Institute of Software Technology
University of Stuttgart

Universititsstrafse 38
D-70569 Stuttgart

Development Project

Online Performance Problem
Detection, Diagnosis, and
Visualization with Kieker

T. Dullmann, A. Eberlein, C. Endres, M. Fetzer, M.
Fischer, C. Gregorian, K. Képes, Y. Noller, D. Olp, T.
Rudolph, A. Scherer, M. Scholz

Course of Study:

Examiner:

Supervisor:

Commenced:

Completed:

CR-Classification:

Software Engineering

Prof. Dr. Lars Grunske

Dipl.-Inform. André van Hoorn

2013/11/18
2014/03/31

H.3.4,Hb5.2

Abstract

With increasingly large systems Online Performance Monitoring becomes more and more
a necessity to find, predict, and recover from failures. The Kieker monitoring tool enables
the monitoring and analysis of applications. It allows to gather live data about the systems
utilization like RAM-load, Swap-load, CPU-load as well as the latency of executed operations
and their qualified name. @PADx provides means to detect anomalous behaviour and
RanCorr allows the correlation of anomalies to identifiy the root cause of an anomaly. This
project implements the RanCorr approach and extends the ®@PAD implementation with
new forecast algorithms. Also the Kieker-WebGUI is extended to visualize the architecture,
discovered by RanCorr, and other metrics by using dynamic diagrams. Additionally, an
automated test framework is introduced that enables data generation and evaluation of the
implemented forecasting and anomaly detection approach.

Introduction

1.1 Motivation and Goals

1.2

Foundations and Technologies

2.1 OPAD and RanCorr

22 CoCoME
2.3 Kieker and Kieker WebGUI

24 APM Tools
2.5 Failure Diagnosis
2.6 Design of Performance Experiments

2.7 Trashing JPetStore
2.8 Tooling
Requirements

3.1 Frontend Requirements

3.2 Backend
3.3 Imterface

Document Structure

Project Management

4.1
4.2
4.3
4.4

Architecture and Concepts

5.1
5.2
5.3
5.4

Tooling
Scrum

Overview
Frontend
Backend
Raw Data, Data Aggregation and Metrics

Current state

6.1
6.2

Kieker Backend
Kieker Frontend

Contents

15

.............................. 15
..................... 18
..................... 21

23

..................... 23
..................... 29
..................... 34
..................... 37

39

..................... 39
..................... 39
..................... 41

.................... 46

Contents

7 Implementation

7.1 Backend
7.2 Frontend

7.3 Transfer Database
7.4 Transfer Database Data Generator and Benchmarking Tool

8 Experiments

and Validation

8.1 Experiments and validation of the Kiekeriki Backend
8.2 Benchmarks of the Database Connections

8.3 Usability

9 Future Work
9.1 Backend
9.2 Frontend

Bibliography

Study of the WebGUI conducted with APM-Experts

57
57
69
78
81

83
83
120
130

137
137
138

141

Chapter 1

Introduction

1.1 Motivation and Goals

Our motivation for this project lies within not only expanding the functionality of Kieker,
but also in the visualization of data. Huge amounts of data are of little use if they cannot
be seen and rapidly evaluated by a human. Therefore it is important to prepare our data
to allow ease of access and analysis for the GUI, as well as formatting said GUI to display
the most vital information in an easy to understand manner. As mentioned, we also wish
to expand the functionality of Kieker by implementing a new plugin to allow a better live
analysis of running systems that allows not only detecting errors, but also delivering accurate
data for solving issues.
e Goal 1: Expand Kieker Functionality

— Goal la: Extend ®PADx implementation by adding a Self-Tuning Algorithm.
While @PAD is functional, it lacks the ability to change its parameters at runtime,
an important step for implementing adaptability in any algorithm. It is necessary
to implement both the ability to allow the values to be changed as well as the
learning algorithms that control the variables containing those values.

— Goal 1b: Create Plugin using the RanCorr algorithm provided.

In order to further understanding of the data created by Kieker, RanCorr will
be implemented leading to a correlation between anomalies and the structures
in which those anomalies occur. The root cause analysis is a useful tool for
system analysis, cutting search times by pointing out culprits in case of errors or
slowdowns.

— Goal 1c: Validate both ®@PADx and RanCorr outputs. Simply implementing
self-tuning ®@PADx and RanCorr is not sufficient. In order to verify the changes it
is necessary to take measurements considering the actual accuracy of the changes
versus the results they delivered beforehand.

e Goal 2: Create Frontend to display gathered data in a useful manner

— Goal 2a: Get rid of the Pipes and Filter view to set up the monitoring and create
a simpler way for the specific purpose addressed in this project while keeping all
possibilities to configure the backend.

— Goal 2b: Show the architecture of the monitored system and offer the possibility
to examine the components of the system using a deep dive approach.

1. Introduction

— Goal 2c: Offer the possibility to create dynamically new diagrams. This will
replace the old cockpit view to show the data of the different metrics.

Christopher Gregorian and Martin Scholz

1.2 Document Structure

This document continues with Chapter 2 which presents the foundations gained in the
seminar talks. The Chapter 3 describes the requirements for frontend, backend and the
interface between them. Then the Chapter 4 shows how the project was organized and
the technical support. Section 4.3 provides the task distribution across the team members.
Afterwards Section 4.4 presents the different organizational roles which were defined in the
project. Then Chapter 5 shows the overall architecture designed in this project. Chapter 6
describes the current state before the project started. The Chapter 7 continues with the
description about the actual implementation work. Afterwards the Chapter 8 provides the
validation description and interpretation. Finally Chapter 9 shows the possible future work
which could be done in order to extend this project.

Yannic Noller

Chapter 2

Foundations and Technologies

2.1 OPAD and RanCorr

As described in chapter 1.1 this project aims to extend the @PAD approach among others
by implementing the idea of RanCorr. Therefore it’s necessary to understand the basics of
anomaly detection and especially the ideas of @PAD and RanCorr.

2.1.1 Online Performance Anomaly Detection (®PAD)

The ®PAD approach was introduced in the diploma thesis by Bielefeld [2012] and means
Online Performance Anomaly Detection. Frotscher [2013] extended the @PAD approach in
his master thesis and named it @PADx. In this document we still talk about the @PAD
approach, but mean the latest version. @PAD detects anomalies in performance data based
on discrete time series analysis. It’s divided in five steps like shown in Figure 2.1 suitable for
Kieker’s Pipes-and-Filter architecture.

Time Series Time Series Anomaly Score Anomaly Alerting

Extraction Forecasting Calculation Detection

Figure 2.1. Analysis steps of @PAD approach based on Bielefeld [2012] consisting of: (1) reading
of measurement data, (2) extraction of discrete time series, (3) forecasting of next observation based
on historical data, (4) calculation of anomaly score based on difference between observations and
foretold reference model, (5) detection of anomaly based on anomaly score threshold and (6) alerting
in case of an anomaly.

The first step Reader reads the input data of @PAD which are the raw measurements of a
performance metric like response time in continuous time series. The second step Time Series
Extraction converts the continuous time series in a discrete one by aggregating the data in
discrete time periods. For the aggregation a simple unweighted arithmetic mean function
could be used. The third step Time Series Forecasting calculates a forecasting value for the
next time period. @PAD supports multiple forecasting methods. The simplest one is called
Moving Average which calculates the unweighted arithmetic mean of a sliding time window
as forecasting value. More methods are ARIMA or Single Exponential Smoothing (SES). The

2. Foundations and Technologies

fourth step Anomaly Score Calculation uses the forecasting values of the previous step as
reference model in order to compare it with the actual observations. The difference value
is mapped to range between 0 and 1 and is called anomaly score. The fifth step Anomaly
Detection uses a predefined anomaly threshold to detect an anomaly: if the anomaly score
exceeds the threshold, the measured values will be considered as an anomaly. The last step
Alerting can be used to notify e.g. an administrator about the detected anomaly. ®@PAD
works fine for point anomalies and contextual anomalies, but for collective anomalies (see
Figure 2.2) the reference model contains to much mutated values and the system generates
false positive results. This can lead to frustrated users and bad user acceptance. Therefore
Frotscher [2013] introduced with ®@PADx a new forecasting method called Pattern Checking
which searches in case of collective anomalies a better reference model in the historical data.
However, the ®@PAD approach provides only the detection of anomalies and not a root cause
analysis of them. This needs a correlation of anomaly scores like described in the next

section.
point contextual collective
anomaly anomaly anomaly
AN M
10 +
5 .

5 10 15

Figure 2.2. Overview about the three anomaly types: point, contextual and collective anomalies
(based on Frotscher [2013]).

2.1.2 Anomaly Correlation: RanCorr

In order to localize the reason for an anomaly it’s possible to correlate the calculated anomaly
scores. This theory was investigated by Marwede et al. [2009] and the resulted approach is
called RanCorr. RanCorr uses the anomaly scores, which are calculated by another system
e.g. OPAD, and uses the calling dependencies between components to correlate the scores.
RanCorr defines four activities: (1) model building, (2) aggregation of anomaly scores, (3)
correlation to anomaly ratings and (4) visualization. The approach defines three algorithms:
trivial, simple and advanced. They differ in how they aggregate and correlate the anomaly
values (see Figure 2.3). The more complex the algorithm is, the more accurate are the results.

2.2. CoCoME

Trivial Simple Advanced

_ vl ¢ ' '

S

S unweighted unweighted unweighted

ﬂg’ arithmetic mean arithmetic mean power mean o

> -39

X l La

i

@D =

S 5

® unweighted distance and call freq. >

g arithmetic mean weighted power mean

o

o

<

S 1%

. —

;5;, unweighted unweighted unweighted @ é

> arithmetic mean arithmetic mean power mean @ %

< :

<

§ g

g unweighted unweighted unweighted 5 =

g arithmetic mean arithmetic mean power mean o Q

2 =

< [[[i

. . .

Figure 2.3. Aggregation and correlation steps of RanCorr shown for every algorithm (trivial,
simple and advanced) based on Marwede et al. [2009]. The first row shows the aggregation function
for the local anomaly scores of an operation. In case of the trivial algorithm this aggregated anomaly
score is already the anomaly ranking, but in case of the simple and the advanced algorithm there is
an additional correlation step between the dependencies of the considered operation. Afterwards the
anomaly ranking will be aggregated for all hierarchy levels.

Yannic Noller

2.2 CoCoME

In order to create real application data, we took several Common Component Modeling
Example (CoCoME) [Herold et al., 2008] implementations into consideration. It is a real
world application example used for many different purposes in research. CoCoME is a model
of a supermarket trading system that consists of several modules (e.g. enterprise, inventory,
store, cashdesk, bank) which interact with each other. CoCoME is modeled to be able to act
as a distributed system, which would be useful for testing purposes.

To evaluate whether a CoCoME implementation could be useful for our testing and data
generation purposes we obtained several implementations. We tried to use the CoCoME CoC
[b] implementation to serve as data generation application which provided multiple Graphical
User Interfaces (GUIs) to control the example (e.g. inventory lists, cashdesk process).

Unfortunately it was not possible to get the other implementations (CoCoME2 CoC [a],
SOFA Shop Sof) to run. Due to tool or package requirements and quite small manuals we
could not start them properly. This might also be caused by the specific implementation of
the applications as different research groups use CoCoME for different purposes:

2. Foundations and Technologies

« monitoring and reverse engineering tools (e.g. Kieker Jung et al. [2013])
o Cloud Computing/Service Oriented Architecture (SOA) Jung et al. [2013]; Hasselbring
et al. [2013]

e Model Driven Engineering

e ctc.

The main problem was that the documentation of how to set the implementations up
and how to use them was quite small. Therefor sometimes it was not clear how to use
the applications correctly. Due to the relatively high effort that would have to be made
to understand the workflows within those implementations we decided not to use CoCoME
implementations for test data generation.

Thomas Diillmann

2.3 Kieker and Kieker WebGUI

2.3.1 Kieker

Kieker is an open source framework that is designed to monitor performance of large software
application during run-time. The Kieker project is developed by by the University of Kiel.
The source code of Kicker is provided by the Kieker homepage [Kie]. The framework can
be used to show performance problems with no need to have a deeper understanding of the
source code. The Kieker framework, shown in the picture below, is divided into a monitoring
and an analysis part. With the monitoring part Kieker is able to collect different data during
run-time like the response time of methods, calling dependencies or CPU data. These data
can be analyzed with the analysis part of the framework. Because of the pipes and filter
structure, Kieker is very flexible. That advantage can be used within the analysis part.
Filters can be combined to get an analysis designed for different use cases. This architecture
provides the possibility to create plugins to enhance Kieker.

®PADx is an important part of the Kiekeriki project, which is based on Kieker. So
Kieker is the main dependency of Kiekeriki as well. For a deeper understanding of Kieker it
is recommended to read the Kieker User Guide [Project, 2013].

Tobias Rudolph

2.3.2 WebGUI

The Kieker WebGUI is a web page which is able to visualize the results of Kieker and to
configure the analysis of Kieker. It is able to manage different projects. Each of them has its
own analysis view, which can manage the analysis of this project. The configuration of the
analysis, can be done in the analysis editor. This visualizes the pipes and filter architecture
of Kieker as a graph. Readers and filters are represented as nodes, the connections between
them by edges. The nodes can have input- and output ports which are represented by arrows

2.4. APM Tools

Kieker.Monitoring Kieker.Analysis
Monitoring =] Kieker.
Probe TraceAnalysis

Monitoring S5
Controller

Monitoring =]
Writer

Analysis 5]
Controller

Monitoring %
Reader

Monitoring Log/Stream

Figure 2.4. Overview of the architecture of Kieker

on the nodes. It is possible to create new edges between the readers and filters. In this way,
new analyses can be created.

Another view is the cockpit view. In this page, several metrics are shown using different
kinds of diagrams. The diagrams use the data gathered by the analysis. The cockpit view can
be configured, too. It is possible to place different diagrams on the cockpit view, depending
on which metrics are gathered.

The Kieker WebGUT uses PrimeFaces for displaying the content. It runs best on a jetty
webserver. The WebGUI can be downloaded on the kieker homepage as executable binary
file or as eclipse/netbeans project. Several example projects are included. See chapter X for
the architecture of the WebGUI.

2.4 APM Tools

Application Performance Management(also kown as Application Performance Monitoring)
crosses a wide range of IT disciplines in order to detect, prioritize and resolve performance
and availability problems that affect business applications (Shields [2010]). A low overhead
production and diagnosis capabilities are essential. Gartner defined the five dimensions end
user experience, runtime application architecture, business transactions, deep dive component
monitoring and analysis/reporting for evaluating the APM tool market. He revealed that in
2013, the best commercial vendor was AppDynamics. Some features of this tool which can
be relevant to our project are described in the following. First, the deep dive approach into
components is helpful to get from a high level view into a detailed view (e.g. on method level).
This enables multiple troubleshooting mechanisms. Next, end user monitoring which analyzes

2. Foundations and Technologies

how end users perceive the actual performance is an approach which gains importance over
the last years. However, it will not be implemented in this project. Defining health rules for
servers or business transactions gives a good overall view of the monitored system. Therefore,
similar features could be relevant for our project. Then, alert and respond features after an
anomaly or an exception occurred are important in production mode, e.g. for sending an
e-Mail to responsible persons. To limit the tasks for this project, this will not be part of
the product backlog. Finally, business transactions are fundamental for APM tools as they
reveal important information about the business impact of user requests. Detecting business
transactions and showing them shall be part of the upcoming work. Showing live data in the
GUTI is feauture, all important APM tools are capable of.

Anton Scherer

2.5 Failure Diagnosis

Modern computer systems are getting larger and more complex over time due to frequent
updates, repairs or through new components getting integrated and other components getting
separated. To prevent system failures or limit the potential damage caused by system failures
we try to predict if failures are about to happen in the near future and induce necessary
steps to prevent them or recover fast. This section is a brief summary of Salfner et al. [2010].

2.5.1 Proactive Fault Management

The term "Proactive Fault Management” describes a technique to cope with occuring failures.
The main motivation is, that a system is made aware of upcoming failures and can then
induce actions to prevent failures from happening or to prepare measures for a fast recovery.
Proactive Fault Management consists of four basic steps:

1. Online Failure Prediction tries to identify situations that have a high probability that
a failure is about to happen. The result of Online Failure Prediction can be binary decision
or another measure. E.g. "There is a 70% probability that a failure will occure within the
next 5 minutes”.

2. Diagnosis is the task of finding out, what exactly is about to happen. It may be relevant
to know where the failure is located and what exactly the failure is. E.g. "That server
will go offline because its database is flooded”.

3. Action Scheduling tries to determine what actions have to be executed to best resolve
the current situation. The decision is based on the outcome of the Online Failure Prediction
as well as the Diagnosis. Relevant factors in the decision process are the cost of action,
confidence in the prediction, and effectiveness and complexity of the actions. E.g. a high
cost action will only be executed when failure occurence is almost certain.

4. Execution of Actions is the last step in Proactive Fault Management.

2.6. Design of Performance Experiments

2.5.2 Definitions

e A failure is 7an event that occurs when the delivered service deviates from the correct
service”. A failure can be observed by any party that uses a system. There is no failure
as long as the output is as specified.

e An error occurs when the current system state differs from the correct system state.
An error may lead to a system failure.

e A fault is the cause of an error. Faults can be existing dormant in a system. Their
activation causes an incorrect system state.

o Errors can be further classified in undetected and detected errors. Undetected errors
become detected errors when an incorrect system state is identified.

o Undetected or detected errors may not only be the cause of failures but also of symptoms.
A symptom is an out-of-norm behaviour of system parameters caused by errors.

2.5.3 Online Prediction

Online Prediction is the task of predicting the potential of failure occurrence for a time in
the future (lead time) based on the current state of the system. The system state is assesed
through monitoring within a window of certain length. Any prediction is only valid for a
certain amount of time (prediction period).

Increasing the prediction period results in increased probability that a failure is predicted
correctly. But if the increased prediction period is too long, the information becomes irrelevant
due to its inaccuracy.

A leadtime that is larger than the systems reaction time to avoid a failure, is not very sensible.
Therefore a minimal warning time is introduced. If the lead time is shorter than the minimal
warning time, there is not sufficient time for the system to react to a upcoming failure.

Markus Fischer

2.6 Design of Performance Experiments

2.7 Trashing JPetStore

While Kieker currently collects several metrics (including but not limited to CPU usage,
Memory and Latency), we are concentrating on the Latency of individual function calls. Data
gathered via this metric is analyzed by®PADx and RanCorr implementations for anomalies,
which is then forwarded to the GUI.

Both our Front- and Back-end will allow automatic testing of their features. In the case
of the Back-end, this will include Input Generation, Input Manipulation, Anomaly Insertion
and automated evaluation of the results delivered. By creating automated testing tools, it is
possible to support rapid development not only by our team, but by future users of our work.

2. Foundations and Technologies

In this section we give an introduction on JPetStore and some applications of Apache
JMeter Plans. JPetStore was originally a release and demo by Sun, which was showcase of
Java BestPractices and JavaEE. With the time is became also one reference application for
JavaEE. With the time vendors like Mircosoft their own versions of the PetStore using the
.NET Framework. As the requirements of both reference applications were similar, some
performance comparisons between the Java and .NET worlds were made. Another version
of JPetStore is available, MyBatis released their own version of the store. MyBatis is a
framework that allows decoupling of database statements from the code, atop of this the
MyBatis version is build using the Spring Framework, a Model-View-Controller framework
with the same goal as Java EE and additionaly the Stripes framework is used for MVC Web
Applications.

The general access and usage of the MyBatis JPetStore is based on a HT'TP API consisting
out of multiple resources.

e The catalog is the main resource for the pets in the store

— http://localhost:8080/jpetstore/actions/Catalog.action
e The following queries for example allow requests for the pet information pages
— ?viewCategory=&categoryId=FISH, will show all pets that are fish in the store
— ?viewProduct=gproductId=FI-Fw-01, would should a undercategory of a kind of animals
— ?viewItem=gitemId=EST-4, itemld is used for a single entity of animal
¢ Adding and removing animals from the cart is done by the following URI’s:
— /jpetstore/actions/Cart.action?removeltemFromCart=&cartItem=EST-6
— /jpetstore/actions/Cart.action?addItemToCart=&workingIltemId=EST-26

To generate data with the JPetStore that represent anomalies Apache JMeter was used.
JMeter is a tool which can be used for performance and load testing purposes. For that,
JMeter allows to define threads in a Test Plan, where a single thread can have an assigned
plan of steps it should execute. The steps can include SOAP, HTTP and FTP requests or
database statements. The general concept was to verify whether JPetStore was suitable to
use for anomaly checking with the metrics that had to be implemented by the development
team. The results where enough for anomaly detection. With 100.000 requests on the same
resource of the store, anomalies with deviatons of 5.400 milliseconds where possible, which is
enough for testing purposes.

2.8 Tooling

Agile software development such as Scrum is facilitated by choosing and using the right tools.
These allow programmers and project managers to work independently and transparently by
utilizing a central maintenance.

The distribution of tasks to individual or multiple programmers for example, is done
via an issue tracking system (ITS). Using ITS, all participants in the project can both

10

http://localhost:8080/jpetstore/actions/Catalog.action
?viewCategory=&categoryId=FISH
?viewProduct=&productId=FI-FW-01
?viewItem=&itemId=EST-4
/jpetstore/actions/Cart.action?removeItemFromCart=&cartItem=EST-6
/jpetstore/actions/Cart.action?addItemToCart=&workingItemId=EST-26

2.8. Tooling

manage tasks and plan the project schedule. This includes the sprint planning, the scheduling
of milestones or the classification of the development process in developing steps. Likewise,
working time and effort are documented.

Encountered errors must be recorded when testing the software components or using
code parts of other software developers. In this way the risk of losing sight of the error in
complex software drastically decreases. This is simplified if a Bug tracking system (BTS)
is used, which ideally is closely linked to the ITS. The responsible developer may make
observations in the BTS or request additional details that are needed to reproduce the error.

Issue tracking systems and bug tracking systems primarily serve the organization of
the development project, but are not directly related to the program code. In order to
facilitate concurrent and efficient work of several developers, a software version control
system (VCS) can be used. A VCS manages the program code centrally and recognizes all
the innovations and changes that the developers made.

Andreas Eberlein

2.8.1 Version Control System

A version control system (VCS) is a system that tracks all changes to a file or folder which
is under version control. Developers can retrieve the current state of the software they
are working on and submit their local changes to the version control system. This allows
developers to work on the same project without bothering with the exchange of files and
changes. As version control keeps track of changes, it is possible to revert back to older
revisions of files and/or changes. To enable a proper collaboration between the developers,
the usage of a VCS is inevitable.

Types of version control systems:

There are several version control systems available, of which the developers could chose from.
Those systems can be divided into three main categories:

¢ Local version control systems: The easiest way of keeping several revisions of a
file is, to manually create copies of the files the developer is working on (see Figure 2.5).
All the changes and revisions are only available to the developer who created those
revisions. This allows the developer to revert back to any state he (explicitly) saved.

¢ Centralized version control systems: Centralized version control keeps revisions
(or changesets) at a central location (see Figure 2.6). Developers retrieve the current
version and later on submit their changes. This allows several developers to work on
the same files at the same time.

11

2. Foundations and Technologies

e Distributed version control systems: Distributed version control systems can be
considered a hybrid between local and centralized versioning systems (see Figure 2.7).
Developers retrieve the current state of the developed software, including all its revisions
and changesets. They can work on this repository just like with a local version control
system. Later on they can submit all their changsets (not only the updated files) to a
central repository, which allows other developers to retrieve all their changes and files.

Developer

Figure 2.5. Local version control system

Developt

Figure 2.6. Centralized version control system

Matthias Fetzer

12

2.8. Tooling

Developer

Developer Developer

Figure 2.7. Distributed version control system

2.8.2 Continuous Integration

The systems mentioned in 2.8 allow the developers to utilize continous integration (CI).
Figure 2.8 shows a general overview on how CI works. The main goal of CI is to continuously
test and integrate the software during its development. This helps to ensure that a working
version of the software always exists. The workflow with CI is as follows:

1. The developers upload their code to a (central) version control system.

2. The CI-Server retrieves the source code from the version control system, either periodically
or triggered.

3. The CI-Server initiates the building of the retrieved source code.
4. The CI-Server notifies the developers in case of build failures, or any other critical events.

5. If the build was successful, the CI-Server deploys the software onto a test environment.

Matthias Fetzer

13

2. Foundations and Technologies

. Deploy

Initiate

Check-out .

Notification

Check-in

Figure 2.8. Sample build-automation setup.

14

Chapter 3

Requirements

The requirements for that project were identified by interviews between the two product
owners and the supervisor. According to our development process (see chapter 4.2) we
created a Product Backlog to report the requirements as user stories. The Product Backlog is
divided in frontend, backend and interface between them. Frontend means the graphical user
interface of our system, the backend means the analysis plug-ins and extensions in Kieker
and the interface means the communication part between frontend and backend. Every user
story owns an ID which is also mentioned in our issue tracker Redmine (see chapter 4.1),
the priority and the number of the related Scrum Sprint (see chapter 4.2.1) in which the
requirements was fullfilled.

