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Abstract

PROSET is a set-oriented prototyping language. The coordination language Linda provides a
distributed shared memory model, called tuple space, together with some atomic operations on
this shared data space. In PROSET-Linda the concept for process creation via Multilisp’s futures
is adapted to set-oriented programming and combined with Linda’s concept for synchronization
and communication via tuple space. This paper presents a formal specification of the semantics
of this combination by means of the formal specification language Z.
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1 Introduction 1

1 Introduction

The definition of Linda has been presented informally [Gelernter, 1985] and, as a result, has included
several ambiguities. E.g. [Narem, 1989] summarizes four basic types of process creation used in
implementations of C-Linda’s eval operation. These are different interpretations of the informal
specification of the eval operation. Additional discussions of problems with the semantics of the eval
operation may also be found in [Leichter, 1989] and in [Hasselbring, 1991]. Such a situation demands
a more precise definition. However, informal descriptions are very valuable because it is easy to grasp
the gist of the semantics without much effort. The popularity of Linda can in part be ascribed to this
property.

Informal descriptions are in general accessible and intelligible to a wide community, but have the
disadvantage of being prone to omissions and ambiguities as it was the case with Linda. Much
recent work has been devoted to finding more rigorous mathematical methodologies which — though
less accessible — are complete and unambiguous. One methodology is denotational semantics: in this
approach each program phrase is given a denotation, or a meaning, as an object of some mathematical
domain. It is compositional in the sense that the meaning of each phrase is a function of the meaning
of its subphrases. A second methodology is operational semantics: in this approach rules are given
for the evaluation of each phrase. Operational semantics is also compositional since the evaluation of
each phrase is defined in terms of the evaluation of its subphrases. An operational semantics has the
advantage of suggesting a possible implementation, and of easing comparisons with other languages
having analogous formal semantics.

Formalizations of the coordination language Linda have already been undertaken with structured
operational rules such as Plotkin’s Structural Operational Semantics (SOS) or Milner’s Calculus of
Communicating Systems (CCS), with Petri Nets, the Chemical Abstract Machine, Term Rewriting
Systems, Communicating Horn Clause Logic, Algebraic Specifications, and the formal specification
language Z:

SOS, CCS Jensen, 1990; Jensen, 1992; Callsen et al., 1991]
Hazelhurst, 1990; Ciancarini et al., 1992]
Petri Net Ciancarini et al., 1992]

Chemical Abstract Machine

Term Rewriting System

Ciancarini et al., 1992]

Jagannathan, 1990] (for Scheme-Linda)

Bosschere and Wulteputte, 1991] (for Multi-Prolog)
Anderson et al., 1990] (for TS-Prolog)

Butcher, 1991]

Communicating Horn Clause Logic
Algebraic Specification
Z

— — — T — — —

A comparative study of some approaches may be found in [Ciancarini et al., 1992]. In this paper we
will present the operational semantics of tuple spaces in PROSET by means of the formal specification
language 7Z. We consider the state of a program as the state of a set of tuple spaces and a set of
active processes, and define the effect of tuple-space operations on the state. To obtain a correct
implementation, the semantics of an implementation design for PROSET-Linda then has to be the
same with respect to this program state.

This paper is organized as follows: the next section presents the formal semantics of PROSET-Linda.
The appendices provide short introductions to the basic concepts: appendix A to the prototyping
language PROSET, appendix B to the specification language Z, appendix C to the coordination lan-
guage Linda, and appendix D to the informal semantics of PROSET-Linda. The reader may refer to
these appendices according to his or her preliminary knowledge before reading further. Appendix E
and the index of formal definitions at the end of this document provide a summary of the present
formal specification. Section 3 discusses the correctness of the design for an implementation under
the presented semantics and section 4 draws some conclusions.
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We shall only indicate exception handling in the present specification. We refer to [Doberkat et al.,
1992] for an informal specification of exception handling in PROSET.

The discussion on formal semantics of Linda with Keld Kondrup Jensen and on the specification
language 7 with Ana Lucia Cavalcanti as well as the comments on drafts of this paper by Ernst-Erich
Doberkat and Stephen Gilmore were very helpful.

2 The formal semantics of PROSET-Linda

The formal specification language Z [Spivey, 1992b] was chosen as a means for presenting the formal
semantics of PROSET-Linda for several reasons. Firstly, Z has many similarities with PROSET: both
languages are based on set theory and the predicate calculus. This alleviates the access to the formal
specification for readers who are familiar with PROSET. Secondly, there are some tools available to
support the construction of specifications in Z [Parker, 1991]. However, there exist some significant
differences between PROSET and Z:

e PROSET is weakly typed, whereas Z is strongly typed.
e PROSET programs are executable prototypes, whereas Z specifications are not executable.

e PROSET only supports finite sets, whereas 7 also supports infinite sets.

7 has no features for specifying parallelism. However, this does not prevent us from specifying a
parallel programming language with Z: we shall model concurrency by an arbitrary interleaving of a
set of atomic transactions performed by the acting processes. The goal of the presented work is not to
specify as much parallelism as possible. The goal is to provide a precise specification of the semantics
of generative communication in PROSET.

A 7 specification consists of a combination of a formal text and a natural language description. The
formal text provides the precise specification while the natural language text introduces and explains
the formal parts. The formal text has two parts: the schema language, which provides a means of
structuring the specification, and the mathematical language, which allows for the preciseness of the
specification. The mathematical language is based largely on set theory and enables an abstract math-
ematical view of the objects being specified to be taken. The schema language enables specifications
of large systems to be broken into more manageable sections.

