paradigm is that some sea areas

(e.g., spawning areas) are more valuable than others (Kachel

2008). In this framework, the cost of environmental conse-

quences of an accident depends on not only on its severity but

also on when and at which point the adverse impacts have

been released. Therefore, tagging sea areas with price labels
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naturally yields an associated distribution of costs of other-

wise similar accidents but occurring at different locations.

Our goal was to create a technology that would be

able to specify such distributions (especially those created

by intrinsic favorable features of the marine dynamics) in

a particular case when the adverse impact is transported

by various met-ocean drivers over the sea surface to

predefined vulnerable areas. The associated environmen-

tal damage can be minimized preventively by placing

maritime activities (like ship routes) in the safest areas

(called areas of reduced risk) indicated by these

distributions.

A common example of adverse impact is oil pollution

and the natural vulnerable area is the coastal zone (Kachel

2008). Alternatively, marine protected areas may be con-

sidered as valuable regions (Delpeche-Ellmann and Soo-

mere 2013). A simple measure of the cost of an accident at

a particular sea point is the probability with which some

vulnerable area is hit by adverse impacts released at this

point (Andrejev et al. 2011). Another convenient measure

of this cost is the time it takes for this impact to reach a

vulnerable area. This quantity, called particle age (Andre-

jev et al. 2011) or residence time (of oil) at sea (Murawski

and Woge Nielsen 2013), is decisive in estimates of the

capacity of oil combating services.

The use of favorable features of ocean dynamics for

the mitigation of consequences of potential accidents is

straightforward in regions hosting persistent currents or

steady winds where it is sufficient to place the potentially

dangerous activities as far as possible ‘‘upstream’’ or

‘‘upwind’’ from the vulnerable areas (Soomere and Quak

2007). Doing so is not possible in the Baltic Sea that is

famous for the transient nature and high variability of the

patterns of driving forces, extreme complexity of the

dynamics of the marine environment, very small internal

Rossby radius (Fennel et al. 1991; Alenius et al. 2003),

chaotic appearance and low directional persistence of

surface currents (Andrejev et al. 2004a, b), and extre-

mely complicated paths of drifters (Döös and Engqvist

2007).

There exist, however, highly ordered patterns of currents

in this sea such as frequently repeating pathways of single

particles (Döös et al. 2004) and water masses (Meier 2007),

highly persistent flows in certain layers (Andrejev et al.

2004a, b), or semi-persistent patterns of Lagrangian

transport (Soomere et al. 2011d). It is likely that such

patterns render the probability of transport of various

substances or items from different sea areas to vulnerable

regions highly variable. The areas, for which this proba-

bility is relatively small, or the propagation from which to

vulnerable areas takes a long time, are the best candidates

for potentially dangerous activities such as ship traffic or

offshore structures.

In order to reach the above goal, first of all computer

simulations have to provide an adequate statistics of the

water motions. The cumulative values of the above-dis-

cussed measures (probability or particle age) vary sub-

stantially within the first seasons of calculations. They

reach an almost constant level after about 4 years in the

Gulf of Finland (Andrejev et al. 2011) whereas the pattern

of hits to the coasts is exactly the same for the 1980s and

1990s (Viikmäe et al. 2013). Therefore, it is necessary to

cover, at least, 5 years in order to reach an acceptable

estimate of the ‘‘climatological’’ values (understood here as

averages over longer time intervals) of these measures.

Another crucial problem is how to extract useful infor-

mation from the results of long-term simulations. More-

over, the quantification of the potential of different areas to

serve as a source of danger to the vulnerable regions

involves solving an inverse problem of pollution propa-

gation. Such problems are frequently mathematically ill-

posed and no universal method exists for solving them.

This requires the use of non-traditional mathematical

methods to identify the effect of favorable patterns on the

pollution propagation. An approximate solution to such

problems can be obtained by means of statistical analysis

of a large number of particular solutions (Lagrangian tra-

jectories) of the direct problem of propagation of pollution

parcels (Soomere et al. 2010; Andrejev et al. 2011). Fol-

lowing this logic, the developed method contains four

components: (i) a high-resolution circulation model, (ii) a

scheme for tracking of Lagrangian trajectories of pollution

parcels, (iii) a technique for the calculation of quantities

characterizing the potential of different sea areas to sup-

ply adverse impacts, and (iv) decision-making routines

(Andrejev et al. 2011).

