
On Integrating Generative Communication

into the

Prototyping Language ProSet

W. Hasselbring

Computer Science / Software Engineering
University of Essen

Germany
willi@informatik.uni-essen.de

December 1991

Abstract

ProSet is a procedural prototyping language based on the theory of finite sets. The coordination
language Linda provides a distributed shared memory model, called tuple space, together with some
atomic operations on this shared data space. Process communication and synchronization in Linda
is also called generative communication, because tuples are added to, removed from, and read from
tuple space concurrently. Synchronization is done implicitly.

In the presented proposal the concept for process creation via Multilisp’s futures is adapted to
set-oriented programming and combined with the concept for synchronization and communication via
tuple space. The basic Linda model is enhanced with multiple tuple spaces, the notion of limited tuple
spaces, specified fairness and selection for matching, and the facility for changing tuples in tuple space.
Linda and ProSet both provide tuples thus it is quite natural to combine set-oriented programming
with generative communication on the basis of this common feature to form ProSet-Linda.

Contents

1 Introduction and overview 1

2 The prototyping language ProSet 1
2.1 Data structures . 1
2.2 Control structures . 2
2.3 Examples . 3

3 Linda 5

4 Generative communication in ProSet 7
4.1 Process creation . 7

4.1.1 Multilisp’s futures . 8
4.1.2 Process creation in ProSet . 8

4.2 Tuple-space operations . 11
4.2.1 Depositing tuples . 11
4.2.2 Fetching tuples . 13
4.2.3 Meeting tuples . 15
4.2.4 Nondeterminism and fairness while matching 16
4.2.5 Comparison with the C-Linda operations . 18

4.3 Multiple tuple spaces . 18
4.4 Discussion of some design alternatives . 19

4.4.1 Limited tuple spaces . 19
4.4.2 Non-blocking matching . 19
4.4.3 Aggregate and accumulative matching . 19
4.4.4 Introducing new data types . 20

4.5 Examples . 21
4.5.1 A master-worker application with limited tuple spaces 21
4.5.2 The queens’ problem revisited . 23
4.5.3 Parallel matrix multiplication . 25
4.5.4 The dining philosophers problem . 25

5 Implementation issues 29

6 Conclusions and future work 29

References 30

Index 34

List of Figures

1 The queens’ problem. 3
2 Topologically sorting the nodes of a directed graph. 4
3 Tuple-space communication in Linda. 7
4 A master-worker program with limited tuple spaces. 22
5 Parallel solution for the queens’ problem. 24
6 Parallel matrix multiplication. 26
7 Form of mutual exclusion solution. 27
8 Solution for the dining philosophers problem. 27

1 Introduction and overview 1

1 Introduction and overview

The set theoretic language ProSet1 that is at present under development at the University of Essen is
a successor to SETL [SDDS86, DF89]. The kernel of the language was at first presented in [DGH90b]
and the system in [DGH90a]. Section 2 provides a brief introduction to the language.

Prototyping means constructing a model. Since applications which are inherently parallel should
be programmed in a parallel way, it is most natural to incorporate parallelism into the process of
building a model. Most systems in real life are of a parallel nature. Opportunities for automatic
detection of parallelism in existing programs are limited and furthermore, in many cases the parallel
formulation of a program is more natural and appropriate than a sequential one. The intention
for integrating parallelism into a prototyping language is not only increased performance. However,
parallel programming is conceptually harder than sequential programming, because a programmer
often has to focus on more than one process at a time. Programming in Linda provides a spatially
and temporally unordered bag of processes. This enables the programmer to focus on one process at a
time thus making parallel programming conceptually the same order of problem-solving complexity as
conventional, sequential programming. The uncoupled and anonymous inter-process communication in
Linda is in general not directly supported by the target machines. However, a high-level language must
reflect a particular top-down approach to building software, not a particular machine architecture.
This is also important to support portability across different machine architectures. Linda can be
compared to explicit low-level parallel code such as message passing in much the same way as high-
level programming languages can be compared to assembly code.

Section 3 will provide an introduction to the basic Linda model. In section 4 a proposal for
combining ProSet with Linda will be presented. Section 5 sketches implementation issues and
section 6 conclusions and future research directions for our work.

This report is an extended and revised version of [Has91a]. Major changes to this preliminary defi-
nition contain the process creator, derived from futures in Multilisp, which led to simplified depositing
of tuples in tuple space and to a smoother combination between ProSet and Linda (sections 4.1 and
4.2.1). Matching may be customized (section 4.2.2), finding and changing of tuples in tuple space
is merged into meeting tuples in tuple space (section 4.2.3), the fairness behavior for matching is
specified in greater detail (section 4.2.4), and some examples were added (section 4.5).

Thanks are due to Robert Abarbanel, Henri Bal, Mike Factor, Michael Goedicke, Suresh Jagan-
nathan, Jerry Leichter, and the participants of the Linda-Workshop in Edinburgh in June for some
comments and discussions on various aspects of this work. The advice and comments on earlier drafts
by E.-E. Doberkat are greatly appreciated.

2 The prototyping language ProSet

The following subsections will present a brief introduction to data and control structures of the lan-
guage and two short examples. The high-level structures that ProSet provides qualify the language
for prototyping. For a full account on prototyping with set-oriented languages we refer to [KSS84] or
[DF89]. Persistence is supported by the language and discussed in [Dob90].

2.1 Data structures

ProSet provides the first-class data types atom, integer, real, string, boolean, tuple, set. It is a
higher-order language, because functions and modules have first-class rights, too. First-class means to
be expressible without giving a name. It implies having the right to be anonymous, being storable in
variables and in data structures, having an identity, being comparable for equality with other objects,
being returnable from or passable to a procedure. Each variable or constant is meant to be an object

1ProSet was formerly called SETL/E. The change was made to emphasize the prototyping aspect.

2 2 The prototyping language ProSet

for our terminology. Both SETL and ProSet are weakly typed, i.e. the type of an object is in general
not known at compile time. Integer, real, string and boolean objects are used as usual. Atoms are
unique with respect to one machine and across machines. They can only be created and compared.
The unary type operator returns a predefined type atom corresponding to the type of its operand.

Atom, integer, real, string, boolean and function objects are basic, because they are not built from
other objects. Tuples and sets are compound data structures, which may be heterogeneous composed
of basic data objects, tuples, and sets. Sets are unordered collections while tuples are ordered. The
following expression creates a tuple consisting of an integer, a string, a boolean and a set of two reals:

[123, "abc", TRUE, {1.4, 1.5}]

Such expressions are called tuple former. Sets consisting only of tuples of length two are called maps.
There is no genuine data type for maps, because set theory suggests handling them this way. The
following statement assigns a map to the variable M:

M := { [1,"s1"], [2,"s2"], [3,"s3"] };

Now the following equalities hold:

domain(M) = {1, 2, 3}
range(M) = {"s1", "s2", "s3"}

M(1) = "s1"

M{1} = {"s1"}

Domain and range of a map may be heterogeneous. M{1} is the multi-map selection for relations.

There is also the undefined value om which indicates e.g. selection of an element from an empty
set. Om itself may not be element of a set, but of a tuple.

2.2 Control structures

The control structures show that the language has ALGOL as one of its ancestors. There are if,
case, loop, while and until statements as usual and in addition some structures that are custom
tailored to the compound data structures. First have a look at expressions forming tuples and sets:

T := [1 .. 10];

S := {2*x: x in T | x > 5}; -- result: {12, 14, 16, 18, 20}

The iteration “x in T” implies a loop in which each element of the tuple T is successively assigned
to x. The visibility of x is bound to the set former. For all elements of T, which are satisfying the
condition “x > 5” the result of the expression “2*x” is added to the set. As usual in set theory “|”
means such that. With this knowledge the meaning of the following for loop should be obvious:

for x in S | x > 15 do <statements> end for;

The iteration proceeds over a copy, which is created at first. The quantifiers (∃, ∀) of predicate calculus
are provided, e.g.:

if exists x in S | p(x) then <statements> end if;

Additionally ProSet provides the whilefound loop:

whilefound x in S | p(x) do <statements> end whilefound;

The loop body is executed provided an existentially quantified expression with the same iterator would
yield true. The bound variables are local to the whilefound loop as they are in for loops and in
quantified expressions. Unlike for loops the iterator is reevaluated for every iteration.

2.3 Examples 3

program Queens;

constant N := 4;

begin

fields := {[x,y]: x in [1..N], y in [1..N]};

put ({NextPos: NextPos in npow(N, fields) | NonConflict(NextPos)});

procedure NonConflict (Position);

begin

return forall F1 in Position, F2 in Position |

(F1 /= F2 !implies

(F1(1) /= F2(1) and F1(2) /= F2(2) and

(abs(F2(1)-F1(1)) /= abs(F2(2)-F1(2)))));

end NonConflict;

procedure implies (a, b);

begin

return not a or b;

end implies;

procedure abs (i);

begin

return if i >= 0 then i

else -i

end if;

end abs;

end Queens;

Figure 1: The queens’ problem. Npow(k, s) yields the set of all subsets of the set s which
contain exactly k elements. NonConflict checks whether the queens in a given position
do not attack each other. It is possible to use procedures with appropriate parameters as
user-defined operators by prefixing their names with the “!” symbol. This is done here
with the procedure implies. T(i) selects the ith element from tuple T.

2.3 Examples

In Fig. 1 a solution for the so-called queens’ problem is given. Informally, the problem may be stated
as follows:

Is it possible to place N queens (N ∈ IN) on an N×N chessboard in such a way that they
do not attack each other?

Anyone familiar with the basic rules of chess also knows what “attack” means in this context: in order
to attack each other, two queens are placed in the same row, the same column, or the same diagonal.

The program in Fig. 1 does not solve the above problem directly. It prints out the set of all
positions in which the N queens do not attack each other. If it is not possible to place N queens in
non-attacking positions, this set will be empty. We denote positions on the chessboard by pairs of
natural numbers for convenience (this is unusual in chess, where characters are used to denote the
columns). [1,1] denotes the lower left corner. The program in Fig. 1 with N=4 produces the following
set as a result:

{{[1, 3], [2, 1], [4, 2], [3, 4]},
{[3, 1], [1, 2], [2, 4], [4, 3]}}

4 2 The prototyping language ProSet

program TopSort;

begin

edges := {[1,2], [2,3], [2,4], [3,5], ["a","b"], ["b","c"], ["b","d"]};

if ContainsCycle (edges) then

put ("The graph contains a cycle");

else

SortTup := [];

nodes := domain(edges) + -- {1,2,3,"a","b"}

range(edges); -- {2,3,4,5,"b","c","d"}

-- Successively adding remaining roots to SortTup

-- and remove them from edges and nodes:

whilefound x in nodes | (notexists y in nodes | (x in edges{y}))

do

SortTup with:= x;

edges lessf:= x;

nodes less:= x;

end whilefound;

put (SortTup);

end if;

procedure ContainsCycle (edges);

nonleafs := domain (edges); -- {1,2,3,"a","b"}

-- Successively remove nonleafs that don’t point to nonleafs:

whilefound x in nonleafs | (edges{x} * nonleafs = { })

do

nonleafs less:= x;

end whilefound;

return (nonleafs /= { }) ;

end ContainsCycle;

end TopSort;

Figure 2: Topologically sorting the nodes of a directed graph.