The combination of natural language for explanation, and of the schema language for structurization
produces specifications that are more readable than only mathematical formulas. In addition, the
mathematical nature of the specifications enables implementors to use mathematical proofs to ensure
the correspondence of their implementations with the specification.

Besides the clear advantage of writing the semantics in a mechanically checkable formalism, a formal
specification discloses subtleties as well as difficulties that are otherwise swept under the carpet of an
imprecise notation. The formal specification emerges as a contract — stating rights and obligations
— between language designer and implementor, and it is an abstract, detailed language manual for
the programmer.

The present presentation i1s meant to be self-contained and no previous knowledge of Z is required to
understand it — at least we hope so. Where necessary, we provide notes to explain the notation used
(enclosed in the symbols [Z_ and Z]). The index of explained Z symbols and keywords at the end of
this document refers to these explanations. Readers familiar with Z may skip both, appendix B and
the notes on Z. The presented specification has been developed with the fuzz package [Spivey, 1992a].

Notational convention: components of PROSET programs are displayed in typewriter font to set
them apart from Z specifications, which are displayed in slanted font.
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2.1 Basic definitions

Appendix E provides a summary of all names defined globally in the specification with their associated
types. Together with the index of formal definitions at the end of this document this should provide
a comprehensive overview of our formal specification. The basic, given types are Ezpression, LValue,
Process, Statement, and Value. Some additional basic types are based in these types and introduced
via free type definitions.

2.1.1 Abstractions for the embedding into the computation language

The aim of this work is not to provide a formal semantics for the entire PROSET language. We restrict
ourselves to specifying generative communication. However, for the embedding in the computation
part we need connections to some basic concepts of PROSET. At first we need basic types for describing
[-values and unevaluated expressions:

[Erpression, LValue]

For a detailed discussion of expressions and lvalues, and their relationship in PROSET we refer to
[Doberkat et al., 1992]. Note that Lvalues are not typed. Additional necessary basic types are
statements and processes:

[Statement, Process]

Each process is unique. New processes may be spawned and existing ones may terminate. Note that
processes have no first-class rights in PROSET. We shall need a notion for execution of statements:

Ezecute _ : P Statement
Vs : Statement e Erecute s
[Z. The underscore _indicates the position of operands thus Fzecute is an unary predicate.

A predicate is identified with the set of objects for which the predicate holds. P yields the
power set of its operand. 7]

Statements never yield values in PROSET.

2.1.2 Types and values

We have to know a few specific things about types and values in our specification. The unary operator
type yields a predefined type-atom according to the type of its operand (see appendix A). The
following equations hold in PROSET:

type 1 = integer
type integer = atom
type type type 1 = atom

No particular basic type for the type-names atom, boolean, integer, real, string, tuple, set,
function, modtype, and instance is needed in our Z specification. PROSET does not employ the
type matching known from C-Linda and similar embeddings of Linda into statically typed languages.
Instead, conditional value matching as described in sections D.2.2 and 2.2 is employed. It is sufficient
to model types in PROSET through the type operator and the predefined type-atoms, which are
values:

[Value]
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atom, boolean, integer, real, string, tuple, set, function, modtype instance : Value
TRUE, FALSE : Value

om : Value

ValuesOf Type : Value ~+ P Value

dom ValuesOf Type =
{atom, boolean, integer, real, string, tuple, sel, function, modtype, instance}

dom ValuesOfType C ValuesOfType atom
ValuesOfType boolean = { TRUE, FALSE}
{om— {om}}U{t:dom ValuesOfType o t — ValuesOfType t }) partition Value

[ X = Y is the set of partial injections from X to Y. dom yields the domain of a
relation. A set S is a proper subset of a set T (S C T) if every member of S is also
a member of T and if in addition S is different from 7. The subset relation symbol is
S C T. The notation z — y is a graphical way of expressing the ordered pair (z,y). Z

Every value in PROSET, except for om, belongs to exactly one type set. The Boolean values are true
and false as usual. We use capital letters for TRUFE and FALSE in our specification, because true
and false are predefined in Z. The undefined value om has no type. Applying the unary operator type
to om is undefined, and thus yields the undefined value (type om = om). The corresponding function
s Type:

Type : Value — Value

atom = Type atom = Type boolean = Type integer = Type real = Type string =
Type tuple = Type set = Type function = Type modtype = Type instance

boolean = Type TRUFE = Type FALSE
om = Type om

Va: Value |z # om e
z € ValuesOfType ( Type )

[ X — Y is the set of total functions from X to Y. The predicate ¢ = & = ¢ is an
abbreviation for a = b A b= ¢. 2

For our purposes it is not necessary to specify the types of PROSET through an additional given, basic
type. It is sufficient to specify the semantics of the type operator. The remainder of our specification
would not change if we remove or add some type names (except for atom, boolean, integer, and tuple).