MODELING ENVIRONMENT

Four different circulation models were used to simulate

currents in the Baltic Sea and its sub-basins. The DMI/BSH

cmod (Kleine 1994; Dick et al. 2001) was applied to the

southern Baltic Sea (Lu et al. 2012). Its further develop-

ment, the HIROMB-BOOS community (HBM) model, was

used to calculate oil drift and fate in the Gulf of Finland

(Murawski and Woge Nielsen 2013). A barotropic two-

dimensional (2D) surge model NOAMOD with a hori-

zontal resolution of 6 nautical miles and covering a large

part of the north-eastern Atlantic provided boundary con-

ditions for a 3D DMI/BSH cmod or HBM North Sea–

Baltic Sea model, with a horizontal resolution of 3 nautical

miles (about 5.5 km; Fig. 1). A finer model of the transition

area between these seas (incl. the south-western Baltic Sea)

with a horizontal resolution of 0.5 nautical miles was two-

way nested into the above 3-mile model (Lu et al. 2012;
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Murawski and Woge Nielsen 2013). Another finer 0.5-mile

model was applied for the Gulf of Finland (Murawski and

Woge Nielsen 2013). These models were forced using the

Denmark’s Climate Centre reanalysis (Christensen et al.

2006) for the North Atlantic, North Sea, and Baltic Sea

with a spatial and temporal resolution of 0.11� and 1 h,

respectively.

Velocity fields calculated using the Rossby Centre

Ocean circulation model [RCO, Swedish Meteorological

and Hydrological Institute (SMHI)] for the Baltic Sea

(Meier 2001, 2007; Meier et al. 2003) were used for the

evaluation of the drift of Eulerian tracers in the entire

Baltic Sea and for the calculation of Lagrangian trajectories

in the northern Baltic Proper (Viikmäe et al. 2011) and in

the Gulf of Finland (Soomere et al. 2010, 2011a, b). The

horizontal resolution of this model (about 2 nautical miles)

is usually sufficient for eddy-resolving runs in the Baltic

Proper (Lehmann 1995) but is barely eddy-permitting in

the Gulf of Finland (Alenius et al. 2003).

The OAAS model (Andrejev et al. 2004a, b, 2010) was

used to simulate the currents in the Gulf of Finland in three

horizontal resolutions (2, 1, and 0.5 nautical miles) with

otherwise identical setup and vertical resolution. The

boundary information at the entrance to the gulf was

extracted from the output of the RCO model. The RCO and

OAAS models were forced with identical meteorological

data from a regionalisation of the ERA-40 reanalysis over

Europe during 1961–2007 (Samuelsson et al. 2011).

Alternatively, currents for the entire Baltic Sea,

including Skagerrak and the Kattegat, were reconstructed

using the Kiel Baltic Sea Ice Ocean model (BSIOM,

Lehmann et al. 2002, 2012; Hinrichsen et al. 2009) with a

horizontal resolution of 2.5 km. This model was forced by

atmospheric conditions from the SMHI meteorological

database (Lars Meuller, pers. comm.) which covers the

whole Baltic basin on a regular grid of 1� 9 1� with a

temporal increment of 3 h.

TRAJECTORY SIMULATIONS AND DRIFTER

EXPERIMENTS

The test elements to evaluate the risk of a hit by pollution

released at a particular sea point were numerically simu-

lated Lagrangian trajectories of water or pollution parcels.

For most of the research presented below their trajectories

were not truly Lagrangian: they were locked in the

uppermost layer and exerted only horizontal current-driven

advection. This approach evidently does not replicate the

fate of oil spills that are also affected by other met-ocean

drivers, chemical processes, buoyancy effects, Stokes drift,

etc. (Fingas 2011; Murawski and Woge Nielsen 2013). It is

applicable for persistent substances dissolved in the thin

uppermost layer (e.g., different contaminants or radioactive

materials) in strongly stratified environments. The benefit

from the quasi-Lagrangian models of this type is the

Fig. 1 Scheme of three-level nested domains for the modeling of oil drift and fate in the Gulf of Finland using NOAMOD and HBM models

(Murawski and Woge Nielsen 2013). An analogous scheme, with no nesting for the Gulf of Finland, was used in Lu et al. (2012). The RCO and

BSIOM models were applied to the entire interior of the Baltic Sea. The OAAS model was only applied to the Gulf of Finland. �Springer

International Publishing. Reprinted with kind permission of Springer Science ? Business Media
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possibility to evaluate the contribution of current-driven

propagation into the environmental risks. The drift and fate

of oil spills under the joint impact of currents and wind

were addressed using an advanced oil spill model in the

Gulf of Finland (Murawski and Woge Nielsen 2013).

