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ABSTRACT

In his comment, G. B€urger criticizes the conclusion that inflation of trends by quantile mapping is an

adverse effect. He assumes that the argument would be ‘‘based on the belief that long-term trends and along

with them future climate signals are to be large scale.’’ His line of argument reverts to the so-called inflated

regression. Here it is shown, by referring to previous critiques of inflation and standard literature in sta-

tistical modeling as well as weather forecasting, that inflation is built upon a wrong understanding of ex-

plained versus unexplained variability and prediction versus simulation. It is argued that a sound regression-

based downscaling can in principle introduce systematic local variability in long-term trends, but inflation

systematically deteriorates the representation of trends. Furthermore, it is demonstrated that inflation by

construction deteriorates weather forecasts and is not able to correctly simulate small-scale spatiotemporal

structure.

In a recent contribution, I identified shortcomings of

quantile mapping and other deterministic bias correc-

tion approaches that are designed to correct—in addi-

tion to the mean—the variability of a numerical model

simulation (Maraun 2013): if applied to downscale pro-

cesses with high spatial variability to smaller scales, these

approaches overestimate the spatial extent of events in

the extreme tails and incorrectly modify trends. The un-

derlying reason is that these correction approaches do not

produce random small-scale variability that is not ex-

plained by the grid box simulated value. Instead, the

simulated gridbox variability is inflated to match the total

small-scale variability. As such, quantile mapping and

related approaches—if used for downscaling—are similar

to the method of inflation, a concept that has been known

to be flawed for a long time (Glahn and Allen 1966; von

Storch 1999). For the simulation of local time series, von

Storch (1999) and Maraun (2013) propose ‘‘randomiza-

tion’’ instead; that is, to add stochastic noise.

In his comment, B€urger (2014) mainly raises two points.

First, he disagrees with my conclusions about trends:

they would imply that local trends were representa-

tive of large-scale trends. He also states that inflation

would not affect trends. Second, he refers back to the

inflation discussion in perfect prognosis (‘‘prog’’)

statistical downscaling, criticizes the concept of ran-

domization, and advocates the use of inflation. In the

following, I will refute B€urger’s criticism and dem-

onstrate that the reasoning underlying the concept of

inflation is based on an imprecise understanding of

explained versus unexplained variability and pre-

diction versus simulation. The criticism can most

precisely be addressed referring to regression models.

Therefore, I will begin with briefly reviewing the con-

cept of regression models and the proposed method

of inflated regression. Thereafter, I will address the

points B€urger (2014) raised about regression in gen-

eral and finally focus on his arguments about trends in

particular.

Assume the following linear relationship between a

predictor xi and a predictand Yi (Davison 2003):

Yi 5 axi 1 b1hi . (1)

The xi are treated as known values, the hi;N (0, s2) are

treated as a sequence of normally distributed random

variables, and thus Yi is also a normally distributed
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random variable with variance s2 and time-varying

mean mi 5 axi 1 b. A key idea of regression models is

that the predictor does not fully determine the pre-

dictand; that is, the variance of the yi is larger than the

variance of the axi. The role of the hi is then to represent

all the variance not explained by the predictor as ran-

dom noise. Given N pairs of observations (xi, yi), i 5
1, . . . , N, of predictor and predictand, the unknown

parameters a, b, and s2 can be estimated by maximum

likelihood.1 In climate science the yi could, for example,

represent observed local-scale temperature observa-

tions. In a typical perfect prognosis context, the xi could

represent the large-scale air mass and atmospheric cir-

culation, and the a and b would model the influence

of the predictors on local temperature, accounting for

systematic local effects such as orography. The hi would

represent mesoscale and small-scale random variability

not determined by the predictors. In a typical model

output statistics context, the xi could represent simu-

lated gridbox precipitation in a high-resolution re-

analysis. Then a and b correct systematic biases between

the simulated temperature and the observed tempera-

ture, and hi models the small-scale variability that is not

explained by the gridbox scale predictor. This model can

easily be generalized to include nonlinear predictor in-

fluences (Davison 2003), non-Gaussian distributed pre-

dictands (Dobson 2001), or predictor influences not only

on the mean but also on, for example, the variance (Yee

and Wild 1996).

Figure 1 illustrates the regression model. For the sake

of simplicity it is assumed that b 5 0. The parameters

a and s2 are estimated from simulated data pairs (xi, yi),

marked as gray dots. The best-fit model is depicted

by the thick blue line. Remaining residuals, distributed

according to hi, are shown as thin blue lines. By con-

struction, the sum of squared residuals is minimized by

the least squares estimator. The blue shading indicates

the range of variability hi not explained by axi.

Now two cases have to be distinguished, serving

completely different purposes. The first case is pre-

diction. Given a predictor value x, one can of course not

precisely predict a future observation y because of the

noise hi. Instead one can only predict the mean ax and

the distribution around the mean for a given x. Thus,

predictions based on regression models are actually

probabilistic predictions: the blue line does not predict

a particular value but rather the mean of the distribution,

according to which a value should be observed. The blue

shading represents possible prediction intervals for cho-

sen levels of confidence (Wilks 2006; Davison 2003).