Notions for evaluation of expressions and the return values of processes shall be needed:

FEvaluate : Expression - Value
ProcRetVal : Process + Value

[ X -~ Y is the set of partial functions from X to Y. 7|

These are partial functions because the evaluation of expressions and processes might not terminate,
and thus not produce a result. We also need a notion for assignment of values to Fvalues:

| _ IsAssigned _ : LValue «— Value
[ X < Y is the set of binary relations between X and Y. 7

For every pair (lhs, rhs), which is related by IsAssigned, an assignment of the value of rhs to lhs is
modeled. We do not need a more detailed specification of assignment in our specification. We display
identifiers in sans serif font when we use them as infix relation or operation symbols.
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2.1.3 Tuples

Tuples in PROSET have their mathematical semantics as ordered sequences of objects; a value may ap-
pear multiply in a tuple, the order of components appearing in the tuple is relevant. Tuple components
may be passive values or executing processes in our specification:

TupleComp ::= TupleValue{ Value)) | TupleProcess{{ Process)

Conceptually a tuple in PROSET is an infinite vector with almost all components equal to the undefined
value om. The indexing of tuple components starts with the index 1, the length returned by the #
operator of PROSET is the largest index of a component different from om, thus #[1,om] = 1 and
#[om,1] = 2 hold. Since almost all components in a tuple are equal to the undefined value om, we
are able to specify active and passive tuples via finite sequences:

APTuple == seq TupleComp

[ seq X is the set of finite sequences over X. These are finite functions from N to X
whose domain is a segment 1 .. n for some natural number n € N;. Ny = N\ {0}, where \
is the set difference operation. If a and b are integers, a .. b is the set of integers between
a and b inclusive. If ¢ > b then a .. b is empty, thus sequences may be empty. 7|

Note that only passive tuples are first-class objects in PROSET. However, in our specification for the
basic type APTuple we do not distinguish between passive and active tuples for simplicity. As we
shall see in section 2.2, the matching procedure will distinguish between passive and active tuples.
There exists a partial function between tuples in tuple space and passive tuples in PROSET:

APTupleToValue : APTuple +— Value

Yitup : APTuple | ran tup C ran Tuple Value o
Type (AP TupleTo Value tup) = tuple

We shall not use APTupleToValue in the remainder of our specification. Our intention to provide it is
to show that there exists a partial function from active/passive tuples in our specification to passive
tuple values in PROSET.

Note also that the following equations hold in PROSET:
fom] = [1

[1,om] = [1]
[om,1] /= [1]

The predefined function # for finite sets in Z will not work well to specify the unary # operator for
tuples in PROSET, because the # operator yields the largest index of a component different from om:

#lom] = 0
#(om) =1
We define the generic function Arity instead:

=[X]
Arity : (Value — X) —seq X —N

Y tup : seq X; Xvalue : Value — X o
Arity Xvalue tup = maz({0} U {i: N | tup i # Xvalue om })

[ maz yields the maximum of a set of integers. Note that function application associates
to the left in Z, so f z y means (f z)y. 4
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Arity is generic, because it applies to tuples in the same way as it shall apply to templates. TupArity
then works for tuples:

TupArity : APTuple — N

TupArity = Arity TupleValue
TupArity yields the largest index of an APTuple component which is different from the TupleValue
of om.

2.1.4 Formals and templates

To model formals we need auxiliary type definitions for optional l-values and optional into expressions:

OptLValue ::= NoLValue | IsLValue{ LValue))
Optinto ::= Nolnto | IsInto{{ Ezpression))

Formals then consist of optional l-values and optional into expressions:

Formal

|7 Destination : OptLValue

Into : Optlnto

Components of templates are formals and values:
TempComp := Temp Value{ Value)) | TempFormal{{Formal))
Templates consist of a sequence of template components and a conditional expression:

Template
|7List : seq TempComp

Condition : Fxpression

If there is no condition specified in a template, the PROSET-expression true is assumed. A notion for
assignment of tuple components to formals of templates shall be needed:

_ FormalAssign _ : Template <= APTuple

let FormalOf == TempFormal™";
ValueOf == Tuple Value™';
LValueOf == IsLValue™'
Y temp : Template; tup : APTuple | #temp.List = #iup A ran tup C ran Tuple Value o
temp FormalAssign tup <
(Vi :domtemp.List | temp.List(i) € ran TempFormal A
(FormalOf (temp.List 1)). Destination € ran IsLValue o
LValueOf (FormalOf (temp. List ©)). Destination) |sAssigned ValueOf (tup 7))

[Z let introduces local definitions for a predicate or for an expression. R™! is the relational
inverse of the relation R. S.C' is the notation for selecting a component C' from a binding

of a schema S. 7

For every pair (temp, tup) which is related by FormalAssign an optional assignment to the Destinations
of temp 1s modeled. A notion for evaluation of into expressions shall be needed:
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_ Evallntos _: (Template x APTuple) — APTuple

let FormalOf == TempFormal™";
ExprOf == IsInto~ ' o
Y temp : Template; tup, newtup : APTuple | #lemp.List = #1up A ran tup C ran Tuple Value o
(temp Evallntos tup = newtup) <
H#tup = F#newtup A
(Vi :domtemp.List | temp.List(i) € ran Temp Value o
newtup i = tup i) A
(Vi :domtemp.List | temp.List(i) € ran TempFormal o
newtup i = if (FormalOf (temp.List i)).Into = Nolnto
then tup ¢
else

Tuple Value( Fvaluate ( ExprOf ((FormalOf (temp. List i)).Into))))

[Z X x Y is the Cartesian product of X and Y (a set of pairs). Z

Evallntos yields from a pair (temp, tup) a new APTuple that is equal to tup except for the fields in
which temp has into expressions. Those fields are replaced by the corresponding evaluated expression
values. We shall need the function TempArity for matching:

TempArity : seq TempComp — N
TempArity = Arity Temp Value
It applies to template lists in the same way as TupArity applies to tuples.