Yannic Noller

3.1 Frontend Requirements
Table 3.1. Overview of the frontend requirements

ID | Title Priority | Sprint
F1 | Architecture overview 1 1
F2 | Deep dive approach 1 2-4
F3 | Diagram View 1 2-4
F4 | Metrics Definition 2 3-4
F5 | Configurations 4 -
F6 | Displaying Business Transactions 5 -
F7 | Showing Anomaly Detection of RanCorr 2 3
F8 | Troubleshooting mechanisms 4 -
F9 | Displaying live and historical data 3 3-4

F1 Architecture overview

Description: After opening a project, the user sees a rough overview layout of the web
application according to the predefined GUI-Mockup (Figure 7.8). The page contains the
architecture view where the components of the monitored system are displayed. We are

15

Requirements

required to check whether the graph component of the existing Kieker WebGUT is suitible
for our purpose. The diagram view and the tab view which should not be implemented,
must be considered when designing the layout. A sub-requirement by the supervisor is to
use the existing Kieker WebGUI which must be reduced to a basic level.

Acceptance Criteria: A first runnable prototype of the web application should be the
outcome of this requirement. The architecture view should display its first components
on the highest level(servers).

F2 Deep dive approach

Description: Regarding the architecture graph which was built in F'1, this component
has to be extended, so the user can deep dive into multiple levels of the monitored
system. The displayed components are connected to each other, illustrating the caller-
callee-relationship. The connection to the transfer database has to be established for
displaying real data. On the highest level, the user is able to see hosts. After selecting
one specific host, his view is deep dived, so he sees all applications running on this host.
The further level sequence is package (multiple package-levels possible), class and finally
the operation-level. The user must have the opportunity to jump back to an arbitrary
previous level.

Acceptance Criteria: The user can deep dive into any level in the architecture graph.
The used icons for illustrating the components must be under a free license.

F3 Diagram View

Description: The user is able to add and delete diagrams dynamically. The user sees
diagrams displaying data of the transfer database. For adding a new diagram some
options must be available. At least, the following configurations must be selectable: The
metric to show, the diagram type and live or historical data. Furthermore, diagrams
must be changeable after they have been added to the view. Diagrams must be sticked to
one specific level, e.g. diagrams for host level. Moreover, after the user left this view, he
must see the diagrams he created when returning again. On every level default diagrams
must be shown.

Acceptance Criteria: An automatical acceptance test (e.g. WebDriver) verifies if the
displayed data are correct. Furthermore, all combinations of options must be checked for
correctness.

Fj Metrics Definition

16

Description: When using the diagram view, some default metrics are available for the
user. However, he must have the opportunity to define new metrics based on the raw
data provided by the database.

3.1. Frontend Requirements

Acceptance Criteria: If the user is able to define a new metric and he can choose this
metric to add a new diagram which is displayed correctly, this requirement is fulfilled.

F5 Configurations

Description: RanCorr and @PADx which run in the backend, should be configurable
at runtime. Therefore, a suitable configuration mask should be provided to the user.
Moreover, another configuration mask must be added to change options of the GUI (e.g.
styling information).

Acceptance Criteria: The connection to the database is established and changed
configurations on the GUI lead to correct adjustments on the backend.

F6 Displaying Business Transactions

Description: Business Transactions can be displayed in an extra view where a list of all
identified business transactions is displayed. The user is able to search for items in this
list. This view shows the transaction in a subset of the architecture view. The edges of
this graph are labelled with the average duration of each step of the transaction.

Acceptance Criteria: The business transaction view illustrates the correct components
which are involved in a business transaction.

F7 Showing Anomaly Detection of RanCorr

Description: In addition to the metric of RanCorr (Component Anomaly Score) which
can be illustrated by a diagram, this requirement demands to show the RanCorr results
directly in the architecture graph by colouring the background of a system component if
an anomaly was found within that component.

Acceptance Criteria: Components are coloured in an appropriate colour range when
the database provides a higher anomaly score for one specific component than its threshold.

F8 Troubleshooting mechanisms

Description: If the user detects an anomaly within a component, he must be able to
track the root cause of this anomaly, e.g. if an exception has caused the anomaly, this
specific stacktrace must be shown to the user. Otherwise at least the latency diagram for
the causing operation must be displayed.

Acceptance Criteria: The user is able to navigate to the anomaly origin of the shown
anomalies.

F9 Displaying live and historical data

17

3.

Requirements

Description: Regarding diagrams, the user has the possiblity to add a new diagram
illustrating data monitored in a past time range or displaying live data. In the second
case, the polling time of diagrams should be configurable. The architecture graph should
always work on live data. If a new component is instrumented by the backend and newly
written into the database, the newly incoming component must also be displayed in the
architecture graph.

Acceptance Criteria: The user is able to choose if live or historical data should be
displayed in diagrams which then show the right time buckets. The architecture graph is
dynamic including new components.

Anton Scherer

3.2 Backend

Table 3.2. Overview about the backend requirements

ID | Title Priority | Sprint
B1 Anomaly Correlation with RanCorr 1 1-3
B2 | ©®PAD self-tuning 2 1-4
B3 | ®PAD default configuration 2 -
B4 | Experiment framework 2 1-4
B5 | New OPAD forecasting algorithm based on ARIMA and | 3 -
GARCH

B6 | New @PAD forecasting algorithm based on decision trees 3 2-4
B7 Business transactions 4 -
B8 | Measure correlation 5 -
B9 | Software Aging 5 -
B10 | Exception Monitoring 4 -
B11 | Metrics providing 1 3-4
B12 | User detection 5 -

B1 Anomaly Correlation with RanCorr

Description: User can analyze the system with a root cause analysis employing archi-
tectural information on calling dependencies based on RanCorr (see chapter 2.1.2)

Acceptance Criteria: RanCorr is available as a Kieker plug-in. It’s possible to run
the RanCorr plug-in in the Kieker environment. The results of RanCorr are saved in
a database and are available for the frontend. The calculation and the aggregation of
ranking values is well tested.

B2 OPAD self-tuning

18

3.2. Backend

Description: @PAD shall be extended to be able to reconfigure itself.

Acceptance Criteria: It’s possible to run @PAD with an self-tuning algorithm, which
adjusts the configuration of @PAD at run-time. Therefore the filters of @PAD are now
configurable and there is an algorithm which automatically adjusts the configurations.
The execution of this new combination of filters is well tested.

B3 OPAD default configuration

Description: ®PAD shall be extended by a default configuration which can be used by
the user.

Acceptance Criteria: Default configuration for @PAD is identified, available and
retrievable (especially for frontend).

B/ Experiment framework

Description: The analysis steps by ®@PAD and RanCorr shall be embedded in an
experiment framework to set the input of test data, change configurations, check test
results and provide appropriate test metrics.

Acceptance Criteria: There is an automatic input creation, execution, and output
evaluation for ®©PAD and RanCorr. The experiment framework runs and works.

B5 New OPAD forecasting algorithm based on ARIMA and GARCH

Description: @PAD shall be extended with a new forecast algorithm based on the
integration of ARIMA und GARCH models.

Acceptance Criteria: New forecast algorithm is available as extension of @PAD. New
forecast algorithm can be used in @PAD and is well tested.

B6 New OPAD forecasting algorithm based on decision trees

Description: ©OPAD shall be extended with a new forecast approach which selects
suitable forecast algorithms for a given context based on a decision tree and direct
feedback cycles.

Acceptance Criteria: New forecast algorithm is available as extension of @PAD. New
forecast algorithm can be used in @PAD and is well tested.

B’7 Business transactions

Description: Business transactions can be identified by the sequence of called methods
(dynamic identification).

19

3. Requirements

Acceptance Criteria: Business Transaction Detection is available as Kieker plug-in.
It’s runnable, works and is well tested. Business Transactions are stored in a database
and is available for the frontend.

B8 Measure correlation

Description: The analysis shall be extended by a step which correlates multiple measures
(e.g. response times and workload).

Acceptance Criteria: The analysis is available as a Kieker plug-in. It’s runnable, works
and is well tested. Results are stored in a database and are available for the frontend.

B9 Software Aging
Description: The analysis shall be extended to detect software aging.

Acceptance Criteria: New anomaly detection algorithm is available as a Kieker plug-in.
It’s runnable, works and is well tested. Results are stored in a database and are available
for the frontend.

B10 Exception Monitoring
Description: User can monitor various exceptions which occur in the monitored system.

Acceptance Criteria: Exceptions are monitored and stored in a database to provide
them for the frontend. The Exception catching works and is well tested.

B11 Metrics providing

Description: User can access the monitored response times of operations, CPU load,
memory usage (memory + swap), architecture, anomaly scores, anomaly rankings.

Acceptance Criteria: Response times of operations are monitored and stored in a
database (accessible for the frontend). CPU load of all monitored machines are monitored
and stored in a database (accessible for the frontend). Memory usage (memory + swap)
of all monitored machines are monitored and stored in a database (accessible for the
frontend). The architectures of all monitored machines are monitored and stored in
a database (accessible for the frontend). Anomaly scores and anomaly rankings of all
monitored machines are monitored and stored in a database (accessible for the frontend).
The backend uses the provided exchange interface (see I1) to transmit the data. The
data exchange mechanism is documented and well tested.

B12 User detection

Description: It’s possible to detect which user is currently using the monitored system
and which operation calls are caused by that user.

20

3.3. Interface

Acceptance Criteria: Users are detected during run-time. It will be detected when a
new user accesses the system and what he is actually doing, i.e. which operation calls
he causes. It will also be detected when an user isn’t using the system anymore. A user
should be identified uniquely. The detection mechanism is documented and well tested.

Yannic Noller

3.3 Interface

Table 3.3. Overview about the interface requirements

ID | Title Priority | Sprint
11 Data Exchange between Frontend and Backend 1 1-4
12 Calling modalities from Frontend to Backend 2 3-4

I1 Data Exchange between Frontend and Backend

12

Description: It’s possible to exchange data between frontend and backend site of
Kiekeriki. Therefore two interfaces are necessary: the interface called by the backend to
push created data and get already existent information, and the interface called by the
frontend to get the created information by the backend. The data flow dependency is
only in one direction: from backend to frontend, e.g. anomaly score and anomaly ranking
values of monitored system.

Acceptance Criteria: It’s possible to store data from backend via the created interface.
It’s possible that the frontend can access the stored data from the backend via the created
interface. The data storage is persistent, so that no monitoring data will be lost. The
interfaces are well documented and expandable. The data exchange mechanism is full
automatic, so that the user doesn’t need to trigger something.

Calling modalities from Frontend to Backend

Description: The user can start and stop the monitoring, which is located in the backend
of Kiekeriki, via an graphical user interface provided by the frontend. The interface
should be expandable to build in the configuration of monitoring processes.

Acceptance Criteria: There is a graphical user interface provided by the frontend to
start and stop the monitoring of a system. The backend will be notified about the start
and stop triggers and starts and stops accordingly and correctly the monitoring. The
created interface to communicate between frontend and backend is well documented and
expandable in order to build in the configuration of backend.

Yannic Noller

21

Chapter 4

Project Management

4.1 Tooling

This section describes the underlying setup for the development project. The environment
follows the continuous integration techniques and their requirements described in Section 2.8.

4.1.1 Hardware Specification
The tooling setup has been realized on a EX60-Server [Het, a] sponsored by Hetzner Online
AG [Het, b].

The detailed hardware specifications are as follows:

e CPU: Intel(R) Core(TM) i7 CPU 920 (2.67GHz)

« RAM: 48 GB DDR3 RAM

« HDD: 2x 2TB (Western Digital WD2000FYY?Z)
(in software raidl)

e Bandwith: 1Gbit/s

Many thanks to Hetzner Online AG for the sponsorship.

Matthias Fetzer

4.1.2 Version Control System
Before the actual project started, the team had to chose between three, widely spread,

version control systems:

o Git [Git] - A distributed version control system (see Section 2.8.1).
o Mercurial [Mer] - A distributed version control system (see Section 2.8.1).
o Apache Subversion [Sub] - A centralized version control system (see Section 2.8.1).

The team chose to use Git, as it offers, unlike SVN, a distributed version control. Furthermore
the team chose Git over Mercurial, as several team members had previous experience/exper-

23

4. Project Management

tise with Git.

The specific setup:

The specific setup was implemented on the dedicated server (see 4.1.1), using redmine (see
4.1.3) to manage the repositories and the access control. Each sub-team obtained a dedicated
repository:

e Backend

e Documentation
o Experiments

e Frontend

Matthias Fetzer

4.1.3 Ticket-Management

In addition to the central administration of the source code, a stable and clear management
system is required for the organization of a large software project. For this purpose we could
choose between two open source products "Trac" [Tra] and "Redmine" [Red]. They plot
changes to the source code while providing the possibility to link revisions with the project
planning. The project plan is managed in this software and serves as a central information
platform for developers.

Both Trac and Redmine are extensible through plugins and can be adapted to the in-
dividual needs of the project stakeholders. Here, especially the longer established Trac is
characterized by a large variety of enhancements that were developed for it in the course of
time. But many extensions, particularly useful for SCRUM, are not under active development
and can only be used with older versions of Trac. As a result of the recently mentioned
information and our positive experiences, the stakeholders chose to use Redmine.

Redmine already provides useful modules in its original state and requires little con-
figuration effort before operational capability. To link Redmine to the continuous integration
system, provide advanced integration into development environments and enhance usability,
the following plugins were installed.

e Redmine Git Hosting Plugin v0.6.2

¢ Redmine Hudson plugin v2.1.2

¢ Redmine LaTeX MathJax v0.1.0

e Mylyn Connector plugin v2.8.2

e Redmine plugin views revisions plugin v0.0.1

24

4.1. Tooling

The most important plugin for the project tracking is the "Redmine Git hosting plugin'
(RGHP). The RGHP acts as an interface between Redmine and the Git version control system
(VCS), imports changes from the VCS and assigns them to the corresponding Redmine tickets.
A fixed rule (git-hook) ensures that only commits can be sent to the VCS, which include a
ticket number and thus are clearly assigned. Because of this limitation, the developers are
urged to commit progressions individually and thereby support clarity.

Task #231 # Update (3 Log time Watch Copy W Delete

replace extended forcasting filter (opadx) and devlop an new filter with wcf

Added by Tobias Rudolph 24 days ago. Updated 11 days ago.

Status: Closed Start date: 2014-03-04

Priority: High Due date:

Assignee: Tobias Rudolph % Done: 100%

Category: - Spent time: 26.00 hours

Target version: Backend Sprint 3

Subtasks Add

Related issues Add
History Associated revisions
Updated by Tobias Rudolph 11 days ago #3 Revision

Added by Andreas Eberlein 14 days ago

+ Status changed from In Progress to Closed

« % Done changed from 0 to 100 refs #231 delete SESRForecaster.java (replaced with SESForecaster.java

using R)
brick prevention in AnomalyDetectionFilter

Updated by Tobias Rudolph 22 days ago #2

+ Status changed from New to In Progress E;;:écgji?dﬁ; Eberlein 15 days ago
Updated by Tobias Rudolph 24 days ago #1 refs #23+ Debug-Config (broken)

+ Tracker changed from Feature to Task Revision d2463d60

Added by Tobias Rudolph 15 days ago

refs #231 delete SESRForecasterTest.java because we aren't using
SESRForecaster anymore

Figure 4.1. Redmine task example

As shown in Figure 4.1, backlog items defined by the organization staff were later divided
into smaller subtasks to be assigned to individual developers. The backlog item shown in
this case "Backlog #18: B6 Forecast Algorithm: Decision Tree" includes the task "replace
extended forcasting filter (opadx) and to devlop new filter with wef"'. The code changes
referenced by the RGHP can be observed and tracked in the "Associated revisions".

Based on this information, the developers can set the status of the task and thus provide
information to the public. For example the persons responsible for the test project orient
themselves on this information and can automatically receive e-mail when the state reaches
a certain level if desired. The ticket states, we use are as follows:

25

4. Project Management

e New

e In Progress
e Resolved
o Feedback
e Closed

¢ Rejected

o Estimated

Furthermore Redmine is used to exchange generic information and how-tos via the integrated
wiki and provide configuration files about the file and document module.

Andreas Eberlein

4.1.4 Build-Server

For the most other necessary tools and server services we had alternatives, which were
presented to the stakeholders for decision. But there was no free usable alternative for the
build server, who offered themselves for Java development. While with "Apache Continuum"
[Apa] there are also other continuous integration environments, none of the project participants
had positive experience with those in the context of reliability and usability. Therefore we
use "Jenkins' [Jen] with the following custom plugins to automate and test our software
projects.

e Ant Plugin

e Checkstyle Plug-in

o Copy Artifact Plugin

e FindBugs Plugin

¢ Git Client Plugin

¢ Git Plugin

e Jenkins Redmine plugin

e Maven Integration plugin

o PMD Plug-in

e Static Code Analysis Plug-ins

In Jenkins all parts of the project that are located in different Git repositories are created
and configured with the associated build scripts. Jenkins gets the current file content of each
repository and executes the build script (Section 4.1.5) that produces results periodically
to the defined periods. These results are reported in case of failure or unacceptable code
quality to the developer who caused them, as well as Redmine, so that the errors can be
quickly identified and resolved. The build can also be started manually from the Redmine-
or the Jenkins user interface at any time.

Andreas Eberlein

26

4.1. Tooling

4.1.5 Build Automation

Build automation enables developers to automate certain tasks in software development,
such as:

e Code compilation

o Package generation

o Unit testing

o Automated deployment
o Javadoc generation

e Code-Style checking

e etc.

There are several tools which can aid in achieving these tasks. During the project start the
team had to chose between the following build systems:

o Apache Ant[ant)

o Apache Buildr[bui]
o Gradle[gra]

o Apache Maven[mav]

The team chose Maven as their build-tool, as a few team members had previous experience
with Maven and because of its comfortable dependency management. Another advantage of
using Maven was the amount of know how that can be obtained by searching the internet,
compared to Buildr or Gradle. Besides the standard Java- and JUnit-plugins for Maven, we
additionally used the following plugins:

e Maven FindBugs Plugin[Mav, b]
e Maven CheckStyle Plugin[Mav, a]
¢ Maven PMD Plugin[Mav, ¢

Matthias Fetzer

4.1.6 Supplemental Tooling

Besides the Java-tooling, other technical-infrastructure tasks had to be set up and maintained.
This section gives an overview of the accomplished tasks, which were not covered in the
sections above. Figure 4.2 shows an overview of the complete infrastructure that we use for
the development project.

Andreas Eberlein

27

4. Project Management

Backup storage server
Webserver EXB0 17 {Hetzner)

i
Test%ak ‘r/

rEfnc
Redmine Jenkinz REerve
Vﬁj/ [”
%L) - :.[: Private server
priiee

Waorkstations MySaL Git '\ — —

=T others
Figure 4.2. Infrastructure
R-Server

A high-performance, free and cross-platform usable implementation of the respective algo-
rithms is needed for statistical and complex calculations. To keep them up to date and
be also independent of the Kiekeriki backend, the specialized software environment for
statistical computing "R" [RPr] is used at this point. The R software environment includes

forecast

A
.

A

Y

Rserve

Kiekeriki Backend

Figure 4.3. "R" execution environment

the server service "Rserve" version 3.0.3 as shown in Figure 4.3 which runs in the context of
the development project on the continuous integration server and the evaluation workstation.
The backend requires the R-package "forecast", which is used in version 5.3. Since this
is continually enhanced and as the upcoming release can contain further optimization to

28

4.2. Scrum

forecasters, especially this should be kept up to date.

The service "Rserve" has to be run on the same server on which the Kiekeriki backend is
running due to the fixed local destination address in @PAD.

Andreas Eberlein

SQL-Server

Due to the fact that the communication between the frondend and backend is realized
via a central SQL-Database, a MySQL-Server has been installed (and slightly tuned for
performance with the help of mysqltuner[mys].

Matthias Fetzer

Disaster Recovery

To ensure that the team can continue to work in case of a hardware or software failure, the
following (automated) backup mechanisms have been installed:

o Semi-hourly backups of the MySQL-Databases and its procedures via mysgldump.
e Daily file-based backups to the backup-storage located at the Hetzner-Datacenter.
o Daily file-based backups to a Backup-System, located at a private appartement.

The file-based backups have been done with rsnapshot!. This enables us to keep several
revisions of all changed files, even the ones which are not under git-version control. The
retention settings for rsnapshot are:

o 7 daily backups
o 4 weekly backups
e 12 monthly backups

Matthias Fetzer

4.2 Scrum

In order to produce good results in the short time of this project we decided to use an agile
software developing process. We chose scrum because it is a lightweight process structure
with few specifications and therefore customizable to our needs. The following subsections
describe how scrum is implemented in our development project.

Lhttp://www.rsnapshot.org/

29

4. Project Management

4.2.1 Basics

We have divided our project Team into two Teams with 5 persons (frontend) and 7 persons
(backend). The frontend Team is responsible for implementing the user interface as a web
application. The backend Team on the other hand implements the requested algorithms and
provides data for the visualization for the user interface.

Roles

There are three different roles in our approach of the Scrum process: Product Owner (separate
persons for frontend and backend), Team and Scrummaster. For more information about
these roles see Section 4.4.

Sprint

A Sprint is a fixed-length ,subproject” in which features of the project are developed. It is
repeated throughout the projects lifetime and combines the design and implementation phase.
In our case we chose Sprint lengths of either 7 or 14 days to have multiple Sprints during the
project. Both Teams can plan the number of Sprints as well as their corresponding length
independently. This allows both Teams to find Sprint lengths which suits their needs best.
Before the start of every Sprint there is the Sprint Planning Meeting in which the Product
Owner presents the Product Backlog Items with the highest priority. For further information
about the Sprint Planning Meeting see Section 4.2.1. At the end of one Sprint there is a
Sprint Review Meeting in which the Team demonstrates the developed features on a running
system to the Product Owner. The Product Owner can then express additional ideas and
alter Product Backlog Items to make sure that the system is developed exactly the way he
needs it. The next Sprint starts then again with a Sprint Planning Meeting until the project
is finished.

Artefacts

Multiple artefacts should be created according to the Scrum approach:

User Story A short (only a few sentences) and high-level description of a feature which
the customer needs. In our case we tried to create the User Stories according to the INVEST
approach. This approach states that each User Story should be: Independent, Negotiable,
Valuable, Estimable, Small and Testable.

Product Backlog A prioritized list of requirements (Backlog Items) which need to be
done in the course of the project. Usually the Backlog Items start as the User Stories and
are expanded by adding more detailed descriptions of the feature. The Product Backlog is
flexible, which means that the Product Owner can add, delete or modify items at any given
time.

30

4.2. Scrum

Sprint Backlog The Sprint Backlog contains the items which will be developed during the
current Sprint. After the Sprint Planning Meeting a list of Backlog Items are removed from
the Product Backlog and added to the Sprint Backlog. Compared to the Product Backlog the
Sprint Backlog is a lot smaller and, more importantly, not flexible. This means that items in
the Sprint Backlog can not be altered, removed or added. This leads to stable requirements
for the developers which in turn leads to better results because the developers do not need
to change features while they are being implemented.

Meetings

Sprint Planning Meeting The Sprint Planning Meeting is always at the beginning of a
Sprint. During this meeting the Product Owner presents the high priority items from the
Product Backlog that need to be implemented next. He also gives more detailed information
and answers questions from the Team about the items. For every relevant Backlog Item the
Team then uses an approach called Planning Poker to estimate how many days are necessary
to implement this specific item. During the Planning Poker the developers simultaneously
show cards with a number on according to their estimated time requirement for a Backlog
Item. The developers with highest and lowest estimation than discuss briefly (< 2 min) why
they chose their corresponding card. After that the whole Team estimates again. This is
repeated until every developer estimates the same amount (shows the same card). After all
relevant Backlog Items have been estimated the Team chooses a set of items which will be
implemented in the next Sprint and thereby move the items from the Product Backlog to the
Sprint Backlog. That, in turn, means that these items can not be modified any longer until
the Sprint is finished.

Sprint Review Meeting This meeting is always at the end of a Sprint. Usually the
Team demonstrates the created features in a live demo to the Product Owners. Because both
Product Owners are part of the Team this is not necessary in our project. Instead we discuss
how much of our goals have been reached and whether or not it is necessary to re-insert and
re-estimate specific items into the Sprint Backlog for the next Sprint.

Daily Scrum The Daily Scrum is a short (< 15min) Meeting that takes place every day
for both groups separately. Each developer states what he has done since the last meeting,
what he is about to do and (if necessary) what prevents him from doing so.

4.2.2 Process

The first step in our Scrum approach is the gathering of the requirements. Responsible for
this are the Product Ouwners. Their goal is to collect the required information and report them
as Backlog Ttems in our issue tracking system (ITS). These Backlog Items are short, high-level
descriptions of functionalities which the customer wants. They are further segmented
into more fine-grained sub-features and finally into tasks which can then be assigned to

31

4. Project Management

X

Scrum Master,

i Sprint > Sprint Review Meeting

Sprint Backlog

X

Product Owner

Product Backlog

Figure 4.4. Overview of the Scrum process

Team members. The segmentation and creation of tasks is done by the corresponding
Product Owners. This is not necessarily applicable for every Scrum-related project, but
in our case we have the advantage that the Product Owners are developers as well and
can therefore reckon which sub-features and tasks are necessary to implement the functionality.

After the initial set of sub-features and tasks are created the first Sprint starts. At the
beginning of the Sprint there is always a Sprint Planning Meeting where the Teams estimate
and choose the features which will be implemented. During the Sprint both Teams work on
the items in the Sprint Backlog and have separate Daily Scrums every day to keep every
Team member informed about the current progress. See also Figure 4.4

At the end of the Sprint there is the Sprint Review Meeting as discussed previously
(Section 4.2.1). Furthermore, every Sprint Backlog Item should be completed by that time.
Otherwise it needs to be transferred into the Sprint Backlog for the upcoming Sprint.