As sets are unordered collections, the program may print the fields and positions in different sequences.
Note that there are no explicit loops and that there is no recursion in the program. All iterations are
done implicitly. One may regard this program also as a specification of the queens’ problem.

The program in Fig. 2 for topologically sorting the nodes of a directed graph provides a second
example. A directed edge between the nodes x and y is indicated by listing the pair [x,y] in the set
edges. Thus edges is a multi-valued map, assigning each node x the set edges{x} of its successors.
The edges could also be read in from the terminal or constructed in other ways, instead of using a
set former.

The binary operators with and less add elements to resp. remove elements from sets and tuples.
Lessf removes all pairs from a map whose first element is the specified one. Set union and intersection
are denoted by the binary operators “+” and “*” resp.. One possible result would be the following
tuple in SortTup:

[1, "a", 2, "b", 3, "c", 4, "d", 5]

3 Linda 5

3 Linda

Linda2 is a coordination language concept for explicitly parallel programming in an architecture
independent way, which has been developed by David Gelernter at Yale University [Gel85]. Commu-
nication in Linda is based on the concept of tuple space, i.e. a virtual common data space accessed by
an associative addressing scheme. [CG90] provides a full account to parallel programming in Linda.
A comparison with other approaches to parallel programming may be found in [CG89].

Process communication and synchronization in Linda is reduced to concurrent access to a large
data pool, thus relieving the programmer from the burden of having to consider all process inter-
relations explicitly. The parallel processes are decoupled in time and space in a very simple way. This
scheme offers all advantages of a shared memory architecture, such as anonymous communication
and easy load balancing. It adds a very flexible associative addressing mechanism and a natural
synchronization paradigm and at the same time avoids the well-known access bottleneck for shared
memory systems as far as possible.

The shared data pool in the Linda concept is called tuple space. Its access unit is the tuple, similar
to tuples in ProSet (section 2). Tuples live in tuple space which is simply a collection of tuples. It
may contain any number of copies of the same tuple: it is a multiset, not a set. Tuple space is the
fundamental medium of communication. All Linda communication is a three-party operation: sender
interacts with tuple space, tuple space interacts with receiver. Conversely, traditional models such as
message passing provide two-party operations.

Process communication and synchronization in Linda is also called generative communication,
because tuples are added to, removed from, and read from tuple space concurrently. Synchronization
is done implicitly.

Reading access to tuples in tuple space is associative and not based on physical addresses — in
fact, the internal structure of tuple space is hidden from the user. Reading access to tuples is based
on their expected content described in so-called templates. This method is similar to the selection
of entries from a data base. Each component of a tuple or template is either an actual, i.e. holding
a value of a given type, or a formal, i.e. a placeholder for such a value. A formal is prefixed with
a question mark. Tuples in tuple space are selected by a matching procedure, where a tuple and a
template are defined to match, iff they have the same structure (corresponding number and type of
components) and the values of their actuals are equal to the values of the corresponding tuple fields.

Linda defines six operators, which may be added to a sequential computation language. These
operators enable sequential processes, specified in the underlying computation language, to access the
tuple space:3

out (tuple); The specified tuple is evaluated and then added to the tuple space. The
out-executing process continues as soon as evaluation of the tuple is completed. The
“out("data", 123);” operation in Fig. 3 deposits the tuple ["data",123] into tuple
space.

No specified action is taken in the event that tuple space is full. See also sections 4.2.1,
4.4.1, and 4.5.1 for discussions on this subject.

eval (tuple); Executing an eval operation causes the following sequence of activities.
First, bindings for names indicated explicitly in the tuple are established in the envi-
ronment of the eval-executing process. At this point, the eval-executing process may
continue. Each field of the tuple argument to eval is now evaluated, independently of
and asynchronously with the eval-executing process and each other. The fields of an
eval tuple are evaluated concurrently yielding one thread of execution for every field.
eval deposits active tuples into tuple space, which are not accessible to the remaining
four operations. Conversely, out deposits passive tuples into tuple space, which are

2Linda is a registered trademark of Scientific Computing Associates.
3Parts of this description were derived from [CG90, appendix A].

6 3 Linda

accessible to the remaining four operations, which are discussed below. When every
field has been evaluated completely, the tuple consisting of the values yielded by each
eval-tuple field, in the order of their appearance in the eval tuple, becomes available
in tuple space: the active tuple converts to a passive one. The “eval("p",p());”
operation in Fig. 3 deposits the active tuple ["p",p()], containing two processes,
into tuple space.

Some current implementations in fact evaluate all fields of an eval tuple sequentially
within a single new process. This may cause deadlocks if processes within an eval

tuple communicate with each other. The Yale Linda Implementation would only
spawn one process in the above example, since only expressions consisting of a single
function call are evaluated within new processes by this implementation.

The main program is the only process that lives outside of tuple space.

in (template); The in operation attempts to withdraw a specified tuple from tuple space.
Tuple space is searched for a matching tuple against the template supplied as the
operation’s argument. When and if a tuple is found, it is withdrawn from tuple
space, and the values of its actual fields are bound to any corresponding formals in
the template. Tuples are withdrawn atomically: a tuple can be grabbed by only
one process, and once grabbed it is withdrawn whole. If no matching tuple exists in
tuple space, the process executing the in suspends until a matching tuple becomes
available. If many tuples satisfy the match criteria, one is chosen arbitrarily. The
“in("data",?i);” operation in Fig. 3 withdraws the tuple ["data",123] from tuple
space and assigns 123 to the integer variable i.

rd (template); The rd operation is the same as in, with actuals assigned to formals as
before, except that the matched tuple remains in tuple space. The “rd("p",?x);”
operation in Fig. 3 has to wait for the termination of p() to read the return value
of p(). It is presupposed that the return value of p() has the same type that the
variable x is declared with.

inp (template) / rdp (template) In C-Linda, these operations attempt to locate a
matching tuple and return 0 if they fail; otherwise, they return 1 and perform actual-
to-formal assignment as described above. The only difference with in/rd is that the
predicates will not block if no matching tuple is found.

It may be difficult to implement these operations on distributed memory architectures
(see also section 4.4.2).

A tuple and a template match, iff

• the tuple is passive, and

• the numbers of fields are equal, and

• types and values of actuals in templates are equal to the corresponding tuple fields, and

• the types of the variables in the formals are equal to the types of the corresponding tuple fields.

Some approaches allow formals in deposited tuples. Such formals match with appropriate actuals in
templates, but never with formals in templates (see also the discussion on formals in section 4.4.4).

Linda supports the master-worker model with distributed data structures: one master process
interacts with a collection of identical workers. The master generates task tuples and collects results
while the worker processes repeatedly grab tasks from tuple space, perform the required actions, and
return result tuples to tuple space. This model allows easy load balancing. See also section 4.5.1
for an example. A special instance of the master-worker model is the so-called Piranha model for
LAN-connected workstations, where computational piranhas attack a cloud of tasks [BCG+91].

4 Generative communication in ProSet 7

❇
❇
❇
❇❇◆

✁
✁

✁
✁

✁
✁✁☛

✁
✁
✁

✁
✁

✁
✁✁☛

❇
❇
❇
❇
❇❇◆

["p", p()]

rd ("p", ? x);

["data", 123]

in ("data", ? i);

eval ("p", p());out ("data", 123);

Figure 3: Tuple-space communication in Linda.

A parallel programming language consists of a coordination language like Linda and a sequential
computation language like C [CG92]. The first computation language, in which Linda has been
integrated, was C [Gel85, ACG86]. Implementations of C-Linda have been performed on a wide variety
of parallel architectures: shared-memory multi-processors like the Sequent Balance and Symmetry,
and the Encore Multimax [Car87] as well as on distributed memory architectures such as the S/Net
[Car87], Hypercubes [Luc86, BCG89], Parwell [BHK89], Transputers [Dou89, Zen90, Faa91, CCH91],
and Ethernet [WL88, AB89, SP90, CKM91, Sch91]. Especially in the Yale Linda Implementation
extensive compiler optimizations are applied [CG91]. Also hardware support has been considered
[ACGK88]. Recent applications experience is discussed in [BCG+91].

Meanwhile there exist also integrations into higher-level languages such as Modula [BHK89], C++
[CCH91], Smalltalk [MK88], Eiffel [Jel90], Lisp [Hut90, YW90, Aba91], EuLisp [BP91], Scheme
[Dou89, DM90, Jag91], Russell [But91] or Prolog [SP90, Cia91, Mac91], and for operating systems
[Lel90]. Combinations with other languages are planned [Mac91].

4 Generative communication in ProSet

A coordination language like Linda provides means for process creation and inter-process communica-
tion which may be combined with computation languages like SETL [CG92]. The following subsections
will discuss process creation and tuple-space communication in ProSet, some design alternatives, and
some small examples. We regard tuple spaces primary as a device for synchronization and communi-
cation between processes, and only secondary for process creation.

4.1 Process creation

In Linda there is an inherent distinction between at least two classes of processes. Processes live inside
and outside of tuple space: the main program is not part of an active tuple (thus it lives outside of
tuple space), and all additional processes are created via eval as part of active tuples hence they live
inside the tuple space.

But often it is not desired to put the return values of spawned processes (if after all available) into
tuples in tuple space. This is for instance the case if a worker process executes in an infinite loop and
deposits result tuples into a tuple space instead of returning only one result. It seems to be artificial

8 4 Generative communication in ProSet

to put such a worker process into an active tuple. In this section we will present an adaptation of the
approach for process creation known from Multilisp to set-oriented programming, where new processes
may be spawned inside and outside of tuple space.