The second case is simulation. If the regression model

is used to produce time series of Yi given a series xi, for

example, to drive a climate impact model, one is of

course interested neither in the time series of expected

values axi nor in a predicted probability distribution. In

most cases, one rather aims to simulate time series with

the same statistical properties as Yi; that is, a time series

additionally containing the unexplained variability rep-

resented by hi. In this context, it has been claimed that

statistical downscaling is ‘‘smoothing’’ or ‘‘underpre-

dicting’’ local-scale variability (e.g., Wilby et al. 2004).

This is of course only the case if the predictedmean axi is

taken as complete representation of the process at the

local scale. However, the regression contains informa-

tion on the unexplained local-scale variability as well,

given by the distribution ofhi. Consequently, to simulate

the total variability, one has to add realizations of hi to

the prediction axi; that is, by drawing random numbers.

This standard procedure is known as simulation in sta-

tistics (e.g., Davison 2003). In climate science, it has

been coined randomization (von Storch 1999) and is

done by every weather generator2 (e.g., Maraun et al.

2010).

FIG. 1. Regression and inflation. Gray dots represent data pairs;

the thick blue line represents the best-fit model; the thick red line

represents inflated regression; the thin lines represent residuals;

and the blue shading represents normal distribution according to

the unexplained variance.

1 That is, least squares in the case of normally distributed noise.

2Although weather generators in general additionally use Markov

processes to account for autocorrelated hi.
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In the following, I will show that inflation is appro-

priate for neither prediction nor simulation. In the early

years of numerical weather forecasting, a tendency of

regression methods to ‘‘not forecasting the extremes as

often as they are observed’’ (Klein et al. 1959) had been

noted, basically because erroneously only the predicted

mean ax had been considered for the forecast but not the

distribution around it. As a ‘‘correction’’ inflation has

been suggested [e.g., Klein et al. 1959; see also B€urger

(2014), and references therein]. The slope of the re-

gression a is increased to ainf 5 sd(yi)/sd(axi)a, where

sd() refers to standard deviation, such that the variance

of the prediction ainfxi (the red points) matches the total

variance. This inflated regression is depicted in Fig. 1 by

the red line. The inflated model obviously strongly di-

verges from the best-fit line (the more, the less variance

is explained by the predictors). The fact that inflation

thus increases the root-mean-square error between

prediction and observations has been highlighted al-

ready byGlahn andAllen (1966) and later by von Storch

(1999). In the language of modern forecast verification

(Wilks 2006; Jolliffe and Stephenson 2003), an inflated

forecast has a low accuracy (as the root-mean-square

error is unnecessarily high) and also a low reliability:

the conditional bias E[Y j aX 5 yf] 2 yf is larger than

that of the uninflated regression (which is zero in the

idealized case of a perfectly linear relationship); that

is, the expected value of the observations for a given

forecast yf is different from the forecast by (ainf/a2 1)

yf. The miscalibration also affects the overall skill of

the forecast. To illustrate the effect of inflation on

the prediction of threshold excesses, 100 000 realiza-

tions of the discussed example with prescribed cor-

relations between X and Y of 0.5, 0.7, and 0.9

(representing predictors of different quality) have

been simulated.

The accuracy of probabilistic predictions of threshold

excesses can be quantified by the Brier score (Wilks

2006; Jolliffe and Stephenson 2003; Friederichs and

Thorarinsdottir 2012): 1/N�(pi 2 oi)
2, where pi de-

notes the probability of exceedance and oi is one for

an exceedance and zero otherwise. In case of deter-

ministic forecasts, pi is either one or zero. Brier skill

scores have been estimated with the climatology as

reference forecast (i.e., a stationary normal distribution

fitted to the observations). Results for two thresholds,

the median and the 95th percentile of the observations

yi, are presented in Table 1. It can be seen that, for

predicting excesses of the median, inflation is by con-

struction (because the regressions intersect) as good

as the uninflated regression, interpreted as a deter-

ministic forecast. However, for the 95th percentile

(and all other quantiles as well; not shown), inflated

regression actually has less skill of correctly predicting

excesses (because too many excesses are predicted

where none occurred). Also by construction, the re-

duction in skill is of course lowest for high correlations

where inflation is weak. For strong inflation (low

correlations), the skill of inflation is even worse than

that of a climatological forecast (negative values). For

low correlations, also the uninflated predicted mean

becomes worse than the climatological forecast. In

every case, however, the correct interpretation of

the regression model as a probabilistic forecast yields

consistently best results. In other words, inflation hedges

(Wilks 2006; Jolliffe and Stephenson 2003) the optimal

deterministic forecast (the predicted mean) to improve

the hit rate. Proper scores (e.g., the Brier score; Jolliffe

and Stephenson 2003) identify that this ‘‘cheating’’

works only to the expense of consistently overpredicting

(underpredicting) high (low) values. Thus, ironically,

inflation yields worse forecasts (in terms of the major

aspects of forecast quality: accuracy, reliability, and

skill) for extremes; that is, the opposite of what it was

initially designed for.