4.2.3 Sprint Overview

The following shows the Sprints as well as the tasks which were chosen by both Teams.

32

4.2. Scrum

Figure 4.5. Sprints for both Teams during the project.

Table 4.1. This table shows the backend tasks and when they were completed.

Backlog Item Task Sprint
RanCorr Implement RanCorr BS1
Provide Kieker Plug-In BS1
Database extension BS3
Self-Tuning Implement runtime configuration BS1
Develop composite filter plugin BS3
Default-Configuration Find and provide default values BS5
Experiment Framework Identify format of testdata BS1
Manually build testdata BS2
Automatically build testdata BS3

Build experiment framework around | BS4
®PAD and RanCorr

Automate evaluation of @ PAD and Ran- | BS4

Corr
Forecast Algorithm: Decision Tree | Implement WCF BS4
Replace existing forecaster BS4
Various Metric Monitoring Store CPU Load BS4
Store RAM Load BS4
Store Swap Load BS4
Store Latencies BS4

33

4. Project Management

Table 4.2. This table shows the frontend tasks and when they were completed.

Backlog Item Task Sprint
Architecture Overview Create clean Web-GUI version FS1
Create dashboard overview FS1
Display aggregated information FS1
Get data from DB FS1
GUTI sketch FS1
Deep dive approach Build model FS2
Connection to transfer DB FS4
Extend architecture view FS4
Diagram View Create diagrams dynamically FS2
Database connection for diagrams FS2
Create configuration dialogue FS3
Save diagram config in DB FS3
Metrics Definition Define default metrics FS3
Create settings tab content FS4
Showing Anomaly Detection (RanCorr) | Show results in architecture graph | FS3
Displaying live and historical data Display current data in architecture | FS3
graph
Implement polling mechanism for di- | FS4
agrams

Dominik Olp

4.3 Team

In the following is a mapping of the most important tasks during the project’s lifetime and
the corresponding team members who worked on it.

Table 4.3. Legend

worked mainly on this item

ole

worked partially on this item

didn’t work on this item

34

4.3. Team

Table 4.4. This table shows the tooling tasks and who worked on them.

e
§ &

F &
Task description A4 $
VCS (Git) [o
Ticket System (Redmine) e o
Build-Automation (Jenkins) | O | @
Build-Tool (Maven,) e o
SQL Server o
R Server ([
Backups O [
Support o o

35

4. Project Management

Table 4.5. This table shows the frontend tasks and who worked on them.

Task description

F1 (Arch. View) Clean Web-GUI version

F1 (Arch. View) Create dashboard overview

F1 (Arch. View) Show aggregated info

F1 (Arch. View) Get data from DB

F1 (Arch. View) GUI sketch

F2 (Deep Dive) Build model

F2 (Deep Dive) Connection to transfer DB

o0 Ce

F2 (Deep Dive) Extend architecture view

F3 (Diag. View) Dynamic diagrams

F3 (Diag. View) DB conn for diagrams

F3 (Diag. View) Create config dialogue

F3 (Diag. View) Save diagram config in DB

F4 (Metrics Def.) Define def. metrics

F4 (Metrics Def.) Create settings tab

F7 (RanCorr) Show results in arch. graph

F9 (Live & hist. data) Show data

F9 (Live & hist. data) Implement polling

Ezxperts Feedback

Benchmarks / Validation Frontend

Transfer Database (Backend/Frontend)

Layout & UI-Design

Cache

® O

Unit Tests

11 Data FExchange FE-BE

I2 Calling modalities FE-BE

36

4.4. Roles

Table 4.6. This table shows the backend tasks and who worked on them.

é;{?"
‘5”5 F o &
F&F ¢ s
T 9 ¢ 5 S
OV & 5 £ >
$ & & »@Q ¢ & o
Task description g/e Y”Q é C}Q A7 Qo &
B1 (RanCorr) Implementation O o O
B1 (RanCorr) Provide Kieker Plug-In o O
B1 (RanCorr) Database Extension O o o
B1 (RanCorr) Testing e &6 o o
B2 (©PAD) Runtime Configuration [] [
B2 (©PAD) Composite Filter Plug-In []
B2 (OPAD) Testing e o o o e o
B4 (Ezperiment) Identify Format of Testdata (]
B4 (Ezxperiment) Manually Build Testdata (]
B4 (Ezperiment) Automatically Build Testdata (]
BJ (Experiment) Framework RanCorr € ©@PAD [
B4 (Ezperiment) Fvaluation RanCorr & OPAD | @ e o o o
B6 (©PADz) Implement WCF { {
B6 (©PADz) Replace existing forecaster o o
B11 (Metrics) Store CPU Load o O
B11 (Metrics) Store RAM Load o O
B11 (Metrics) Store Swap Load o o
B11 (Metrics) Store Latencies L o O
11 Data Ezchange FE-BE @) o |10
12 Calling modalities FE-BE [

Dominik Olp

4.4 Roles

We defined multiple roles in our project. In the following there will be a list of roles as well
as their scope of work.

37

4. Project Management

Quality Assurance Engineer: Enforces quality assurance measures. Makes sure all
developers write test cases for their corresponding area. Verifies that all developers write
their code according to a common style guide.

Responsible: Markus Fischer

Document Representative: Creates and maintains document structures. Additionally,
takes care that all created documents are up to date. Makes sure documents get finished in
time.

Responsible: Martin Scholz

Product Owner(s): Act as the interface between the project Team and the supervisor/cus-
tomer. They are responsible for creating and maintaining a list of requirements. Furthermore,
they need to answer upcoming questions from the Team about requirements. Additionally
they decide the priority of requirements and therefore influence which requirements are dealt
with in any Sprint (for more information about Sprints and our development process see:
Section 4.2).

Responsible: Anton Scherer (Frontend), Yannic Noller (Backend)

Infrastructure Representative(s): Handle the infrastructure as well as the software
needed to realize the project. Especially following topics are under the supervision of the
infrastructure representatives:

¢ Set-up and maintenance of a versioning system

o Integrating issue tracker

e Set-up of a buildsystem

« Enable continuous integration & automated testing

e Set-up and maintenance of databases
Responsible: Andreas Eberlein, Matthias Fetzer

Scrummaster/Projectleader: Enforces a scrum-conform approach and acts as a mod-
erator in meetings to avoid long discussion and thereby ensures that time constraints are
met.

Responsible: Dominik Olp

Developer (aka Team): Implementation of the requirements specified by the Product
Ouwner.
Responsible: Everybody

Dominik Olp

38

Chapter 5

Architecture and Concepts

Due to the different foundations front- and backend are based on, the architecture chapter is
split in separate sections. To put them into context, we will give an overview first.
5.1 Overview

The following overview (Figure 5.1) shows the overall structure of the Kiekeriki implementa-
tion.

v.

Instrumented

el Monitoring_,, e A Monitoring_ Kiekeriki Analysis. Kiekeriki
Application

Data Data Backend Results’ Transfer Frontend
Database

Figure 5.1. Overview of the architecture of Kiekeriki

First of all the instrumented application generates monitoring data which is sent to a
message queue. From there it is read by the Kiekeriki backend to analyze the received data.
Afterwards the results of the analysis are written to the transfer database which is the main
interface between the Kieker front- and backend. The stored results then can be read by the
Kiekeriki frontend to display them in a web-based frontend. The inner structure of front-
and backend is explained in detail in the following sections.

Thomas Diillmann

5.2 Frontend

This chapter describes the architecture of the frontend of Kiekeriki and the connection
between the frontend and the backend via the connecting database. An outline of the
architecture of the backend can found in chapter 5.3.

The frontend mainly consists of four big parts (see: Figure 5.2):

39

5. Architecture and Concepts

e The logic of the backend

e The web interface (The GUI)

e The transfer database

e The internal database

The main focus of this chapter lies on the interconnection between these parts. To get
more information about the details of implementation of these parts, please see chapter 7.

Metrics Data

Architecture Data
Transfer Database Metrics Data

——Data from Backend

Architecture Data

Poll D,
Metrics Data
Architecture Data
New Metrics
New Diagrams

<€——=Current zoom level

Internal Database

Figure 5.2. Overview of the architecture of the Web GUI

5.2.1 Connection Between Logic and GUI

The connection between the logic an the GUI mainly consists of transfer data about the
architecture and the data of the metrics to the GUI. This connection also handles the
management of metrics and diagrams. The first important fact is, that the GUI is the active
part in this connection. It polls data from the logic, when it needs them. This applies to
every module of the GUI: The architecture view, the diagrams as well as the information
about exceptions at the bottom of the page. The GUI also has to send data back to the logic
- but only in a few cases: When the user creates or deletes a metric, when the user creates,
updates or deletes a diagram and when the zoom level of the architecture view changes - so
the logic always knows the state the GUT is in. This is important for the cache (see 7).

5.2.2 Connection to the Transfer Database

The transfer database contains all the information, the backend produces about the monitored
system. This includes the information about the architecture of the system and the data
for each metric. From the view of the frontend, is only possible to read data from the
database. The frontend can not write to the transfer database. There is one single class,
which accesses this database directly and offers an interface for the queries - the class

40

5.3. Backend

DatabasePlainConnection. To reduce the load of the database, there is a cache between all
the components, which needs data of the database and the DatabasePlainConnection. This
cache holds all information, which were already queried in its memory for a certain amount
of time. Components, which query data, get the data from the memory of the cache instead
of directly from the database. Only if the data is outdated (which is defined differently for
different types of data), the cache fetches the new data from database before returning them
to the component, which queries for it.

5.2.3 Connection to the Internal Database

For the storage of diagrams and the metrics, the internal database is used, which was already
used by Kieker to store user related data. Two new tables, one for the metrics and one for
the diagrams were added to fit our needs. Each diagram is related to one metric and each
metric is related to one user.

Martin Scholz

5.3 Backend

This section will explain the resulting architecture of the Kiekeriki backend in detail. As the
backend of Kiekeriki is based on the Kieker 1.8 analysis module, it uses the same pipes and
filter architecture.

The Kiekeriki backend consists of three main modules which are referred to as @PAD(x),
RanCorr and System Discovery. Their inner structure will be explained in the respective
subsections. Figure 5.3 shows the data flow between these modules.

The Kiekeriki backend reads the data from the monitored system from the message queue,
which is then processed by @PAD(x) and the architecture discovery module. ®PAD(x)
uses the data to detect anomalies using time series analysis with the help of the forecasting
database which holds the history of forecasted and actually measured data in the past. The
architecture discovery module uses the incoming data to reconstruct the structure of the
instrumented application. The results of the modules mentioned beforehand are forwarded
to the RanCorr module, which correlates the anomalies with the structure of the application
to give a more sophisticated estimation, where the source of the anomalies is. Finally the
results of each module are written to the transfer database.

5.3.1 OPAD(x) Module

In Figure 5.4 the structure of the ®@PAD(x) module is depicted. In addition to the already
established @PADx filter setup, which was developed by Frotscher [2013] (from Extrac-
tionFilter to SendAndStoreDetectionResultFilter) we added native Kieker filters and
developed filters ourselves to fit the @PADx functionality into the context of Kiekeriki. To

41

5. Architecture and Concepts

Instrumented Monitoring, Message-Queue Mornitori Kiekeriki i N Analysis
Application Data E Backend ul Transfer
Database

Kiekeriki
Frontend

- N
- N
7 N
7z N
7 N
- N
s / \ N
e ’ \ AN
’ \
e Y \ AN
e /7 N\ ~
4 \
/ \
4 \
7/
’ o
4 \
’
/
pa ©PAD(x)
’
’
/7
/
7/
Monitoring Data- orecasting RanCorr Analysis Results: L
/7 Database
/
/
/
/ n
’ Architecture
K~ Discovery
’
7/
/
’
/

/

Figure 5.3. Overview of the architecture of Kiekeriki backend

easily use the ®@PADx functionality, we developed a composite filter plugin that wraps the
original @PADx functionality in one single filter.
The following diagram (Figure 5.4) and list explains shortly what the filters that have
been added to the original ®@PADx approach do. As the @PADx has been explained in detail
by Frotscher [2013]. The corresponding filters are ommited in the listing.
e JMSReader
Reads the monitored data from a Java Message Service (JMS) message queue.

¢ RecordConverter
Converts the incoming OperationExecution information to an ®@PADx-compatible
format.

¢ StringBufferFilter

Buffers strings to optimize memory usage.

« OPADx Filters

¢ OpadOutputCompositionFilter
Creates output objects that contain all information that @PADx can provide from the
incoming data.

42

5.3. Backend

Kiekeriki Backend

Discovery

JMSReader RecordConverter ExtractionFilter

TimeSeriesPoint- ExtendedSelfTuning- UniteMeasurement- AnomalyScore-
AggregatorFilter ForecastingFilter PairFilter CalculationFilter

Forecasting
DEYELEN

AnomalyScore- SendAndStore- OpadOutput-
DetectionFilter DetectionResultFilter CompositionFilter

Figure 5.4. Overview of the architecture of the @PADx part within the Kiekeriki backend

¢ OpadDbWriter
Writes the composed data to a database.

5.3.2 System Discovery Module

The system discovery module shown in Figure 5.5 is a composition of filters, that mainly
already existed in Kieker. The purpose of this module is to use the incoming monitoring
data to reconstruct the method call traces and write them and additional system metrics to

43

5. Architecture and Concepts

the database.

Kiekeriki Backend

OPAD(x)

Forecasting RanCorr

Database

System
Discovery

ExecutionRecord- Trace-
TransformationFilter ReconstructionFilter

System-
Model-
Repository

Figure 5.5. Overview of the architecture of the system discovery part within the Kiekeriki backend

The ExecutionRecordTransformationFilter and the TraceReconstructionFilter in
combination with the SystemModelRepository already existed in Kieker. We added the
MetricsFilterPlugin which writes system metrics (e.g., CPU usage) received from the
module input and the discovered method call traces from the TraceReconstructionFilter
to the transfer database.

44

5.3. Backend

5.3.3 RanCorr Module

The RanCorr module shown in Figure 5.6 uses the anomaly scores from the ®@PAD(x) module
and the operation calls from the system discovery module to calculate RanCorr ranks.

Kiekeriki Backend
OPAD(x)

RanCorr

Sys;terﬁ
Discovery

RanCorrOutput-
DBWriter

Figure 5.6. Overview of the architecture of the RanCorr part within the Kiekeriki backend

The RanCorrFilter implements the RanCorr approach developed by Marwede et al.
[2009] and the RanCorrOutputDBWriter writes the results of the RanCorrFilter to the
transfer database.

Thomas Diillmann

45

5. Architecture and Concepts

5.4 Raw Data, Data Aggregation and Metrics

This section describes the principles of the raw data, aggregated data and the metrics stored
in the Transfer Database or aggregated of the data stored in the Transfer Database. The
Transfer Database is described in 7.3 A single reported data entity is called raw data. Raw
data which is aggregated by functions is called a metric. The Transfer Database is described
in the chapter 7.3.

5.4.1 The architecture and its components

The Kiekeriki Backend monitors and analyses components of an instrumented application,
service, host or any composition of these. The results of this analyses are belonging to a host,
application or any subcomponent of an application. Thus each analysis result is dedicated to
one of these components or components of a major system — the so-called architecture.

The ideal of the understanding of an architecture is an Java application running on a host.
The breakdown of such an architecture is an instrumented component: the host, application,
any structure of packages, a class and its implemented operation. As shown in Figure 5.7 all
these components of an architecture form a graph which describes which component can be
parent of which component.

Instrumented

Component
Operation < Class < Package < Application < Host

Figure 5.7. The architecture construct for the data and metrics

An instrumented system can be described as a tree and its nodes which are transitive
descendants of the hosting root — the architecture tree. Only the package is characterized
especially. A package can represent a whole component of an application as well as a logical
or real subcomponent which is a descendant of another component, depicted by the cycle
with itself in the architecture graph. Each instrumented component can be monitored on its
own characteristics (the raw data) or the characteristics of its descendants (the aggregated
data).

Christian Endres

46

5.4. Raw Data, Data Aggregation and Metrics

5.4.2 Raw Data

Each instrumented component owns its monitoring data. The monitoring data has to be
distinguished between the components own data and data which is aggregated of lower
levels of the architecture tree. For example an operation can be invoked which results in a
invocation latency. A package which represents a component can be also invoked but does
not contain a latency itself. The latency of a package or logical component is the summation
of the latencies of a trace of its operation descendants. The difference is that, for example,
an operation provides raw data (the latency) and the package owns aggregated data (the
aggregated latencies of the operation descendants) which is described in the next chapter.
The Figure 5.8 visualizes which instrumented component owns which raw data.

< Package <~ Application -~ Host

Operation < Class

— —~ T

Anomaly Score . e
Qalledca%{ (op AD)/ SessionID > CPU Utilization
N —

- \
S\gnature Stacktrace Memon
UtI|IZatI0y

- —
TracelD / SWAP

4/
Timestam| e \
P (BTransaction) \ Uﬁioy

/ .
& Latency Call Correlatlun
-~ L —

Anomaly Rank ™\

\\(RanCorr)

Figure 5.8. Instrumented compontents and fathered raw data

CalledCount

This raw data is in fact an aggregated metric which is very expensive to calculate. Thus as a
call between two components is written to the database, the called count is increased and
does not have to be calculated for each request of the Kiekeriki Frontend. The called count
is treated as raw data.

Signature

The signature of each component is stored for human readable visualization.

Timestamp

For each report of raw data the corresponding timestamp in milliseconds is stored aswell.

47

5. Architecture and Concepts

Latency

The time in milliseconds it took to execute the operation. Additional the ID of the caller of
the operation which was executed and the timestamp are stored.

OPAD anomaly score

The anomaly score of a operation calculated by @PAD.

Stacktraces (and other exceptions)

The content of a error which is thrown during an operation process. Additional the ID of
the caller of the operation which threw the stacktrace and the timestamp are stored.

Call correlation

The correlation between the calling and called component. Additional the total amount of
calls and timestamp are stored.

Anomaly rank

The rank of a component calculated by RanCorr.

Session (active users)

User session IDs which are active in a application. Additional the timestamp is stored.

CPU utilization

Utilization percentage of a single core of a host (value between 0 and 1). Additional the
timestamp are stored.

Memory utilization

Percental utilization of the Memory of a host (value between 0 and 1). Additional the
timestamp, the total memory size, the total free and total used memory size.

Swap utilization

Percental utilization of the swap of a host (value between 0 and 1). Additional the timestamp,
the total swap size, the total free and total used swap size.

Christian Endres

48

5.4. Raw Data, Data Aggregation and Metrics

5.4.3 Functions and Metrics

All functions process a set of raw data dependent on a bucket size. Each entity of raw data
consists of the value and the timestamp on which the value was reported. The bucket size
determines the intervals in which the set is divided. The function is processed on all entities
in a single bucket and the result represents the bucket.

Example:

There are seven entities of latencies with the first three reported in minute 0, the second
three in minute 1 and the last one in minute 2. The function average with a bucket size of
one minute would return the average latencies of the first three, the second three and the
latency of the last one in one bucket each minute.

The list of functions:

o Average

e Count

e Max

o Min

o Percentile

e Sum

The Table 5.1 visualizes which function on the x-axis can process raw data series on the

y-axis.
Table 5.1. Functions and Raw Data
Average | Count | Max | Min | Percentile | Sum
AnomalyRank (RanCorr) X X X X
AnomalyScore (©OPAD) X X X X
CalledCount X X X X X
CPU Util X X X X
Latency X X X X X
Memory Util X X X X
Sessionld X
Signature X
Stacktrace X
Timestamp X
TraceID (BT) X

The table 5.2 visualizes which function can be invoked on a result set of another function.

Christian Endres

5.4.4 Taxonomy for the architecture graph

The view names a "high level component"' (e.g. host, application, etc.). The level describes
the type of components which compose the "high level component"'. This classification serves

49

5. Architecture and Concepts

Table 5.2. Recursive Functions

Average | Count | Max | Min | Percentile | Sum
Average 1 1 1
Count 1 1 1 1
Max 1
Min 1
Percentile 1 1 1
Sum 1 1 1

the deep dive approach.

Christian Endres

5.4.5 Possible raw data per view and level

Native metrics means metrics of components on this level. Aggregated metrics means metrics
aggregated from lower levels and treated with functions.

Class View / operation level

native: RanCorr anomaly rank, @PAD anomaly score, call correlations between operations
in this class, latency of an invocation, thrown stacktraces, business transactions which
use/invoke the operation

Package View / class level

native: RanCorr anomaly rank
aggregated: call correlations between classes, latency of invocations, thrown stacktraces, a
business transactions which use/invoke a operation in the classes

Application View / package level

native: RanCorr anomaly rank

aggregated: call correlations between packages (software components like "controller"), latency
of invocations, thrown stacktraces, a business transactions which use/invoke a operation in
the packages

Server View / application level

native: RanCorr anomaly rank, session IDs (active users), CPU utilization, CPU cores,
Memory utilization, swap utilization

aggregated: call correlations between applications, latency of invocations, thrown stacktraces,
a business transactions which use/invoke a operation in the applications

50

5.4. Raw Data, Data Aggregation and Metrics

Architecture View / host level

native: RanCorr anomaly rank
aggregated: call correlations between hosts, latency of invocations, thrown stacktraces,
business transactions which use/invoke an operation in the hosts, session IDs (active users)

Christian Endres

5.4.6 Default metrics

Architecture view: Error Rate, Active Users

Server View : CPU Load, Memory Load, SWAP, Error Rate, RanCorr Rank
Application View: RanCorr Rank, Error Rate

Package View: RanCorr Rank, Error Rate

Class View: RanCorr Rank, Error Rate

Operation View: Average Latency of invocation, Error Rate, Called Count

Panel: Thrown Stacktraces

Anton Scherer

51

Chapter 6

Current state

This chapter describes the state of Kieker and its WebGUI.

6.1 Kieker Backend

This section describes the state of Kieker before the project. The focus lies on properties of
Kieker that are modified by Kiekeriki-Backend.

6.1.1 Kieker

The current stable version of Kieker is 1.8. It can be downloaded from the homepage of
Kieker!. It is also available via Maven and Git.

Detailed information can be found in the documentation section of the Kieker homepage?.
Some general information, about aspects of Kieker concerning this project, are provided in
the following sections.

6.1.2 Configuration

Any implementation of AbstractFilterPlugin can be configured during the construction of the
pipes and filter structure.

The @Property annotation within the @Plugin annotation allows to define plugin specific
properties including a default value. A Configuration item is mandatory to construct a
plugin. The logic to use the configuration is implemented with every AbstractFilterPlugin
subclass.

After the controller is started with its run() method, there is no way to modify the current
configuration of any plugin already constructed.

6.1.3 Analysis

Kiekers analysis component consists mainly of the possibility to construct a pipes-and-filter
architecture composed of various readers and filters. Readers and filters are all registered to

Thttp:/ /Kieker-monitoring.net/download
2http://Kieker-monitoring.net/documentation/

53

6. Current state

and connected by an instance of IAnalysisController. Readers mark the ”"beginning” of any
pipes-and-filters structure. Every filter to be used needs to be associated with a controller.
The connections within any structure are realized through the annotations. The @InputPort
is set to a method that receives incoming messages. The @OutputPort annotation is set
within @Plugin and defines Outputports to which other plugins can connect. The connection
is ensured by the controller.

Every new plugin has to be instantiated seperately and then connected by the controller to
form a pipes-and-filters-structure. There is no way of predefining ”substructures”.

6.1.4 ©OPAD

OPAD, introduced in 2.1, is provided by the opad-tslib-integration branch of the official
Kieker git repository. @PAD is provided via its corresponding classes. How @PAD can be
used is shown by the @PADx-Demo which can be downloaded from the Kieker wiki?.

6.1.5 RanCorr

RanCorr, see 2.1.2, is currently not supported in any way by Kieker.

Markus Fischer

6.2 Kieker Frontend

The Kieker WebGUI which should be enhanced is the stable version 1.8 *. The enhancement
does not need all functionality provided by the original implementation. Thus the following
classes or packages are deleted:

« kieker.webgui.web.beans.view.CockpitBean.java

o kieker.webgui.web.beans.view.CockpitEditorBean.java

o kieker.webgui.web.utility. CockpitLayout.java

e java.main.webapp.pages.CockpitEditorPage.xhtml

e java.main.webapp.pages.CockpitPage.xhtml

¢ java.main.webapp.pages.ControllerPage.xhtml

¢ java.main.webapp.dialogs.CockpitEditorPageDialogs.xhtml

« java.main.webapp.dialogs.ControllerPageDialogs.xhtml

¢ java.main.webapp.css.CockpitEditorPage.css

e java.main.webapp.css.CockpitPage.css

¢ java.main.webapp.css.ControllerPage.css
The following classes are edited, because they use deleted classes:

3https://Kieker.uni-kiel.de/trac/wiki/opad
4https ://sourceforge.net/projects/kieker/files/kieker/kieker-1.8/kieker-1.8_sources.zip/download

54

https://sourceforge.net/projects/kieker/files/kieker/kieker-1.8/kieker-1.8_sources.zip/download

6.2. Kieker Frontend

kieker.webgui.common:

removed unused annotations

kieker.webgui.common:

removed most of converters (except getSuitableAnnotation and function isProgram-
maticOnly)

kieker.webgui.service.IProjectService:

removed everything which is related to cockpit
kieker.webgui.service.impl.ProjectService:

removed everything which is related to cockpit
kieker.webgui.web.beans.applicaton.GlobalProperties.Bean.java:
Removed everything related to deleted exceptions
kieker.webgui.web.beans.view.ControllerBean.java:

removed everything related to cockpit

java.main.webapp. WEB-INFO.faces-config.xml:

Removed all unused pages
java.main.webapp.templates.PagesTemplate.xhtml:

Removed all buttons and dialogs related to cockpit
java.main.webapp.dialogs.SettingsDialog.xhtml:

Removed all buttons and dialogues related to cockpit

Martin Scholz, Christian Endres

95

Chapter 7

Implementation

7.1 Backend

7.1.1 Extension of Kieker

This section describes new (abstract) classes and components added directly to the archi-
tecture of Kieker. This includes the AbstractCompositeFilterPlugin which allows the
composition of filters to one plugin, the AbstractUpdateableFilterPlugin which allows
configuration of a plugin during runtime and the ConfigurationRegistry which provides
means to configure Kiekerplugins externally.