4.1.1 Multilisp’s futures

Multilisp [Hal85] augments Scheme with the notion of futures where the programmer needs no knowl-
edge about the underlying process model, inter-process communication or synchronization to express
parallelism. He only indicates that he does not need the result of a computation immediately (but
only in the “future”) and the rest is done by the runtime system. Instead of returning the result of the
computation, a placeholder is returned as result of process spawning. The value for this placeholder is
undefined until the computation has finished. Afterwards the value is set to the result of the parallel
computation: the future resolves to the value. Any process that needs to know a future’s value will
be suspended until the future resolves thus allowing concurrency between the computation of a value
and the use of that value. The programmer is responsible for ensuring that potentially concurrently
executing processes do not affect each other via side effects. An example:

(let ((x (future expr1))
(y expr2))
(body))

The value for x, which will be the result value of expr1, is evaluated concurrently to expr2 and body.
The value for y, which will be the result value of expr2, is evaluated before the evaluation of body will
be started. When body needs the value of x, and x is not yet resolved, it touches the future of x and is
suspended until the future resolves. Most operations, e.g. arithmetic, comparison, type checking, etc.,
touch their operands. This is opposed to simple transmission of a value from one place to another,
e.g. by assignment, passing as a parameter to a procedure, returning as a result from a procedure,
building the value into a data structure, which does not touch the value. Transmission can be done
without waiting for the value.

An analogous approach may be found in Qlisp [GM88] where the propositional parameter EAGER
lets the functions QLET and QLAMBDA evaluate their arguments in parallel like Multilisp’s futures
do. The semantics of futures is based on lazy evaluation, which means that an expression is not
evaluated until its result is needed. I-Structures in Id [ANP89] provide special kinds of arrays, whose
components are evaluated in parallel. Access to an array component is suspended until the requested
component is evaluated: the array is not touched as a whole. BaLinda Lisp [YW90] provides also a
notion for futures, but this is like a fork in Unix4. A touch does not guarantee a deterministic result,
because blocking is not applied when a future is touched. The future concept is usually implemented
on shared-memory multi-processors.

4.1.2 Process creation in ProSet

Futures in Multilisp provide a method for process creation but no means for synchronization and
communication between processes, except for waiting for each other’s termination. In our approach
the concept for process creation via futures is adapted to set-oriented programming and combined
with the concept for synchronization and communication using tuple spaces.

Multilisp is based on Scheme, which is a dialect of Lisp with lexical scoping. Lisp and Scheme
manipulate pointers. This implies touching in a value-requiring context and transmission in a value-
ignoring context. This is in contrast to ProSet that uses value semantics, i.e. a value is never
transmitted by reference. However, there are a few cases where we can ignore the value of an expres-
sion: if the value of an expression is assigned to a variable, we do not need this value immediately,
but possibly in the future.

4Unix is a registered trademark of AT&T.

4.1.2 Process creation in ProSet 9

Process creation in ProSet is provided through the unary operator ||, which may be applied to
an expression (preferably a function call). A new process will be spawned to compute the value of
this expression concurrently with the spawning process analogously to futures in Multilisp.

If this process creator || is applied to an expression that is immediately assigned to a variable,
the spawning process continues execution without waiting for the termination of the newly spawned
process. At any time the value of this variable is needed, the requesting process will be suspended
until the future resolves (the corresponding process terminates) thus allowing concurrency between
the computation and the use of a value. Consider the following statement sequence to see an example:

x := || p(); -- statement 1
... -- Some computations without access to x

y := x; -- statement 2

After statement 1 is executed the process p() runs in parallel with the spawning process. Statement 2
will be suspended until p() terminates, because a copy is needed (value semantics). This is in contrast
to Lisp where an assignment would copy the address and ignore the value. If p() resolves before
statement 2 has started execution, then the resulting value will be assigned immediately.

Also, if a compound data structure is constructed via a set or tuple forming enumeration, and this
data structure is assigned immediately to a variable, we do not need the values of the enumerated
components immediately, thus the following statement allows concurrency as above:

x := { || p(), 123, || q() };

If you replace statement 1 in the previously discussed statement sequence by this statement, then
concurrency would be achieved as before. Such parallel set or tuple forming expressions may be
compared with constructing lists via the function cons in Multilisp, where the list components are
also not touched [Hal85, page 511].

Conversely, in iterative formers such as “{ || p() .. || q() }” the dot operator “..” needs
the initial and final values for the iteration, and thus has to wait for the termination of p() and q().

Compound data structures in ProSet are always touched as a whole. Access to tuple or set
components as in

x := [|| p(), || q()];

y := x(1);

touches the whole tuple or set, thus both, p() and q(), have to terminate before x(1) is accessible.
This is in contrast to I-Structures in Id [ANP89] where access to array components touches only the
requested components. It is not really necessary for tuples to touch them as a whole, but to handle
compound data structures as in Id might cause problems for selection from sets. We decided to touch
compound data structures always as a whole to retain consistency for tuples and sets.

The actual parameters for the procedure doit in

x := doit (|| p(), || q());

are evaluated concurrently to each other. The procedure doit is invoked when both processes have
terminated their execution. The programmer of doit does not have to know that the actual param-
eters are evaluated concurrently. The runtime system takes care of that. Returning an expression
that is prefixed by || achieves concurrency according to the context of the corresponding procedure
invocation.

In summary: concurrency is achieved only at creation time of a process and maintained on im-
mediately assigning to a variable, storing in a data structure, passing as a parameter to a procedure,

10 4 Generative communication in ProSet

returning as a result from a procedure, and depositing in tuple space (this is discussed in section 4.2.1).
Every time one tries to obtain a copy one has to wait for the termination of the corresponding process
and obtains only then the returned value. The unique moment at which a value is not touched is on
creation of the respective process, because this is the unique moment at which no copy is needed.

Analogously to statements, concurrency is achieved in declarations like

constant c := || p();

visible x := [|| p()];

If, after one of such a declaration or similar statement, x is assigned a new value, then the corre-
sponding spawned process will be abandoned5 provided it is still running. Hence, the automatic
garbage collection provides a means for explicit process termination outside tuple space. The auto-
matic garbage collection also should take place when the existence of an object terminates. This is
the case e.g. on return from a procedure or on program termination. Automatic garbage collection
does not apply to processes within tuple space. Process termination within tuple space is discussed
in section 4.3.

Process-spawning statements Also the following statement, which spawns a new process, is
allowed:

|| p();

The return value of such a process will not be available and it is not possible to abandon it explicitly.
The general form of such a process-spawning statement is

Statement ✲ || ✲ Expression ✲ ; >

If the process creator || is applied in an expression that is an operand to any operator, then this
operator will wait for the return value of the created process. Operators always need the values of
their operands, and thus have to wait for the termination of processes that compute their operands.
For instance, in the following expressions the return values are needed:

1 + || p()

["x"] + [|| p()]

- || p()

type || p()

As any other operator, the process creating operator || touches the value of its operand. Hence,
an expression such as “|| || p()” does not make much sense: the leftmost || has to wait for
the termination of p(). However, it is syntactically correct. The following expression spawns three
processes:

|| { || p(), 123, || q() }

The set-forming process has to wait for the termination of p() and q().

Side effects and write parameters are not allowed for processes. Communication and synchroniza-
tion is done only via tuple-space operations. However, processes may access common, persistent data
objects via critical regions on these objects. This is discussed elsewhere [Dob90].

5Killing processes has to be done with care. Especially when such processes are still doing tuple-space operations.

4.2 Tuple-space operations 11

Notice that processes have no first-class rights in ProSet (see also section 4.4.4). The type

operator has to wait for termination as any other operator.

The process creator may also be inserted automatically or semi-automatically by a parallelizing
compiler, which detects implicit parallelism (probably fine-grained). This is especially interesting in
the context of transformational programming [Par90].

Historical note In [Has91a] || was only a syntactical marker within tuple-space operations. By
means of promoting || to an unary operator we gain additional flexibility and smoother semantics
for the tuple-space operations.

4.2 Tuple-space operations

ProSet provides three tuple-space operations:

Statement

✲ Deposit ✲ end ✲ deposit

✲ Fetch ✲ end ✲ fetch

✲ Meet ✲ end ✲ meet

✲ ; >

The deposit operation deposits new tuples into tuple space, the fetch operation fetches and removes
a tuple from tuple space, and the meet operation meets and leaves a tuple in tuple space. It is possible
to change the tuple’s value while meeting it.

There is no difference between ProSet-tuples and Linda-tuples. Linda and ProSet both provide
tuples thus it is quite natural to combine them on the basis of this common feature. However, a tuple
space is a multiset of tuples, whereas the type system of ProSet does not directly provide the notion
of multisets or bags. One could model multisets e.g. via maps from tuples to counts, but this would
not reflect the matching provided by tuple spaces. We will return to this question when discussing
the introduction of a type “tuple space” in section 4.4.4.

Tuple-space operations are statements that yield no values. They should not be confused with
operators in expressions that always yield values.

4.2.1 Depositing tuples

The deposit operation deposits tuples into a specified tuple space:

Deposit ✲ deposit ✲ Expression

, ✛

✲ at ✲ TS ID ✲ IfFull >

It is possible to deposit several tuples in an expression list into one tuple space and several such
expression lists into multiple tuple spaces by one statement, but there are no guarantees made for
the chronological order of availability of these tuples for other operations that wait for them (see

12 4 Generative communication in ProSet

below). The tuples are handed over to the tuple-space manager, which adds them to the tuple space
in an arbitrary order. There is no guarantee given for the time of availability of deposited tuples for
matching templates (see also sections 4.2.4 and 4.4.2).

All expressions are evaluated in arbitrary order, before any tuple is put into tuple space. The
expressions must yield tuples to be deposited in tuple space; if not, an exception will be raised. The
identifier TS ID will be discussed in section 4.3.

We distinguish between passive and active tuples in tuple space. If there are no executing processes
in a tuple, then this tuple is added as a passive one (cp. out of C-Linda). If there are executing
processes in a tuple, then this tuple is added as an active one to tuple space. Depositing a tuple into
tuple space does not touch the value. When all processes in an active tuple have terminated their
execution, then this tuple converts into a passive one with the return values of these processes in the
corresponding tuple fields. Active tuples are invisible to the other tuple-space operations until they
convert into passive tuples. The other two tuple-space operations apply only to passive tuples.

Depositing in tuple space does not touch the values of tuples to be deposited thus the following
statement deposits an active tuple into tuple space:

deposit [|| p()] at TS

whereas the following statement sequence deposits an passive tuple:

x := [|| p()];

deposit x at TS;

The deposit operation copies the value of x, and thus has to wait for the termination of p() (see also
section 4.1.2).

Limited tuple spaces

Because every existing computing system has only finite memory, the memory for tuple spaces will
also be limited. Pure tuple-space communication does not deal with full tuple spaces: there is always
enough room available. Thus most runtime systems for Linda hide the fact of limited memory from
the programmer. For instance, in [Hut90] out is suspended until space is available again. Conversely,
programs written in C-Linda from Scientific Computing Associates print the message “out of tb’s”
and exit when the tuple space is exhausted [She90].