Different models used various ways to construct the

Lagrangian trajectories of water and pollution parcels.

‘‘Off-line’’ simulation (in which the circulation modeling

was separated from the trajectory calculation) was used to

build the trajectories from the output of the RCO model

for the Gulf of Finland (Soomere et al. 2011c, d) and the

northern Baltic Proper (Viikmäe et al. 2011), from the

data of the DMI/BSH cmod model for the south-western

Baltic Sea (Lu et al. 2012) and in the research performed

using the BSIOM model (Lehmann et al. 2014). In the

first three occasions, the trajectories were calculated with

the non-spreading version of the TRACMASS code (Döös

1995; Blanke and Raynaud 1997; de Vries and Döös

2001). It semi-analytically reconstructs the motion of the

particles in a fully invertible manner but ignores so-called

subgrid-scale turbulence. The drawback of the non-

spreading scheme is that the initially close-modeled tra-

jectories have a tendency to stay much closer than real

drifters (Jönsson et al. 2004; Engqvist et al. 2006; Döös

and Engqvist 2007; Döös et al. 2011; Kjellsson and Döös

2012). An implicit consequence is that the trajectories

cannot reach the coast and the nearshore had to be defined

as a 3 grid cells wide zone near the coast (Viikmäe et al.

2010; Lu et al. 2012). Inclusion of subgrid-scale pro-

cesses, e.g., by means of adding stochastic elements to

single trajectories (Andrejev et al. 2010; Döös et al. 2013),

may lead to more adequate spreading of trajectories.

However, the added distortions do not mirror the real fluid

flow and therefore may substantially impact the appear-

ance of a single trajectory.

The calculations with Eulerian tracers (Höglund and

Meier 2012) and simulations with the OAAS model (An-

drejev et al. 2010, 2011) used various ‘‘on-line’’ ways of

the evaluation of the motion of selected parcels. They were

carried out simultaneously with the integration of the cir-

culation model and replicated the impact of subgrid

turbulence.

The ability of simulations to reproduce the marine

dynamics has been verified using in situ experiments

(Soomere et al. 2011e; Kjellsson and Döös 2012). The

adequacy of the basic statistical properties of simulated

Lagrangian trajectories was estimated using twelve World

Ocean Circulation Experiment (WOCE) style subsurface

(following currents at depths of 12–18 m) drifters (Kjells-

son and Döös 2012). The relative and absolute dispersion

as well as the mean displacement of simulated drifters were

all significantly lower than those of the real drifters

(Fig. 2). Most likely, too weak model currents and the too

coarse model grid together reduced the spatial variability of

the motions.

This shortage can be partially removed by adding sub-

grid turbulence into the trajectory calculation (Kjellsson

and Döös 2012). A comparison of the patterns of coastal

hits in the Gulf of Finland based on the results of the RCO

model and several spreading mechanisms revealed that

although single trajectories were at times radically modi-

fied, the most frequent locations of coastal hits were

insensitive with respect to particular spreading mechanisms

(Viikmäe et al. 2013). The presence of spreading increased

the number of coastal hits by about 1–2 % in single years

and reduced the average time it takes for particles to reach

the coast by less than 3 %. This feature indicates that the

RCO model still adequately represents the most influential

patterns of current-driven advection in this area even if

several statistical properties of flow velocities are not

exactly replicated.

(b)

(a)

Fig. 2 Mean pair separation (a) and displacement (b) of drifters.

Solid black lines all segments of real drifters in 2010–2011; solid

colored lines single segments simulated using the RCO model for

each year 1962–2004; dashed black lines the 10th and 90th

percentiles for segments of trajectories of real drifters (Kjellsson

and Döös 2012)
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AREAS OF REDUCED RISK AND FAIRWAY

DESIGN

The existence and location of areas of reduced risk in terms

of coastal pollution is established using statistical analysis

of Lagrangian trajectories of single pollution parcels. The

key outputs are the distributions of the probability for the

parcels released in different sea areas to reach the near-

shore regions and the time it takes (particle age or resi-

dence time at sea). The ‘‘climatological’’ maps of these

quantities (Figs. 3, 4) mirror to some extent the distance

from the coast but exhibit also obvious anisotropic features

and demonstrate that a clearly larger environmental pres-

sure is exerted on the eastern Baltic Sea coast (Fig. 3).