AbstractCompositeFilterPlugin

The class AbstractCompositeFilterPlugin is an abstract class that enables the predef-
inition of a pipes-and-filter structure. E.g., a predefined pipes-and-filter structure can
be used by only connecting the implementation of the AbstractCompositeFilterPlugin
to a IAnalysisController. The class CompositeFilterPluginExample is an exemplary
implementation of AbstractCompositeFilterPlugin using one TeeFilter.

¢ Instantiation
As any other subclass of AbstractFilterPlugin, the AbstractCompositeFilterPlu—
gin has to be instantiated with a Configuration and a IProjectContext (Analysis-
Controller).

o Configuration of inner plugins
The AbstractCompositeFilterPlugin allows the user to write entries in its Configu-
ration destined for use to update the configuration of inner plugins before they are
instantiated. Listing 7.1 shows how a the config for a TeeFilter is created and updated.
the update method updateConfiguration(final Configuration config, final
Class<? extends AbstractFilterPlugin> clazz) scans the composites configura-
tion for entries where the simple class name of TeeFilter is present. E.g., an entry with
key "TeeFilter.STDlog” will be used to update the ”STDlog” property of the given
configuration.

o7

10

7.

Implementation

public CompositeFilterPluginExample (Configuration configuration ,

IProjectContext projectContext) {

super (configuration , projectContext);

// create Filters to be used in this composite filter
Configuration teeConfig = new Configuration () ;

// update the configuration with values from the composites
configuration

this.updateConfiguration (teeConfig, TeeFilter.class);

TeeFilter tee = new TeeFilter (teeConfig, this.controller);

Listing 7.1. Updating the configuration of inner plugins.

e Connecting the plugins
The AbstractCompositeFilterPlugin has two already integrated plugins:

The

CompositeInputRelay and the CompositeOutputRelay. Both are subclasses of Ab-

stractFilterPlugin.

The CompositeInputRelay is responsible to relay incoming messages to its output-
port, which has to be connected to the receiving inner plugins. An example can be

seen in listing 7.2.

The CompositeOutputRelay is responsible for delivering messages to the out-
putports of the AbstractCompositeFilterPlugin dependent on their class. E.g., if
three different outputports (of the AbstractCompositeFilterPlugin) support for example
the IMonitoringRecord, and an inner plugin delivers to its IMonitoringRecord com-
patible outputport (which is connected to the inputport of the CompositeOutputRelay),
the sent record will be delivered to all three of the AbstractCompositeFilterPlugins

outputports.

@InputPort (name = CompositeFilterPluginExample .INPUT_PORT,
eventTypes = { IMonitoringRecord.class })
public void startAnalysis(final IMonitoringRecord
monitoringRecord) {
this.inputRelay.relayMessage (monitoringRecord);

}

58

Listing 7.2. Relaying a message at the AbstractCompositeFilterPlugins inputport.

7.1. Backend

The inner plugins can be connected in the Kieker customary fashion. Important is that
all plugins that need input from outside the AbstractCompositeFilterPlugin are
connected to the CompositeInputRelay and that all plugins that want to deliver outside
of the AbstractCompositeFilterPlugin are connected to the CompositeQutputRelay.
Example 7.3 shows a connection from the CompositeInputRelay to a TeeFilter to the
CompositeOutputRelay.

// connect InputRelay to TeeFilter
this.controller.connect (inputRelay , CompositeInputRelay .
INPUTRELAY_OUTPUTPORT, tee, TeeFilter INPUT_PORT NAME EVENIS)

// connect TeeFilter to OutputRelay

this.controller.connect(tee, TeeFilter.
OUTPUT_PORT NAME RELAYED EVENTS, outputRelay ,
CompositeOutputRelay .INPUT PORT NAME EVENTS) ;

Listing 7.3. Example of connecting the plugins within the AbstractCompositePluginFilter.

¢ Limitations
— Currently it is only possible to receive Messages of class IMonitoringRecord since
the CompositelnputRelay only supports this inputport.
— Inner plugins of the same class can not be configured with different values for the
same properties when using the updateConfiguration(...) method

Markus Fischer

AbstractUpdateableFilterPlugin

The class AbstractUpdateableFilterPLugin is an abstract class to enable the runtime con-
figuration of any plugin. The AbstractUpdateableFilterPLugin extends the AbstractFil-
terPlugin. The class UpdateableFilterPluginExample is an exemplary implementation.
o Properties
Listing 7.4 show how properties can be declared "updateable = true". The default
value is false. The boolean marks if a property is generally updateable during runtime.
e Method setCurrentConfiguration(...)
The abstract method setCurrentConfiguration(...) is designated to update a
plugins configuration during runtime. The boolean "update” marks whether all prop-
erties are updated (update = false) or only the properties marked as updateable are
reconfigured. An exemplary implementation is shown in listing 7.5.
o Usage To reconfigure plugins during runtime they have to be registered to a Configu-
rationRegistry, see 7.1.1

59

10

11

12

13

14

15

16

7. Implementation

configuration = {

// This property should not be updated during runtime (
updateable—default=false)

@Property (name = UpdateableFilterPluginExample.
NOT_UPDATEABLE PROPERTY, defaultValue =
UpdateableFilterPluginExample .NOT_UPDATEABLE PROPERTY_DEFAULT
) 5

// This property may be updated during runtime

@Property (name = UpdateableFilterPluginExample.
UPDATEABLE_PROPERTY, defaultValue =
UpdateableFilterPluginExample .UPDATEABLE PROPERTY DEFAULT,

updateable = true) }

Listing 7.4. Defining updateable properties.

public void setCurrentConfiguration(final Configuration config,
final boolean update) {
// exemplary implementation
if (update) {
// update only properties that are updateable given
configuration items
for (final Entry<?, 7> e : config.entrySet()) {
if (config.containsKey (e.getKey()) && isPropertyUpdateable ((
String) e.getKey())) {
this.configuration.setProperty ((String) e.getKey(), (
String) e.getValue());
}

} else {
// update all properties whether they are updateable or not.
for (final Entry<?, ?> e : config.entrySet()) {
this. configuration.setProperty ((String) e.getKey(), (String)
e.getValue());

Listing 7.5. Example implementation of setCurrentConfiguration().

60

7.1. Backend

Markus Fischer

ConfigurationRegistry

The ConfigurationRegistry provides functionality to register instances of AbstractUp-
dateableFilterPlugin and update their configuration during runtime.
The ConfigurationRegistry consists of the abstract class AbstractConfigurationRegistry,
the interface IConfigurationRegistry and the GlobalConfigurationRegistry which is a
singleton.
¢ Register a plugin
Any AbstractUpdateableFilterPlugin can be registered to a ConfigurationRegistry.
The GlobalConfigurationRegistry provides a globally visible and usable Configura-
tionRegistry within Kieker. To register a plugin it needs a globally (within the scope
of Kieker) unique String identifier, see example listing 7.6.

// register a plugin
GlobalConfigurationRegistry . getInstance ().
registerUpdateableFilterPlugin ("uniqueID", updateablePlugin);

// update a plugin
Configuration conf = new Configuration ();

conf.setProperty ("propertyName", "newValue");
GlobalConfigurationRegistry . getInstance ().updateConfiguration ("
uniquelD ", conf, true);

Listing 7.6. Using the GlobalCongigurationRegistry.

« Update a plugin
All registered plugins can be retrieved using the GlobalCongigurationRegistry. An
example is shown in listing 7.6.
If the given id is not present in the registry a PluginNotFoundException is thrown.

Markus Fischer

7.1.2 Implementation of RanCorr

This section describes the implementation of RanCorr (see chapter 2.1.2) in Kiekeriki. In
the following sections this implementation is just called RanCorr.

Architecture Data Model

RanCorr needs its own data model because the data model of Kieker doesn’t provide enough
information about the monitored architecture and the calculated anomaly scores. Figure

61

7. Implementation

7.1 shows the developed architecture data model. There is the abstract class Abstrac-
tRanCorrItem which represents any architecture component monitored by Kiekeriki. The
implemented classes based on AbstractRanCorrItem are:

e RanCorrHost represents the host of the monitored system and decorates the class
ExecutionContainer by Kieker. A host may contain several applications.

o RanCorrApplication represents the application which is monitored. This is a new
component and was not considered by the original version of Kieker. An application
may contain several packages.

e RanCorrPackage represents a Java package in the monitored application. Also the
package is not in the original Kieker data model. Kieker knows packages only through
the monitored operations which contain a package path. A package may contain several
sub packages and classes.

o RanCorrClass represents a Java class and decorates the class ComponentType by Kieker.
A class may contain several operations.

o RanCorrOperation represents a Java method and decorates the class Operation by
Kieker. It may contain several anomaly scores and the calling dependencies to other
operations.

Input/Output Model

The RanCorr algorithms, described detailed in the paragraphs below, need the class RanCor-
rInput as input, which contains the monitored operations with the according anomaly scores
(see Figure 7.2). The input object also contains a reference to the class DependencyManager
which contains the information about the calling dependencies of operations and the according
weights. The RanCorr algorithm creates objects of the class RanCorrOutput which contain
the mapping between architecture items and the calculated anomaly rankings. Additionally
the output contains the information which algorithm was used to calculate the anomaly
ranking, indicated by the enumeration RanCorrAlgorithmEnum. The RanCorrInput contains
anomaly scores in range [-1.0, 1.0]. The RanCorrOutput contains anomaly rankings in range
[0.0, 1.0].

Dependency Handling

The calling dependency handling is actually not considered in Kieker. Hence each RanCorrOp-
eration contains direct references to operations which call this RanCorrOperation and are
called by this RanCorrOperation. Additionally the class DependencyManager contains every
dependency information as triple of two RanCorrOperation objects and the according weight.
This information is used by the advanced RanCorr algorithm to prioritize the dependencies.

62

7.1. Backend

~ranCorrHost -parentitem

-ranCorrApplications

-ranCorrOperations

-ranCorrPackages -subPackages

Figure 7.1. Architecture data model of RanCorr implementation consisting of RanCorrHost,
RanCorrApplication, RanCorrPackage, RanCorrClass, RanCorrOperation.

RanCorr Algorithms

RanCorr basically provides three different algorithms to calculate the anomaly ranking
(see chapter 2.1.2). The general RanCorr algorithm is represented in the abstract class
AbstractRanCorrAlgorithm (see Figure 7.3). The three different algorithms are implemented
in the classes TrivialAlgorithm, SimpleAlgorithm and AdvancedAlgorithm. All of them
implement the calculate method which starts the anomaly ranking calculation. First step
is the calculation of anomaly rankings for all monitored operations. Then these values are
aggregated for the different architecture levels: class, package, application and hosts. The
three algorithms use different mean functions to aggregate the data. There are different
power mean exponents for each architecture level defined as static attribute in the class
AdvancedAlgorithm. The RanCorr algorithms work based on anomaly scores which must
exist during calculation. We extended the algorithm by checks for empty lists of anomaly
scores. In case of empty lists we return a null value for means and rankings.

There is an utility package for general, mathematical operations which contains the classes

63

7. Implementation

dependencyManager

-algorithmType

Figure 7.2. Data model for the input and output of RanCorr. The class RanCorrInput represents
the input model. The class DependencyManager is used in the input to get the calling dependency
information between operations. The class RanCorrOutput represents the output of RanCorr
and contains the mapping between architecture item and the calculated anomaly ranking. The
RanCorrAlgorithmEnum defines which type of algorithm was used.

Maths and TransitiveClosureUtil (see Figure 7.4). Each algorithm uses the class Maths
to calculate different means of anomaly scores. The advanced algorithm uses additionally
the class TransitiveClosureUtil to calculate the forward and backward transitive closure
of calling dependencies. The transitive closure is calculated by a depth-first graph search.

7.1. Backend

<<enumeration>>

AbstractRanCorrAlgorithm <<Enum>>
(kieker::tools::rancorr::algorithms) RanCorrAlgorithmEnum
(kieker::tools::rancorr)
+calculate(input : RanCorrinput) : RanCorrOutput <<Constant>> TRIVIAL
+mapToP ilityRar I ing : Double) : Double <<Constant>> SIMPLE

<<Constant>> ADVANCED

AdvancedAlgorithm . _ TrivialAlgorithm
(kieker::tools::rancorr::algorithms) _ SimpleAlgorithm (kieker::tools::rancorr::algorithms)
(kieker::tools::rancorr::algorithms)

+AdvancedAlgorithm() - = +TrivialAlgorithm()
+calculate(input : RanCorrinput) : RanCorrOutput +SimpleAlgorithm() +calculate(input : RanCorrinput) : RanCorrOutput
+calculate(input : RanCorrinput) : RanCorrOutput

Figure 7.3. The three types of RanCorr algorithms are implemented in the classes TrivialAlgo-
rithm, SimpleAlgorithm and AdvancedAlgorithm which all extend the abstract class AbstractRan-
CorrAlgorithm. The enumeration RanCorrAlgorithmEnum can be used to identify them.

Maths
: double, g : double) : double

+unweightedArithmeticMean(values : List<Double>) : Double

: List<Double>, p : double) : Double
Wi lues : List<Double>, weights : List<Double>, p : double) : Double

TransitiveClosureUtil

+forwardTransitiveCl e : RanCorrO| ion) : Set<RanCorrQ

+backwardTransitiveClosure(de er : DependencyManager, target : RanCorrOperation, distance : double, weight : double) : Maj

+ Closure(closure : Map<RanCorrOperation, PathRecord>. : RanCorrO, ion, newDistance : double, newWeight : double) : Map<RanCorrOperation, PathRecord>
Cl 1 : M RanCorrO| ion, P closure2 : M: RanCorrOperation, P:) : M RanCorrOperation, P

Figure 7.4. The RanCorr algorithms use the util classes to calculate the anomaly rankings. The class
Maths contains math functions to calculate different means and the class TransitiveClosureUtil
contains functions to calculate transitive closures of calling dependencies.

Integration into Kieker

In order to integrate RanCorr in the Kieker framework we built a new filter which starts the
RanCorr calculation. The class RanCorrFilter represents that filter (see Figure 7.5). This
filter has two input ports: one for the objects of class MessageTrace and one for objects
of class OperationAnomalyInfo. The first port is used to read the message traces and to
rebuild the architecture model of the monitored system. We achieve this by using the method
convert of the class RanCorrInputProvider. This method analyze the messages in the given
message trace and rebuilds the architecture with all elements. Finally it returns an object of
the class RanCorrInput with which the RanCorr algorithm is started. The second port is
used to get the anomaly score information for the several operations. This will be typically
the output of @PADx. The range of that input values should be in range [0.0, 1.0]. The
type of the used RanCorr algorithm can be configured via the filter configuration. There is
also an additional filter represented by the class RanCorrOutputDBWriter which is used to
write the results of RanCorr in the exchange database. This filter has one input port for

65

7. Implementation

objects of the class RanCorrOutput. The interface IDatabaseConnection is used to store
the values in the database.

RanCorrinputProvider
+RanCorrinputProvider()
+convert(messageTrace : MessageTrace) : RanCorrinput
+addNewOPADData(info : OperationAnomalyInfo) : boolean

-ranCorrinputProvider

RanCorrFilter RanCorrOutputDBWriter
+OUTPUT PORT NAME RANCORR DATA : String = "RanCorrOutputData" +INPUT PORT NAME RANCORR DATA : String = "RanCorrData"
+INPUT PORT NAME RANCORR DATA : String = "RanCorrinputData" +RanCorrOutputDBWriter(configuration : Configuration, projectContext : IProjectContext)
+INPUT_PORT_NAME_RANCORR_OPAD_DATA : String = "RanCorrOpadinputData"” +getCurrentConfiguration() : Configuration
+CONFIG_PROPERTY_NAME RANCORR_ALGORITHM : String = "RanCorrAlgorithm* +writeToDB(output : RanCorrOutpuE) : void
+RanCorrFilter(configuration : Configuration, projectContext : IProjectContext)

+getCurrentConfiguration() : Configuration
+setCurrentConfiguration(config : Configuration, update : boolean) : void
+execute(messageTrace : MessageTrace) : void

(info : OperationAr I : void

Figure 7.5. The integration of RanCorr into Kieker is realized by a new filter implemented by
the class RanCorrFilter. There is also the class RanCorrInputProvider which creates the input
for the RanCorr algorithms. The output of RanCorr is written to the database using the class
RanCorrOutputDBWriter which represents the writer filter.

Yannic Noller

7.1.3 Extended Self Tuning Forecasting Filter

In the project Kikeriki a new filter, the ExtendedSelfTuningForecastingFilter, was de-
veloped for the ®PADx approach. The filter searches for the best forecasting method
and calculates the forecasting value which should be the best forecasting value at that
point of time. Basics for the development of the ExtendedSelfTuningForecastingFil-
ter were given by the extended forecasting filter developed by Frotscher [2013], a filter
created for ®PADx and the WCF (Workload Classification and Forecasting) by Herbst
[2012]. The foundations of ®@PADx are described in Section 2.1. In this chapter WCF
(Workload Classification and Forecasting) is introduced, then the integration of different
filters will be discussed and later the development of the new filter by merging WCF into
the the ExtendedForecastingFilter will be described. The newly created filter is called
ExtendedSelfTuningForecastingFilter.

WCF

WCF is the main component of a master’s thesis written by Nikolas Herbst [Herbst, 2012]. In
his thesis he describes an algorithm which switches between forecast algorithms automatically
during run-time to get the best forecasting result. The WCF is based on a decision tree. After
checking some decision parameters like overhead of an forecasting algorithm, WCF chooses
two forecasting algorithms which might be the best algorithm at that point in time. After
calculating forecasting values with the two forecast algorithms, the results are compared and

66

7.1. Backend

the better result is chosen by WCF. For a deeper understanding of WCF it is recommended
to read Herbst’s thesis [Herbst, 2012].

An advantage of using WCF in Kikeriki is, there is an implementation which could
be used in our project. The requirement of the project to be able to choose the best
forecast algorithm during run-time could be solved with the approach of Herbst’s thesis.
Another advantage of using WCF is, that in the WCF implementation were some forecasting
algorithms implemented already, which were not implemented in @PADx /Kieker yet. Because
the algorithm methods were implemented similarly, they could be easily reused within our
project. As a result the requirement to add more forecasting algorithms into @PADx could
be solved.

Integration of forecasting methods

In ®PADx there are different forecasting algorithms implemented. During the integration of
WCF more forecasting methods were added. The new added forecasting methods include
the ARIMA, Croston, SES, Naive and TBATS forecasting method. Two forecasting methods
are not in the Extended Self Tuning Forecasting Filter, which were used in the Extended
Forecasting Filter: The SESR and the ARIMA101 forecasting method. The SESR is replaced
by the SES forecasting method because the SESR forecasting implementation was not written
in pure R code. ARIMA101 was replaced by the ARIMA forecasting method because at
some special time series ARIMA101 is not applicable. During testing, we found an error
in the R implementation of ARIMA. So it may occur that the ARIMA forecasting method
does not work as expected. Fortunately the WCF algorithm always uses two forecasting
methods so if ARIMA does not work, the second forecasting method is used. Also

CrostonForecaster

AbstractRForecaster | < [MeanForecaster | [MeanForecasterJava
straci orecaster

>
CSFor > <}
TBATSForecaster

ETSFor ARIMAFor NaiveF SESForecaster

Figure 7.6. Forecasting filters

all forecasting methods not implemented in R were replaced by R forecasting methods.
Only the Mean forecasting method is, besides the R method, written in Java, is part of
the ExtendedSelfTuningForecastingFilter which can be used for forecasting. The java
method should only be used for debugging purposes. The advantage of the Java method is,
that the R environment is not needed.

67

7. Implementation

Implementation of the ExtendedSelfTuningForecastingFilter

As mentioned before the ExtendedSelfTuningForecastingFilter is based on the imple-
mentation of WCF. The main difference between the original WCF implementation and
the integration of WCF into the new ExtendedSelfTuningForecastingFilter is the data
processing. In the approach of Herbst [2012] the input data is read form a xls fil. For the
O®PADx filter environment, the data is sent to the forecasting filter whenever data is read
by the Kieker reader and send to the ®PADx filter architecture. A condensed sequence
diagram of the ExtendedSelfTuningForecastingFilter is shown in the diagram below.
The sequence diagram shows the flow if self-tuning is activated. The mechanic of the
ExtendedSelfTuningForecastingFilter is shown in the documentation of WCF [Herbst,
2012].

Extended Self Tuning Filter ConcurrentHashMap WIB Manager
wibStore
T

Forecaster

‘ ClassificationStrategy ‘

TSP |

T T T
1 1 I
| I I I
| | | I
1.1: WorkloadintensityBehavior() WiB } | | |
””””””””” | | | I
2: newWib } } } }
(- ﬂ I I I I
| 1 1 I
2.1: wibS(ore.put(input.getName(),}newWib) | | I
! ! I
T
22 actvalWis | jl] | | |
<___________________\ ______ 1 1 I
2.3: setTimeSerief(actuaIWindow)} l_ } }
1 T I I
2.4: callFqrecaster l } }
| I 2.4.1: classify(this) I I
| | |
} } 2.4.2: ForecastingMethods }
| N I
} } 2.4.3: callForgcaster1 }
| | I
| | 2.4.4: fesult1
w ! ke m oo e
} | 2.4.5: callForgcaster2 I
| I 1
‘ ! 2.4.6: fesult2
I ! R
2.5 gethr{esuIt() } T T
[l 1 I
} I I I
| | 2.5.1: compareForecaster |
2.5.2:result | I |
2.6:FMP e — —— T————— T |
. | T I
! I
! I

L |
I
! I

Figure 7.7. Sequence diagram of the extended self tuning forecasting filter.

As it can be seen in Figure 7.7 the ExtendedSelfTuningForecastingFilter receives
a Time Series Point (TSP)from another filter as input data. For each TSP received on
the input port of the ExtendedSelfTuningForecastingFilter, a new WorkloadIntensi-
tyBehavior (WIB) is created. The created WIB is stored in a ConcurrentHashMap. In the
hash map the name of the called function is the key of the hash map. So every function is
forecasted on its own. In the listing below the creation of the hash map and the storage of
the object is shown.

68

7.2. Frontend

if (this.selftuningbool.get()) {

final WorkloadIntensityBehavior newWib = new
WorkloadIntensityBehavior (...) ;
this.wibStore.put(input.getName (), newWib);

}

Listing 7.7. Create WIB object and store the object into the wibStore hashmap.

Next the incoming TSP is added to the time series. With the function callForecaster ()
the forecasting is started. First of all the time series is classify into a category to find the best
forecasting methods. The possible categories are initial, fast and complex. The procedure is
based on some decision points like length of the time series. How the classification exactly
works is described in [Herbst, 2012]. Compared to the implementation of Herbst, some
decision points which do not fit into the ©PADx/Kieker environment are not used in the
implementation of the ExtendedSelfTuningForecastingFilter. Decision points like for
example amount of skipped values are not used anymore. After the classification is finished,
the two forecasting methods, which were chosen by the classification function, are called.
These two forecasting methods calculate the forecasting value. After the two results have
been compared, the better result is sent within a ForecastMeasurementPair (FSP) to the
ExtendedSelfTuningForecastingFilter output port. For the possibility to change between
self tuning mode and an forecasting method chosen by the user, there is the filter property
PROPERTY_SELFTUNING_ON implemented. If the boolean property is set to true, the filter runs
in self tuning mode. Otherwise the filter can be used as the ExtendedForecastingFilter
developed by [Herbst, 2012].

Tobias Rudolph

7.2 Frontend

In this section we present the design and implementation details for the given frontend
architecture. The components Logic, Web GUI, Cache and the internal database are described
in separate subsection as well as the Transfer Database and the Data Generator which writes
synthesized data into the Transfer Database and provides benchmarking functionality.

7.2.1 Web GUI

The Web GUI was developed based on a sketch that was created in the first sprint of the
development project. Ideas for the sketch were based on the evaluated APM Tools currently
on the market (See chapter 2.4). Figure 7.8 shows the main features the frontend should offer
in the main page, the Project View Page. One requirement was to display the aggregated

69

7. Implementation

anomaly information from the RanCorr approach (See chapter 2.1). Therefore the sketch
suggests an Architecture Overview, that shows the different components in an application
system. Additionally, to show high level components like servers and databases, a deep-dive
approach is intended. The approach should allow to inspect the internals of the high level
components by showing instrumented applications, their classes and packages. For the
requirement to be able to monitor different metrics on the instrumented components, the
sketch contains a section for diagrams, the Diagrams View. The diagrams are configurable
representations for metrics and components. Additionally to display diagrams was to add
new diagrams which visualize the user-defined metrics, the suggestion was a dialog to enable
this. Another integral part of the Project View Page is the presentation of important
events, e.g. some instrumented component doesn’t respond anymore, some anomaly was
detected on a component. For this purpose the Tab View was designed to show the user all
events that might happen with the application. The metrics are predefined by the user on
the available monitored instrumentation records and applied on a specific component by a
diagram. Components here can be Hosts, Applications, Packages, Classes and Operations.
The definition of metrics are handled in the Settings Page. The sketch additionaly suggests
a List View for all aspects of the monitored system, to e.g. look into packages and their
hierachy.