In ProSet-Linda the predefined exception TS IS FULL will be raised by default when no memory
is available for a deposit operation. If there are multiple tuples specified in one deposit operation,
then none of them has been deposited when TS IS FULL is raised. Conversely, this exception will be
raised, if at least one tuple cannot be deposited in any tuple space.

In ProSet it is possible to specify a handler for an exception by annotating a statement with a
new binding between exception name and handler name:

deposit [x], [|| f(x)]

at TS

end deposit when TS_IS_FULL use MyHandler;

If not explicitly specified with the ProSet-stop statement, the user-defined handler will not abort
the program. If the handler executes a return statement, then the statement following the deposit

will be executed and none of the tuples of the respective deposit will be deposited. If the handler
executes a resume statement, then the deposit operation tries again to deposit the tuples. The
programmer has to take care not to produce an infinite alternation between raising and resuming. See

4.2.2 Fetching tuples 13

also section 4.5.1 for an example. If no user-defined handler is given, then the runtime system will
abort the program with an error code.

Optionally, the programmer may specify that a deposit operation will be suspended until space
is available again:

IfFull

✲ blockiffull

>

You may specify blockiffull as well as a new binding between the predefined exception TS IS FULL

and another handler name, but then TS IS FULL will never be raised. The compiler will print a
warning message in this case.

The suitable handling of full tuple spaces depends on the application you have to program. Thus
a general setting does not seem to be appropriate. Blocking is useful e.g. in a producer-consumer
application. In a master-worker application you might prefer to collect some results by your own
handler before producing more tasks, when your tuple space is full. If you would block both, master
and worker, a deadlock might occur, in contrast to the meaning of pure tuple-space communication.
See also section 4.4.1 for a discussion on this subject. In section 4.5.1 a master-worker application
with limited tuple spaces will be presented.

4.2.2 Fetching tuples

A fetch operation fetches and removes one tuple from a tuple space:

Fetch ✲ fetch ✲ Template

✲ => ✲ Stmts

or ✛

✲ at ✲ TS ID

or ✛

✲ Else >

It is possible to specify several templates for multiple tuple spaces in one statement, but only one
template may be selected nondeterministically (section 4.2.4). If there are no else statements specified
(see below) then the statement suspends until a match occurs. The selected tuple is removed from
tuple space. If statements are specified for the selected template, these statements are executed (only
for this template).

A template consists of a list of ordinary expressions and so-called formals :

Template ✲ (

✲ Expression

✲ Formal

, ✛

✲) >

14 4 Generative communication in ProSet

The expressions are called actuals. They are at first evaluated in arbitrary order. The list is enclosed
in parentheses and not in brackets in order to set the templates apart from tuples. The fields that are
preceded by a question mark are the formals of the template:

Formal ✲ ?

✲ L-Value ✲ | ✲ Expression

>

As usual | means such that. The Boolean expression behind | may be used to customize matching.
Several approaches to customizing the matching process were proposed. E.g. [Sch91] and [AS91]
provide range accessing: formals are extended to match only values in a specified range. [Aba91]
provides so-called satisfies forms, viz. predicate functions, which are attached to formals to be evaluated
during the matching process. [BP91] allows to redefine matching methods. In [Jag91] individual tuple
spaces are accessed indirectly via so-called policy closures, which may customize the matching process.

A tuple and a template match, iff all the following conditions hold:

• the tuple is passive (matching touches the value)

• the numbers of fields are equal

• types and values of actuals in templates are equal to the corresponding tuple fields

• the Boolean expressions behind | in the formals evaluate to true. If no such expression is
specified in a formal, then this field matches unconditionally

The L-Values specified in the formals are assigned the values of the corresponding tuple fields provided
matching succeeds. If such L-Values occur in the expressions of formals, then these expressions are
evaluated with the corresponding old values of these L-Values. The question mark may be used like
an expression as a placeholder for the value of the corresponding tuple field:

fetch ("x", ? x |(type ? = integer)) at TS end fetch;

This formal only matches integer values in the corresponding tuple field. Conversely, the formal
“? x |(type x = integer)” would test the value of x before the assignment of the corresponding
tuple value takes place. It is only allowed to use the question mark this way in expressions that are
parts of formals. It is not possible to access the values of multiple tuple fields within expressions of
formals.

If a L-Value is specified more than once, it is not determined which of the possible values is
assigned. If there is no L-Value specified, the corresponding value will not be available. You may
regard a formal without an L-Value as a “don’t care” or “only take care of the condition” field.

Non-blocking matching

It is possible to specify else statements to be executed, if none of the templates matches:

Else

✲ else ✲ Stmts

>

4.2.3 Meeting tuples 15

We will use the notion non-blocking matching if else statements are specified as opposed to blocking
matching if no else statements are specified. In sections 4.4.2 and 4.5.1 discussions on this subject
may be found.

An example for the fetch operation:

fetch ("name", ? x |(type ? = integer)) => put("Integer fetched");

or ("name", ? x |(type ? = set)) => put("Set fetched");

at TS

else put("Nothing fetched");

end fetch;

4.2.3 Meeting tuples

The meet operation meets and leaves one tuple in tuple space. It is possible to change the tuple while
meeting it. Exchanging the keyword fetch with meet and the nonterminal Template with MeetTem-
plate in the first syntax diagram of section 4.2.2, one obtains the syntax for the meet operation:

MeetTemplate ✲ (

✲ Expression

✲ Formal

✲ into ✲ Expression

, ✛

✲) >

The expressions are evaluated as usual, the formals are used to create templates, which are used for
matching as with the fetch operation (section 4.2.4). If no else case is specified, then the statement
suspends until a match occurs. The values of the tuple fields that were fetched for the corresponding
formals of the template are assigned to the corresponding L-Values. If statements are specified for the
selected template, these statements are executed (only for this template).

An example for the meet operation:

meet ("name", ? x |(type ? = integer)) => put("Integer met");

or ("name", ? x |(type ? = set)) => put("Set met");

at TS

else put("Nothing met");

end meet;

If there are no into’s specified as in this example, then the selected tuple is not removed from tuple
space. This case may be compared with the rd/rdp operations of C-Linda. Except for the fact that
the meet operation without into’s leaves the tuple it found in tuple space, it works like the fetch

operation.

Changing tuples

The absence of support for user-defined high-level operations on shared data in Linda is criticized
[Bal91]. We agree that this is a shortcoming. For overcoming it we allow to change tuples while
meeting them in tuple space. This is done by specifying expressions into which specific tuple fields
will be changed. Tuples, which are met in tuple space, may be regarded as shared data since they
remain in tuple space; irrespective of changing them or not.

16 4 Generative communication in ProSet

If there are into’s specified then the tuple is at first fetched from the tuple space as it would be
done with the fetch operation. Afterwards a tuple will be deposited into the same tuple space, where
all the tuple fields without into’s are unchanged and all the tuple fields with into’s are updated with
the values of the respective expressions. Consider

meet ("x", ? |(type ? = integer) into ?+1) at TS end meet;

which is equivalent to the series of statements with x as a fresh name:

fetch ("x", ? x |(type ? = integer)) at TS end fetch;

deposit ["x", x+1] at TS end deposit;

Indivisibility is guaranteed, because fetching the passive tuple at starting and depositing the new
passive or active one at the end of the user-defined operation on shared data are atomic operations.
Note that another process, which does simultaneously a non-blocking meet operation with the same
template, may execute its else statements.

With the meet operation expensive copying of compound data may be avoided (see also section 5).
The question mark may be used like an expression as before. It is not necessary to specify L-Values

for changing tuple fields. However, they may be used:

meet ("x", ? x |(type ? = integer) into ?+1) at TS end meet;

Where x is assigned the value of the corresponding tuple field before the change takes place. Remember
that it is only allowed to use the question mark this way in expressions that are parts of formals.

The meet operation will not raise TS IS FULL when a tuple space is full while depositing a changed
tuple, when the number of allowed tuples in this tuple space is exceeded (see also section 4.3). The
place for the met tuple will be reserved for the whole operation. However, if the changed tuple exceeds
a physical memory limit, this will raise TS IS FULL.

Historical note In [Has91a] we presented a find and a change operation. While refining the change
operation we recognized that it contained the find operation and consequently we merged both into
the meet operation.

4.2.4 Nondeterminism and fairness while matching

There are two sources for nondeterminism while matching:

1. Several matching tuples exist for the templates: one tuple will be selected nondeterministically.

2. The selected tuple matches several templates: one template will be selected nondeterministically.

If in any case there is only one candidate available, this one will be selected. There are several ways
for handling fairness while selecting tuples or templates that match if there are multiple candidates
available. We assume a fair scheduler to guarantee process fairness, which means that no single
process is excluded of CPU time forever. We will now discuss fairness of choice which is important
for handling the nondeterminism derived from matching. There exist some fairness notions [Kwi89]:

Unconditional Fairness Every process will be selected infinitely often.

Weak Fairness If a process is enabled continuously from some point onwards then it
eventually will be selected. Weak Fairness is also called justice.

4.2.4 Nondeterminism and fairness while matching 17

Strong Fairness If a process is enabled infinitely often then it will be selected infinitely
often.

Since unconditional fairness applies only to nonterminating processes we do not consider it for our ap-
proach. In ProSet the following fairness guarantees are given for the two sources for nondeterminism
as mentioned above:

1. Tuples will be selected without any consideration of fairness.

2. Templates will be selected in a weakly fair way.

Since deposited tuples are no longer connected with processes, it is reasonable to select them without
any consideration of fairness. Linda’s semantics do not guarantee tuple ordering — this aspect remains
the responsibility of the programmer. If a specific order in selection is necessary, it has to be enforced
via appropriate tuple contents. The system is enabled to store the tuple space e.g. in a hash-based
way. It is not necessary to retain the age of a tuple in any way.

To specify weakly fair selection of templates by means of temporal logic we introduce the following
abbreviations for predicates on a process P and a template T :

E = “Process P executes a blocking fetch or meet operation with template T ”

M = “There is a matching tuple for template T in tuple space”

B = “Process P is blocked with template T ”

S = “Template T is selected for a matching tuple provided there exists one”

A = “Process P is activated (template T was selected)”

Now the above-given fairness guarantee may be formulated as follows:6

E ∧M ∧ S ⇒ A (1)

E ∧ ¬(M ∧ S) ⇒ B (2)

B ∧✷✸M ⇒ ✸(S ∧A) (3)

Predicates 1 and 2 describe the behavior on executing blocking fetch or meet operations. Predicate 3
describes the selection of a template that belongs to a suspended process. “✷✸M” means that there
is infinitely often a matching tuple available for the template. S (selection) is implied by “✷✸M”.

