
Software Engineering for Parallel Systems:

The Role of the Programming Language in the

Prototyping Phase

Position Paper for the
ICSE-17 Workshop on research issues in the intersection of

Software Engineering and Programming Languages
Seattle, April 1995

W. Hasselbring
Dept. of Computer Science, University of Dortmund

Informatik 10 (Software Technology), D-44221 Dortmund, Germany
Telephone: 49-(231)-755-4712, Fax: 49-(231)-755-2061

email: willi@ls10.informatik.uni-dortmund.de

Abstract

Engineering parallel software systems is still in its infancy. At present, there is a wide gap
between formal approaches to algorithm specification and practical approaches to algorithm im-
plementation. In this contribution, we emphasize the step from specification to implementation
in parallel programming and discuss applications experience with a prototyping approach, which
exploits the strength of a set-oriented language to program design through rapid prototyping of
parallel algorithms.

1 Introduction

It is a well-known fact that the cost to correct an error in a computer system increases dramatically as
the system life cycle progresses [4]. The cost of correcting an error increases by orders of magnitude
as the system moves from the development stages of analysis and design, to become most expensive
during the maintenance and operation phase. Formal specification and prototyping help to eliminate
many of these errors in the very early stages of a project before any production-level code has been
written.

Furthermore, parallel programming is conceptually harder to undertake and to understand than se-
quential programming, because a programmer often has to focus on more than one process at a time.
Additionally, on most of today’s parallel machines, programmers are forced to program at a low level
to obtain performance — ease of use is sacrificed for efficiency. Consequently, developing parallel
software systems is in general considered as an awkward undertaking. A high-level language designed
for prototyping parallel algorithms helps to manage engineering parallel software systems.

2 Prototyping

First, a prototype helps the specification writer to evaluate the specification. It also helps a potential
user to explore the capabilities of the system. It is often only through this type of experience that the

1



necessary functional requirements can be discovered. Furthermore, it is better to have the user discover
needs early in the production process, and not after the system has been completely implemented and
delivered. The prototype provides the user with a vehicle which can be exercised to see if it meets
the (sometimes fuzzy) requirements. Users are involved in the system development process which
supports the communication between users and developers.

Prototypes should be built in very high level languages to make them rapidly available. To be useful,
prototypes must be built rapidly, and designed in such a way that they can be modified rapidly.
Consequently, a prototype is usually not a very efficient program since the language should offer
constructs which are semantically on a very high level, and the runtime system has a heavy burden
for executing these highly expressive constructs. Note that a prototype is a model, and that this
model taken as a program has to be executable so that at least part of the functionality of the desired
end product may be demonstrated on a computer [6].

3 Parallel Programming related to Prototyping

Most current programming environments for distributed memory architectures, which are usually
based on some kind of message passing, provide inadequate support for mapping applications to the
machine. In particular, the lack of a global name space forces algorithms to be specified at a relatively
low level, since it is complicated to simulate shared memory. This greatly increases the complexity of
programs, and also fixes algorithm design choices, inhibiting experimentation with alternate algorithm
choices or problem decompositions. This makes programming such machines very difficult, since the
programmer has to explicitly encode all the low-level details required to implement the algorithm.
The resulting programs are complex and inflexible.

Meanwhile, the techniques of parallel programming are evolving slowly. Initially, parallel programs
were a collection of sequential programs written in traditional sequential languages. These languages
were extended with communication instructions to enable message-passing communication. Such
synchronizing communication is feasible in problems with completely regular patterns of execution,
but it is difficult to control in areas where the execution pattern is strongly data-dependent and
irregular.

Therefore, it is clear that changes in parallel programming languages are needed — in particular it
should be possible to dynamically create computations, to synchronize them and to allow information
exchange between them. Several languages have been proposed with this goal in mind: for instance
C.A.R. Hoare proposed an influential model called CSP (Communication Sequential Processes) al-
lowing the definition, activation and synchronization of communicating processes [18]. However, it is
very difficult to build parallel programs with this approach. This is mainly due to the fact that the
programmer has to mentally manage several threads of control simultaneously instead of one at the
time.