A screenshot of the final implementation is depicted in Figure 7.9. The Project View
Page consists of implementations for the Architecture Overview, Tab View, Diagrams View
and Dialog. The Settings Page was implemented as a single component.

The Architecture Overview (See 7.10) consists of 2 bean classes: ArchitectureGraph-
Bean and ArchitectureMenuBean. The ArchitectureGraphBean manages the transition of
the displayed graph in the Ul, while the ArchitectureMenuBean allows the user to revert
the transitions. The visible graph in the UI is rendered and layouted by the graph layout
library Springy.js Spr. A user transition (a deep-dive into one component) is handled by
the ArchitectureGraphBean, which loads the new components into the Ul and reloads the
Diagrams View.

The Diagrams View (See 7.11) is implemented with a bean class, the DiagramDataBean,
and a JavaScript Component (diagram. js) in the Project View Page. The DiagramDataBean
is responsible for adding new diagrams into the GUI, by sending diagram configurations to
the diagram. js component. Another responsibility is to allow the component to poll live
monitoring data. At last the component renders the diagrams with the JavaScript library
Highcharts JS Hig and handles all incoming requests to delete, add or configure diagrams.

The Settings Page (See 7.12) was implemented in a single component that retrieves its
data directly from the DefinedMetricsBean, which is responsible for getting the defined
metrics of the current user. The RawDataBean is used to show the user the available data
types on a component.

The Tab View (See 7.13), in the final state, was implemented as single component
which displays exceptions of the monitored system. The ExceptionEventsTab uses the
ExceptionEventsBean to get the latest exceptions. The bean gets its data trough the

70

7.2. Frontend

Overview Business Transactions ‘ Settings

Architecture overview)

SLA Compliance
Server 1

14 calls /min -

45 calls /min di ‘ h
0 9

User request rate

A =
_*‘/»\‘ \/ T /M[f

Oracle Database

LI Lo

MySQL Database
Critical Events Errorlexceptlons Detected anomalles Latest longest processing methods
Server 15.02.2014 Server 1 Server is not responding.
Problem -14:23 Maybe down?
New Node
detected

Figure 7.8. Design sketch of the Web GUI

ArchitectureMetaStore, which is the cache in the system.

The List View (See 7.16) was implemented as a single page and bean. The page displays
the hierarchy of the monitored system in a tree, for that the bean is the interface to the data.

7.2.2 Logic

The main parts of the Logic are seperated into four classes: ArchitectureGraphBean,
DefinedMetricsBean, DiagramDataBean and MetricsDiagramBean (See Figure 7.15). The
ArchitectureGraphBean is responsible for the Architecture Overview, which consists of
sending the nodes and edges of the current view with their associated RanCorr Anomaly
Rank. Additionally the bean is responsible for keeping the state of the Project View Page,
by setting the correct state in the ArchitectureMetaStore. DefinedMetricsBean is a thin
logical layer above the IMetricService, it contains logic for the Settings Page and additionally
to generate default metrics for the user. Logical parts to render appropiate diagrams for

71

7. Implementation

X[~ [Listview || € settings ¢ admin (Administrator)

= Add new Diagram

ErrorRate m=

(= sessions

SessionCount

Horst1

i

= Sessions

Horst0

Timestamp D

TueMar 25 150538 CET 2014
TueMar 25 15,0954 CET 2014

Type Node
sever 1
Server 1
Server 1

Server 1
Sever 1

sever1

Figure 7.9. Design sketch of the Web GUI

the user is handled by the DiagramDataBean. The DiagramDataBean is also responsible for
transforming the data inside the Exchange Database into Highcharts JS data series, for past
and live data. MetricsDiagramBean is the interface for the dialog to add/configure diagrams.
Its functionality consists of fetching available metrics for the current user, suggest a diagram
type based on a selected metric, configure whether to load past or live data.

7.2.3 Cache

The Cache (See 7.16) for the Exchange Database is a class using the singleton pattern, the
ArchitectureMetaStore. As the role as a cache implies, it caches the needed data series
for the diagrams and the components in UI. The cache gets and stores the data from the
database on request, the data is not kept persistent in the system, only temporarily for some
fixed amount of time. This is needed as the size of all monitored records drastically decreases
the performance of the Web Server.

7.2.4 Internal Database

The Internal Database (See 7.17) is a local Derby database which stores User, Metrics and
Diagram data. It allows the user to store his own metrics in the system, which can be used
for diagrams. Every user has his own metrics and diagrams. The User table originates

72

7.2. Frontend

se>>
loads state from bean

'
<<use>> |
sets state '
'
'

H <<component>> €|
""""""""""""""""" ArchitectureMetaStore java

> >
| springyui.js E| | springy.js m|
A A
' '
' '
' '
<<use>>
<<component>> E <<component>> a calls bean on node click
ArchitectureOverviewPage.xhtml = |~~~ """~ architectureGraphjs ~ = [T """ """ 7T Tt oo o oo oo T T T T
A T ‘
' ' i
! ' ' i
! ' ' i
! ' ' i
| ' ' '
' ' i
: executes js functions on client based on node click i i '
--- ' !
' !
| | <<use>>
<<use>> I\ getdata
stores state 1 i
' i
' i
<<use>> <<component>> 8] ' |
<<component>> | <<component>> 2] gets state ArchitectureMenuModel.java <------- '
ArchitectureBreadCrumbMenu = [~~~ 77"~ ArchitectureMenuBeanjava — (""" """ T 77772 :
T Cache
'

Figure 7.10. Component Diagram of the Architecture Overview

from the original Kieker Web GUI. The new tables are Metrics and Diagrams, the first
contains columns that specify which records (rawData) are used within the metric and what
functions should be applied on the records from the exchange database. The Diagrams table
contains simple information such as the title of the diagram and x/y-axis names. Additionally
information about the component, the metric and whether to show past or live data is stored
in the table.

Kdlman Képes

73

7. Implementation

Visual Paradigm for UML Standard Edition(University of srm_

Used in the main page

<<use>>

T
!
!
1
|
1
|
!
1
|
| sends new diagrams, sends re-configuration data for diagrams
|

|

!

|

<<use>>
requests live monitoring data for diagram

<<use>>
gets diagrams in the system

Figure 7.11. Component Diagram of the Diagrams View

Visual Paradigm for UML Standard Edition(University of Stuttgart)

<<use>>
uses the defined raw data on the components

_ <<use>>

gets/sets the defined metrics for the user

Figure 7.12. Component Diagram of the Settings View

7.2. Frontend

Visual Paradigm for UML Standard Edition(University of Stuttgart)

<<use>>
fetches latest execeptions

<<use>>
fetches latest exception events

Figure 7.13. Component Diagram of the Tab View

Visual Paradigm for UML Standard Edition(University of Stuttgart)

<<use>>
gets data

_________________ >

<<use>>
gets the architecture tree

Figure 7.14. Component Diagram of the List View

(0]

7. Implementation

<cinstantae>> |

v

Figure 7.15. Class Diagram of the Web GUI Logic

76

7.2. Frontend

Figure 7.16. Class Diagram of the Web GUI Cache

Visual Paradigm for UML Standard Edition(University of Stuttgart)

=i

T T T T T O T O O O 05) £

H
H
H
H
H
H
H
H
H
H
H
H
H

Figure 7.17. ER Diagram of the WebGUI Internal Database

i

7. Implementation

7.3 Transfer Database

This chapter describes the functionality of the Transfer Database in the Kiekeriki project.
The Figure 7.21 shows the architecture of the Kiekeriki project and the role of the Transfer
Database in it. Chapter 7.3.1 describes the core principles of the Transfer Database and its
logic implemented in its Stored Procedures.

Kieker.Monitoring Kiekeriki Kiekeriki.WebGUI
I Time Sour TransferDatabase
. ; Logging—> Monitoring Monitor
— 8
MT)TtE”ng ampling— Controller Writer
obe —___ Adaptive __¥ " Database
Monitoring Interface
Stored

Monitoring Log/Stream Procedures. ‘

— e
—reads Monitoring writes—!
Records

Kieker.Analysis

Monitoringg Moo — Analysis
| Reader Ceptioly Plugins 1

| gl

‘ DAO ‘ DAO

writes

Pages

Figure 7.18. Kiekeriki Architecture[van Hoorn]

The Backend is connected to the Transfer Database due the writer plugins. The Backend
writes due its database connection component processed monitoring record informations into
the Transfer Database. The Frontend is also connected to Transfer Database which holds all
the monitoring and analysis data which should be displayed in the Ul

Christian Endres

7.3.1 Database Design

Like the idea of the component tree described in section 5.4.1 the idea of the Transfer
Database design is based on the component tree. The central table InstrumentedComponent
hosts the component tree which points recursively to itself to represent the tree. In the Figure
7.19 you can see the InstrumentedComponent table and its references on the name and type
of the component. The table is referenced twice by the table OperationDetails which stores
the caller and callee correlation to a timestamp for each occurrence of a operation call and
the corresponding latency measurement or a stacktrace occurrence. This example describes
how the raw data is attached to one or two Instrumented Components.

All other tables are attached to the Instrumented Component, which display the raw
data described in section 5.4.2. The figure 7.20 shows the whole table design.

Christian Endres

78

7.3. Transfer Database

m ComponentType ¥
{ID INT(11)
"] OperationDetail ¥ * _| InstrumentedComponent ¥ i _"{ > TypeName VARCHAR(45)
ID BIGINT (20) . ! ID BIGINT(20) _! >
 CallerID BIGINT(20) & NameID BIGINT(20)
@ CalleelD BIGINT(20) e TypelD INT(11) _ =
> Timestam p BIGINT(20) - FatherNodelD BIGINT(20) | ST
> g _»{ » ComponentName TEXT ‘
[¥ »
—

Figure 7.19. Central table of the Transfer Database

7.3.2 Database Connections and Stored Procedures

The MySQL-Server provides the functionality to call Stored Procedures which can encapsulate
even complex data access logic. The goal to pursue by using this functionality is to separate
the data access logic and the data processing logic. While the Kiekeriki Backend implements
the data generation, it should not necessarily care about how to sort it into the dedicated
tables. Simple insert methods are desirable. Just as the Kiekeriki Frontend should not care
about the storage design of the data, it just wants to access the data in a convenient way.

MySQL Server
Transfer
Database

Figure 7.21. Transfer Database data access

Kiekeriki Stored I

Backend "| Procedure | H

Stored |,

Procedure }

Kiekeriki
Frontend

Database connection of the Kiekeriki Backend

The database connection of the Kiekeriki Backend cares for the write access to the Transfer
Database. Each method provided by the Interface of the database connection hides the logic
of data manipulation and access to the database. There are three key concepts: First of all
the database connection knows about the stored data in the Transfer Database — especially
the keys of already known Instrumented Components. If a new signature of a component
is inserted, the database connection cares for committing the new signature immediately.
Secondly the database connection instance handles the data sets in batches, except new
components which are committed instantly. Thus the writing efficiency is increased because

79

7. Implementation

71D INT(11)
& DataName LONGTEXT

7 ID INT(11)
 Description LONGTEXT & MemTypehlam e VARCHAR(45)

> SelectStmt LONGTEXT

7 ID BIGINT{20)
& text LONGTEXT

¥ ID BIGINT (20)

& ApplicationID BIGINT (20}
> SessionlD LONGTEXT
<»Timestam p BIGINT(20)

T wostemtcac v
7 ID BIGINT(20)

> componentlD BIGINT (20)
<> Timestam p BIGINT(20)
MemType INT(11)

< Mem Totd FLOAT

' MemFree FLOAT
<MemUsed FLOAT

< Mem Usage FLOAT

7 ID BIGINT (20)
< CallerID BIGINT(20)
2 CalleelD BIGINT (20)
7 ID BIGINT(20)
¥ OperationDetallID BIGINT(20)
> Stacktrace LONGTEXT

¥ ID BIGINT(20)
“» OperationID BIGINT (20)

7 ID BIGINT(20)
“# OperationDetalID BIGINT(20)

“»BusinessTransactionID BIGINT(20)

< InvocationID BIGINT(20)
<> Timestam p BIGINT(20)

7 stacktraces|

mﬂ Q__mna__s:ﬂ._!ﬁwu

71D INT(11)

' ID BIGINT (20)

2 CompanentID BIGINT(20)
<> Timestam p BIGINT(20)

< CoreSignaturelD INT(11)
< Load FLOAT

/1D BIGINT(20)
» Componenthame V ARCHAR(45)

ID INT(11)
> TypeName YV ARCHAR(45)

1 CalerID BIGINT(20)
1 CaleeID BIGINT(20)
< CallCounter BIGINT(20)

7 ID BIGINT(20)

> ComponentID BIGINT(20)
< Timestam p BIGINT(20)

“ Ranking FLOAT

<> Timestam p BIGINT(20)
“ Score FLOAT
2 Threshold FLOAT

Figure 7.20. Transfer Database design

80

7.4. Transfer Database Data Generator and Benchmarking Tool

the connection overhead per data set is reduced. Last but not least each database connection
instance has its own thread which commits all batched data after an elapsed time. Per
default and in respect of live monitoring the thread commits the data sets each second. A
batch is committed if it reaches a certain size or due the wait limit of the thread.

Additional aggregation of data is provided by the Stored Procedures of the MySQL
Server.

Database connection of the Kiekeriki Frontend

The database connection of the Kiekeriki Frontend provides reading access to the Transfer
Database for the visualization logic. Each method provided by the Interface of the database
connection hides logic of data acquisition and aggregation. More complex logic like recursively
traversing the component tree or selecting data just in a certain period of time is done by
Stored Procedures. The database connection component processes with the retrieved data
and returns the data processed into the internal data model.

Christian Endres

7.4 Transfer Database Data Generator and Benchmark-
ing Tool

This section describes a tool which serves the Kiekeriki Frontend as generator of test
data. During the second half of the project the tool was enhanced with functionality
for benchmarking the Transfer Database. For the sake of readability the data generation
functionality is called Data Generator and the benchmarking functionality is called Benchmark
Tool. Both are the same program, however serving to achieve different goals. The Benchmark
Tool uses the same data generation, write and read functionality as the Data Generator.
Though the focus of this section is on the key features and not on the programmatically
connections between both and the reused components. The Eclipse project is named
KiekerTransferDBDataGenerator.

The database connection components are adapted copies of the Kiekeriki Backend and
Frontend. The adaptions are mostly for visibility of objects and log output to gain measure-
ment data.

7.4.1 Data Generator

The Data Generator uses the database connection of the Kiekeriki Backend. It writes
randomly synthesised data to the Transfer Database. The synthesised data is modeled to fit
the data written by the Kiekeriki Backend. Thus RanCorr ranks are depend to the simulated
behavior, a low latency results in a low RanCorr rank and a stacktrace occurrence results in
a high RanCorr Rank which stands for anomalous behavior.

81

7. Implementation

Christian Endres

7.4.2 Benchmark Tool

The Benchmark tool uses a benchmark framework written by the IBM developer Brent
Boyer [Boyer, 2008a,b,c]. The framework cares about the experiment conduction, starting
with a heating phase to the end with a summary and statistical analysis. The aim of the
framework is to eliminate non deterministic measurements caused by intervention of the Java
VM like dead code analysis (DC), garbage collection and just-in-time (JIT) compiling to
name some. After a heating phase there are at least 60 measurement rounds with at least
one measurement of the benchmarked functionality. If for example the compiling time differs
during the measurement rounds — the DC or JIT compiling was active — all is started
over. Eventually there is a short or a detailed statistical analysis of the benchmark. Due the
results differ with a cross test analysis done with R, the benchmark framework is used to
generate the measurement data and the analysis in chapter 8.2.3 and 8.2.4 is done with R
and RStudio.

The Benchmark Tool benchmarks the database connection of the Kiekeriki Frontend
which retrieves data and processes it into the internal model. The benchmark of the Kiekeriki
Backend writes data into the Transfer Database. The conduction and the results are analysed
in the chapter 8.2.

Christian Endres

82

Chapter 8

Experiments and Validation

8.1 Experiments and validation of the Kiekeriki Back-
end

8.1.1 Evaluation goals

Described here are the goals by which the Kiekeriki backend should be evaluated.

83

8. Experiments and Validation

Gl
Kiekeriki anomaly
detection quality

Qi1 Q1.2 Q1.3 Q1.4

Measurement of Impact of RanCorr Impact of Impact of Self-

anomaly detection algorithm type Configurations Tuning ©PADx
M1 M2

True Positive Rate False Positive Rate

Figure 8.1. Goal figure 1: High Accuracy

Table 8.2. Goal 1: Kiekeriki Accuracy

Goal G1 Determining the quality of Kiekeriki anomaly detection.
Purpose Measurement of the system to allow comparisons.
Issue Accuracy
Object Backend pipes and filter structures in several variants.

Viewpoint Developer

Question Q1.1 How well does Kiekeriki find injected anomalies?
Q1.2 How does the RanCorr algorithm type affect the output?
Q1.3 How do differing thresholds and configurations change our
anomaly detection?
Q1.4 What results does the new Self-Tuning algorithm deliver?
Metrics M1 True Positive Rate
M2 False Positive Rate

84

8.1. Experiments and validation of the Kiekeriki Backend

G2
Evaluate impact of
OPADx

Q2.1 Q2.2

Direct ©PADx Sanitized @PADx
input input

M1 M2

True Positive Rate False Positive Rate

Figure 8.2. Goal figure 2: @PADx effect

Table 8.4. Goal 2: ®OPADx effects

Goal G2 Determine impact of @PADxon system.
Purpose Analysis of effects that @PADx creates.
Issue Accuracy
Object O®PADx filters in backend pipes and filters structure.
Viewpoint Developer
Question Q2.1 What impact does using @PADx have as opposed to using self
generated test data with anomaly scores?
Q2.2 How does post-processing @PADx data for clarity change the
outcome?
Metrics M1 True Positive Rate
M2 False Positive Rate

Christopher Gregorian

85

8. Experiments and Validation

8.1.2 Experimental design

This section describes the experiments that allows finding answers to the questions noted in
Section 8.1.1. To allow the generation and gathering of data, the Kieker pipes and filters
architecture was extended with several filters to surround the ®@PADx and RanCorr filters.

Pipes and Filters setup

As can be seen in Figure 8.3,both the @PADx and RanCorr filters are surrounded by the
test framework filters to allow controlling data in and outputs.

Kiekeriki Experiment Setup

Anomaly Y RanCorr Filters E No Opad, No Cleanup

With Opad, No Cleanu
Anomaly RanCorr E P P

Score | y
1 Filter With Opad, With Cleanup
Input AdharreEr] E

Algorithm E Constant

Sanitized
L2 Fooma RanCi RanCorr Rancore
Anomaly Scores anCorr X
scores | Cle.anup Filter Output Offline Data Aggregator
Filter — " Evaluator
Simple

Algorithm

Generated
Data Operation

Generator Execution
Record

©OPADx
(Collective)
Filters

Message
» Trace —|
Input

RanCorr
— Filter
Trivial Algorithm

Anomaly

Figure 8.3. Experiment setup

The following list describes the additionally developed evaluation tools:

e Data Generator - A filter that creates data according to a static hierarchy. Will inject
anomalies into the data for the system to find. See Section 8.1.2.

¢ RanCorr Offline Evaluator - designed to use the anomaly data from the Data Generator
as well as the RanCorr output data. Will iterate evaluating the data with an internal
threshold starting at 0.05 and incrementing by 0.05 until 1.00 and return the results
for each evaluation.

e Data Aggregator - Takes the data from several runs and aggregates them into one
dataset for ease of use. See Section 8.1.2 for details.

Paths through Pipes-and-Filters

On Display in Figure 8.3 are three different paths that the data takes through our pipes
and filters structure. Constant connections that always exist are marked in black. These

86

8.1. Experiments and validation of the Kiekeriki Backend

include the information about our injected anomaly and the message trace of generated
data. The first is required for evaluation of RanCorr, the latter is needed by RanCorr it-
self to build the hierarchy of calls. See Section 7.1.2 on details of how RanCorr is implemented.

The green path is the most direct. Instead of using @PADx, anomaly scores are generated
in accordance with patterns that are described in Section 8.1.2. This data is used by RanCorr
to determine an anomaly ranking. This is done to allow studying the impact of the question
from Table 8.4. We therefore have a baseline on how externally generated data compares to
data @PADx generates.

The blue path is the most realistic one. In this version, the data created by the Input
Generator is run through @PADx without post-processing. That data is then piped towards
RanCorr.

The red path is a new path that was added after it was discovered that the @PADx
implementation returns anomaly scores of 1.0 when no latency data is received for a method.
While this is perfectly acceptable, it does cause a problem with the experiment setup. Control
over anomalies is desired, therefore any value from @PADx with a measured latency of 0 is
removed before the data is passed on to RanCorr. This is also done to answer the question
postulated in Table 8.4. In our data generation, we do not consider these events, when a
method is not detected an anomaly. We inject our own anomalies and we wish to detect
only these. Fortunately it is quite simple to detect these, in the eyes of the testers at least,
fallacious anomalies and remove them from the stream of data. Since these are not included
in the anomalies to test for, their removal does not make the data unusable, as we can still
test for the injected anomalies. An alternative would be to extend the data generation script
to ensure that such downtimes do not exist. Unfortunately that was not possible within the
timeframe of the project.

Also one should note that the three items named “Anomaly Score Input”, “Message Trace
Input” and “RanCorr Output” are simplifications to aid readability. In fact, each of the
incoming pipes is connected to each instance of the RanCorr filter.

Data Generation

The data generator has four possible outputs.
e AnomalyTimeStampOut - The data telling the evaluator at what time an anomaly is
injected, which method it affects and what kind of anomaly it is.
¢ OperationExecutionRecord - A Kieker class containing instrumentation data. The class
contains latencies and anomaly are expressed in the form of longer than usual latencies.
¢ OperationAnomalyInfo - Required by RanCorr, it contains generated anomaly scores
in keeping with the patterns described in Figure 8.4.
e MessageTrace - Also required by RanCorr, describes the call hierarchy.
The first step of generating data for the system is creating a hierarchy in which the
objects we want to include are represented. These are:

87

8. Experiments and Validation

o Hosts

o Applications

o Packages

o Classes

o Methods

Simply put, a host contains applications, an application contains packages. A package
however can contain both classes and packages. Classes contain only methods. This data is
required for RanCorr and is currently built in a static manner. It is technically possible to
dynamically generate a new one at each runtime, but this would create difficulty further down
the line at evaluating the data and also make it difficult to compare results from different
runs. This data is used in each of the four outputs that the data generator has.
Once this hierarchy is created, a pool of methods is available for data generations. With
this pool we can create a message hierarchy of calls and returns. This hierarchy is split into
several patterns that were predetermined in order to allow for different scenarios.

Method Hierarchy Patterns
Method0
qp—) p— ____1I_J_7__I
| Method1 I I Method1 I l Method1 | I Method1 I
| | N F |
| Method2 ‘ | | Method2 Method4 | | T I | Method2 |
Method3 Method3 Method3 Lt
| | Il veross | | | |
it o) |
P1: Simple Call P3: Utility Call | I I Method2 |
Method4 |
P6: Loop P8: Divergent l I Method3 |
______ Jd
—] — — — = — = = —_— =
P4: Sequence I l
I
Method1 I Method2 |
I I I Method1 | I |
[—
| | | | Method3
I Method2 I | I |
I Method2 Method4 |
| I I | P5: Recursion
| Method2 I I I I |
| I I Method3 Method5 |
| Method2 I I |
| I e e e — ———— -

Figure 8.4. Call Hierarchy Patterns - Methods marked in red are possible anomaly positions.

88

8.1. Experiments and validation of the Kiekeriki Backend

These scenarios were picked to allow different types of calls that seemed basic and
widespread. At the moment, not much is done with this pattern information. It would
however, in the future, be possible to take a closer look at the RanCorr results. For that
eventuality, each pattern uses only methods with specific names, to allow easy identification.
Currently, accuracy in rancor is calculated by getting the False Positives, True Positives,
False Negatives and True Negatives.

Each of the patterns in Figure 8.4 is represented in the final data and at data generation
time.

Once a call hierarchy is created, we can export it to RanCorr as a MessageTrace. Iterating
over this, it is now possible to generate the actual records (OperationExecutionRecords) for
OPADx, the anomaly scores (OperationAnomalyInfo) for RanCorr and the anomaly data
(AnomalyTimeStampOut) for the evaluation. The amount of times we iterate over is given as
a parameter for our experimentation in Section 8.1.2. At this point we also inject anomalies.
As can be seen in Figure 8.4, in each pattern there are possible anomaly injection sites and
at generation time, the system will create anomalies there on a chance set by a constant
(25% default chance). These anomalies are either:

e Point Anomaly - Only a single instance of this message being called is anomalous.

e Collective Anomaly - Several instances of this message call are created anomalous.

e Contextual Anomaly - While several instances are created anomalous, some in the

middle are created with a normal value.
Important to know is that what constitutes an anomalous latency is currently set by constant
at five times the default runtime of the method.