2.2 Matching

PROSET employs conditional value matching as informally specified in section D.2.2. A tuple and a
template match, iff all the following conditions hold:

e The tuple is passive.

e The arities are equal.

e Values of actuals in templates are equal to the corresponding tuple fields.

e The Boolean expression behind | in the template evaluates to true. If no such expression is

specified, then [true is the default.

As a first step we define matching of individual tuple and template components:

_ CompMatches _: TupleComp <= TempComp

let ValueOfTup == Tuple Value™';
ValueOfTemp == Temp Value ' o
Y tupc : TupleComp; tempe : TempComp e
tupc CompMatches tempe <
tupe € ran Tuple Value A
(tempe € ran Temp Value = Value OfTup tupe = Value Of Temp tempc)

Therefore, only passive tuple components can match and, if the template component is not a formal,
the Values in the domain of the corresponding components have to be equal. Only passive tuples are
relevant when considering tuple matching; active tuples are invisible to processes. Tuples and tem-
plates then match if their arities are equal, their corresponding components match, and the template
condition holds. The template condition must yield a Boolean value:
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_ Matches _ : APTuple «<— Template

YV tup : APTuple; temp : Template
Type (Evaluate temp.Condition) = boolean A
tup Matches temp <
Tup Arity(tup) = TempArity(temp.List) A
TRUE = Evaluate temp.Condition A
(Vi:1.. TupArity(tup) e tup(i) CompMatches temp.List(7))

The exception type_mismatch will be raised if the template condition does not yield a Boolean value.
This is left in the formal specification.
2.3 Tuple spaces

Tuple spaces in our formal specification consist of an identity, its specified limit, a bag of tuples,
and finite sets of pending processes with associated attributes. To model template lists we need an
auxiliary type definition for optional statements:

OptStmt ::= NoStmt | IsStmt{(Statement))
We shall also use a notion for execution of optional statements based on FErecute:

OptEzecute _ : P OptStmt

let StatementOf == IsStmt~' o
Y os : OptStmt | os € ran IsStmt e
OptFEzecute os < FErecute (StatementOf os)

Pending processes are associated with templates and optional statements as attributes for blocking
fetch and meet operations:

Pending
proc : Process
temp : Template
os : OptStmt

A tuple space consists of an identity, its specified limit, a bag of tuples, and finite sets of pending
processes with associated attributes:

_ TupleSpace
1d : Value
Lemit © Value
Tuples : bag APTuple
PendFetch : F Pending
PendMeet : F Pending
PendFull : Process - APTuple

(Type Id = atom) A (Id ¢ dom ValuesOfType)

(Type Limit = integer) V (Type Limit = om)
disjoint {{ pf : PendFetch o pf.proc}, { pm : PendMeet ® pm.proc }, dom PendFull)

[ bag X is the set of bags of elements of X:

bag X == X =N,
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where X —+ Nj is the set of partial functions from X to Ny. F S is the set of finite subsets
of 5. X -+ Y is the set of finite partial functions from X to Y. An indexed family of sets
is digjoint if and only if each pair of sets S(¢) and S(j) for ¢ # j have empty intersection:

disjoint (4, B) < AN B = {}
7

Tuple-space identities are atoms (not including the predefined type-atoms). The limit for the number
of simultaneously deposited tuples in tuple space has to be an integer or the undefined value. A
negative limit is equivalent to 0 (no tuples may be deposited into such a tuple space). The undefined
value indicates that no limit has been specified on creation of the tuple space. This limit is a parameter
to the function CreateTS (section 2.5.1). The main part of a TupleSpace it the bag of APTuples. The
processes pending for fetch operations are collected in the finite sets PendFetch of the corresponding
TupleSpaces. The processes pending for meet operations are collected in the finite sets PendMeet of
the corresponding TupleSpaces. The processes pending for deposit operations on full TupleSpaces are
collected in the finite sets PendFull of the corresponding TupleSpaces. A process is at most pending
for one of these sets.

Note that we use the terms pending and blocked as synonyms. A process is pending if it has executed
a fetch or meet operation with no matching tuple in tuple space and if no else statements were
specified (blocking matching). A process is also pending for a deposit operation on a full tuple space
provided that blockiffull has been specified and the tuple space is full (see below). Such processes
may be reactivated by appropriate events, i.e. fetching of tuples.

2.4 Programs and processes

In this section we will define our program state and the creation and termination of programs and
processes. We view the state of a program as the state of a finite set of tuple spaces, and a finite set
of active processes:

__ Program
TSs : F TupleSpace
ActiveProcs : F Process

Visl,ts2: TSs e
tsl # ts2 = isl.1d # ts2.1d

Visl,ts2: TSs e
Vitupl, tup2 : dom(tsl. Tuples W ts2. Tuples); i1,i2 : N |
tupl(il) € ran TupleProcess A tup2(i2) € ran TupleProcess o
(il € domtupl A 12 € dom tup2 A tupl(il) = tup2(i2)) =
tupl = tup2 A1l =12 A
1 = (#s1.Tuples & ts2. Tuples) § tupl

[Z 4 denotes the union of bags where the number of times any object appears in the result
1s the sum of the number of times it appears in the operands. The number of times z
appears in the bag B is Biz. 7

For a specification of the entire PROSET language, additional components would be necessary to
specify the program state.