During the past years several high-level languages with mechanisms for parallel programming have
been developed to alleviate parallel programming. Even though such high-level languages were de-
signed to express parallelism, they are mostly intended to be implemented and used on ordinary
computers with only one central processing unit. Parallel programming is then used as a conve-
nient way of expressing logical relationships between different parts of a complex program, and only
secondary for increasing the execution speed.

Achieving speedup through parallelism is a common motivation for executing an application pro-
gram on a parallel computer system. The main motivation for integrating explicit parallelism into
a prototyping language is to provide means for modeling inherently parallel applications. Consider,
for instance, distributed systems such as air-traffic-control and airline-reservation applications, which
must respond to many external stimuli and which are therefore inherently parallel. To deal with non-
determinism and to reduce their complexity, such applications are usually structured as independent
parallel processes. Similarly, a company with multiple offices and factories may need a computing

2



system which enables people and machines at different sites to communicate with each other. Such a
system has to run on distributed hardware and, thus has to be programmed in a parallel way.

Programmers who can express their ideas in a parallel way sometimes invent entirely new ways of
solving problems. In order to embody their inventions in working programs they need languages that
allow parallelism to be expressed explicitly — languages based on parallel software models.

3.1 Possible Approaches to Prototyping Parallel Algorithms

Parallel computers are traditionally divided into two broad subcategories: tightly coupled and loosely
coupled systems. In a tightly coupled system at least part of the primary memory is shared . All pro-
cessors have direct access to this shared memory. In a loosely coupled (distributed) system, processors
only have access to their own local memories; processors can communicate by sending messages over
some kind of communication channel. Tightly coupled systems have the advantage of fast commu-
nication through shared memory. Distributed systems, on the other hand, are much easier to build,
especially if a large number of processors is required. Initially, programming language and operat-
ing system designers strictly followed the above classification, resulting in two parallel programming
paradigms: shared variables (for tightly coupled systems) and message passing (for distributed sys-
tems).

Many languages for parallel programming have evolved during the last years, making the choice of
the most suitable language for prototyping parallel algorithms a difficult one. More important, the
underlying models of the languages differ widely.

Message Passing The basic model of message passing is that of a group of sequential processes
running in parallel and communicating through passing messages. This model directly reflects the dis-
tributed memory architecture, consisting of processors connected through a communications network.
Many variations of message passing have been proposed [3].

There exist some approaches to develop prototypes for message-passing programs on the basis of Petri-
nets or data-flow diagrams. Petri-Nets and data-flow diagrams can be used as graphical representations
of message-passing systems. Therefore, they are often used to build prototypes for message-passing
programs. For instance, prototypes for occam programs are developed with Petri-nets in [5], and with
data-flow diagrams in [19].

For some applications, the model of message passing may be just what is needed. This is, for example,
the case for an electronic mail system. For other applications, however, this basic model may be too
low-level and inflexible. In particular, the lack of a global name space forces algorithms to be specified
at a relatively low level, since it is complicated to simulate shared memory. Refer to [2] for an extensive
discussion of the shortcomings of the message-passing model. Most of the problems which arise with
message passing exist similarly for graphical approaches based on Petri-nets or data-flow diagrams,
because such graphs are just graphical representations of message-passing systems.

In contrast to the message-passing model, the shared-memory model allows application programs to
use shared memory as they use normal local memory. The primary advantage of shared memory over
message passing is the simpler abstraction provided to the application programmer, an abstraction
the programmer already understands well. This allows a more natural transition from sequential to
parallel programming.