They have usually low gradients in offshore areas and

much higher gradients starting from a certain distance from

the coast (Soomere et al. 2011c).

In several occasions such ‘‘climatological’’ distributions

are almost meaningless. For the south-western Baltic Sea,

two radically different regimes for the current-driven

propagation of adverse impacts were identified: one for the

typical inflow and another for outflow conditions (Lu et al.

2012). The maps reflecting the drift and fate of oil spills in

the Gulf of Finland indicate the presence of two seasonal

patterns of drift (Fig. 4). Somewhat counter-intuitively, one

of these is valid for seasons hosting completely different

forcing patterns—the windy winter season and calm sum-

mer season. The other one characterizes spring and autumn

(Murawski and Woge Nielsen 2013).

The dependence of these maps on the model resolution

was studied using the OAAS model with horizontal reso-

lutions of 0.5, 1, and 2 nautical miles and with otherwise

identical setup, forcing, and boundary conditions (Andrejev

et al. 2011). The values of the mean probability of coastal

hits and particle age for single realizations, their temporal

behavior and cumulative values are highly correlated

(r & 0.98) for all resolutions. The standard deviations for

the pointwise values of their distributions are almost the

same for different resolutions. Also, the overall appearance

of these maps, the location of the isolines and the areas of

low probability and high particle age largely coincide for

all resolutions.

A natural solution for a potentially dangerous activity,

such as a drilling rig or a ship in distress, is a minimum of

the relevant probability map or a maximum on the map of

particle age or residence time of oil at sea. Such decisions

have a relatively low uncertainty when these maps contain

steep gradients in the area of interest (e.g., in the central

narrow part of the Gulf of Finland where the optimum is

sharp and clearly defined) whereas there is much freedom

in domains where these gradients are small (Soomere et al.

2011c).

There is a variety of different approaches to define the

optimum fairway from such maps. The ‘‘fair way’’ dividing

the risks equally between the opposite coasts is a natural

(albeit local) and in many cases politically correct solution

(Soomere et al. 2010; Lehmann et al. 2014). An elementary

solution for elongated sea areas is to roughly follow the

minima for the probabilities or the maxima for the particle

age (Soomere et al. 2011c; Viikmäe et al. 2011). A similar

result is achieved using a variation of the method of the

smallest descent (Andrejev et al. 2010, 2011) that relies on

the sequence of local decisions (Fig. 5). Although based on

very simple applications, the resulting fairways may pro-

vide substantial environmental benefit. For example, in the

Gulf of Finland their use may lead to a decrease by about

40 % in the probability of coastal pollution or almost

double the typical residence time of the pollution at sea

(Soomere et al. 2011b). The gain is smaller in the western

Baltic Sea (10–30 % in terms of the probability of coastal

hits within 10 days or an increase by about 1–2 days of the

time it takes for the hit to occur, Lu et al. 2012) and open

Baltic Sea (Höglund and Meier 2012; Lehmann et al.

2014).

The resulting fairways are almost insensitive with

respect to the choice of the underlying measure of risk

(Fig. 5). They are relatively sensitive with respect to the

resolution of the circulation model, mainly because of a

different representation of the coastline and islands at

Fig. 3 Average probability to reach the coast within 10 days from the

instant of release calculated using the BSIOM model for 2002–2010.

The gray dots indicate the frequently used shipping route from Oslo

to Saint Petersburg. Environmentally safer fairways through the

Sound and Great Belts are indicated with white and black dots,

respectively (Lehmann et al. 2014)
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different resolutions (Andrejev et al. 2011). The sensitivity

of the optimum fairway with respect to uncertainties in the

underlying distributions can be implicitly estimated from

the width of the area in which the relevant measure varies

to some extent compared with its maximum or minimum.

The width of such corridors is determined by the gradients

of these measures and may vary substantially (more than

ten times for sailing lines along the Gulf of Finland, Soo-

mere et al. 2011c).

The optimum sailing lines described above contain

several meanders and are generally not suitable for ship

traffic as course changes are typically fuel-consuming.