The first property asserts the uniqueness of tuple-space identities and the second property asserts
the uniqueness of processes inside of active tuples. Only processes within ActiveProcs are active
and executing. Processes, which are suspended for templates or full tuple spaces, are temporally
moved to the sets of pending processes of the corresponding tuple spaces. They are reactivated by



2.4 Programs and processes 10

returning them to ActiveProcs. If a process is removed from ActiveProcs and moved to a set of
pending processes, it is suspended. If a process is removed from Active Procs and not moved to a set
of pending processes, it is terminated (see below). We represent this formally by the global variables
ActuallyActive Processes, ActuallyPendingProcesses, and ActuallyEristingProcesses:

ActuallyActive Processes : F Process
ActuallyPendingProcesses : F Process
ActuallyEristingProcesses : F Process

Y Program; p : Process o
ActuallyActive Processes = ActiveProcs A
(p € ActuallyPendingProcesses <
(Its: TSs o
(Ipfm : (ts. PendFetch U ts.PendMeet)  p = pfm.proc) V
(Ipf : ts.PendFull ® p = first pf)))

(ActuallyActive Processes, ActuallyPendingProcesses) partition ActuallyEristingProcesses
[Z 1f p is an ordered pair then p = (first p, second p) holds.

We now start with the specification of operations on the program state. A main process is started for
the main program on program initialization:

__InitProgram
A Program

# ActiveProcs’ = 1
TSs' = {}

The initial state is primed, because we can regard the initialization of a system as a peculiar kind of
operation that creates a state out of nothing; there is no before state, simply an after state, with its
variables decorated [Diller, 1990].

We will specify the connection between the computation and the coordination part of PROSET by
means of input and output variables of the individual operations. These input and output variables
are decorated with 7 and !, respectively.

Whenever the process creator || i1s applied in a PROSET program, this process shall be added to the
set of active processes:

_ ProcessCreation
A Program
NewProcess? : Process

ActiveProcs’ = ActiveProcs U { NewProcess?}
TSs' = TSs

Such a process is implicitly added to ActuallyActive Processes and to ActuallyFEristingProcesses. These
sets and ActuallyPendingProcesses are not really necessary for our specification. We introduced them
to have a formal specification for actually active, pending, and existing processes. Analogously, when
a process that is not the process for the main program terminates, it has to be removed from the set
of active processes and from the sets of pending processes.

We shall need an operation for schema anti-restriction for pending processes:

_@—_:F Process X F Pending — F Pending

V procs : F Process; pends : F Pending e
procs M pends =
{ pr: Process; pe : Pending | pr & procs A pr = pe.proc A pe € pends o pe }



2.5 Multiple tuple spaces 11

The schema anti-restriction PR M PE yields all the members of PFE, where the proc component is
not a member of PR. We call @ schema anti-restriction, because of its similarity to the domain
anti-restriction 4 of 7 (see below).

If a process, which has to be removed, is part of an active tuple, it has to be replaced by the corre-
sponding return value:

_ ProcessTermination
A Program
ToKill? . Process

TSs' = {is: TSs; ts' : TupleSpace | is.1d = ts' . 1d A
ts'. Limit = ts. Limit A
ts'.PendFetch = { ToKill?} @Wts. PendFetch A
ts'.PendMeet = {ToKill?}mts. PendMeet A
ts'. PendFull = {ToKill?} 4 ts. PendFPull A
(Vtup : domts. Tuples; newtup : APTuple | #tup = #newtup A
(Ftupc : ran tup o tupc € ran Tuple Process) o

(Vi:domtup e
newtup(i) = if tup(i) = TupleProcess ToKill?
then Tuple Value (ProcRetVal ToKill?)
else tup(i)) A
ts'. Tuples = (1s. Tuples d [tup]) & [newtup])
ols'}

ActiveProcs’ = ActiveProcs \ { ToKill?}

[ The domain anti-restriction S < R of a relation R to a set S relates z to y only if
R relates # to y and z is not a member of S. We write [aq,.. ., a,] for the bag {a; —
ki,..., an — k,} where the elements a; appear k; times. For instance: [1,1] = {1+ 2}.
The empty bag is []. BWY C is the bag difference of B and C: the number of times any
object appears in it is the number of times 1t appears in B minus the number of times it
appears in (', or zero if that would be negative. Z

As you can see, such a terminated process is not only removed from ActiveProcs. It 1s also necessary
to remove it from the sets of pending processes in the tuple spaces, and to resolve the future within
an active tuple, provided that this process has been spawned as a component of this active tuple.
Future resolution is modeled within the above conditional expression. See section D.1.2 for an informal
specification for resolving of futures in PROSET. The resolving and touching of futures is only specified
for processes within active tuples in tuple space, and not for processes spawned outside of tuple space.
This limitation 1s due to the fact that this paper is not a specification of the entire language.