Data Parallelism Data parallelism extends conventional programming languages so that some
operations can be performed simultaneously on many pieces of data. All the elements in a list or
in an array can be updated at the same time, for example, or all items in a data base are scanned
simultaneously to see if they match some criterion. For an account to data parallel algorithms see
[17] and for an account to data-parallel programming see [21]. Data-parallel operations appear to
be done simultaneously on all affected data elements. This kind of parallelism is opposed to control
parallelism that is achieved through multiple threads of control, operating independently. According

3



to Flynn’s taxonomy of computer architectures, the data-parallel programming model is based on the
single-instruction-stream/multiple-data-stream (SIMD) model as opposed to the multiple-instruction-
stream/multiple-data-stream (MIMD) model [11]. The SIMD programming model is synchronous
because all active processing elements execute the same operation simultaneously.

Data parallelism is opposed to control parallelism which is achieved through multiple threads of control,
operating independently. The data parallel approach lets programmers replace iteration (repeated
execution of the same set of instructions with different data) with parallel execution. It does not
address a more general case, however: performing many interrelated but different operations at the
same time. This ability is essential in developing complex application programs. We are searching for
appropriate means that enable the expression of new parallel algorithms for implementing inherently
parallel systems, and not primarily to increase the execution performance of prototypes.

Parallel Object-Oriented Programming An approach to imperative programming which has
gained widespread popularity is that of object-oriented programming [20]. In this approach, an object
is used to integrate both data and the means of manipulating that data. Objects interact exclusively
through message passing and the data contained in an object is visible only within this object itself.
There are several possibilities for the introduction of parallelism into object-oriented languages [25].

Parallel object-oriented languages tend to use either message passing or remote procedure calls for
inter-process communication: the object space (the collection of all objects in the program) is not
the communication medium, and does not constitute a shared object memory. Therefore, most of the
problems with programming parallel applications which arise with message passing exist similarly for
parallel object-oriented languages.

Additionally, probably the most difficult aspect of integrating parallelism into object-oriented lan-
guages is that inheritance greatly complicates synchronization. When a subclass inherits from a base
class, programs must sometimes redefine the synchronization constraints of the inherited method. If a
single centralized class explicitly controls message reception, all subclasses must rewrite this part each
time a new operation is added to the class. The subclass cannot simply inherit the synchronization
code, because the highest-level class cannot invoke the new operation. The parallel object-oriented
languages resolve these synchronization problems in different ways. Refer to [1] for a discussion of the
resulting problems and various solutions.

Parallel Functional Programming A functional program comprises a set of equations describing
functions and data structures which a user wishes to compute. The application of a function to its
arguments is the only control structure in pure functional languages. Functions are regarded in the
mathematical sense in that they do not allow side effects. As a consequence a value of a function
is determined solely by the values of its arguments, a property which is referred to as referential
transparency. Therefore, functional programs are inherently parallel. Because they are free of side
effects, each function invocation can evaluate all of its arguments and possibly the function body in
parallel. The only delay may occur when a function must wait on a result being produced by another
function. The real problem is not discovering parallelism but reducing it so as to keep the overhead on
an acceptable level. Parallel functional languages address this problem by allowing the programmer to
insert annotations which specify when to create new threads of control. Refer to [23] for a collection
of papers on several parallel functional languages.

However, pure functional languages are not suitable for programming cooperating processes: they
are deterministic and they do not have variables. Therefore, processes described as functions cannot
include choices of alternative actions and they cannot remember their states from one action to another.
Nondeterminism would destroy referential transparency in functional programming languages.

Processes sometimes cooperate in a way that cannot be predicted. It is impossible, for instance, to
predict from which terminal of a multi-user computing system the next request for a particular service
might come. Moreover, the system behavior necessarily depends on previous requests. Both nonde-
terminism of events and dependence on the process history are strong arguments for an imperative

4



rather than applicative programming model for cooperating processes. This is due to the determinism
and the lack of variables which make pure functional languages impractical for programming parallel
systems. Even the parallel functional languages do not support nondeterminism.

Parallel Logic Programming Parallel logic languages usually use shared logical variables as a
communication medium. In [22], it is described how several communication patterns can be expressed
using shared logical variables despite the single-assignment property of such variables. On the other
hand, the shared logical variable also has its problems. Although it is possible to implement shared
data structures like streams and queues using shared logical variables, only a single process can
add elements to such data structures. Some problems with shared logical variables in parallel logic
languages are discussed in [8].