Their excessive length is an additional source of environ-

mental pressure through increased travel time and exhaust

emissions. Murawski and Woge Nielsen (2013) incorpo-

rated into the fairway design the aggregate cost function

accounting for both the residence time of oil at sea and the

probability of oil landing (Fig. 4). They used a variation of

an iterative Monte Carlo technique to alternatively opti-

mize the path integral of the resulting cost function along

possible sailing lines and the length of these lines. The

resulting optimum, albeit relative, provides an acceptable

option from the shipping industry viewpoint. Given the

extensive seasonal variation of the counterparts of the cost

function (Fig. 4), it is natural that the seasonally optimized

sailing lines visit completely different sea areas (Fig. 6).

The optimum fairways in transitional seasons (spring and

autumn, called the SA design) are located in the southern

or central part of the gulf whereas for summer- and win-

tertime (called the SW design) they are in the immediate

vicinity of the Finnish archipelago. The SA design per-

forms a little better than the SW design in terms of the

normalized path integral of the cost function (Murawski

and Woge Nielsen 2013). The somewhat longer SA route

has much lower levels of environmental risks. Its perfor-

mance is, however, rather low outside the spring and

Fig. 4 Spatial distribution of the average oil residence time at sea calculated using three-level nested NOAMOD and HBM models (Fig. 1) and

the oil drift and fate model of DMI for the Gulf of Finland. Solid lines indicate streamlines of average 10 m winds U10, vectors reflect drift

currents (sum of ocean currents and wind-induced oil drift calculated as 0.035U10) for summer and winter months (SW) and transitional seasons

(spring–autumn, SA) in 1992–1994 (Murawski and Woge Nielsen 2013). �Springer International Publishing. Reprinted with kind permission of

Springer Science ? Business Media
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autumn seasons. The use of SW design in spring and

autumn or vice versa leads to a considerable increase (by

about 20–30 %) in the above-discussed aggregate measure.

A combined design (not shown) performs reasonably well

for all seasons. The choice between the proposed designs is

ultimately the task of decision-makers as our estimates

include an arbitrarily defined value of the vulnerable areas.

CONCLUDING REMARKS

A new method has been developed to determine how

various maritime activities can be made environmentally

safer. The technique relies on the quantification of the

marine space in terms of the potential of different sea areas

to serve as a starting point of pollution that later impacts

some vulnerable regions via current- and wind-driven

transport. By placing maritime activities in the safest areas,

the consequences of potential accidents can be minimized

before they occur. This is an important element of science-

based maritime spatial planning of the Baltic Sea toward

sustainable use of the ecosystem and mitigation of the

impact of controversial human activities.

Along with the development of algorithms for the

identification of environmentally safer fairways, one of the

challenges is the use of vast amounts of modeled infor-

mation for solving dynamical problems in marine design.

The use of Lagrangian trajectories as a sort of test elements

of motion has made it possible to identify a number of

features of transport of various adverse impacts by ocean

currents which can be inferred neither from the analysis of

classical (Eulerian) velocities nor from even massive

measurements. An equally important development is the

mapping of long-term behavior and dispersion properties of

surface and subsurface currents in the Baltic Sea with the

use of autonomous drifters.

The use of the optimized ship routes has a potential to

substantially decrease the probability of coastal pollution

or almost double the typical time it takes for the pollution

to reach the coast. These estimates are, however, based on

purely modeled features of ocean dynamics and Lagrang-

ian transport of various adverse impacts in the surface layer

and should be interpreted with some care. Also, the entire

approach is based on certain statistical features of current-

and wind-induced transport and the results therefore have a

probabilistic nature. As the involved models, albeit they

represent the state-of-the-art of the Baltic Sea modeling,

have still many shortages, the derived estimates should be

considered as preliminary ones. In particular, the inability

of common models to replicate the statistics of velocity

fields vividly calls for major improvements of the Baltic

Sea circulation models.

It is thus likely that implementation of higher resolution

models and improvements in model physics and quality of

forcing data would lead to certain corrections of the pre-

sented estimates. First of all, more detailed resolving of eddy

dynamics and at least a part of sub-mesoscale effects have a

potential for considerable improvements. The demonstrated

Fig. 5 Optimum fairways from the Baltic Proper to Vyborg according to the spatial distributions of the probability for coastal hits (solid lines)

and of the particle age (dashed lines) calculated using the OAAS model and ‘‘on-line’’ trajectory code of Andrejev et al. (2010) at resolutions of 2

(red and black), 1 (green and cyan), and 0.5 miles (yellow and white). The depth scale to the right of the map is given in meters (Andrejev et al.