Every time a process is removed from the set of active processes and not moved to the sets of pending
processes; this process will be terminated. Whenever the process for the main program terminates,
the entire program terminates (see appendix D):

— Program Termination
A Program

ActiveProcs' = {} A TSs' = {}

2.5 Multiple tuple spaces

In this section we define the library functions to handle multiple tuple spaces as informally specified
in section D.3.
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2.5.1 CreateTS

At first we define the auxiliary function IDsOF, which yields the finite set of tuple-space identities
from a finite set of tuple spaces:

IDsOF : F TupleSpace — F Value

Viss : F TupleSpace o
IDsOF tss = {id : Value | (s : tss o ts.Id = id) }

The library function CreateTS creates a new tuple space and returns the corresponding tuple-space
identity, provided that the given limit is an integer or the undefined value:

__CreateTSok
A Program
InLimit? : Value
Return! : Value

(Type InLimit? = integer) V (Type InLimit? = om)

3, a: Value; ts : TupleSpace |
(Type a = atom) A (a ¢ IDsOF TSs) A (a ¢ dom ValuesOfType) A
ts.ld = a A
ts.Lomit = InLimat? A
ts. Tuples = [] A
ts.PendFetch = {} A
ts.PendMeet = {} A
ts.PendFull = {}
TSs' = TSs U {ts} A
ActiveProcs’ = ActiveProcs A
Return! = a

[Z The predicate 3, S o P is true if there is exactly one way of giving values to the
variables introduced by S so that both the property S and the predicate P are true. 7|

A new, empty tuple space is created this way. The tuple-space identity (an atom) will be created via a
call to the standard library function newat, which returns a new, unique atom [Doberkat et al., 1992].
For our specification it is sufficient to specify that this tuple-space identity is unique with respect to
our program state. The new tuple-space identity will be returned.

The PROSET-statement ‘escape type_mismatch();’ raises the exception type_mismatch, which
should not be resumed:

‘escape type_mismatch();’: Statement

[Z Generic definitions uniquely determine the value of the introduced global constant. We
use generic definitions to introduce exceptions, because there 1s nothing more to be said

about them. 7]

The given limit for the number of simultaneously deposited tuples in tuple space has to be an integer
or the undefined value:
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_ Create TS Type Mismatch
= Program
InLimat? : Value
Freeption! : Statement

= ((Type InLimit? = integer) V (Type InLimit? = om))

Fxception! = ‘escape type_mismatch();’

Exception handling is specified for operations, which may change the state, in separate schemas with
= Program instead of A Program to emphasize that the state does not change when such errors occur.
The disjunction of CreateT'Sok and Create TS TypeMismatch then constitutes CreateT'S:

CreateTS = Create TSok V Create TS Type Mismatch

This definition introduces a new schema called CreateT'S, obtained by combining the two schemas on

the right-hand side.

[ The operation CreateTS could be specified directly by writing a single schema which
combines the predicate parts of the two schemas Create TSok and Create T'S Type Mismatch.
The effect of the schema V operator is to make a schema in which the predicate part is
the result of joining the predicate parts of its arguments with the logical connective V.
Similarly, the effect of the schema A operator is to take the conjunction of the two predicate
parts. Any common variables of the two schemas are merged. We sketch an alternative
specification of CreateTS":

_ CreateTS
A Program
InLimit? : Value
Return! : Value
Freeption! : Statement

((Type InLimit? = integer) V (Type InLimit? = om) A
3, a : Value; ts : TupleSpace |
\%
(= ((Type InLimit? = integer) V (Type InLimit? = om)) A
Fxception! = ‘escape type_mismatch();’ A
TSs' = TSs A

Active Procs’ = ActiveProcs)

In order to write CreateT5 as a single schema, it has been necessary to write out explicitly
that the state does not change when an exception is raised. 7]

We do not specify the return values when exceptions are raised. Those return values depend on the
actions taken by the associated exception handler.

2.5.2 ExistsTS

The library function ExistsTS checks if a given atom is a valid tuple-space identity:
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__ FristsTS
= Program
InTS?: Value
Return! : Value
Freeption! : Statement

(Type InTS? = atom A Return! = if InTS? € IDsOF TSs
then TRUFE
else FALSE)

\
(Type InTS? # atom A Erception! = ‘escape type_mismatch();’)

FristsTS does not modify the program state. It returns a Boolean Value indicating the existence of
the given tuple-space identity, which has to be an atom.

2.5.3 ClearTS$S

The library function ClearTS removes all active and passive tuples from a specified tuple space:

__ClearTSok
A Program
InTS? : Value

Return! : Value

InTS? € IDsOF TSs

let ClearProcs == {1s: TSs; p : ActiveProcs | ts.Id = InTS? A
(Ftup : domts. Tuples  Ftupc : ran tup e tupc = TupleProcessp) e p} e
TSs' = {1s: TSs; ts' : TupleSpace | is.Id = ts' . 1d A
ts'. Limit = ts. Limait A
ts'. Tuples = if ts'.Id = InTS?
then []
else ts. Tuples A
ts'.PendFetch = ClearProcsmMts. PendFetch A
ts'.PendMeet = ClearProcsmts. PendMeet A
ts'.PendFull = ClearProcs € {s.PendFull o ts' } A
ActiveProcs' = ActiveProcs \ ClearProcs

Return! = om

The processes within removed active tuples (the set ClearProcs) are also removed from ActiveProcs
and the sets of pending processes, and thus terminated. Note that the processes, which are not in
ClearProcs, are not removed from the sets of pending processes of InTS5?. Only the bag Tuples is
cleared in InTS?. The return value is the undefined value in any case.