By having these anomalies and patterns, a matrix is created where any kind of anomaly
is possible to be generated in any pattern. Due to the fact that each pattern is easily
distinguishable and that each anomaly is recorded, even with more patterns added it should
be possible to evaluate RanCorr or @PADx results in the future.

Experiment setup

After one successful run, there are 19 results created for each RanCorr Algorithm; trivial,
simple and advanced. These 19 values represent the threshold at which we consider an
anomaly rating from RanCorr anomalous. They start at 0.05 and increase by 0.05 until
reaching 0.95.

This is iterated thrice, once for each path described in Section 8.1.2. This step (including
the one above) is a single run generating one set of data. This in turn is iterated over several
times, depending on the amount of data desired, creating a large base of data to calculate,
for example, our True Positive and False Positive rates from. Once this is achieved, all the
necessary data has been collected for one @PADx forecasting filter.

The entire procedure is repeated for another forecasting filter. In this experiment, the
“JavaMean” forecaster will be compared to the “Extended Self-Tuning Forecasting Filter”.

89

8. Experiments and Validation

Iterate x times Iterate once
With Opad, With Opad,
With Cleanup With Cleanup

RanCorr
d d Aggregate
Results
RanCorr
Simple Aggregate
Results
RanCorr
Trivial Aggregate
Results
With Opad, With Opad,
Without Cleanup Without Cleanup
RanCorr
Advanced Aggregate
Results
RanCorr
Simple Aggregate
Results
RanCorr
Trivial Aggregate
Results
Without Opad, Without Opad,
Without Cleanup Without Cleanup
RanCorr
Advanced Aggregate
Results
RanCorr
Simple Aggregate
Results
RanCorr
Trivial Aggregate
Results

Figure 8.5. Experiment Setup and Data Aggregation
Generates data for one @PAD forecasting filter.

Variables

The following variables have been identified and are in order of magnitute of our testing.

e Threshhold - The value at which the RanCorrOffline evaluator considers an anomaly
ranking anomalous. Is iterated over 19 times for each RanCorr Algorithm.

e RanCorr Algorithm - Which algorithm was chosen, trivial, simple or advanced? Is done
thrice for each path chosen.

e Path chosen - In accordance with Figure 8.3 there are three possible paths through the
pipes-and-filters structure: No ®PADx No cleanup, with @PADx no cleanup and with
OPADx with cleanup. Is done thrice for each forecasting algorithm

e OPADx Forecasting Algorithm - Either “JavaMean” or “Extended Self-Tuning Fore-
casting” filter.

90

8.1. Experiments and validation of the Kiekeriki Backend

Data Aggregation

The data aggregation takes data generated by a large amount of runs and condenses it
into one set. This is accomplished by gathering the True Positives, True Negatives, False
Positives and False Negatives of all corresponding data into one new set. Each time the
average RanCorrAccuracy and RanCorrClearness are calculated and stored. At the very
end, the Accuracy, Precision, F-Measure, True Positive Rate and False Positive Rate are
calculated for the corresponding data set.

In this case, corresponding data refers to data sets that are run with the same setup (for
example; With Opad, Without Cleanup), are measured using the same RanCorr algorithm
(Trivial, Simple, Advanced) and are also calculated with an identical threshold.

Experiment execution

The execution of the experiment contains two phases as mentioned in Section 8.1.2, one for
each @PAD forecasting filter. For each of these, a script is run which handles the iterations
described. The default value for iterations for one forecasting filter is 100. Once all of
these have been run the data aggregator is started, condensing our results to a three set
of 19 results for each of the three RanCorr algorithms, one set for each path described in
Section 8.1.2. This data is ready for analysis and will create an overview of the quality of
RanCorr with a specific forecasting filter.

Christopher Gregorian

8.1.3 Experiment data and results
JavaMean Results

First, the aggregated results created using the “JavaMean” forecasting filter.

91

8. Experiments and Validation

Table 8.5. “JavaMean” forecasting, No @PADx No Cleanup, Advanced Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN

0.05 5 14 900 500 0 1500
0.1 5 14 900 500 0 1500
0.15 5 14 855 500 0 1545
0.2 5 13 790 500 0 1610
0.25 5 12 703 500 0 1697
0.3 5 12 699 500 0 1701
0.35 5 12 652 497 3 1748
0.4 5 10 503 441 59 1897
0.45 5 9 492 400 100 1908
0.5 5 3 0 157 343 2400
0.55 5 0 0 0 500 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

Table 8.6. “JavaMean” forecasting, No @PADx No Cleanup, Simple Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN

0.05 5 14 896 500 0 1504
0.1 5 12 616 499 1 1784
0.15 5 10 410 409 91 1990
0.2 5 7 165 400 100 2235
0.25 5 4 0 399 101 2400
0.3 5 4 0 358 142 2400
0.35 5 3 0 301 199 2400
0.4 5 3 0 300 200 2400
0.45 5 3 0 289 211 2400
0.5 5 3 0 157 343 2400
0.55 5 0 0 9 491 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

92

Table 8.7. “JavaMean” forecasting, No @PADx No Cleanup, Trivial Algorithm

8.1. Experiments and validation of the Kiekeriki Backend

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 14 896 500 0 1504
0.1 5 12 616 499 1 1784
0.15 5 10 410 409 91 1990
0.2 5 7 165 400 100 2235
0.25 5 4 0 399 101 2400
0.3 5 4 0 358 142 2400
0.35 5 3 0 301 199 2400
0.4 5 3 0 300 200 2400
0.45 5 3 0 289 211 2400
0.5 5 3 0 157 343 2400
0.55 5 0 0 9 491 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400
Table 8.8. “JavaMean” forecasting, @ PADx No Cleanup, Advanced Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 18 1300 500 0 1100
0.1 5 18 1300 500 0 1100
0.15 5 18 1300 500 0 1100
0.2 5 18 1300 500 0 1100
0.25 5 18 1300 500 0 1100
0.3 5 18 1300 500 0 1100
0.35 5 18 1300 500 0 1100
0.4 5 18 1300 500 0 1100
0.45 5 18 1300 500 0 1100
0.5 5 18 1300 500 0 1100
0.55 5 7 619 48 452 1781
0.6 5 2 178 0 500 2222
0.65 5 1 60 0 500 2340
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

93

8. Experiments and Validation

94

Table 8.9. “JavaMean” forecasting, @PADx No Cleanup, Simple Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 18 1300 500 0 1100
0.1 5 18 1300 500 0 1100
0.15 5 18 1300 500 0 1100
0.2 5 18 1300 500 0 1100
0.25 5 18 1300 500 0 1100
0.3 5 18 1300 500 0 1100
0.35 5 18 1300 500 0 1100
0.4 5 18 1300 500 0 1100
0.45 5 18 1300 500 0 1100
0.5 5 18 1300 500 0 1100
0.55 5 18 1300 500 0 1100
0.6 5 18 1300 500 0 1100
0.65 5 18 1300 500 0 1100
0.7 5 18 1255 500 0 1145
0.75 5 16 1100 500 0 1300
0.8 5 12 1085 101 399 1315
0.85 5 2 197 0 500 2203
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

Table 8.10. “JavaMean” forecasting, @PADx No Cleanup, Trivial Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 18 1300 500 0 1100
0.1 5 18 1300 500 0 1100
0.15 5 18 1300 500 0 1100
0.2 5 18 1300 500 0 1100
0.25 5 18 1300 500 0 1100
0.3 5 18 1300 500 0 1100
0.35 5 18 1300 500 0 1100
0.4 5 18 1300 500 0 1100
0.45 5 18 1300 500 0 1100
0.5 5 18 1300 500 0 1100
0.55 5 18 1300 500 0 1100
0.6 5 18 1300 500 0 1100
0.65 5 18 1300 500 0 1100
0.7 5 18 1255 500 0 1145
0.75 5 16 1100 500 0 1300
0.8 5 12 1085 101 399 1315
0.85 5 2 197 0 500 2203
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

8.1. Experiments and validation of the Kiekeriki Backend

Table 8.11. “JavaMean” forecasting, @PADx Cleanup, Advanced Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 12 893 500 0 1507
0.1 5 11 736 441 59 1664
0.15 5 11 712 415 85 1688
0.2 5 11 700 400 100 1700
0.25 5 11 700 400 100 1700
0.3 5 11 700 400 100 1700
0.35 5 11 700 400 100 1700
0.4 5 11 700 400 100 1700
0.45 5 11 700 400 100 1700
0.5 5 2 151 87 413 2249
0.55 5 0 0 0 500 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

Table 8.12. “JavaMean” forecasting, @PADx Cleanup,

Simple Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 12 709 498 2 1691
0.1 5 11 700 400 100 1700
0.15 5 11 700 400 100 1700
0.2 5 11 700 400 100 1700
0.25 5 11 700 400 100 1700
0.3 5 11 700 400 100 1700
0.35 5 11 700 386 114 1700
0.4 5 8 635 111 389 1765
0.45 5 3 192 96 404 2208
0.5 5 1 121 39 461 2279
0.55 5 1 18 0 500 2382
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

95

8. Experiments and Validation

96

Table 8.13. “JavaMean” forecasting, @PADx Cleanup, Trivial Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 12 709 498 2 1691
0.1 5 11 700 400 100 1700
0.15 5 11 700 400 100 1700
0.2 5 11 700 400 100 1700
0.25 5 11 700 400 100 1700
0.3 5 11 700 400 100 1700
0.35 5 11 700 386 114 1700
0.4 5 8 635 111 389 1765
0.45 5 3 192 96 404 2208
0.5 5 1 121 39 461 2279
0.55 5 1 18 0 500 2382
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

8.1. Experiments and validation of the Kiekeriki Backend

Extended Self-Tuning Forecast Results

The data measured using the Self-Tuning Forecast.

Table 8.14. “Extended Self-Tuning” forecasting, No @PADx No Cleanup, Advanced Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 14 900 500 0 1500
0.1 5 14 900 500 0 1500
0.15 5 14 843 500 0 1557
0.2 5 13 784 500 0 1616
0.25 5 12 702 500 0 1698
0.3 5 12 700 500 0 1700
0.35 5 12 633 495 5 1767
0.4 5 10 503 428 72 1897
0.45 5 9 492 400 100 1908
0.5 5 3 0 136 364 2400
0.55 5 0 0 0 500 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400
Table 8.15. “Extended Self-Tuning” forecasting, No ®@PADx No Cleanup, Simple Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 14 899 500 0 1501
0.1 5 12 592 498 2 1808
0.15 5 9 386 407 93 2014
0.2 5 7 135 400 100 2265
0.25 5 4 0 399 101 2400
0.3 5 4 0 352 148 2400
0.35 5 3 0 303 197 2400
0.4 5 3 0 300 200 2400
0.45 5 3 0 282 218 2400
0.5 5 3 0 136 364 2400
0.55 5 0 0 4 496 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

97

8. Experiments and Validation

Table 8.16. “Extended Self-Tuning” forecasting, No @PADx No Cleanup, Trivial Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN

0.05 5 14 899 500 0 1501
0.1 5 12 592 498 2 1808
0.15 5 9 386 407 93 2014
0.2 5 7 135 400 100 2265
0.25 5 4 0 399 101 2400
0.3 5 4 0 352 148 2400
0.35 5 3 0 303 197 2400
0.4 5 3 0 300 200 2400
0.45 5 3 0 282 218 2400
0.5 5 3 0 136 364 2400
0.55 5 0 0 4 496 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

Table 8.17. “Extended Self-Tuning” forecasting, @PADx No Cleanup, Advanced Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN

0.05 5 11 700 400 100 1700
0.1 5 11 700 386 114 1700
0.15 5 10 700 331 169 1700
0.2 5 10 700 306 194 1700
0.25 5 10 699 297 203 1701
0.3 5 9 645 257 243 1755
0.35 5 2 422 123 377 1978
0.4 5 1 155 7 493 2245
0.45 5 0 38 0 500 2362
0.5 5 0 0 0 500 2400
0.55 5 0 0 0 500 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

98

Table 8.18. “Extended Self-Tuning” forecasting, @PADx No Cleanup, Simple Algorithm

8.1. Experiments and validation of the Kiekeriki Backend

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 10 700 315 185 1700
0.1 5 9 667 302 198 1733
0.15 5 0 87 0 500 2313
0.2 5 0 0 0 500 2400
0.25 5 0 0 0 500 2400
0.3 5 0 0 0 500 2400
0.35 5 0 0 0 500 2400
0.4 5 0 0 0 500 2400
0.45 5 0 0 0 500 2400
0.5 5 0 0 0 500 2400
0.55 5 0 0 0 500 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

Table 8.19. “Extended Self-Tuning” forecasting, @PADx No Cleanup, Trivial Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN
0.05 5 10 700 315 185 1700
0.1 5 9 667 302 198 1733
0.15 5 0 87 0 500 2313
0.2 5 0 0 0 500 2400
0.25 5 0 0 0 500 2400
0.3 5 0 0 0 500 2400
0.35 5 0 0 0 500 2400
0.4 5 0 0 0 500 2400
0.45 5 0 0 0 500 2400
0.5 5 0 0 0 500 2400
0.55 5 0 0 0 500 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

99

8. Experiments and Validation

Table 8.20. “Extended Self-Tuning” forecasting, @PADx Cleanup, Advanced Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN

0.05 5 11 722 459 41 1678
0.1 5 11 701 410 90 1699
0.15 5 11 700 403 97 1700
0.2 5 11 700 382 118 1700
0.25 5 10 700 359 141 1700
0.3 5 10 700 324 176 1700
0.35 5 10 699 307 193 1701
0.4 5 10 697 301 199 1703
0.45 5 10 685 300 200 1715
0.5 5 1 121 0 500 2279
0.55 5 0 0 0 500 2400
0.6 5 0 0 0 500 2400
0.65 5 0 0 0 500 2400
0.7 5 0 0 0 500 2400
0.75 5 0 0 0 500 2400
0.8 5 0 0 0 500 2400
0.85 5 0 0 0 500 2400
0.9 5 0 0 0 500 2400
0.95 5 0 0 0 500 2400

Table 8.21. “Extended Self-Tuning” forecasting, @PADx Cleanup, Simple Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN

0.05 5 11 698 411 89 1702
0.1 5 10 698 320 180 1702
0.15 5 10 697 303 197 1703
0.2 5 10 693 301 199 1707
0.25 5 10 666 301 199 1734
0.3 5 9 614 300 200 1786
0.35 5 6 596 232 268 1804
0.4 5 5 514 7 493 1886
0.45 5 1 158 1 499 2242
0.5 5 0 87 1 499 2313
0.55 5 0 22 1 499 2378
0.6 5 0 9 1 499 2391
0.65 5 0 7 1499 2393
0.7 5 0 4 1 499 2396
0.75 5 0 3 0 500 2397
0.8 5 0 2 0 500 2398
0.85 5 0 2 0 500 2398
0.9 5 0 1 0 500 2399

100

8.1. Experiments and validation of the Kiekeriki Backend

Table 8.22. “Extended Self-Tuning” forecasting, @PADx Cleanup, Trivial Algorithm

Threshhold Expected Anomalies Found Anomalies FP TP FN TN

0.05 5 11 698 411 89 1702
0.1 5 10 698 320 180 1702
0.15 5 10 697 303 197 1703
0.2 5 10 693 301 199 1707
0.25 5 10 666 301 199 1734
0.3 5 9 614 300 200 1786
0.35 5 6 596 232 268 1804
0.4 5 5 514 7 493 1886
0.45 5 1 158 1 499 2242
0.5 5 0 87 1 499 2313
0.55 5 0 22 1 499 2378
0.6 5 0 9 1 499 2391
0.65 5 0 7 1 499 2393
0.7 5 0 4 1 499 2396
0.75 5 0 3 0 500 2397
0.8 5 0 2 0 500 2398
0.85 5 0 2 0 500 2398
0.9 5 0 1 0 500 2399
0.95 5 0 0 0 500 2400

Christopher Gregorian

RanCorr Evaluation

In order to evaluate the results of RanCorr we built two new filters (see Figure 8.6):

Offtine FEvaluator is implemented in the class RanCorr0fflineEvaluator which has two
input ports to get the RanCorr results as an object of the class RanCorrQOutput and to
get the expected anomalies as objects of the class AnomalyTimeStampOut. These values
are compared and the following metrics are calculated: number of found anomalies for
the thresholds in range between +0.05 and +1.0 with step size of 0.05, number of false
positives (FP), number of true positives (TP), number of false negatives (FN), number of
true negatives (TN), statistical accuracy (8.1), statistical precision (8.2), statistical recall
(8.3) and statistical F measure (8.4). Additionally we calculate the special accuracy (8.5)
and clearness (8.6) of RanCorr based on Marwede et al. [2009]. The output of that filter is
an object of the class RanCorr0fflineEvaluationResult which contains all calculated
metrics.

Online Fvaluator is implemented in the class RanCorrOnlineEvaluator which has one input
port to get the RanCorr results as an object of the class RanCorrQOutput. Since we assume
during the online evaluation that we do not have any information about the expected
anomaly values, not all metrics of the offline evaluation can be calculated in the online
evaluation. Therefore we calculate in the online evaluation just the number of found
anomalies for the thresholds in range between +0.05 and +1.0 with step size of 0.05.

101

8. Experiments and Validation

Additionally we add the concrete anomaly rankings to the output. The output of that
filter is an object of the class RanCorrOnlineEvaluationResult.

The offline evaluation is used during the experiments, in which the anomalies were injected
automatically by our experiment framework and the information about the anomalies is
known and accessible. Then it is possible to calculate metrics about how good the approach
works. The online evaluation is used during live execution of Kiekeriki to get the information
about the calculated anomaly ranking and how much anomalies were identified.

102

) B TP + TN
CUTAY = T T FP + FN + TN
Provision e TP
recitsion .— 7TP + FP
TP
= —=——
Reca TP £ TN

precision * recall
F Measure :==2 =

precision + recall

{r1, ..., rn}: anomaly rankings
r;: anomaly ranking of root cause operation
rank(r;): position of ranking in ordered list

_ k(r:
RanCorrAccuracy({r1,...,mn}) := n rank(r;)

j: component with highest anomaly ranking

(n—1)

RanCorrClearness({r1,...,mn}) := — "
rar:;ck(r) + 1
k=1k+# k

(8.1)
(8.2)
(8.3)

(8.4)

Yannic Noller

8.1. Experiments and validation of the Kiekeriki Backend

Figure 8.6. The two classes RanCorrOfflineEvaluator and RanCorrOnlineEvaluator implement
the offline and online evaluation filters of the RanCorr approach. Both consume the RanCorr output,
but only the offline filter assumes that there are information about the expected anomaly values. Ad-
ditionally the online filter returns also the actual anomaly ranking information. The results are stored
in objects of the classes RanCorr0fflineEvaluationResult and RanCorrOnlineEvaluationResult.

103

8. Experiments and Validation

8.1.4 Analysis of the experiment results

Shown in 8.23 is an example of how the data is analyzed. Not all eightteen tables are
on display here for brevity, but each table is calculated in the exact same way. The one
table displayed here represents Table 8.11. The data is calculated in Section 8.1.3. The
ranCorrClearness is the same for entire table and can only be compared between tables.
Unfortunately, there appears to be an error in the RanCorr Accuracy calculation and the
value has therefore not been included.

Table 8.23. Analysed data, “JavaMean”, Opad And Cleanup, Advanced Algorithm

C?,)O

& ‘? e,

‘.. ﬂoo % 4?@ /oe
R2 % % "%, “ %, %
% 3 7 ‘o U % %
0.3615329 0.69551724 0.3615329 0.361532899 0.244726433 0.367916667 1
0.3732003 0.72482759 0.37320932 0.37329932 0.244726433 0.307083333 0.878
0.36875 0.7262069 0.36875 0.36875 0244726433 0.204583333 0.826
0.3642144 0.72448276 0.36421435 0.364214351 0.244726433 0.201666667 0.802
0.3636364 0.72413793 0.36363636 0.363636364 0.244726433 0.291666667 0.8
0.3636364 0.72413793 0.36363636 0.363636364 0.244726433 0.291666667 0.8
0.3636364 0.72413793 0.36363636 0.363636364 0.244726433 0.201666667 0.8
0.3636364 0.72413793 0.36363636 0.363636364 0.244726433 0.201666667 0.8
0.3636364 0.72413793 0.36363636 0.363636364 0.244726433 0.201666667 0.8
0.4 0.81172414 0.4 0.4 0.244726433 0.0575 0.184
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0
0 0.82758621 0 0 0.244726433 0 0

There are several ways that one can analyse this data. One of the most useful for this
kind of data is the Receiver Operating Characteristic Curve, or the ROC-Curve, calculated
by comparing the True Positive Rate and False Positive Rate. Each point on the ROC-Curve
is the data measured with a different threshold for RanCorr.

104

8.1. Experiments and validation of the Kiekeriki Backend

JavaMean forecasting algorithm results

For the “JavaMean” forecasting algorithm, the following graphs; Figure 8.7, Figure 8.8 and
Figure 8.7 represent the quality of each test.

105

8. Experiments and Validation

RanCorr Results w/o Opad w/o Cleanup

—e— AdvancedAlgorithm

SimpleAlgorithm

Achsentitel

& Triviallgorithm

= Random

01 0.2 0.3 0.4 05 0.6 0.7 08 09 1
Achsentite

Figure 8.7. ROC Curve for Run with No Opad, No Cleanup, JavaMean Forecasting

Visible in Figure 8.7 is the clear high quality of the results. When the generated anomaly
scores are given to RanCorr, it is quite clear that anomalies are easily detected. We have
a very high true positive rate and a low false positive rate. It is important to note that
the generated anomaly scores are more easily distinguished in general as an anomaly is
marked with a high anomaly score. This diagram shows that if given clear values, RanCorr is
capable of identifying anomalies and assigning proper anomaly rankings with a high degree
of accuracy. All three RanCorr algorithms are on display here, however in all instances, the
simple and trivial algorithms return the exact same data. In this particular setting, the
trivial and simple algorithms actually outperform the advanced algorithm, but that was to
be expected as anomalies are clearly marked by anomaly scores.

106

8.1. Experiments and validation of the Kiekeriki Backend

RanCorr Results w/ Opad w/o Cleanup

1 . .

—s— AdvancedAlgorithm

Achsentital

Smpleflgorithm

e Trivizhlgorithm

Random

01 02 03 04 05 06 07 08 09 1
Achsentite

Figure 8.8. ROC Curve for Run with Opad, No Cleanup, JavaMean Forecasting

Figure 8.8 shows a clear drop in accuracy in comparison to the data that is generated
without @PADx. Much of the data is actually on the 0 line for true positive rate, meaning
that none of the injected anomalies were actually detected. Only after the threshold is set
high enough does the true positive rate eventually rise over the line indicating random chance.
This is attributed to the fact that without cleanup, @PADx returns a dataset with a latency
of 0 and an anomaly score of 1 for each timeframe in which a method is not detected. While
this is in fact desired to capture the anomaly of a program not running at all anymore, it
does significantly skew our results. Therefore, for Figure 8.7 the data has been sanitized by
removing these sets of data. Also of note here is that all three of the algorithms perform
equally poor under this setup.

107

8. Experiments and Validation

RanCorr Results w/ Opad w/ Cleanup

—a— AdvancedAlgorithm
SmpleAlgorithm

e Triviallgorithm

True Positive Rate

Random

01 0.2 0.3 0.4 05 0.6 0.7 08 09 1

False Positive Rate

Figure 8.9. ROC Curve for Run with Opad, with Cleanup, JavaMean Forecasting

As already mentioned, this graph displays the sanitized data. The reasoning for this
removal of data is explained in Section 8.1.2. It is immediatly clear that the accuracy of
the system is increased as compared to the non sanitized data. Again it seems the trivial
and simple RanCorr algorithms return the exact same results. It is also appears that the
Advanced algorithm outperforms the other two for the most part, never dropping beneath
the random chance line.

108

8.1. Experiments and validation of the Kiekeriki Backend

Also a relevant comparison is the RanCorrClearness as defined in Section 8.1.3.

Table 8.24. RanCorr Clearness

Path Algorithm RanCorr Clearness

No Opad No Cleanup Advanced Algorithm 0.259349077
Simple Algorithm 0.330827808

Trivial Algorithm 0.330827808

Opad No Cleanup Advanced Algorithm 0.265431363
Simple Algorithm 0.277243307

Trivial Algorithm 0.277243307

Opad with Cleanup Advanced Algorithm 0.242408967
Simple Algorithm 0.275840536

Trivial Algorithm 0.275840536

As can be seen, in each case the RanCorr accuracy is lower for the advanced algorithm
than for the others, and the other two are again identical. The clearness is a measure taken

from Marwede et al. [2009].

109

8. Experiments and Validation

Extended Self-Tuning forecasting algorithm results

ROC Curves are again useful indicators of how well a setup has performed.

RanCorr Results w/o Opad w/o Cleanup

—e—AdvancedAlgorithm

SmpleAlgorithm

Achsentitel

e Triviahlgorithm

Random

01 0.2 0.3 0.4 05 086 0.7 0.8 0.9 1

Achsentite

Figure 8.10. ROC Curve for Run with No Opad, No Cleanup, Self-Tuning Forecasting
Figure 8.10 can be compared to Figure 8.7. As can easily be seen, these two graphs are

very similar. This is intended, as in the generation of data for both, no @PADx was involved.
These two exist to allow comparison between using @PADx and not using it.