Coordination Languages A coordination language provides means for process creation and inter-
process communication which may be combined with sequential computation languages to create
parallel programming languages [7]. Linda is a coordination language concept for explicitly parallel
programming in an architecture independent way [12]. Communication in Linda is based on the
concept of tuple space, i.e., a virtual common data space accessed by an associative addressing scheme.
The parallel processes are decoupled in time and space in a simple way: processes do not have to
execute at the same time and do not need to know each other’s addresses. Process communication
and synchronization in Linda is called generative communication, because tuples are added to, removed
from, and read from tuple space concurrently. Synchronization is done implicitly.

Reading access to tuples in tuple space is associative and not based on physical addresses. It is based
on their expected content described in so-called templates. This method is similar to the selection of
entries from a data base. Each component of a tuple or template is either an actual, i.e., holding a
value of a given type, or a formal, i.e., a declared placeholder for such a value. Tuples in tuple space
are selected by matching, where a tuple and a template are defined to match, iff they have the same
structure (corresponding number and type of components) and the values of their actuals are equal
to the values of the corresponding tuple fields.

The uncoupled and anonymous inter-process communication in Linda is in general not directly sup-
ported by the target machines. However, a high-level language must be able to reflect a particular
top-down approach to building software, and not a particular machine architecture. This is also im-
portant to support portability across different machine architectures. Implementations of Linda have
been performed on a wide variety of parallel architectures: on shared-memory multi-processors as well
as on distributed memory architectures [24].

4 Experience with an Approach to Prototyping Parallel Al-
gorithms in a Set-Oriented Language

To support prototyping of parallel algorithms, a prototyping language must provide simple and pow-
erful means for dynamic creation and coordination of parallel processes. ProSet is a set-oriented
prototyping language [9]. In ProSet-Linda, the concept for process creation via Multilisp’s futures
[13] is adapted to set-oriented programming and combined with Linda’s concept for synchroniza-
tion and communication [14]. Synchronization and communication in ProSet-Linda are carried out
through addition, removal, reading, and atomic updates of individual tuples in tuple space. Refer to
[15] for an account to prototyping parallel algorithms in a set-oriented language.

In this position paper we can only sketch some applications experience. In our contribution we would
discuss experiences with two example applications: developing algorithms with ProSet-Linda for
parallel interpretation-tree model matching and cooperative planning of independent agents.

5



4.1 Parallel Interpretation-Tree Model Matching

In [16], we discuss the development of algorithms for parallel interpretation-tree model matching for
3-D computer vision applications such as object recognition.

The classical control algorithm for symbolic data/model matching in computer vision is the Interpre-
tation Tree search algorithm. This algorithm has a high computational complexity when applied to
matching problems with large numbers of features. We examine parallel variations of this algorithm.
Parallel execution can increase the execution performance of model matching, but also make feasible
entirely new ways of solving matching problems. The expected improvements attained by the parallel
algorithmic variations for interpretation-tree search are analyzed.

4.2 Cooperative Planning of Independent Agents

In [10], we discuss the development of algorithms for cooperative planning of independent agents by
means of an example application.

Cooperative planning of independent agents is a problem which requires careful study. For concentrat-
ing on the essential aspects (plan generation, conflict resolution) we propose a prototypical approach.
Finding a clear and intelligible solution to plan generation and conflict resolution is certainly more
important than obtaining directly a very efficient program — once a solution is found through explo-
ration, it may be used as an executable specification for an efficient implementation. Consequently,
we concentrate on conceptual aspects and implement our solution in a prototyping language.

This is what prototyping is about: experimenting with ideas for algorithms and evaluating them.
Purely theoretic evaluations are often not possible in practice. A very high-level language for parallel
programming is needed to make this approach feasible.