Weakly fair selection of templates applies only to blocking matching: if a template that is used for
non-blocking matching does match immediately then this one is excluded of further matching and the
corresponding process is informed of this fact. This applies accordingly to non-blocking matching with
multiple templates, too. Templates (resp. processes), which are suspended because no tuple matches
them are weakly fair matched with tuples later deposited. The implementation has to guarantee this
(see also section 5).

If we would guarantee strongly fair selection of templates then the system would have to retain non-
blocking matching operations of processes, for which no matching tuples were available. This does not
seem to be acceptable, since non-blocking matching already implies some vaguenesses (section 4.4.2).
You have to be aware that busy waiting with polling methods, which use non-blocking matching
operations e.g. in loops, are not handled in a fair way.

6In temporal logic “✸p” and “✷p” mean that predicate p holds eventually resp. always. See e.g. [Eme90] for a full
account to temporal logic.

18 4 Generative communication in ProSet

4.2.5 Comparison with the C-Linda operations

The deposit operation comprises the out and eval operations of C-Linda. You might compare
depositing of active tuples with eval, but it is not exactly the same, however, because all fields of
an eval tuple are executed concurrently and not only fields which were selected by the programmer.
This is a noteworthy difference: according to the semantics of eval each field of a tuple is evaluated
concurrently. But probably no system will create a new process to compute e.g. a plain integer
constant. In the Yale Linda Implementation, only expressions consisting of a single function call
are evaluated within new processes [CG90]. The system has to decide, which fields to compute
concurrently and which sequentially. Similar problems arise in automatic parallelization of functional
languages: here you have to reduce the existing parallelism to a reasonable granularity. In our approach
the programmer has to communicate his knowledge about the granularity of his application to the
system.

Additionally, the semantics of eval is not always well understood: some current implementations
in fact evaluate all fields of an eval tuple sequentially within a single new process. This may cause
deadlocks if processes within an eval tuple communicate with each other.

The fetch operation merges select of Ada and in resp. inp of C-Linda. The meet operation
merges select of Ada, rd and rdp of C-Linda, and allows for changing tuples in tuple space.

4.3 Multiple tuple spaces

Atoms are used to identify tuple spaces. As mentioned in section 2 atoms are unique for one machine
and across machines. They have first-class rights. We considered to introduce a new data type for
tuple-space communication, but do not see a justification for the time being (see also section 4.4.4).

ProSet provides several library functions to handle multiple tuple spaces:

createTS(limit): Calls the standard function newat to return a fresh atom. The tuple-space man-
ager is informed to create a new tuple space represented/identified by this atom. The atom
will be returned by createTS. Thus you can only use atoms that were created by createTS to
identify tuple spaces.

Since one has exclusive access to a fresh assigned tuple-space identity, createTS provides infor-
mation hiding to tuple-space communication.

The integer parameter limit specifies a limit on the expected or desired size of the new tuple
space. This size limit denotes the total number of passive and active tuples, which are allowed
in a tuple space at the same time. CreateTS(om) would instead indicate that the expected or
wanted size is unlimited regarding user-defined limits, not regarding physical limits.

In C-Linda from Scientific Computing Associates the size for the global tuple space is specified
in byte blocks [She90]. However, the level of such an unit is too low for a prototyping language.

existsTS(TS): Provides true, if TS is an atom that identifies an existing tuple space; else false.

clearTS(TS): Removes all active and passive tuples from the specified tuple space. This operation
should be indivisible for TS.

This function appears to be useful e.g. in a master-worker application: when the work has been
done, the master can remove garbage and abandon the workers.

removeTS(TS): Calls clearTS(TS) and removes TS from the list of existing tuple spaces. Note that
after assigning a new value to a variable that contains a tuple-space identity, the respective tuple
space is not removed. The tuple-space identity is garbage collected, not the tuple space itself.
Garbage collection applies only to first-class objects.

4.4 Discussion of some design alternatives 19

If functions are invoked with actual parameters of wrong type, then an appropriate exception will be
raised.

Every ProSet program has its own tuple-space manager. Tuple spaces are not persistent. They
exist only until all processes of an application have terminated their execution. If all processes are
suspended, the tuple-space manager should terminate with an appropriate warning message. A con-
current program terminates when all its sequential processes have terminated.

Tuple space communication in ProSet as presented in this paper is designed for multiprocessing
(single application running on multiple processors) as opposed to multiprogramming (separate appli-
cations). Multiprogramming is done via a separate mechanism for handling persistent data objects,
which is based on critical regions.

4.4 Discussion of some design alternatives

4.4.1 Limited tuple spaces

The meaning of raising TS IS FULL is not really satisfying: while the handler is executed, there
might already be some space available. Blocking on full tuple spaces is new to pure tuple-space
communication. However, we prefer to make the programmer aware of the problem of finite memory,
instead of hiding it in the system. We will return to this subject in the example of section 4.5.1.

4.4.2 Non-blocking matching

Especially in a distributed environment there may be matching tuples available while the else state-
ments of a non-blocking fetch or meet operation are executed. This is so because of concurrent access
to tuple space. Thus the meaning of these statements is not really satisfying. Generally it is hardly
possible to make any meaningful statement on the state of a tuple space, like “This tuple is not in
tuple space!”. The state can change while it is checked. Consider the following statement sequence:

deposit ["foo"] at TS end deposit;

fetch ("foo") at TS

else put ("Not yet deposited or already fetched by another one");

end fetch;

Remember that there is no guarantee given for the time of availability of deposited tuples for matching
templates (section 4.2.1). It is recommended not to use non-blocking matching, if such vagueness is a
problem.

Historical note In [Has91a] we did not support non-blocking matching because of the mentioned
problems. However, despite this vagueness we decided to provide non-blocking matching for practical
reasons: we understand that the semantic problems with supporting the notion of limited tuple spaces
and non-blocking matching are related. In section 4.5.1 we will return to these subjects.

4.4.3 Aggregate and accumulative matching

We considered adding the facility for specifying multiple templates in a list to avoid unnecessary
sequences for fetching and meeting tuples as in

meet ("name1", ? x1), ("name2", ? x2)

=> put("name1 and name2 met");

at TS

end meet;

20 4 Generative communication in ProSet

But it is intuitively not obvious to us, whether both templates have to match with tuples at the
same time or during an interval of time (between starting and finishing the meet or fetch operation).
E.g. in [AS91] multiple templates are allowed for rd and rdp operations, which set read-locks on the
being met tuples to guarantee simultaneous matching. Conversely, in [BP91] accumulate matching
for multiple templates is discussed, where matching must take place between starting and finishing
the respective operation. Due to the unclear semantics we decided not to support template lists; the
above statement is not allowed in ProSet.

4.4.4 Introducing new data types

In this section we shall discuss the introduction of new data types for generative communication in
ProSet. As Linda relies heavily on type matching, the type system of the computation language has
a notable effect on tuple-space implementation and semantics. E.g. in C the equivalence of types is not
that obvious. Under which conditions are structures resp. unions equivalent? Are pointers equivalent
to array-names? In [Lei89] it has been proposed to extend the type system of C to overcome some of
the problems thus caused: each expression has two distinct types associated with it, its C type and its
Linda type. The Linda type follows stricter rules and is significant only in tuple matching, thus these
type extensions only influence the matching process and not the type system of C.

In ProSet there is no necessity for extending the type system for obtaining a smooth integration
of Linda: firstly, since ProSet provides a well-formed type system with clear semantics for type
equivalence, there exists no necessity to extend the basic type system for tuple matching. Secondly,
since there exist no difference between ProSet-tuples and Linda-tuples, a combination on the basis
of this common feature becomes straightforward. However, it is necessary to discuss the introduction
of additional, first-class data types to support generative communication in ProSet.

Processes and process identities

Processes have no first-class rights in ProSet. As ProSet uses value semantics, it must be possible
to obtain copies of objects with first-class rights, but running processes can exist only once. It is not
possible to get a copy of a running process: the copied process may do other things than the original
process, because of race conditions. Both processes (original and copy) would not be equal any longer
contradicting the requirement that the value of a copy has to be equal to the original value after
copying.

One could introduce process identities with first-class rights that would be returned by the process
creator ||. The programmer could test, if the value is evaluated or not. After evaluation, the returned
value would replace the process identity. It would be necessary to replace all copies of such a process
identity. We quote one important characteristic of futures as an agreeable argument against such an
approach:

“Also, no special care is required to use a value generated by future. Synchronization
between the producer and the user of a future’s value is implicit, freeing the programmer’s
mind from a possible source of concern.” ([Hal85, page 505])

We decided not to sacrifice this simplicity.

Tuple spaces and tuple-space identities

The idea of splitting the tuple space into multiple spaces is frequently applied. New data types
resp. classes are often proposed to organize them [MK88, Lel90, Aba91, BP91, But91, Cia91, Sch91,
and others]. In the basic tuple-space operations values of objects of these types are used as identi-
fiers/references to tuple spaces and not as the value of a tuple space itself. These approaches may be
compared with our approach to use atoms to identify tuple spaces: in [Jag91] the function make-ts

4.5 Examples 21

returns a reference to a representation structure of a newly created tuple space. Group identifiers are
used in [And91a] as optional parameters for the tuple-space operations to split the tuple space into
multiple groups. If no group identifier is specified, the operation applies to the default tuple space,
which is a global, flat tuple space as in plain C-Linda (section 3).

In [Gel89] and [Hup90] multiple, first-class tuple spaces are hierarchically structured like files in
Unix. Current default tuple spaces are provided similar to the current working directory in Unix.
In addition to using path names of tuple spaces, operations on tuple spaces as first-class objects are
supported (e.g. suspension). Concerning the data type ts in Melinda, Susanne Hupfer writes:

“Though the type ts is an essential theoretical component in Melinda, and we can have
ts-typed variables, we have no physical conception of a ts-typed object, no operations
that we can perform upon it, and indeed no way of representing the value of such an
object textually, for example as a ts constant ...” ([Hup90, page 12])

Conversely, [Cia91] provides tuple-space constants for the creation of tuple spaces.

However, because of concurrent access it is rarely possible to make any sensible statement with
respect to the actual value of a tuple space. A tuple space may be viewed as the dynamic envelope
of a growing and shrinking multiset of passive and active tuples that controls the communication and
synchronization of parallel processes. This dynamic communication device has no first-class rights in
ProSet. Atoms as tuple-space identities already have first-class rights. For the time being, we see
no necessity to introduce a new data type with first-class rights for tuple-space identities.

Formals and templates

One could introduce a new data type for formals. Tuples that contain formals would be templates,
thus making formals and templates first-class objects. However, objects of these types would only be
useful in tuple-space operations, and therefore it does not seem to be justified to introduce such new
types. Formals in deposited tuples would extend the matching rules: such formals would match with
appropriate actuals in templates, but never with formals in templates. For the time being, we see no
substantial advantages of such an extended matching procedure.