The exception ts_invalid_id will be raised when invalid tuple-space identities are given:

‘escape ts_invalid_id();’: Statement
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__ ClearTStnvalid
= Program
InTS? . Value

Freeption! : Statement

InTS? ¢ IDsOF TSs

Freeption! = if Type InT'S? = atom
then ‘escape ts_invalid_id();’
else ‘escape type_mismatch();’

Note that the exception type_mismatch and not ts_invalid_id will be raised if the actual parameter
for ClearTs is not an atom.

The disjunction of ClearTSok and ClearTSinvalid then constitutes ClearTS5":

ClearTS = ClearTSok vV ClearTSinvalid

2.5.4 RemoveTS

The library function RemoveTS calls ClearTS and removes the given tuple space from the set of tuple
spaces. First we specify the auxiliary operation RemoveTSfromState:

— RemoveTSfromState
A Program
InTS?: Value

TSs' = TSs\{ts: TSs | ts.Id = InTS?}

ActiveProcs’ = ActiveProcs

Therefore, the entire tuple space is removed from the program state. This may terminate pending
processes; which are only blocked on InTS7, provided that they are not pending on other tuple spaces.

RemoveTS is the sequential composition of ClearTS and RemoveTSfromState:

RemoveTS = ClearTS § RemoveTSfromState

[Z If Opl and Op2 are schemas describing two operations, then Opl 3 Op2 is a schema
which describes their sequential composition. The components of Opl § Op2 are the
undecorated components of Opl and the primed components of Op2, together with their
merged inputs and outputs. Conversely, the components of the piping Opl >> Op2 are
the inputs of Opl and the outputs of Op2, together with their merged decorated and
undecorated components (the outputs of Opl have to match the inputs of Op2). Z

2.6 Tuple-space operations

A concise overview of the abstract grammar for the tuple-space operations is displayed in Fig. 1 using
BNF (Backus Naur From). Conversely, the informal semantics in appendix D is presented together
with syntax diagrams, which are spread over the text. For a concise overview, we regard BNF as more
appropriate. This grammar is not part of the present 7 specification. Optional parts are enclosed
in [ and ]. Terminal symbols are displayed in typewriter font. Note that the terminal symbol | is
different from |, which denotes alternatives in the grammar.

Section 2.6.1 provides some preliminary definitions for the Deposit operation, which is defined in
section 2.6.2. Sections 2.6.3 and 2.6.4 will define the Feich and Meet operations, respectively.
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Statement ::= deposit DepositArgs end deposit ;
| fetch FetchList [ else Stmtlist | end fetch ;
| meet Meetlist [ else StmiList | end meet ;

DepositArgs ::= DepositList
| blockiffull FEapr at Fupr

DepositList ::= ExzprList at Fzpr [also DepositList |
FelchList  ::= FetchTemp at FEzpr [xor FetchlList ]

FetchTemp ::= FetchTemp [ xor FetchTemp ]
| C [ FetchComp ] ) [ => StmiList ]

FetchComp ::= FetchComp [, FelchComp ]

| Expr

| » [LValue ][ | Ezpr]
MeetList  ::= MeetTemp at Expr [xor MeelList ]
MeetTemp ::= MeetTemp [ xor MeetTemp ]

| ([ MeetComp ] ) [ => StmiList ]
MeetComp ::= MeetComp [, MeetComp ]

| Expr

| » [LValue ][ | Ezpr ][into FExpr ]
FaxprList = Expr [, FEzprList ]
StmtList = Statement [ StmtList ]

Figure 1: The abstract grammar for the tuple-space operations.
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2.6.1 Some preliminary definitions

To begin with a description of the tuple-space operations we need some preliminary definitions. A
deposit operation such as

deposit t1, t2 at TS1
also t3 at TS2
end deposit;

produces
{(({t1,t2), TS1), ({t3), TS2))

as input for our Deposit specification (see below) with type:

TupList == seq; ((seq; APTuple) x Value)

[Z seq; X =seq X\ {()} Z

We shall use the predicate Haslntos for the pending processes of tuple spaces, which checks if there
are into expressions associated:

HasIntos _ : P Template

let FormalOf == TempFormal~" o
Vpl: Pending o
HasIntos pl.temp <
(Ftempe : ran pl.temp. List | tempe € ran TempFormal e
(FormalOf tempc).Into # Nolnto)

We define two auxiliary functions for controlling the limits of a tuple space. The function AllTuples
extracts from a given TuplList all sequences of APTuples for a given tuple-space identity (Value).
The found sequences for the given tuple-space identity are concatenated to yield a result sequence of
APTuples:

—AllTuples _: (Value x TuplList) — seq APTuple

Vid : Value; tupl : TuplList; ¢ : (seqy APTuple) x Value o
id AllTuples () = () A
id AllTuples ({¢) ~ tupl) = if id # second ¢
then () = (id AllTuples (tail tupl))
else (first ¢) ™ (id AllTuples (tail tupl))

[Z ~ denotes the concatenation of sequences. The sequences tail S and front S contain
all the elements of the non-empty sequence S, except for the first and except for the last
element, respectively. head yields the first component of a non-empty sequence. last yields
the last component of a non-empty sequence. 7|

We need an auxiliary function that yields the number of elements in a bag to control the limits of
tuple spaces:

=[]
BagSum :bag X — N
Vb:bag X;z:X e
BagSum [] =0 A
BagSum ([z] @ b) = 1 + BagSum b
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A function that yields the Z-integer value from a Value with type integer:

IntValueOf : Value — 2

Vi : Value | Type i = inleger o
Jz:2 e IntValueOf 1 = 2

Condition for full tuple spaces:

_ TSisFull
= Program
InTupList? . TuplList

I pair : van InTupList?; ts : TSs | ts.1d = second pair e
Type ts. Limit = integer N
IntValue Of ts.Limit < (BagSum ts. Tuples + #(1s.Id AllTuples InTupList?))