References

[1] G. Agha. Concurrent object-oriented programming. Communications of the ACM, 33(9):125–141,
September 1990.

[2] H.E. Bal. Programming Distributed Systems. Silicon Press, 1990.

[3] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum. Programming languages for distributed computing
systems. ACM Computing Surveys, 21(3):261–322, September 1989.

[4] B.W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[5] F. Bréant and E. Pavoit-Adet. Occam prototyping from hierarchical Petri nets. Technical Report
MASI 92.08, University of Paris 6, Institut Blaise Pascal, Paris, France, February 1992.

[6] R. Budde, K. Kautz, K. Kuhlenkamp, and H. Züllighoven. Prototyping — An Approach to
Evolutionary System Development. Springer-Verlag, 1992.

[7] N. Carriero and D. Gelernter. Coordination languages and their significance. Communications
of the ACM, 35(2):96–107, February 1992.

[8] P. Ciancarini. Parallel programming with logic languages: a survey. Computer Languages,
17(4):213–240, April 1992.

[9] E.-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers, and C. Pahl. ProSet
— A Language for Prototyping with Sets. In N. Kanopoulos, editor, Proc. Third International
Workshop on Rapid System Prototyping, pages 235–248, Research Triangle Park, NC, June 1992.
IEEE Computer Society Press.

6



[10] E.-E. Doberkat, W. Hasselbring, and C. Pahl. Investigating strategies for cooperative planning of
independent agents through prototype evaluation. In P. Ciancarini and C. Hankin, editors, Proc.
First International Conference on Coordination Languages and Models (COORDINATION ’96),
volume 1061 of Lecture Notes in Computer Science, pages 416–419, Cesena, Italy, April 1996.
Springer-Verlag.

[11] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901–1909,
December 1966.

[12] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Lan-
guages and Systems, 7(1):80–112, January 1985.

[13] R.H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems, 7(4):501–538, October 1985.

[14] W. Hasselbring. Prototyping parallel algorithms with ProSet-Linda. In J. Volkert, editor,
Parallel Computation, volume 734 of Lecture Notes in Computer Science, pages 135–150. Springer-
Verlag, October 1993.

[15] W. Hasselbring. Prototyping Parallel Algorithms in a Set-Oriented Language. PhD thesis, De-
partment of Computer Science, University of Dortmund, 1994. (Published by Verlag Dr. Kovač,
Hamburg).

[16] W. Hasselbring and R.B. Fisher. Investigating parallel interpretation-tree model matching al-
gorithms with ProSet-Linda. DAI Research Paper No. 722, University of Edinburgh, Dept. of
Artificial Intelligence, Edinburgh, UK, December 1994. (also available as Software-Technologie
Memo Nr. 77, University of Dortmund).

[17] W.D. Hillis and G.L. Steele. Data parallel algorithms. Communications of the ACM, 29(12):1170–
1183, December 1986.

[18] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[19] D.G. Jones, S.J. Dowdeswell, and T. Hintz. A rapid prototyping method for parallel programs.
In T. Bossomaier, T. Hintz, and J. Hulskamp, editors, The Transputer in Australia (ATOUG-3),
pages 121–128, Sydney, Australia, June 1990. IOS Press.

[20] B. Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ, 1988.

[21] M.J. Quinn and P.J. Hatcher. Data-parallel programming on multicomputers. IEEE Software,
7(5):69–76, September 1990.

[22] E. Shapiro. The family of concurrent logic programming languages. ACM Computing Surveys,
21(3):412–510, September 1989.

[23] B.K. Szymanski, editor. Parallel functional languages and compilers. Addison-Wesley, 1991.

[24] G. Wilson, editor. Proc. Workshop on Linda-Like Systems and Their Implementation. Edinburgh
Parallel Computing Centre TR91-13, June 1991.

[25] B.B. Wyatt, K. Kavi, and S. Hufnagel. Parallelism in object-oriented languages: A survey. IEEE
Software, 9(6):56–66, November 1992.

7