4.5 Examples

We will now present the solutions for a master-worker application with limited tuple spaces, the
queens’ problem, parallel matrix multiplication, and the dining philosophers problem.

4.5.1 A master-worker application with limited tuple spaces

A master-worker application with limited tuple spaces, where the master makes some new tasks
dependent on some results produced by the workers will now be presented to discuss the meaning of
non-blocking matching in correlation with limited tuple spaces.

The program in Fig. 4 consists of a master (the main program), a worker procedure, and an
exception handler. The master spawns 20 worker processes outside the tuple space. These workers
execute in an infinite loop, in which tasks are fetched from tuple space WORK, and results are computed
and deposited in tuple space RESULT. A worker is suspended if there is no more space available for
depositing results, since it does not know what to do in this case. The master repeatedly deposits
tasks into WORK. If there is no more space available for more tasks, the exception TS IS FULL will be
raised and the handler fetchResults will be activated to fetch some results. At least one result will
be fetched and probably some more, before resuming the deposit operation. It is not important how
many results are fetched. It is only important that some results are fetched to enable the workers.
Hence, the vaguenesses introduced by non-blocking matching make no problems in such applications.

22 4 Generative communication in ProSet

program MasterWorker;

visible constant WORK := createTS (1000),

RESULT := createTS (500);

visible tasks := { set of some task tuples };

begin

for i in [1.. 20] do

|| worker (); -- start the workers outside of tuple space

end for;

whilefound next in tasks do

deposit next

at WORK

end deposit when TS_IS_FULL use fetchResults;

end whilefound;

-- fetch remaining results ...

procedure worker ();

begin

loop

fetch (? MyTask) at WORK end fetch;

-- compute MyResult ...

deposit [MyResult] at RESULT

blockiffull

end deposit;

end loop;

end worker;

handler fetchResults ()

begin

-- fetch at least one result:

fetch (? firstResult) at RESULT end fetch;

-- fetch some more results:

loop

fetch (? nextResult) at RESULT

else quit; -- quits the infinite loop

end fetch;

-- do something with the result

end loop;

tasks +:= {a set of some new task tuples dependent on the results};

resume; -- the deposit operation

end fetchResults;

end MasterWorker;

Figure 4: A master-worker program with limited tuple spaces.

4.5.2 The queens’ problem revisited 23

Notice that matching does not fail while executing “else quit;”: matching fails before the else

statements are executed.

The program would be more efficient if only one tuple space would be used, since fetchResults

may be called earlier and thus the workers are suspended for a shorter time. However, we use two
tuple spaces to simplify matching. The master could do something with the results if he wants. He
also would have to fetch remaining results when the whilefound loop terminates. Notice that the
handler fetchResults changes the visible set tasks. This is not allowed for the concurrently running
workers. However, the workers access global constants.

As you can see in the example, we found non-blocking matching useful to handle limited tuple
spaces, because we did not know the exact number of results we had to fetch. We have reasons to
believe that the semantic problems with supporting the notion of limited tuple spaces (section 4.4.1)
and non-blocking matching (section 4.4.2) are related:

We should support the notion of limited tuple spaces if and only if we also provide non-
blocking matching, and vice versa.

The specification of a limit for a tuple space is primary intended here to obtain a facility for load bal-
ancing between a producer and a consumer. Remember that raising TS IS FULL does not distinguish
between reaching the specified size or reaching a physical memory limit.

If you regard limited tuple spaces as a device to influence load balancing (not necessary load
balancing between hardware processors, but between processes), then the vagueness introduced by
limited tuple spaces and non-blocking matching is no problem: you deposit some tasks, thereupon
you fetch some results and so on.

This leads us to the following conclusions:

• Limited tuple spaces and non-blocking matching appear to be useful for handling load balancing
between processes.

• In applications where these vaguenesses might be a problem, you should not use non-blocking
matching, not specify limits for tuple spaces, and not customize the behavior on reaching full
tuple spaces.

4.5.2 The queens’ problem revisited

In section 2.3 the queens’ problem was introduced together with a sequential solution. In Fig. 5
a parallel solution based on the master-worker model is given. It is recommended to examine the
sequential solution in Fig. 1 on page 3 again.

The resulting set of non-conflicting positions is built in tuple space RESULT via changing meet

operations. The master program spawns NumWorker worker processes. One could pass this number as
an argument to the main program according to the available processors. The counter in tuple space
RESULT is necessary to let the master wait until all positions are evaluated. Tuple space WORK is cleared
after work has been done thus also terminating the workers. It would be more efficient to deposit the
positions directly into the tuple space instead of first constructing the set Positions.

The master program uses explicit loops, whereas in the sequential program no explicit loops were
needed and thus the parallel solution seems to have a lower level of abstraction than the sequential
one. Such observations are often made in a wide spectrum language7 like ProSet, where programs
may be transformed within the language using lower-level constructs to increase efficiency. For a full
account to program transformation techniques we refer to [Par90].

7In a wide spectrum language it is possible to program on a high level of abstraction as in Fig. 1 as well as on a level
of e.g. Pascal [Par90].

24 4 Generative communication in ProSet

program ParallelQueens;

constant N := 8, NumWorker := 20;

visible constant WORK := createTS(om),

RESULT := createTS(om);

begin

Positions := npow(N, {[x,y]: x in [1..N], y in [1..N]});

for i in [1 .. NumWorker] do

deposit [|| Worker()] at WORK end deposit;

end for;

deposit [{}], [0] at RESULT end deposit; -- initialize the result set

for NextPosition in Positions do

deposit [NextPosition] at WORK end deposit;

end for;

fetch (#Positions) at RESULT end fetch;

fetch (? NonConflict | (type ? = set)) at RESULT end fetch;

put (NonConflict);

ClearTS(WORK);

procedure Worker ();

begin

loop

fetch (? MyPosition |(type ? = set)) at WORK end fetch;

if forall F1 in MyPosition, F2 in MyPosition |

(F1 /= F2 !implies

(F1(1) /= F2(1) and F1(2) /= F2(2) and

(abs(F2(1)-F1(1)) /= abs(F2(2)-F1(2)))))

then

meet (? |(type ? = set) into (? with MyPosition))

at Result

end meet;

end if;

meet (? |(type ? = integer) into (? + 1))

at Result

end meet;

end loop;

end Worker;

...

end ParallelQueens;

Figure 5: Parallel solution for the queens’ problem. See Fig. 1 on page 3 for the procedures
implies and abs. The unary operator “#” returns the number of elements in a compound
data structure.

4.5.3 Parallel matrix multiplication 25

4.5.3 Parallel matrix multiplication

The program in Fig. 6 on page 26 presents parallel matrix multiplication. Since ProSet does not
provide arrays, we use tuples of tuples to represent two-dimensional matrices. The tuple space WORK

is used to deposit the rows of matrix A, the columns of B and the workers. The result matrix C is
built in tuple space RESULT via changing meet operations. The counter that is contained in the tuple,
which contains the result matrix, is necessary to let the master wait until all elements are computed.
Tuple space WORK is cleared after work has been done thus also terminating the workers

This program does not support load balancing, because the number of workers is fixed as the
number of elements in the result matrix (the number of rows in A multiplied by the number of
columns in B). You could reduce the number of workers as done in [ACG86, page 30].

4.5.4 The dining philosophers problem

The dining philosophers problem was posed originally by Dijkstra [Dij71], and is often used to test
the expressivity of new parallel languages. A problem description together with a C-Linda solution is
given in [CG90]:

“The ‘dining philosophers’ problem goes like this: a round table is set with some number
of plates (traditionally five); there’s a single chopstick between each two plates, and a bowl
of rice in the center of the table. Philosophers think, then enter the room, eat, leave the
room and repeat the cycle. A philosopher can’t eat without two chopsticks in hand; the
two he needs are the ones to the left and the right of the plate at which he is seated. If
the table is full and all philosophers simultaneously grab their left chopsticks, no right
chopsticks are available and deadlock ensues.” ([CG90, page 182])

The original problem specification uses a bowl of spaghetti and the utensils were forks [Dij71], but
it does not seem immediately reasonable why two forks are needed to eat spaghetti thus we use
the above specification. The dining philosophers problem is a popular instance of selective mutual
exclusion problems, where parallel processes compete for common resources. Fig. 7 presents the
general form of a solution for the mutual exclusion problem (see e.g. [BA90, And91b]).

Some extensions to the dining philosophers problem were proposed: the drinking philosophers
problem, where neighbors are allowed to drink simultaneously provided they are drinking from different
bottles [CM84]. The evolving philosophers problem with change management, where a philosopher
can leave the table, a new philosopher can join the table, or a philosopher can move from one part
of the table to another [Haz91]. The problem of the restaurant for dining philosophers with multiple
tables and change management [Cia91], among others. In this paper we consider the plain dining
philosophers problem.

The solution for the dining philosophers problem in ProSet syntax in Fig. 8 is derived from the
C-Linda version in [CG90]. It works for arbitrary n > 1. To prevent deadlock, only four philosophers
(or one less than the total number of plates) are allowed into the room at any time to guarantee to
be at least one philosopher who is able to make use of both of his left and of his right chopstick. In
[CG90] this is shown with the pigeonhole principle. We quote for the sake of completeness:

“We can show that this is true by using a simple combinatorial argument based on the
pigeonhole principle. Consider n− 1 bins and n balls. In every distribution of the n balls
among the n − 1 bins, there must be at least one bin that winds up holding at least two
balls. Now if we associate each bin with a philosopher and each ball with a chopstick, it’s
clear that the set of all legal distributions of chopsticks to philosophers is a subset of the
possible distributions of balls into bins — a chopstick can be grabbed only by the fellow
on its right or on its left, and hence the corresponding ball can only land in one of the
corresponding two bins. Since every distribution in the original set must assign two balls to

26 4 Generative communication in ProSet

program matrix;

visible constant WORK := createTS(om),

RESULT := createTS(om);

begin

A := [[1, 2, 3],

[4, 5, 6]

];

B := [[7, 8, 9, 10],

[11, 12, 13, 14],

[15, 16, 17, 18]

];

C := [[], []];

for i in [1 .. #A] do

deposit ["A", i, A(i)] at WORK end deposit;

end for;

for i in [1 .. #B(1)] do

ithColumn := [B(j)(i): j in [1 .. #B]];

deposit ["B", i, ithColumn] at WORK end deposit;

end for;

deposit ["C", C, 0] at RESULT end deposit;

for i in [1 .. #A], j in [1 .. #B(1)] do

deposit [|| worker(i,j)] at WORK end deposit;

end for;

fetch ("C", ? C, #A * #B(1)) at RESULT end fetch;

clearTS (WORK);

procedure worker (i, j);

begin

meet ("A", i, ? row |(type ? = tuple)) at WORK end meet;

meet ("B", j, ? column |(type ? = tuple)) at WORK end meet;

Dot := DotProduct (row, column);

meet ("C", ? |(type ? = tuple) into AddDot(?, i, j, Dot),

? |(type ? = integer) into ?+1)

at RESULT

end meet;

procedure DotProduct (row, column);

...

end DotProduct;

procedure AddDot(C, i, j, Dot);

begin

C(i)(j) := Dot;

return C;

end AddDot;

end worker;

end matrix;

Figure 6: Parallel matrix multiplication.