2011)
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insensitivity of many results with respect to the underlying

measures, model resolution, and on the particular spreading

mechanism suggests that already the existing results have a

clear value for environmental management of the Baltic Sea

and at least qualitatively mirror the essence of pollution

transport in this basin.

Although the results obtained so far only serve as a

starting point of the relevant knowledge and compe-

tence, we still believe that the derived information is of

vital importance for institutions responsible for envi-

ronmental protection and maritime spatial planning. It is

directly usable in the decision-making process in a crisis

situation, e.g., about different search-and-rescue issues.

The underlying studies have used several different

models and have focused on various sub-basins of the

Baltic Sea. Although the obtained estimates for envi-

ronmentally safer fairways qualitatively match each

other, future research should focus on a comprehensive

intercomparison of the results. Such kind of information

is needed for an assessment of the practical relevance of

results and for the definition of future research together

with more detailed knowledge about short-term vari-

ability of the underlying measures and associated ship

routes. The subsequent challenges are linking the

derived knowledge with policy toward the creation of the

necessary societal, economical, legal, and political

framework for the real implementation of the presented

results.

Fig. 6 Optimum sailing lines in summer and winter (SW) and in spring–autumn (SA) seasons to Vyborg, Saint Petersburg, Ust-Luga, and

Sillamäe constructed based on the aggregate cost function in which the residence time of oil at sea and the probability of coastal hit (both

calculated using three-level nested NOAMOD and HBM models (Fig. 1) and the oil drift and fate model of DMI and presented in Fig. 4) have

weights 2/3 and 1/3, respectively (Murawski and Woge Nielsen 2013). �Springer International Publishing. Reprinted with kind permission of

Springer Science ? Business Media
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GLOSSARY

Fairway: here the pathway of a ship on sea; also a navi-

gable part of a water body.

The Eulerian framework, mostly used in circulation

modelling, is a way of treating the properties of ocean

currents for each fixed location in space as time passes.

The Lagrangian specification is a way of looking at

fluid motion where the observer follows an individual

water particle as it moves through space and time.

Subgrid(-scale) motions or processes are not resolved

directly in numerical simulations due to the finite resolu-

tion of spatial grid and usually are parameterized using

certain assumptions.

Mesoscale motions in the Baltic Sea have typical sizes

from a few km to a few tens of km.
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2010. The use of high-resolution bathymetry for circulation

modelling in the Gulf of Finland. Estonian Journal of Engi-

neering 16: 187–210.

Andrejev, O., T. Soomere, A. Sokolov, and K. Myrberg. 2011. The

role of spatial resolution of a three-dimensional hydrodynamic

model for marine transport risk assessment. Oceanologia 53 (1-

TI): 309–334.

Bagulayan, A., J.N. Bartlett-Roa, A.L. Carter, B.G. Inman, E.M.

Keen, E.C. Orenstein, N.V. Patin, K.N.S. Sato, E.C. Sibert, A.E.

Simonis, A.M. van Cise, and P.J.S. Franks. 2012. Journey to the

center of the gyre: The fate of the Tohoku tsunami debris field.

Oceanography 25: 200–207.

Blanke, B., and S. Raynaud. 1997. Kinematics of the Pacific Equatorial

Undercurrent: A Eulerian and Lagrangian approach from GCM

results. Journal of Physical Oceanography 27: 1038–1053.

Camilli, R., C.M. Reddy, D.R. Yoerger, B.A.S. van Mooy, M.V.

Jakuba, J.C. Kinsey, C.P. McIntyre, S.P. Sylva, and J.V.

Maloney. 2010. Tracking hydrocarbon plume transport and

biodegradation at Deepwater Horizon. Science 330: 201–204.

Christensen, O.B., M. Drews, J.H. Christensen, K. Dethloff, K.

Ketelsen, I. Hebestadt, and A. Rinke. 2006. The HIRHAM

regional climate model. Version 5. DMI Technical Report No.

06–17, 22 pp. Retrieved December 08, 2013, from http://www.

dmi.dk/fileadmin/Rapporter/TR/tr06-17.pdf.
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Modelling environmentally friendly fairways using Lagrangian

trajectories: A case study for the Gulf of Finland, the Baltic Sea.

Ocean Dynamics 61: 1669–1680.

Soomere, T., N. Delpeche, B. Viikmäe, E. Quak, H.E.M. Meier, and
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