

Upper ocean mixing observations during TACE: Mixing processes in the equatorial Atlantic vs. Pacific

Marcus Dengler

Helmholtz Centre for Ocean Research Kiel

In cooperation with: Rebecca Hummels, Peter Brandt, Tim Fischer and Gerd Krahmann (all GEOMAR)

Motivation: Microstructure observations prior to TACE

Equatorial Pacific

- Microstructure measurements from the upper thermocline in the late 70's and 80's revealed deep-cycle turbulence (Gregg et al., 1985, Moum and Caldwell, 1985)
- Numerous measurement programs since the late 70's

(Peters et al, 1995)

Equatorial Atlantic

- 8 microstructure profiles sampled in 1976 indicated enhanced mixing above the EUC core (Crawford and Osborn, 1979)
- Le Noroit cruise by WHOI in late autumn 1994 to the eastern flank of the Mid-Atlantic Ridge (Romache Fracture Zone)

Ship-board microstructure measurements (2005-2011)

- repetitive microstructure sections from 11 cruises during different seasons
- individual stations with at least 3 profiles (>2000 profiles)

Autonomous microstructure measurements

 MicroRider/glider package deployed at 10°W and 23°W

EGEE 4

Nuroit

M80/1

15°W

L'Atalant

 glider were missioned to circle a PIRATA buoy

15°E

Time series of turbulent kinetic energy dissipation from a MicroRider/glider package

PIRATA Ext'n

10°W

Vertical shear of horizontal current and turbulent kinetic energy dissipation rates

 elevated dissipation rates coincide with elevated shear variance

10°W

Horizontal currents observed during the 2011 MicroRider/Glider mission

TPIRATA Ext'n

10°W

 Strong tidal currents (baroclinic) with amplitude of ~8 cm s⁻¹

Vertical shear of horizontal current and turbulent kinetic energy dissipation rates

June

July

10°W

EUC shear and stratification at different longitudes

- reduced EUC and SEC velocities and thus shear levels in the east
- upper ocean stratifications elevated in the east
- less upper thermocline mixing in the eastern equatorial Atlantic.

Tropical Instability Waves and mixing

 meridional shear from e.g. TIW's frequently contributes to shear instability and thus enhances mixing

10°N

5°N

5°S

Turbulent dissipation rate time series from the equatorial Atlantic and Pacific

GEOMAR

Deep cycle turbulence in the Pacific (140°W)

- Smyth et al.,
 (2013) propose
 local shear
 instability
 mechanism
 triggered by
 descending
 shear layer
- Pacific diurnal differences in dissipation rates one order of magnitude

Deep cycle turbulent in the Atlantic (10°W)

- data are in agreement with local shear instability triggered by descending shear layer when daytime stratification weakens
- however, Atlantic deep cycle turbulence is less pronounced than in the Pacific (perhaps due to baroclinic tides)

GEOMAR

The role of mixing in the 4.5-year climate cycle

GEOMAR

The role of mixing in the 4.5-year climate cycle

Conclusions

- Geographic upper ocean mixing variability is set by background shear and stratification. Less mixing in the eastern equatorial Atlantic
- Dominant mixing processes in the equatorial Atlantic are mostly similar to what is known from the equatorial Pacific
- Atlantic deep cycle turbulence is reduced by a factor of 3 compared to the Pacific
- Thermocline mixing contributes to interannual SST variability within the 4.5 year climate cycle

Seasonal Variabilty of Mixing Parameters

At the equator
 (10°W) elevated
 dissipation rates
 from June to
 November resulting
 in a significant heat
 flux below the MLD