4.5.4 The dining philosophers problem 27

loop

Non Critical Section ;

Pre Control ;

Critical Section ;

Post Control ;

end loop;

Figure 7: Form of mutual exclusion solution.

program DP;

visible constant n := 5, -- #philosophers

TS := createTS(om);

begin

for i in [0 .. n-1] do

|| phil(i);

deposit ["chopstick", i] at TS end deposit;

if i /= n-1 then

deposit ["room ticket"] at TS end deposit;

end if;

end for;

procedure phil (i);

begin

loop

think ();

fetch ("room ticket") at TS end fetch;

fetch ("chopstick", i) at TS end fetch; -- left chopstick

fetch ("chopstick", (i+1) mod n) at TS end fetch; -- right chopstick

eat ();

deposit ["chopstick", i], ["chopstick", (i+1) mod n],

["room ticket"] at TS

end deposit;

end loop;

end phil;

end DP;

Figure 8: Solution for the dining philosophers problem.

28 4 Generative communication in ProSet

one bin, it follows that every distribution in any subset of the original set must also assign
two balls to one bin, and we conclude that at least one philosopher will be guaranteed to
succeed in grabbing two chopstick.” ([CG90, page 183])

Note that eating is considered to be a critical section which will eventually terminate and that a fair
process scheduler is presupposed.

The C-Linda solution does not guarantee fairness of choice, it relies on a fair runtime system. With
the guarantees given in section 4.2.4 we can proof the following for the ProSet solution:

Theorem: No individual starvation can occur, i.e. the solution is fair.

Proof: This is a very strong requirement in that it must be shown that no possible execution sequence
of the program, no matter how improbable, can cause starvation.

If a philosopher wants to eat, he tries to fetch a room ticket:

• If there is a matching one available he will fetch it and continue.

• If there is no one available he will be suspended because all the other philosophers have
fetched one. The others will not deadlock and thus return the room tickets after finite
periods of time (general assumption for critical sections). The suspended philosopher will
eventually obtain a room ticket, since the tuple-space manager handles matching between
new deposited tuples and templates of suspended processes in a fair way (section 4.2.4).

The same fairness assumptions apply to fetching the chopsticks thus a philosopher who wants to
eat will eventually start eating. This is a sufficient assumption to avoid individual starvation. It
would not be a sufficient assumption in real-time applications, where a philosopher could starve
after a finite period of time of e.g. two month.

The possibility of a particular philosopher being starved to death by a conspiracy of his two neighbors,
which is contained in the solution in [Dij71], is not present in our solution.

We sketch some constraints that solutions for selective mutual exclusion problems must satisfy:

• Deadlock freedom

• Fairness

• Processes that fail within their non-critical sections do not prevent others from eating. We quote
form [BA90] (see also [And91b, page 98]):

“A process may halt in its non-critical section. It may not halt during execution of
its protocols or critical section. If one process halts in its non-critical section, it must
not interfere with other processes.” ([BA90, pages 27–28])

• Symmetry, in that all philosophers obey precisely the same rules. However, the system has
sometimes to prefer specific philosophers to guarantee fairness. Perfectly symmetrical solutions
to problems in concurrent programming are impossible because if every process executes exactly
the same program, they can never ‘break ties’ [BA90]

• Concurrency (non-neighboring philosophers may eat simultaneously)

• No assumptions concerning the relative speeds

• Efficient behavior under absence of contention

5 Implementation issues 29

Historical note The solution for the dining philosophers problem, which was presented in [Has91a],
did not meet the constraint that processes, which fail within their non-critical sections, do not prevent
others from eating. Thanks are due to Nick Carriero and Mike Factor for pointing out this fact to
me. [Haz91] presents a fair Linda solution to the dining philosophers problem. Similar to the solution
in [Has91a] it is presupposed that thinking always terminates. Scott Hazelhurst writes:

“How long a philosopher eats or thinks for is non-deterministic (but finite).” ([Haz91,
page 46])
“The code as presented does have the problem that a slow-thinking philosopher might hold
up the entire table.” ([Haz91, page 53])

If someone knows a C-Linda solution to the dining philosophers problem, which satisfies all the above-
mentioned constraints, then the author would appreciate obtaining a copy.

5 Implementation issues

The compiler construction system Eli is the central tool for implementing ProSet. Eli integrates off-
the-shelf tools and libraries with specialized language processors to provide a system for generating
complete compilers quickly and reliably [GHL+92]. A first development step using Eli is documented
in [Has91b]. A prototype implementation for testing and code development on Unix workstations is
under way.

The unique copy method for storing the tuple space, where each tuple is stored only once, with
sending of templates seems to be reasonable on such a system for our purposes. Multiple tuple spaces
provide a direct approach for distributing the tuple space in a network. It is not necessary for the
system to find application-specific mapping functions, as it is done in [Wil91a]. Multiple tuple spaces
allow the programmer to partition the communication device as he sees fit and simplify compile-
time analysis with respect to partioning the tuple space. However, it may be reasonable to let the
programmer map tuple spaces, which occur in the ProSet program, onto designated processors for a
specific parallel target machine. This should be done in a separate configuration language outside the
original program. In [Wil91a] this is done for programmer-specified tuple-to-store mapping functions
which override the system’s default mappings. As such concerns apply only to implementations on
specific machines, it is not acceptable to incorporate such things into the language (portability would
not be maintained). It seems to be obvious to store the tuple space in a hash-based way, since it
is not necessary to guarantee fair selection of deposited tuples (section 4.2.4). The representation of
individual tuple spaces may be customized according to their contents. This may be based on suitable
compile-time analysis as in [Jag90].

The meet operation allows user-defined high-level operations on shared data (section 4.2.3). It is
not necessary to move a tuple that will be changed physically from tuple space to another place for
performing such an operation. It is sufficient to set a write-lock for the duration of the operation.

Templates, which belong to suspended processes because no tuple matches them, are weakly fair
matched with later deposited tuples. The implementation may guarantee this via using FIFO queues
for pending templates. In a FIFO (first-in first-out) queue always the possible candidate who waits
longest is selected first.

Multiple tuple spaces provide a direct approach for concurrent access to tuple space: each tuple
space obtains its own manager process. However, selective fetching from multiple tuple spaces may
be difficult to implement with this approach.

6 Conclusions and future work

In this paper the concept for process creation via Multilisp’s futures is adapted to set-oriented pro-
gramming and combined with the concept for synchronization and communication via tuple space.

30 References

The basic Linda model is enhanced with multiple tuple spaces, the notion of limited tuple spaces,
specified fairness and selection for matching, and the facility for changing tuples in tuple space. It
is fairly natural to combine set-oriented programming with generative communication on the basis of
tuples, as both models, ProSet and Linda, provide tuples.

The small examples presented here did not fully demonstrate the advantages of multiple tuple
spaces. However, in more sophisticated problem domains such as process trellises [Fac90] the advan-
tage of information hiding is obvious, since processes may communicate within isolated tuple spaces
independent of communication in other tuple spaces. The enhanced facilities for nondeterminism will
support distributed implementation of backtracking such as branch-and-bound applications, where
selective waiting for multiple events is often desired [KBT89].

Future work will address the specification of formal semantics for generative communication as
presented in this paper and the implementation aspects that were discussed in section 5.

References

[AB89] M. Arango and D. Berndt. TSnet: A Linda implementation for networks of Unix-based
computers. Research Report 739, Yale University, New Haven, CT, August 1989.

[Aba91] R. Abarbanel. Distributed object mangement with Linda. Technical report, Boeing Com-
puter Services, The Boeing Company, Seattle, WA, August 1991.

[ACG86] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer, 19(8):26–34,
1986.

[ACGK88] S. Ahuja, N. Carriero, D. Gelernter, and V. Krishnaswamy. Matching language and hard-
ware for parallel computation in the Linda machine. IEEE Transactions on Computers,
37(8):921–929, August 1988.

[And91a] B.G. Anderson. Persistent Linda – Adding Transactions to a Parallel Programming Model.
PhD thesis, Courant Institute, New York University, NY, April 1991.

[And91b] G.R. Andrews. Concurrent Programming. Benjamin/Cummings, 1991.

[ANP89] Arvind, R.S. Nikhil, and K.K. Pingali. I-Structures: data structures for parallel computing.
ACM Transactions on Programming Languages and Systems, 11(4):598–632, 1989.

[AS91] B.G. Anderson and D. Shasha. Persistent Linda: Linda + Transactions + Query Pro-
cessing. In D. LeMetayer, editor, Proceedings of the Workshop on Research Directions in
High-Level Parallel Programming Languages, Mont Saint-Michel, 1991. IRISA-INRIA.

[BA90] M. Ben-Ari. Principles of concurrent and distributed programming. Prentice Hall, 1990.

[Bal91] H.E. Bal. A comparative study of five parallel programming languages. In Proc. European
Spring Conference on Open Distributed Systems, Tronsø, Norway, May 1991.

[BCG89] R. Bjornson, N. Carriero, and D. Gelernter. The implementation and performance of
hypercube Linda. Research Report 690, Yale University, New Haven, CT, 1989.

[BCG+91] R. Bjornson, N. Carriero, D. Gelernter, T. Mattson, D. Kaminsky, and A. Sherman.
Experience with Linda. Research Report 866, Yale University, New Haven, CT, August
1991.

[BHK89] L. Borrman, M. Herdieckerhoff, and A. Klein. Tuple space integrated into Modula-2,
Implementation of the Linda concept on a hierarchical multiprocessor. In Jesshope and
Reinartz, editors, Proceedings of CONPAR’88, New York, 1989. Cambridge Univ. Press.

References 31

[BP91] P. Broadbery and K. Playford. Using object-oriented mechanisms to describe Linda. In
Wilson [Wil91b], pages 14–26.

[But91] P. Butcher. Lucinda. In Wilson [Wil91b], pages 27–38.

[Car87] N. Carriero. Implementation of tuple space machines. Technical Report 567, Yale Univer-
sity, New Haven, CT, December 1987. PhD thesis.