110

8.1. Experiments and validation of the Kiekeriki Backend

RanCorr Results w/ Opad w/o Cleanup

—e— AdvancedAlgorithm

SimpleAlgorithm

Achsentital

e Trivialigorithm

= Random

01 02 03 04 05 06 07 %3 09 1
Achsentite

Figure 8.11. ROC Curve for Run with Opad, No Cleanup, Self-Tuning Forecasting

Figure 8.11 should be compared to both Figure 8.10 and Figure 8.8. When compared to

the first, we see a clear degradation of accuracy. We have a overall decreased True Positive
rate and an increased false positive rate. Similar to using the “JavaMean” forecasting filter,
this is to be expected as self generated anomaly scores are higher and segregated clearer
from the surrounding non-anomalies.
When we compare Figure 8.11 to Figure 8.8 we can see a clear difference between the two.
Whereas the first has a lower general False Positive Rate, it also has a lower True Positive
Rate. At this point, mere visual comparison is not sufficient, so an alternative is comparing
the area under the curve for each RanCorr algorithm in each setup for each forecasting filter.
This will be done in Section 8.1.4.

111

8. Experiments and Validation

RanCorr Results w/ Opad w/ Cleanup

—e— AdvancedAlgorithm
SmpleAlgorithm

o Trivisllgorithm

True Positive Rate

Random

01 02 03 04 05 06 07 08 09 1

FalsePositive Rate

Figure 8.12. ROC Curve for Run with Opad, with Cleanup, Self-Tuning Forecasting

Comparing Figure 8.12 with Figure 8.11 shows a similarity that makes it difficult to
distinguish which is performing better. Again, a direct comparison can be drawn using the
area under curve in Section 8.1.4.

More definite is the difference between Figure 8.12 and Figure 8.9. It is immediatly visible that
the Self-Tuning forecaster seems to do worse in this situation as opposed to the “JavaMean”
forecaster. While an area under the curve comparison is necessary the graph speaks for itself.

112

8.1. Experiments and validation of the Kiekeriki Backend

Direct Comparison

For a numerical comparison of ROC Curves, the area under the curve is a useful tool. The
area under the curve signifies the quality of the given values. A result of 1.0 would be a
perfect result, 0.5 would be random chance and 0.0 would be completely terrible.
Unfortunately in this case, the plots created do behave slightly different than a regular rock
curve. A simple example of this is that they do not end at 1.0 True Positive Rate and 1.0
False Positive Rate. Therefore, there is the question of what to do with the extra space at
the end if we want to compare the different results received.
To counteract this, three area under the curves are calculated.
e Direct - Only the area exactly under the curve is considered. The starting point for the
X axis is 0.0 and the ending point is the maximum value for X existing. See Figure 8.13
e Completed - An additional plot point is layed at coordinates 1.0, 1.0 for each curve.
The area under the curve is then complete.
e Cut-Off. Again, the starting point for the X axis is 0.0 but the endpoint is 1.0. The
starting point for the Y axis is 0.0 and the end point for the Y axis is the highest value
of Y. The area is then calculated.

RanCorr Results w/ Opad w/ Cleanup

—e—AdvancedAlgorithm

True Positive Rate

False Positive Rate

Figure 8.13. Example of direct area under curve.

113

8. Experiments and Validation

True Positive Rate

09

08

07

e
S

]
n

e
=

03

02

01

01

RanCorr Results w/ Opad w/ Cleanup

02 03 0.4 05 06 07 08 09
False Positive Rate

—e—AdvancedAlgorithm

114

Figure 8.14. Example of completed area under curve.

8.1. Experiments and validation of the Kiekeriki Backend

True Positive Rate

09

08

07

o
ES

o
n

o
s

03

02

01

0.1

0.2

RanCorr Results w/ Opad w/ Cleanup

—e—AdvancedAlgorithm

03 04 05 06 07 (X3 09 1

False Positive Rate

Figure 8.15. Example of cut-off area under curve.

115

8. Experiments and Validation

Considering these different calculations for area under the curve, these are the results:

Table 8.25. Area under the curve, Direct

No Opad No Cleanup Opad No Cleanup Opad Cleanup

Self Tuning
Advanced 0.2748 0.0628 0.0822
Simple 0.3347 0.0815 0.0345
Trivial 0.3347 0.0815 0.0345
Java Mean
Advanced 0.2795 0.1643 0.1911
Simple 0.3320 0.1245 0.0607
Trivial 0.3320 0.1245 0.0607
Table 8.26. Area under the curve, Completed
No Opad No Cleanup Opad No Cleanup Opad Cleanup
Self Tuning
Advanced 0.8998 0.7712 0.7814
Simple 0.9601 0.7898 0.7437
Trivial 0.9601 0.7898 0.7437
Java Mean
Advanced 0.9045 0.6226 0.8190
Simple 0.9587 0.5828 0.7653
Trivial 0.9587 0.5828 0.7653
Table 8.27. Area under the curve, Cut-Off
No Opad No Cleanup Opad No Cleanup Opad Cleanup
Self Tuning
Advanced 0.8998 0.6295 0.7241
Simple 0.9601 0.5277 0.6175
Trivial 0.9601 0.5277 0.6175
Java Mean
Advanced 0.9045 0.6226 0.8190
Simple 0.9587 0.5828 0.7625
Trivial 0.9587 0.5828 0.7625

Each of the tables Table 8.27, Table 8.26 and Table 8.25 should stand as a fair comparison
between the parameters that have been chosen in Section 8.1.2 except for the threshold.

116

8.1. Experiments and validation of the Kiekeriki Backend

The threshold is contained within each of these results already and is iterated over in an
identical fashion in each individual result. Represented are the path chosen (as described in
Section 8.1.2), the forecasting algorithms and the RanCorr algorithms.

What should be noted is that the “Direct” approach to the area under the curve does not
give us a useful result. In a ROC curve, an area under the curve of 0.5 is considered the be
the score that a random choice algorithm would score. Yet, despite that in the diagrams it
can cleary be seen that the results are significantly over the random line, the score in the
“Direct” area under the curve measurement does not reflect this in Table 8.25. Therefore this
is not a useful measurement.

The “Cut-Off” method delivers what can be considered the worst case scenario. If future
measurements delivered results that would only increase the False Positive Rate with a static
True Positive Rate. The alternative would be the best scenario, where the True Positive
Rate would climb to one without the False Positive Rate increasing.

Therefore, the “Completed” method would deliver an average result, between best and worst
case, where both the True Positive and the False Positive rates approached 1.0. We can
consider both the “Completed” and the “Cut-Off” methods to return useful data.

Christopher Gregorian

117

8. Experiments and Validation

8.1.5 Conclusion

The goal of the entire experiment setup was to answer the questions posed in Section 8.1.1.
Therefore it is fitting to look how our results answer each individual question.

Question 1.1

How well does Kiekeriki find injected anomalies?

To discuss the quality of anomaly detection, one should turn to the area under the curve
method. Table 8.26 and Table 8.27 display values for several areas under the curve.

When no @PADx is used at all, the area under the curve stands near or above 0.9, showing
a very good result. When @PADx is generating anomaly scores, a marked drop in results is
clearly visible. In the worst case (Cut-Off area under the curve Table 8.27) the result stands
between 0.52 and 0.63 at a score much closer to random. This is a very poor result and
stems mostly from the fact that, as discussed in Section 8.1.2, @PADx will generate high
anomaly scores of 1.0 for times when a method is not detected at all.

However, when these anomalies are removed (under “Opad Cleanup”) and only the intended
anomalies remain, the detection rate climbs quite steadily. From 0.61 in the worst case to 0.81.
Und what is considered an average case, the result is between 0.74 and 0.81 (Table 8.26).
By assessing these results, it is clear that Kiekeriki can detect anomalies quite well and
the low scores under “Opad No Cleanup” stem not from Kiekeriki itself, but from a known
problem with the data generation.

Question 1.2

How does the RanCorr algorithm type affect the output?

One of the most obvious conclusion that can be drawn is that apparently the Simple and
Trivial algorithms are not in any way different. Whether this is a flaw in the algorithms
themselves, the data generation or the implementation is unknown. The results however are
identical for every single run.

As for the difference between the Advanced algorithm and the others it is again necessary to
look at the worst case scenario Table 8.27. It is shown that when no @PADx is running, the
Simple/Trivial algorithms outperform the Advanced algorithm by a margin of 0.06 or 6%.
However, once ®@PADxis used in either its native or cleaned up form, the Advanced algorithm
outperforms its counterpats by 10% or more. In the average case (Table 8.26) the difference
becomes more subtle with only 3.7%. The conclusions that can be drawn are quite simple.
The implementations of the Trivial and Simple algorithms will perform exactly identical
each time and in the relevant scenario (@PADx creating data) the Advanced algorithm will
outperform the others by a sizeable margin or be just about equal in performance.

118

8.1. Experiments and validation of the Kiekeriki Backend

Question 1.3

How do differing thresholds and configurations change our anomaly detection?

Looking further back at Section 8.1.3 it can be seen that depending on the situation, the
different thresholds will return very different results. To evaluate these properly, it is necessary
to find the best True Positive Rate to False Positive Rate Ratio, the larger the ratio the
better.

Table 8.28. Best Thresholds for each setup

No Opad No Cleanup Opad No Cleanup Opad Cleanup

Java Mean Advanced 0.40 NONE 0.10
Simple 0.20 0.75 0.05
Trivial 0.20 0.75 0.05
Self-Tuning Advanced 0.40 0.05 0.05
Simple 0.20 0.10 0.05
Trivial 0.20 0.10 0.05

While difficult to judge the best overall threshold in Table 8.28, it is most likely that the
ones under the column “Opad Cleanup” the most useful ones, as theser are the most realistic
conditions.

Question 1.4

What results does the new Self-Tuning algorithm deliver?

Determined by data in Table 8.26 and Table 8.27 (worst case scenario) it can be said that
the implementation of the Self-Tuning algorithm still requires some work. The two relevant
columns are “Opad No Cleanup” and “Opad Cleanup” since “No Opad No Cleanup” is
irrelevant here. Mostly the Self-Tuning forecaster performs similar to the “JavaMean” filter,
yet in one instance (“Opad Cleanup”) it underperforms significantly by almost 9% with the
Advanced Algorithm. The other negative is that in the situation “Opad No Cleanup” it
actually outperformed the “JavaMean” forecaster. Unfortunately, it would be expected to
performy poorly here since a large amount of unwanted anomalies are injected by the data
generation (datasets with 0.0 latency and 1.0 anomaly score). These erronous anomalies
should have skewed the result much further. Clearly, this implementation of the Self-Tuning
forecaster is not complete.

Question 2.1

What impact does using @PADx have as opposed to using self generated test data with
anomaly scores?

The answer to this question is quite simple. Looking at either Table 8.26 and Table 8.27
and comparing the “No Opad No Cleanup” column to either “Opad No Cleanup” or “Opad

119

8. Experiments and Validation

Cleanup” will quickly reveal that the area under the curve is much larger for the first. The
reasons for this are quite simply that any anomalies are very clearly offset from non-anomalous
data. Therefore it is much easier for RanCorr to identify them.

Quesiton 2.2

How does post-processing @PADx data for clarity change the outcome?

The answer can be clearly seen by studying Table 8.27. By comparing the two columns
“Opad No Cleanup” and “Opad Cleanup” the difference is quite clear. With the Self-Tuning
forecaster an improvement of about 9% is made. Wheras with the “JavaMean” forecaster an
astonishing 17% to 19% improvement is made. Clearly, removing the faulty anomalies has
created a much better result.

Christopher Gregorian

8.2 Benchmarks of the Database Connections

This section describes the benchmarks of the database connections of the Kiekeriki Frontend
and Backend, how to conduct it, the evaluation and which consequences can be derived from
these results.

8.2.1 Evaluation Goals

The benchmarks of the database connections should validate the goals described in the
Figures 8.16 and 8.17 and the Tables 8.29 and 8.30.
Table 8.29. Goal 1: write throughput

Goal G1 High write throughput from the Kieker Backend to the Transfer
Database

Purpose Prediction of the writing throughput from the Backend to the
Transfer Database

Issue Performance

Object Database connection of the Frontend to the Transfer Database

Viewpoint Developer

Question Q1.1 Which is the average latency of writing one measurement to
the database?
Q1.2 Which is the average latency of writing the most expensive

measurement to the database?

120

8.2. Benchmarks of the Database Connections

Table 8.29. Goal 1: write throughput

Goal G1 High write throughput from the Kieker Backend to the Transfer
Database

Q1.3 Which is the average latency depending on the batch size of
the writing of multiple measurements to the database?

Q1.4 Which is the average latency depending on the batch size of
the writing of multiple of the most expensive measurement to
the database?

Metrics M1 Latency in milliseconds
Question Q1.5 Which average writing throughput can the database handle
with all inputs in one second?

Q1.6 Which average writing throughput can the database handle
with the most expensive input in one second?

Metrics M2 Number of write executions per second
G1
High write
throughput
Ql.l Q1.2 Q13 Ql.4 Ql.s Ql.6
Average latency of average latency of average latency average latency depending on average writing average writing
writing one writing the most depending on the batch the batch size of the writing of throughput with throughput with the
measurement expensive size of the writing of multiple of the most expensive allinputs in one most expensive input
measurement multiple measurements measurement second in one second
M1 M2
Latency in Write executions
milliseconds per second

Figure 8.16. Goal 1: write throughput

121

8. Experiments and Validation

Table 8.30. Goal 2: read throughput

Goal G2 High read throughput from the Kieker Frontend to the Transfer
Database

Purpose Prediction of the reading throughput from the Frontend to the
Transfer Database

Issue Performance

Object Database connection of the Frontend to the Transfer Database

Viewpoint Developer

Question Q2.1 Which is the average latency of reading one information from
the database?
Q2.2 Which is the average latency of reading the most expensive
information from the database?
Metrics M1 Latency in milliseconds

G2
High read throughput

Q2.1 Q2.2 Q2.3 Q2.4
average latency of average latency of average reading average reading
reading one reading the most throughput with throughput with the most
information expensive all information in expensive information in
information one second one second
M1 M3
Latency in Read executions
milliseconds per second

Figure 8.17. Goal 2: read throughput

Christian Endres

8.2.2 Experimental Design

This section describes how to build experiments which provide data to answer the questions
defined in 8.3.1. To acquire the data on which the questions can be answered, there is an
application which uses the Transfer Database in an automated, randomized way and writes
the data into files which are analysed in section 8.2.3 and 8.2.4.

122

8.2. Benchmarks of the Database Connections

Hardware setup

The project uses a server at the data center of the Hetzner Online AG for the experiments.
The Hetzner server has an Intel®Core 17-920 Quadcore processor, 48 GB DDR3 RAM and
two 2 TB SATA 3Gb/s Enterprise HDDs in a raid 1 configuration.

Software setup

The Hetzner server runs a Debian 3.2.51-1 x86_ 64 GNU/Linux, Java version 1.7.0_51 and a
MySQL-Server 5.5.35.

Experimental setup

To answer the questions of 8.3.1, there is a load driver (see 7.4) which stresses the database.
The load driver uses one connection to the database and has the (slightly adjusted) methods
of the Kieker Backend and the Kieker Frontend. The load driver is executed on the same
Hetzner server as the Transfer database and the application server on which the Kieker
Frontend is running.

Benchmark execution

For the execution of the benchmarks the KiekerTransferDBDataGenerator uses a bench-
marking framework [Boyer, 2008a,b,c] which agrees with [Georges et al., 2007] about how
to conduct statistically rigorous benchmarks of Java applications. The framework cares for
everything like the heating phase before the measurements for example. A benchmark exe-
cutes exactly 60 measurements rounds with multiple single measurements each round. If the
compiling time differs, the benchmark framework restarts and starts another 60 measurement
rounds until all runs without any cause for restart again.

Christian Endres

8.2.3 Analysis of the Benchmark Results for the Kiekeriki Backend

Figure 8.18 shows the latencies of each method which writes to the Transfer Database. Each
method has many outliers which can be even 10 times higher than the median. This can be
a result of many different system behaviors which the benchmark was still prone to. Thus
the questions Q1.1 cannot be answered definitely. Question Q1.2 asks for the most expensive
write operation, which cannot be determined, too. The medians of each writing method are
nearly the same and the box plots show that the second and third percentiles are overlapping.

The question Q1.3 can be answered for higher batch sizes by the Figure 8.19 and Table 8.31,
though the measurements are prone to the outliers. This is the result of the high standard
deviation of the write executions as learned from the single write benchmarks. The values of
the column set “Mean per data set” indicates a decreasing mean execution time per data set
for increasing batch size. Though the measurements with a batch size of 50 contradicts. The

123

8. Experiments and Validation

Boxplot of execution time in milliseconds to single input of data

o o o © ®O 000 00 @ ®® O ®® OWO GNDINIIIINNNT0000000 0000000000000 === =========-f oo
®@o o ® a 0 ®O0 O ® ® o ooo --
o ®OCO ® 00O O ®OOO @ 000 O 0 oo _v
o o o o oo o o ao 0o @ @O aID O G GIC0C0000 00000000000 O ooooooooo_v A_ooooooo
o oo oo o © 0 0 O 00 @WOWO @O 0000 OOGDANDO AN UNOINNNNNNNT0000000000 | = = === ========1 | femmmmmeee A_
o o o oo ©o0O® @O O O O O ®O®D 00 0000000 000 ooo_v... ..l_ooooo
o o ® 00 ®o o oo o o@ oo o 0000 00 ® ®O oaD vv.. yyyyyy AA
o @ o oo coo@o o ® ° 0 oo O ap o@ o gggﬂogooooooooooooooooo-v 1_
o o o ®o 000 0o o® o © 00 © O @D @PO @AW CIINND CION0OC000000000000000000000000 oo_v AAooooooo
T T T T
Q Q =) Q
S S 3 3
© S S
Spuodasi|jiw

peoT demg e ajupy

80UBLIN0OQ SOBIPIOBIS B SJUM

UOISSaS € BJIM

peoT Alowsy e AL

fouaje e ajupp

Peo1 NdO B 8jm

uooesuel| sseuisng e ajlA

21005 Alewouy ue sjupm

sjuey Ajewouy ue ajupm

Figure 8.18. Write benchmark of each write methods with a single data set

124

8.2. Benchmarks of the Database Connections

B lot of tion time in milli ds to batch size
50000 |
°
o
8
20000
10000
5000 —
o
-
—2 —
e
2000
Py
8
s
8
F 1000 —9—.
S
—
o
500 °©
o : i
8
e
8
° °
o
° 8
200 | 8
o
) °
8
8 o
2 8
100 E
9
50 : i
|
PR
T T T T T T T
e 2 8 2 =] g
8 8 © o 8 ° -
@ ® N N @ N o
» @ » g

Figure 8.19. Write benchmark of all write methods with large data set sizes

125

8. Experiments and Validation

measurements with the batch sizes of 50, 10,000 and 100,000 hypothesise different system
behaviors like optimization for specific batch sizes than the other measurements.

The questions Q1.4 and Q1.6 cannot be answered because it could not be determined
which is the most expensive write operation.

The question Q1.5 can be answered by the figure 8.19 which indicates a batch size of 250
data sets is very near the optimum. For further investigation of the best batch size there has
to be specified if there are outliers with higher execution times are allowed and if yes how
many.

Table 8.31. Write benchmark results of all write methods with large data set sizes, values are
measured in milliseconds.

?, Q,) £
? %, % %
S 4 % o
&S’(O {.Q' "Q'
2y A L, U %
9 . 47@ c» ®)
% % % % Y
10 42 49517 27513 4.2 4.952
50 58 65.843 30.933 1.16 1.317
100 383 392.392 38.606 3.83 3.924
250 889 906.717 60.814 3.556 3.627

1,000 3446.5 3472.483 117.546 3.447 3.472
10,000 3693.5 3742.033 132.864 0.369 0.374
100,000 38577.5 36157.317 4647.078 0.386 0.362

Christian Endres

8.2.4 Analysis of the Benchmark Results for the Kiekeriki Frontend

The table 8.32 shows the results of the analysis of the benchmark data of the Kiekeriki
Frontend. Each functionality represents a method in the database connection to the Transfer
Database which retrieves the requested data and processes it into the internal data model.
The data row shows how much data is stored in the database when the benchmark was
run. Its number indicates a multiple of 1,000 data sets which is retrievable for each method
except the branch to the root, raw data field description and raw data select statements
functionality which always return the same number of results and could only be slowed down
by the overall database size. The values are measured in milliseconds.

126

8.2. Benchmarks of the Database Connections

Table 8.32. Statistics of the read functionality of the Kiekeriki Frontend to the Transfer Database.

Functionality Data Median Mean SD
1 0 0.089 0.286
1. called component IDs 10 0 0.242 0.428
100 0 0.244 0.43
1 3 3.380 0.536
2. get calls in time range 10 16 16.398 1.337
100 192 192.808 2.462
1 12 12.009 1.616
3. get component 10 124 124.560 2.25
100 1364.5 1367.7 8.88
1 1 0.696 0.962
4. get component IDs of path to root 10 1 0.595 0.814
100 1 0.55 0.742
1 1 0.537 0.936
5. get component ranking 10 1 0.513 0.713
100 1 0.516 0.525
1 3 3.240 0.49
6. get component ranking in time range 10 18 18.595 2.864
100 176 177.523 7.33
1 0 0.417 0.629
7. get component total calls 10 0 0.457 0.602
100 0 0.282 0.45
1 5 5.536 3.328
8. get CPU load 10 36 36.568 2.654
100 334 334.567 7.58
1 5 5.366 0.591
9. get CPU load in time range 10 33 33.430 4.122
100 335 338.088 9.014
1 1 0.556 0.531
10. get hosts 10 2 2.428 0.71
100 24 25.501 2.744
1 5 4.742 0.563
11. get latencies 10 59 58.931 1.346
100 654.5 655.883 5.975

127

8. Experiments and Validation

Table 8.32. Statistics of the read functionality of the Kiekeriki Frontend to the Transfer Database.

Functionality Data Median Mean SD
1 5 4.908 0.381
12. get latencies in time range 10 59 59.565 2.289
100 661.5 672.025 24.812
1 6 5.8775 3.563
13. get memory load 10 38 38.776 3.769
100 325 326.933 8.32
1 6 5.786 0.602
14. get memory load in time range 10 37 38.453 3.652
100 299 301.504 8.632
1 3 3.233 1.552
15. get operation anomaly scores 10 24 24.786 1.987
100 226 226.240 6.338
1 3 3.249 0.533
16. get operation anomaly scores in time range 10 24 25.001 1.963
100 225 225.469 6.263
1 1 0.977 0.299
17. get operation calls 10 7 6.758 1.249
100 44 44.65 3.515
1 301 319.358 60.437
18. get operation children 10 2161 2171.733 27.315
100 21008 21097.6 267.597
1 0 0.18 0.388
19. get raw data fields and description 10 0 0.149 0.356
100 0 0.174 0.379
1 0 0.176 0.381
20. get raw data select statement 10 0 0.165 0.371
100 0 0.091 0.287
1 3 2.837 0.442
21. get session IDs of application in time range 10 24 23.700 1.869
100 216 217.090 5.34
1 4 4.153 2.45
22. get session IDs of host in time range 10 24 23.906 1.897
100 216 217.256 5.168

128

8.2. Benchmarks of the Database Connections

Table 8.32. Statistics of the read functionality of the Kiekeriki Frontend to the Transfer Database.

Functionality Data Median Mean SD
1 3 3.198 2.145
23. get stacktraces 10 26 26.666 2.434
100 226 226.496 5.484
1 4 4.429 0.735
24. get stacktraces in time range 10 30 29.768 2.189
100 247 247.860 5.19
1 5 5.090 1.255
25. get swap load 10 37 37.825 3.733
100 314 316.479 8.566
1 6 5.737 0.67
26. get swap load in time range 10 38 39.011 3.585
100 298 299.4 8.059

The question Q2.1 is answerd with the table 8.33. The high standard deviations is due to
the “get all operation children” method with the number 18 in the table 8.32 which operates
recursively on the component tree. Question Q2.2 is answered aswell with the table 8.32
which states the average latencies of the 18th method. The measurements show a decreasing
latency for multiple requests which can be due a caching of the MySQL-Server.

Table 8.33. Statistics about single read operations.

3 14.846 58.425

The next questions to evaluate would be how many components the Kiekeriki Frontend
can handle for a specific power and setup of the hosting server in respects of the user
experience. Another question would be how much the performance can be increased due

129

8. Experiments and Validation

multiple concurrent database connections.

Christian Endres

8.2.5 Conclusion

Due the benchmarks we learned much about our system. The Kiekeriki Backend has
limitations due the database connection if there are much data sets to be written critical in
terms of time. If there is a need to display these data in a monitoring context and not in an
analysis context, there is limitation of the batch size which can be written in one second for
example. Thus one possible step to improve the system is to introduce database connection
pooling.

The Kiekeriki Frontend or the Jetty which runs the WebGUI has limitations of handling
all the data in respect of the user experience. To improve the performance, the data
aggregation logic can be moved from Java classes to Stored Procedures to improve the
reading performance.

Christian Endres

8.3 Usability Study of the WebGUI conducted with
APM-Experts

As it is hard to measure soft goals such as usability or the degree of intuition computationally,
the frontend-team conducted a short usability study in the end of the development phase.
Two experts of the NovaTec GmbH (Stefan Siegl and Matthias Huber) with knowledge of
many current APM software solutions on the market kindly agreed to be participants in our
study. This section describes our intended goals for this study, how it was conducted and its
results.

Anton Scherer

8.3.1 Evaluation goals

The expert feedback should answer the questions of table 8.34.