Some authors have proposed to use inflation for sim-

ulating local-scale variability (e.g., Karl et al. 1990;

B€urger 2014, and references therein). A simulated time

series is a ‘‘surrogate’’ of missing (e.g., future) obser-

vations with, ideally, the same statistical properties as

the observations, conditional on the prediction ax. In the

following, I will show that inflation does not correctly

represent the desired statistical properties but misrep-

resents the temporal and spatial structure as well as

trends. The true correlation between predictor and

predictand is given analytically by [a2/(a2 1 s2)]1/2 , 1

for s . 0. For a correct representation of the predictand,

the correlation between predictor and simulation thus

has to be deliberately decreased to this value by adding

random variability. For the inflated time series, how-

ever, the correlation between prediction and simulation

is by construction identical to one. Thus, the temporal

TABLE 1. Brier skill score for forecasts of the median and 95th

percentile of Y, for different strengths of the correlation (corr)

between predictor and predictand. Predictions are based on the

predicted mean of the regression (PM), inflated regression (inf),

and the correct probabilistic interpretation of the regression

(prob). As a reference forecast, the climatology has been used: that

is, a stationary normal distribution.

Median 95th percentile

Corr PM Inf Prob PM Inf Prob

0.9 0.43 0.43 0.60 0.31 0.25 0.49

0.7 20.02 20.02 0.32 20.01 20.28 0.20

0.5 20.32 20.32 0.16 20.05 20.61 0.07
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structure of the inflated time series is wrong: it is a purely

rescaled version of the predictor structure but does

not represent any unexplained local variability. The

same argument holds also in space: if the same pre-

dictor is chosen to downscale to station series yA and

yB, the resulting simulations will be perfectly corre-

lated, which is wrong for any sensible meteorological

setting. Finally, inflation misrepresents trends. As-

sume that the predictor xi in Eq. (1) includes a linear

trend that well describes a trend in the yi, plus a sta-

tionary component: xi 5 axt1 xstat,i. The correct trend

in yi is then modeled as aax. Inflation by the factor ainf
increases the predicted (or simulated) trend in yi to

ainfaax, which is obviously wrong exactly by the in-

flation factor.

The key argument of B€urger (2014) relates to trends

and applies to both quantile mapping and inflated

regression. He argues that my criticism of inflated

trends in quantile mapping goes along with the idea

‘‘that long-term temporal features go hand in hand

with large-scale spatial features.’’ This reasoning is

flawed. B€urger (2014) correctly states that trends can

be spatially diverse at subgrid scale: for example, be-

cause of complex interactions with the topography.3

Now one can think of two cases: First, trends might

vary locally but might still be fully determined by the

large-scale predictor. Here, the local trend variation

would be captured by a locally varying regression

parameter a in Eq. (1). In this case, randomization

could in principle correctly represent local trends.

Inflation (and quantile mapping), however, would

create all the problems discussed above: in particular,

it would artificially increase the correctly predicted

trend. This is the situation I discussed in my original

manuscript. Second, trends might vary locally but be-

cause of local interactions, which cannot be predicted

from known large-scale predictors. Here, the trend

predicted by any downscaling model would be wrong.

Also, in this case, inflation would not improve the pre-

diction. It would again create the problems discussed

above, including the inflation of the already wrong

trend.

For the example given by B€urger (2014) that slight

changes in the general flow over complex terrain might

strongly influence the local precipitation, this means

the following: if one has established a relationship be-

tween variations in the general flow and local orography

and can correctly project the general flow into the

future, one might be able to capture future precipitation

changes (as long as potential extrapolations are physi-

cally sound). Systematic local variations in trends can in

principle be accounted for by the parameters of the

regression model. If the relationship is too complex to

be statistically modeled, if no predictor representing

the general flow is available (e.g., because the dy-

namical model does not correctly simulate it), or if the

trend is of subscale nature and not related to large-

scale predictors, one will not be able to correctly

capture future changes in precipitation. In any case,

inflation will deteriorate the prediction of trends. It

does not alter trends according to any physical reason

but simply inflates them artificially according to the

unexplained variance.

To summarize, inflated regression does not improve

predictions. The apparent improvement of an increased

hit rate for extreme events is a mere hedging effect that

deteriorates major aspects of forecast quality. Further-

more, inflated regression is not suitable for simulating

local-scale time series. It rather introduces systematic

biases conditional on the predictor and does not cor-

rectly represent either the observed temporal and spa-

tial structure or the trends. The statement that refuting

the inflation effect on trends goes along with the as-

sumption that local-scale trends should be the same as

large-scale trends is wrong. In short, inflation is not a

feasible approach. In the statistical sciences, it is not an

accepted concept and there has also not been any con-

troversy about it.
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