[CCH91] C.J. Callsen, I. Cheng, and P.L. Hagen. The AUC C++Linda system. In Wilson [Wil91b],
pages 39–73.

[CG89] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444–
458, 1989.

[CG90] N. Carriero and D. Gelernter. How to write parallel programs. MIT Press, 1990.

[CG91] N. Carriero and D. Gelernter. New optimization strategies for the Linda pre-compiler. In
Wilson [Wil91b], pages 74–83.

[CG92] N. Carriero and D. Gelernter. Coordination languages and their significance. Communi-
cations of the ACM, 35(2):96–107, February 1992.

[Cia91] P. Ciancarini. PoliS: a programming model for multiple tuple spaces. In Proc. Sixth
International Workshop on Software Specification and Design, pages 44–51, Como, Italy,
October 1991.

[CKM91] S. Chiba, K. Kato, and T. Masuda. Optimization of distributed communication in mul-
tiprotocol tuple space. In Proc. Third IEEE Symposium on Parallel and Distributed Pro-
cessing, Dallas, Texas, December 1991.

[CM84] K.M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on
Programming Languages and Systems, 6(4):632–646, 1984.

[DF89] E.E. Doberkat and D. Fox. Software Prototyping mit SETL. Leitfäden und Monographien
der Informatik. Teubner-Verlag, Stuttgart, 1989.

[DGH90a] E.E. Doberkat, U. Gutenbeil, and W. Hasselbring. SETL/E – A prototyping system
based on sets. In W. Zorn, editor, Proc. TOOL90, pages 109–118. University of Karlsruhe,
November 1990.

[DGH90b] E.E. Doberkat, U. Gutenbeil, and W. Hasselbring. SETL/E Sprachbeschreibung Ver-
sion 0.1. Informatik-Bericht 01-90, University of Essen, March 1990.

[Dij71] E.W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1:115–138,
1971.

[DM90] U. Dahlen and N. MacDonald. Sheme-Linda. In Gupta [Gup90].

[Dob90] E.E. Doberkat. A proposal for integrating persistence into the prototyping language
SETL/E. Informatik-Bericht 02-90, University of Essen, April 1990.

[Dou89] P. Dourish. A Transputer-based Parallel Lisp. Technical Report ECSP-TN-19, Edinburgh
Concurrent Supercomputer Project, June 1989.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, volume B, chapter 16, pages 995–1072. Elsevier, 1990.

[Faa91] C. Faasen. Implementing tuple space on transputer meshes. Master’s thesis, Depart-
ment of Computer Science, University of the Witwatersrand, Johannesburg, South Africa,
February 1991.

32 References

[Fac90] M. Factor. The process trellis software architecture for real-time monitors. In Proc.
Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 147–155, Seattle, WA, March 1990.

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

[Gel89] D. Gelernter. Multiple tuple spaces in Linda. In Proc. Parallel Architectures and Languages
Europe (PARLE’89), volume 2, pages 20–27. Springer-Verlag LNCS 366, June 1989.

[GHL+92] R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A complete, flex-
ible compiler construction system. Communications of the ACM, 35(2):121–131, February
1992.

[GM88] R.P. Gabriel and J. McCarthy. Qlisp. In J.S. Kowalik, editor, Parallel Computation and
Computers for Artificial Intelligence, pages 63–89. Kluwer Academic Puplishers, 1988.

[Gup90] A. Gupta, editor. Proceedings of the Europal/BCS-PPSG Workshop on High Performance
and Parallel Computing in Lisp, Twickenham, London, UK, November 1990.

[Hal85] R.H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM Trans-
actions on Programming Languages and Systems, 7(4):501–538, 1985.

[Has91a] W. Hasselbring. Combining SETL/E with Linda. In Wilson [Wil91b], pages 84–99.

[Has91b] W. Hasselbring. Translating a subset of SETL/E into SETL2. Informatik-Bericht 02-91,
University of Essen, January 1991.

[Haz91] S. Hazelhurst. A Linda solution to the evolving philosophers problem. South African
Computer Journal, pages 44–53, September 1991.

[Hup90] S. Hupfer. Melinda: Linda with multiple tuple spaces. Research Report 766, Yale Univer-
sity, New Haven, CT, February 1990.

[Hut90] D. Hutchinson. Linda meets Lisp. In Gupta [Gup90].

[Jag90] S. Jagannathan. Semantics and analysis of first-class tuple spaces. Research Report 783,
Yale University, New Haven, CT, April 1990.

[Jag91] S. Jagannathan. Customization of first-class tuple-spaces in a higher-order language. In
Proc. Parallel Architectures and Languages Europe (PARLE’91), volume 2 of Springer-
Verlag LNCS 506, pages 254–276, June 1991.

[Jel90] R. Jellinghaus. Eiffel Linda: An object-oriented Linda dialect. ACM SIGPLAN Notices,
25(12):70–84, December 1990.

[KBT89] M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum. Experience with the distributed data
structure paradigm in Linda. In USENIX/SERC Workshop on Experiences with Building
Distributed and Multiprocessor Systems, pages 175–191, Ft. Lauderdale, Fl., October 1989.

[KSS84] P. Kruchten, E. Schonberg, and J. Schwartz. Software prototyping using the SETL pro-
gramming language. IEEE Software, pages 66–75, October 1984.

[Kwi89] M.Z. Kwiatkowska. Survey of fairness notions. Information and Software Technology,
31(7):371–386, 1989.

[Lei89] J.S. Leichter. The VAX Linda-C User’s Guide. Research Report 615, Yale University, New
Haven, CT, December 1989.

[Lel90] W. Leler. Linda meets Unix. IEEE Computer, 23(2):43–54, 1990.

References 33

[Luc86] S. Lucco. A heuristic Linda kernel for hypercube multiprocessors. In Proceedings of the
SIAM Conference on Hypercube Multiprocessors, September 1986.

[Mac91] N. MacDonald. Linda work in Edinburgh. In Wilson [Wil91b], pages 100–104.

[MK88] S. Matsuoka and S. Kawai. Using tuple space communication in distributed object-oriented
languages. In Proceedings of OOPSLA’88, pages 274–284, San Diego, September 1988.

[Par90] H.A. Partsch. Specification and Transformation of Programs. Springer-Verlag, 1990.

[Sch91] G. Schoinas. Linda and the Blackboard Model. In Wilson [Wil91b], pages 105–116.

[SDDS86] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets –
An Introduction to SETL. Graduate Texts in Computer Science. Springer-Verlag, 1986.

[She90] A.H. Sherman. C-Linda Reference Manual. Scientific Computing Associates, New Haven,
CT, 1990.

[SP90] G. Sutcliffe and J. Pinakis. PROLOG-Linda: An embedding of Linda in muPROLOG. In
Proceedings of AI’90 – the 4th Australian Conf. on Artificial Intelligence, pages 331–340,
Perth, Australia, 1990. World Scientific, Singapore.

[Wil91a] G. Wilson. Improving the performance of generative communication systems by using
application-specific mapping functions. In [Wil91b], pages 129–142.

[Wil91b] G. Wilson, editor. Linda-Like Systems and Their Implementation. Edinburgh Parallel
Computing Centre TR91-13, June 1991.

[WL88] R.A. Whiteside and J.S. Leichter. Using Linda for supercomputing on a local area network.
In Proceedings of Supercomputing, pages 192–199, Orlando, Fla., November 1988.

[YW90] C.K. Yuen and W.F. Wong. A self interpreter for BaLinda Lisp (Version 0.1). Technical
Report TRD2/90, DISCS, National University of Singapore, February 1990.

[Zen90] S.E. Zenith. Linda coordination language; subsystem kernel architecture (on transputers).
Research Report 794, Yale University, New Haven, CT, May 1990.

Index

|| 9
=> 13

A actual 5, 14
associative 5
at 11, 13
atomic 6, 16
atoms 2, 18, 20

B blockiffull 13
boolean 2

C case 2
clearTS 18
communication 5
compiler construction system 29
compile-time analysis 7, 29
compound data structures 2
computation language 7
coordination language 7
createTS 18

D deadlock 6, 13, 18, 25, 28
Deposit 11
deposit 11, 18
dining philosophers problem 25
distributed data structures 6
domain 2
drinking philosophers problem 25

E else 14
Else 15
eval 5, 18
evolving philosophers problem 25
exception 12

handler 12, 21
exists 2
existsTS 18

F fairness 16, 28
of choice 16
process 16
strong 17
unconditional 16
weak 16

Fetch 13
fetch 13, 18
FIFO 29
first-class 1, 18
for 2
Formal 14

formal 5, 13
as type 21

functions 1
futures 8, 20

G garbage collection 10, 18
generative communication 5

I if 2
IfFull 13
implementation 7, 29
in 6, 18
indivisibility 16
information hiding 18, 30
inp 6, 18
integer 2
into 15
I-Structures 8
iteration 2

J justice 16

L lazy evaluation 8
Linda 5
load balancing 23, 25
loop 2
L-Value 14

M master-worker model 6, 7, 13, 18, 21
matching 5, 6, 14, 16, 20, 21

accumulative 19
aggregate 19
blocking 15
customizing 14
non-blocking 14, 17, 19, 21

matrix multiplication 25
meet 15, 18, 29
MeetTemplate 15
message passing 5
modules 1
multiprocessing 19
multiprogramming 19
multiset 5, 11
mutual exclusion problem 25

N newat 18
nondeterminism 16

O om 2, 18
or 13
out 5, 18

34

Index 35

P persistence 1, 19
pigeonhole principle 25
Piranha model 6
polling 17
portability 1
processes

as type 20
creation 7
identity 20
termination 8, 10, 18, 23, 25

producer-consumer model 13
ProSet 1
prototyping 1

Q Queens’ Problem 3, 23

R range 2
rd 6, 15, 18
rdp 6, 15, 18
real 2
real-time applications 28
resolving 8
resume 12, 21
return 12

S select 18
set 2
side effects 8, 10
starvation 28
Statement 10, 11
stop 12
string 2
suspension 6, 8, 13, 15, 21
synchronization 5

T template 5, 13
as type 21

Template 14
temporal logic 17
topologically sorting 4
touching 8
transformational programming 11, 23
transmission 8
tuple 2, 5, 11

active 5, 12
changing 15
former 2
passive 5, 12

tuple space 5
as type 20
clearing 18
constants 21
creation 18, 21
default 21

identity 18, 20
limited 12, 16, 18, 19, 21
manager 18, 19, 29
multiple 18, 20, 29
operations 11
persistent 19
state 19

type 2, 11

U until 2

V value semantics 8

W weakly typed 2
while 2
whilefound 2
wide spectrum language 23
write parameter 10