Table 8.34. Evaluation goals of the expert feedback

Goal G1 High usability of the Kiekeriki Frontend
Purpose Identify enhancement potential of the Kiekeriki Frontend
Issue Usability

Object Kiekeriki WebGUI
Viewpoint User

130

8.3. Usability Study of the WebGUI conducted with APM-Experts

General
Question Q1.1 The application is visually appealing
Q1.2 The overall organization of the GUI is easy to understand
Q1.3 Individual pages are well designed
Q1.4 The terminology of the website met my expectations
Q1.5 The overall performance (load times) of the GUT is appropriate
ArchView
Question Q1.6 The ArchView shows hosts well arranged offering a good
overview
Q1.7 Deep Diving into components is easy and intuitive
Q1.8 Switching between component levels (e.g. going to previous
components)
Diagrams
Question Q1.9 The visualization of the data through diagrams is pleasant
Q1.10 The diagrams show meaningful data, so the user gets important
information about the monitored application
Q1.11 Default diagrams are appropriate on each level
Q1.12 The configuration dialog for adding new diagrams is intuitive
providing the configuration of all parameters I had expected
Q1.13 Overall, adding and deleting diagrams is easy
Misc
Question Q1.14 The List View is helpful for getting an overall picture of the
application’s architecture
Q1.15 Defining new user metrics is easy and intuitive

Closing questions

Question Q1.16 I was able to complete my tasks in a reasonable amount of time
Q1.17 My overall impression of the Web GUI is
Q1.18 The degree of completeness of the GUI is

Metrics M1 Expert feedback

Christian Endres

131

8. Experiments and Validation

8.3.2 Conducting the usability test

According to a lecture of the University of Washington ([?]), a typical usability test consists
of the four main steps we complied with in our study:

1. Find representative users

Since the WebGUI is not designed to be used by standard end users but system adminis-
trators, experts are necessary for our study. Because APM experts are expected to have a
great knowledge about how a monitoring WebGUI is structured, they are able to give a
qualified feedback. Furthermore, if they have problems using specific features of the GUI,
it is highly probable that the majority will not get this feature to work correctly.

2. Ask the users to perform representative tasks

For this step, the frontend-team (represented by Christian Endres and Anton Scherer)
prepared some use cases the participants had to go through. For this purpose, the
underlying database was prepared to contain synthetical data, where the use cases can
be conducted on. However, before the test persons started to interact with the GUI, the
frontend team gave a short introduction about the context, the generated data and the
used metrics. After that, the following use cases were given as tasks to be performed:

e Deep dive into any method level

e Add an arbitrary diagram showing historical data

o Define a new user metric

e Create a new diagram that displays the newly defined metric with live data
o Create a new diagram which shows the anomaly score of @PAD

e Change options of an existing diagram

e Find an anomaly by showing the matching anomaly rank

After the use cases were executed, the test persons had time to use the GUI in an
explorative way with no restrictions about what they were doing.

3. Oberserve what the users do

While the two experts were using the web application, their behavoir was carefully analyzed
by the examiners. If problems arose during interaction with the GUI, they were written
down. Also communication between the two test persons was recorded in order to know
which sections in the GUI caused unclarity.

4. Get feedback and summarize the results

Most feedback was given while the test persons were interacting with the WebGUI. If
questions arose, they were asked immediately. Often, the experts made improvement
suggestions for the detected weakness points. In addition to the consecutive feedback,
the frontend team handed a questionnaire out to the experts containing 18 questions for
rating the GUL. We emphasized that this judgement will not affect the project’s rating

132

8.3. Usability Study of the WebGUI conducted with APM-Experts

in order to get honest assessments. The questionnaire’s results are illustrated in 8.3.3.
Finally, a last feedback round finished the usability study.

8.3.3 Usability Study Results

Anton Scherer

This section reveals the results of the usability study. The experts’ feedback was constructive
as they did not just criticize but also suggest how to do it better. The following table
structures the feedback the experts gave to optimize the GUI. The frontend team evaluated
the tasks and decided which of these suggestions can be implemented within a reasonable

amount of time. Due to time pressure, we had to reject some tasks which are considered
complex. These are referenced in the future work (Chapter 9). All other optimizations were
implemented in the last sprint.

added

Category Task Should be
fixed?
Delete the metric ID out of the dialog | Yes
Provide more information in the metric | Yes
selection
Find another solution for the metric | No
Configure Dialog caroussell (not intuitive)
Line break for description field No
Cancel button does not always work No
Resizing the window does not work Yes
Position and size of the dialog must not | Yes
oversize the screen
The time unit selection is not intuitive | No
Provide default values in every se- | No
lectable field
Explicitly show the level on which the | No
dialog should be added
Place "Add new user metric"-button on | Yes
top of the table
Metrics definition The raw data table must be placed be- | Yes
low
Delete the percentile option as it does | Yes
not work correctly
Define which function makes sense on | No
which metric
Close the dialog after a new metric was | Yes

133

8. Experiments and Validation

134

Show the level in which the metric is | No
able to be selected
Provide the component level in an extra | No
Architecture view label above the architecture view
Tthe graph must be more static (no | No
jumping)
Design a button which renders optimally | No
The visualization time of an anomaly | No
must be extended appropriately
Visualization is only interesting on host, | No
app and package level
Highlight the "add new diagram"-button | Yes
The export function does currently only | No
Diagrams view work online
The line area chart of @PADxoverlays | No
the score
Create a new option for enlarging dia- | No
grams
Implement a drag-and-drop solution for | No
diagrams
The close button of the diagrams is not | Yes
intuitive
The session metric has a bug on appli- | Yes
cation level
Do not show empty diagrams but the | Yes
value 0
Provide an option for defining a global | No
time range for all diagrams
General In addition to the standard view a new | No
highly configurable user-view should be
provided
Create an anomaly table with all occur- | No
ring or occurred anomalies
Create a new option for enlarging dia- | No
grams
Implement a business transaction and | No
traces view
Implement an end user experience view | Yes
After marking something (e.g. multiple | No

diagrams) it does not unmark after a
click

8.3. Usability Study of the WebGUI conducted with APM-Experts

Table 8.35. Experts suggestions for improvement

Furthermore, we were interested in a valuable judgement from experts. For this purpose
we mixed fundamental usability questions (e.g. is the application visually appealing?) with
specific questions regarding different components of the GUI. Finally, we formulated closing
questions for getting an overall impression. The rating range spans from -3 (strongly
disagree/negative) to +3 (strongly agree/positive) in order to give the experts the possibility
to rate granularly. Table Figure 8.20 illustrates the results.

Basically, both experts rated the various aspects of the GUI consistenly positive. Overall,
their average rating value is +1,55 (Stefan) and 41,66 (Matthias). According to the test
persons, especially the configuration dialog for adding diagrams has potential for improvement
regarding usability. That is why question number 12 has the lowest rating points (we fixed
some issues afterwards). In contrast, the visualization of the data through diagrams (question
number 9) received an outstanding rating. According to the experts, the overall impression
of the GUI is highly positive without any claim for completeness. Matthias abstained from
voting the last question.

Anton Scherer

135

8. Experiments and Validation

Strongly Strongly
Category| Nr. Question disagree/ agree/
negative -3 -2 -1 2 3 | positive
1. The application is visually appealing X0
The overall organization of the GUI
= z is easy to understand X
= 3. Individual pages are well designed X0
S The terminology of the website
o 4, i 0 X
met my expectations
5 The overall performance (load times) o
of the GUI is appropriate
6. The ArchView shows hosts well arranged o
= offering a good overview
% 2 Deep Diving into components is easy and x
S intuitive
= 8 Switching between component levels (e.g. <o
: going to previous components)
0. The visualization of the data through diagrams Yo
is pleasant
The diagrams show meaningful data, so the
n 10. user gets important information about the X0
% monitored application
& 11. Default diagrams are appropriate on each level X0
= The configuration dialog for adding new
12. |diagrams is intuitive providing the X
configuration of all parameters | had expected
13. Overall, adding and deleting diagrams is easy o]
1a, The List View is helpful for getting an overall o
= picture of the application's architecture
15. Defining new user metrics is easy and intuitive 0
o B 16 -I was able to complete my ‘Easks ol x
= .195, in a reasonable amount of time
8 g 17 My overall impression of the Web GUI is ... 0| X
< 18 The degree of completeness of the GUI is ... X
Stefan: x Matthias: o]

136

Figure 8.20. Results of the feedback questionnaire

Chapter 9

Future Work

This chapter considers possible topics for future extension and development of Kieker.

9.1 Backend

¢ ARIMA and GARCH
Extend ®PAD with a new forecasting algorithm based on ARIMA and GARCH
introduced in Amin et al. [2012].

¢ Business Transaction Detection
Business Transaction Detection tries to detect continuously occuring sequences of
methods that may represent a business transaction. E.g., a login process.

e Correlation of Measures
Correlation of measures tries to identify correlation patterns between two or more
independet measures taken by Kieker. E.g., increased CPU-load correlates with
increased anomaly scores.

o Software Aging Detection
Software aging describes a progressive degredation of performance caused by errors,
memory leaks, fragmentation or exhaustion of other resources. Kieker may be extended
to detect symptomps of software aging like continuously increasing latencies. This
would basically introduce a new anomaly detection algorithm.

¢ Exception Monitoring

Exception occuring in the instrumented and observed application can not be recog-
nized as such by Kieker. Exception could be registered by Kieker and offered to the GUI.

¢ Experiments
The newly implemented experiment framework features collective, point and contextual
anomalies. Not yet implemented are system-wide anomalies, or anomalies caused by a
complete failure of individual components. Provide more complex input generation

137

9. Future Work

patterns and pattern recognition within the output evaluation.

Online Configuration Kiekeriki is currently not controlled by the GUI. Future work
contains offering online configuration of filters and other functionality to the GUI.

ExtendedSelfTuningForecastingFilter - WCF

The newly introduced forecasting filter utilizes a decision tree which is optimized for
accuracy. To further improve the filter it also needs to be optimized in performance
to be less dependent on the current workload, of the system on which the forecasting
filter is executed on, and to require less resources for the forecasting itself.

Markus Fischer

9.2 Frontend

Business Transactions

Add a new view to the Web GUI to see business transactions separately. This makes
it possible to see one business transaction as a whole without the need to use the
deep dive mechanism. A list of business transactions can give an overview, which
transaction uses the most resources. In the search for problems in the system this could
be essential.

Control the backend

Add the possibility to start and stop the monitoring of the Kiekeriki backend. In
addition some parameters for the @PAD or RanCorr configuration could be transfered
to the backend.

Project management

Add the possibility to work with different projects.

Dynamic Metrics and Diagrams

Add the possibility to make the metrics more dynamic and to show different metrics
in one diagram. At the moment, everything related to the metrics and diagrams is
statically programmed. A refactoring could make it possible to easily add new metrics
without requiring to change the code.

During the evaluation, the participants had the chance to give feedback about the

WebGUI. The feedback contains some ideas, which are worth adding to this section.

138

« Refine Dialog to add Diagrams

The dialog for adding metrics should be refined. It is not optimally intuitive. A list for
example would probably be more suitable than the "carousel'-selection. In addition it
should be more clear for which components the diagram will show data for.

e Improve Diagrams

9.2. Frontend

The diagrams could offer more possibilities. For example a fullscreen view of a diagram
could be helpful to examine the graphs in detail.

Improve Architecture View

The architecture view could be improved by removing the flickering of the components.
This is caused by the library we are using for the force directed layout (see [Spr]). For
the future, another library could be used.

Modular Views

The participants wished that the view would be more modular. So for example the
modules architecture view, diagram view and the events section at the bottom should
be resizable and detachable so they can be reordered dynamically.

Martin Scholz

139

Bibliography

[Apa | Apache continuum website. https://continuum.apache.org/. URL https://continuun.
apache.org/.

[COC a] Cocome 2. http://sourceforge.net/apps/trac/cocome/, &. URL http://sourceforge.net/

apps/trac/cocome/.
[COC b} Cocome website. http://cocome.org/, b. URL http://cocome.org/.
[Git | Git website. http://git-scm.com/. URL http://git-scm.com/.

[Het a] Hetzner ex60. http://www.hetzner.de/en/hosting/produkte_rootserver/ex60, a. URL
http://www.hetzner.de/en/hosting/produkte_rootserver/ex60/.

[Het b} Hetzner website. http://www.hetzner.de/en/, b. URL http://subversion.apache.org/.
[Hig] Highcharts js website. http://www.highcharts.com/. URL http://www.highcharts.com/.
en enkins website. http://jenkins-ci.org/. http://jenkins-ci.org/.
J Jenki bsit URL
1e leker wepsite. http://kieker-monitoring.net/. http://kieker-monitoring.net/.
Ki Kieks bsit URL

[Mav a] Checkstyle plugin website. https://maven.apache.org/plugins/maven-checkstyle-plugin/,
a. URL nttps://maven.apache.org/plugins/maven-checkstyle-plugin/.

[Mav b] Findbugs plugin website. https://code.google.com/p/findbugs/, b. URL https://code.
google.com/p/findbugs/.

[Mav C] Pmd plugin website. https://maven.apache.org/plugins/maven-pmd-plugin/, ¢. URL
https://maven.apache.org/plugins/maven-pmd-plugin/.

[Mer } Mercurial website. http://mercurial.selenic.com/. URL http://mercurial.selenic.com/.
[RPr] R project website. nttp://www.r-project.org/. URL http://www.r-project.org/.
[Red | Redmine website. http://www.rednine.org/. URL http://www.redmine.org/.

[Sof] Sofa svn repository. svn://svn.forge.objectweb.org/svnroot/sofa/trunk/sofa-j/trunk/
demos/sofashop/. URL svn://svn.forge.objectweb.org/svnroot/sofa/trunk/sofa-j/trunk/demos/
sofashop/.

[Spr| Springy.js website. nttp://getspringy.com/. URL http://getspringy.con/.

[Sub] Subversion website. http://subversion.apache.org/. URL http://subversion.apache.org/.

141

https://continuum.apache.org/
https://continuum.apache.org/
https://continuum.apache.org/
http://sourceforge.net/apps/trac/cocome/
http://sourceforge.net/apps/trac/cocome/
http://sourceforge.net/apps/trac/cocome/
http://cocome.org/
http://cocome.org/
http://git-scm.com/
http://git-scm.com/
http://www.hetzner.de/en/hosting/produkte_rootserver/ex60
http://www.hetzner.de/en/hosting/produkte_rootserver/ex60/
http://www.hetzner.de/en/
http://subversion.apache.org/
http://www.highcharts.com/
http://www.highcharts.com/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://kieker-monitoring.net/
http://kieker-monitoring.net/
https://maven.apache.org/plugins/maven-checkstyle-plugin/
https://maven.apache.org/plugins/maven-checkstyle-plugin/
https://code.google.com/p/findbugs/
https://code.google.com/p/findbugs/
https://code.google.com/p/findbugs/
https://maven.apache.org/plugins/maven-pmd-plugin/
https://maven.apache.org/plugins/maven-pmd-plugin/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://www.r-project.org/
http://www.r-project.org/
http://www.redmine.org/
http://www.redmine.org/
svn://svn.forge.objectweb.org/svnroot/sofa/trunk/sofa-j/trunk/demos/sofashop/
svn://svn.forge.objectweb.org/svnroot/sofa/trunk/sofa-j/trunk/demos/sofashop/
svn://svn.forge.objectweb.org/svnroot/sofa/trunk/sofa-j/trunk/demos/sofashop/
svn://svn.forge.objectweb.org/svnroot/sofa/trunk/sofa-j/trunk/demos/sofashop/
http://getspringy.com/
http://getspringy.com/
http://subversion.apache.org/
http://subversion.apache.org/

Bibliography

Tra | Trac website. http://trac.edgewall.org/. URL http://trac.edgewall.org/.
ant | Apache ant website. http://ant.apache.org/. URL nttp://ant.apache.org/.

bui] Apache buildr website. https://buildr.apache.org/. URL https://buildr.apache.org/.

mav } Apache maven website. http://maven.apache.org/. URL http://maven.apache.org/.

[

[

[

[gra] Gradle website. http://www.gradle.org/. URL http://wuw.gradle.org/.

[

[mys | mysqltuner website. nttp://mysqltuner.pl. URL http://mysqltuner.pl/.
[

Amin et al. 2012] A. Amin, A. Colman, and L. Grunske. An approach to forecasting qos
attributes of web services based on arima and garch models. In Web Services (ICWS),
2012 IEEE 19th International Conference on, pages 74-81, June 2012. doi: 10.1109/ICWS.
2012.37.

[Bielefeld 2012] T. C. Bielefeld. Online performance anomaly detection for large-scale
software systems, Mar. 2012. Diploma Thesis, Kiel University.

[Boyer 2008a] B. Boyer. Robust java benchmarking, part 1: Issues, June 2008a. URL
https://www.ibm.com/developerworks/java/library/j-benchmarkl/.

[Boyer 2008b] B. Boyer. Robust java benchmarking, part 2: Statistics and solutions, June
2008b. URL nttps://www.ibm.com/developerworks/java/library/j-benchmark2/.

[Boyer 2008c] B. Boyer. Robust java benchmarking, supplements, June 2008c. URL
http://www.ellipticgroup.com/html/benchmarkingArticle.html.

[Frotscher 2013] T. Frotscher. Architecture-based multivariate anomaly detection for software
systems, Oct. 2013. Master’s Thesis, Kiel University.

[Georges et al. 2007] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java
performance evaluation. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems and Applications, OOPSLA 07, page 57-76, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-786-5. doi: 10.1145/1297027.1297033.
URL http://doi.acm.org/10.1145/1297027.1297033.

[Hasselbring et al. 2013] W. Hasselbring, R. Heinrich, R. Jung, A. Metzger, K. Pohl,
R. Reussner, and E. Schmieders. iobserve: Integrated observation and modeling techniques
to support adaptation and evolution of software systems. 2013.

[Herbst 2012] N. R. Herbst. Workload classification and forecasting. Master’s thesis,
Karsruhe Institute of Technology, 2012.

[Herold et al. 2008] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner,
K. Krogmann, H. Koziolek, R. Mirandola, B. Hummel, et al. Cocome-the common
component modeling example. In The Common Component Modeling Example, pages
16-53. Springer, 2008.

142

http://trac.edgewall.org/
http://trac.edgewall.org/
http://ant.apache.org/
http://ant.apache.org/
https://buildr.apache.org/
https://buildr.apache.org/
http://www.gradle.org/
http://www.gradle.org/
http://maven.apache.org/
http://maven.apache.org/
http://mysqltuner.pl
http://mysqltuner.pl/
https://www.ibm.com/developerworks/java/library/j-benchmark1/
https://www.ibm.com/developerworks/java/library/j-benchmark2/
http://www.ellipticgroup.com/html/benchmarkingArticle.html
http://doi.acm.org/10.1145/1297027.1297033

Bibliography

[Jung et al. 2013] R. Jung, R. Heinrich, and E. Schmieders. Model-driven instrumentation
with kieker and palladio to forecast dynamic applications. In Symposium on Software
Performance: Joint Kieker/Palladio Days 2013, volume 1083, pages 99-108. CEUR, 2013.

[Marwede et al. 2009] N. S. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring.
Automatic failure diagnosis in distributed large-scale software systems based on timing
behavior anomaly correlation. In A. Winter, R. Ferenc, and J. Knodel, editors, Proceedings
of the 13th European Conference on Software Maintenance and Reengineering (CSMR’09),
pages 47-57. IEEE, Mar. 2009. ISBN 978-0-7695-3589-0. doi: 10.1109/CSMR.2009.15.

[Project 2013] K. Project. Kieker user guide. Forschungsbericht, April 2013. URL nttp:
//eprints.uni-kiel.de/16537/

[Salfner et al. 2010] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction
methods. ACM Comput. Surv., 42(3):10:1-10:42, Mar. 2010. ISSN 0360-0300. doi:
10.1145/1670679.1670680. URL nttp://doi.acm.org/10.1145/1670679.1670680.

[Shields 2010] G. Shields. The definitive guide to application performance management.
International Journal on Advances in Software, 2010. URL nttps://www.gartner.com/doc/

2639025/magic-quadrant-application-performance-monitoring.

[van Hoorn | A. van Hoorn. Dissertation - unpublished.

143

http://eprints.uni-kiel.de/16537/
http://eprints.uni-kiel.de/16537/
http://doi.acm.org/10.1145/1670679.1670680
https://www.gartner.com/doc/2639025/magic-quadrant-application-performance-monitoring
https://www.gartner.com/doc/2639025/magic-quadrant-application-performance-monitoring

	1 Introduction
	1.1 Motivation and Goals
	1.2 Document Structure

	2 Foundations and Technologies
	2.1 PAD and RanCorr
	2.1.1 Online Performance Anomaly Detection (PAD)
	2.1.2 Anomaly Correlation: RanCorr

	2.2 CoCoME
	2.3 Kieker and Kieker WebGUI
	2.3.1 Kieker
	2.3.2 WebGUI

	2.4 APM Tools
	2.5 Failure Diagnosis
	2.5.1 Proactive Fault Management
	2.5.2 Definitions
	2.5.3 Online Prediction

	2.6 Design of Performance Experiments
	2.7 Trashing JPetStore
	2.8 Tooling
	2.8.1 Version Control System
	Types of version control systems:

	2.8.2 Continuous Integration

	3 Requirements
	3.1 Frontend Requirements
	3.2 Backend
	3.3 Interface

	4 Project Management
	4.1 Tooling
	4.1.1 Hardware Specification
	4.1.2 Version Control System
	The specific setup:

	4.1.3 Ticket-Management
	4.1.4 Build-Server
	4.1.5 Build Automation
	4.1.6 Supplemental Tooling
	R-Server
	SQL-Server
	Disaster Recovery

	4.2 Scrum
	4.2.1 Basics
	Roles
	Sprint
	Artefacts
	Meetings

	4.2.2 Process
	4.2.3 Sprint Overview

	4.3 Team
	4.4 Roles

	5 Architecture and Concepts
	5.1 Overview
	5.2 Frontend
	5.2.1 Connection Between Logic and GUI
	5.2.2 Connection to the Transfer Database
	5.2.3 Connection to the Internal Database

	5.3 Backend
	5.3.1 PAD(x) Module
	5.3.2 System Discovery Module
	5.3.3 RanCorr Module

	5.4 Raw Data, Data Aggregation and Metrics
	5.4.1 The architecture and its components
	5.4.2 Raw Data
	CalledCount
	Signature
	Timestamp
	Latency
	PAD anomaly score
	Stacktraces (and other exceptions)
	Call correlation
	Anomaly rank
	Session (active users)
	CPU utilization
	Memory utilization
	Swap utilization

	5.4.3 Functions and Metrics
	5.4.4 Taxonomy for the architecture graph
	5.4.5 Possible raw data per view and level
	Class View / operation level
	Package View / class level
	Application View / package level
	Server View / application level
	Architecture View / host level

	5.4.6 Default metrics

	6 Current state
	6.1 Kieker Backend
	6.1.1 Kieker
	6.1.2 Configuration
	6.1.3 Analysis
	6.1.4 PAD
	6.1.5 RanCorr

	6.2 Kieker Frontend

	7 Implementation
	7.1 Backend
	7.1.1 Extension of Kieker
	AbstractCompositeFilterPlugin
	AbstractUpdateableFilterPlugin
	ConfigurationRegistry

	7.1.2 Implementation of RanCorr
	Architecture Data Model
	Input/Output Model
	Dependency Handling
	RanCorr Algorithms
	Integration into Kieker

	7.1.3 Extended Self Tuning Forecasting Filter
	WCF
	Integration of forecasting methods
	Implementation of the ExtendedSelfTuningForecastingFilter

	7.2 Frontend
	7.2.1 Web GUI
	7.2.2 Logic
	7.2.3 Cache
	7.2.4 Internal Database

	7.3 Transfer Database
	7.3.1 Database Design
	7.3.2 Database Connections and Stored Procedures
	Database connection of the Kiekeriki Backend
	Database connection of the Kiekeriki Frontend

	7.4 Transfer Database Data Generator and Benchmarking Tool
	7.4.1 Data Generator
	7.4.2 Benchmark Tool

	8 Experiments and Validation
	8.1 Experiments and validation of the Kiekeriki Backend
	8.1.1 Evaluation goals
	8.1.2 Experimental design
	Pipes and Filters setup
	Paths through Pipes-and-Filters
	Data Generation
	Experiment setup
	Variables
	Data Aggregation
	Experiment execution

	8.1.3 Experiment data and results
	JavaMean Results
	Extended Self-Tuning Forecast Results
	RanCorr Evaluation

	8.1.4 Analysis of the experiment results
	JavaMean forecasting algorithm results
	Extended Self-Tuning forecasting algorithm results
	Direct Comparison

	8.1.5 Conclusion
	Question 1.1
	Question 1.2
	Question 1.3
	Question 1.4
	Question 2.1
	Quesiton 2.2

	8.2 Benchmarks of the Database Connections
	8.2.1 Evaluation Goals
	8.2.2 Experimental Design
	Hardware setup
	Software setup
	Experimental setup
	Benchmark execution

	8.2.3 Analysis of the Benchmark Results for the Kiekeriki Backend
	8.2.4 Analysis of the Benchmark Results for the Kiekeriki Frontend
	8.2.5 Conclusion

	8.3 Usability Study of the WebGUI conducted with APM-Experts
	8.3.1 Evaluation goals
	8.3.2 Conducting the usability test
	8.3.3 Usability Study Results

	9 Future Work
	9.1 Backend
	9.2 Frontend

	Bibliography