This schema will later be composed with some schema components of Deposit.

2.6.2 Depositing tuples

This section defines the Deposit operation incrementally. The informal specification 1s given in sec-
tion D.2.1. As a first step we define an operation for adding a single tuple to a specified tuple space
of a program:
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—AddTuple _: (Program x (APTuple x Value)) — Program

Y A Program; tup : APTuple; id : Value | id € IDsOF TSs e
0 Program’ = 0 Program AddTuple (tup,id) <
(let MatchMeets == {ts: TSs; pdg : Pending | (3pm : ts.PendMeet o
tup Matches pm.temp A = HasIntos pm.temp A pm = pdg) e pdg };
MatchIntos == {ts : TSs; pdg : Pending | (3 pm : {s.PendMeet o
tup Matches pm.temp A HasIntos pm.temp A pm = pdg) e pdyg };
MatchFetchs == {ts: TSs; pdg : Pending | (3 pf : ts.PendFetch o
tup Matches pf.temp A pf = pdyg) e pdg };
NewProcs == {p : Process | (3 tupc : ran tup e tupc = TupleProcessp)} e
(VY mm : MatchMeets o
mm.temp FormalAssign tup A
OptEzecute mm.os) A
((MatchIntos U MatchFetchs = {}) =
(TSs" = {ts: TSs; ts' : TupleSpace | ts'.Id = ts.Id A
ts'. Limit = ts. Limit A
ts'. Tuples = if ts'.1d = id
then ts. Tuples W [tup]
else ts. Tuples A
ts'.PendMeet = { mm : MatchMeetls @ mm.proc } Mis. PendMeel A
ts'.PendFetch = ts.PendFetch A
ts'. PendFull = ts. PendFull @ is'} A
ActiveProcs’ =
ActiveProcs U NewProes U {mm : MatchMeets ¢ mm.proc})) A
((MatchIntos U MatchFetchs # {}) =
(Fmif : (MatchIntos U MatchFetchs) o
mif.temp FormalAssign tup A
OptEzecute mif.os A
(mif € MatchFetchs =
(TSs" = {ts: TSs; ts' : TupleSpace | ts'.Id = ts.Id A
ts'. Limit = ts. Limait A
ts'. Tuples = ts. Tuples A
ts'.PendMeet =
{mm : MalchMeets @ mm.proc } mis. PendMeel A
ts'.PendFetch = {mif.proc} mts. PendFetch A
ts'. PendFull = ts. PendFull @ is'} A
ActiveProcs’ =
ActiveProcs U{ mm : MatchMeets « mm.proc } U {mif.proc})) A
(mif € MatchIntos =
(3, Program’ e
TSs" = {ts: TSs; ts" : TupleSpace | ts”.1d = is.Id A
ts"” . Limit = ts. Limit A
ts"” . Tuples = ts. Tuples A
ts". PendMeet = ({ mm : MatchMeeis « mm.proc } U
{mif.proc})wts. PendMeet A
ts"”.PendFetch = ts. PendFetch A
ts" . PendFull = ts.PendFull @ ts" } A
ActiveProcs” =
ActiveProcs U { mm : MatchMeets @ mm.proc } U {mif proc} A
0 Program’ = 0 Program'' AddTuple (mif.temp Evallntos tup, id))))))

[ An identifier or schema may have a sequence of decorations in Z. In AddTuple we use
the components of Program’' (ActiveProcs” and T'Ss") as auxiliary store for the recursion.

Wi

19
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Since this is a quite longish formula we give an informal outline of the predicate on the right-hand side
of < in the previous schema. The local set MatchMeets contains all the pending processes which are
pending for meet operations without into expressions, where the associated templates match the tuple
to be added. Matchintos contains all the pending processes which are pending for meet operations
with into expressions, where the associated templates match the tuple to be added. MatchFetchs
contains all the pending processes which are pending for fetch operations, where the associated
templates match the tuple to be added. NewProcs contains the processes which are active within the
tuple to be added. NewProcs is empty if the tuple to be added matches any template in 7'Ss, because
only passive tuples can match. An informal outline of the let predicate follows:

(for all meets without intos that match:
(assign the tuple fields to the Lvalues in the corresponding formals (optional)) A
(execute the associated statements (optional))
A
(if not exists a meet with intos or a fetch, which matches:
add the tuple)) (1)
A
(if exists a meet with intos or a fetch, which matches:
(assign the tuple fields to the Lvalues in the corresponding formals (optional)) A
(execute the associated statements (optional))
(if a fetch was selected:

satisfy the selected fetch) (2)
(if a meet with intos was selected:
satisfy the selected meet)) (3)

We expand the three numbered operation parts of this schema. Adding a tuple for which no pending
meet with intos and no pending fetch exists (1):

(add the tuple to the the bag-component Tuples) A

(remove the processes which were pending for meets without intos from the meet-lists
of pending processes) A

(add the contained active processes to ActiveProcs) A

(reactivate the processes which were pending for meets without intos)

Satisfaction of a fetch, which matches implies the following actions (2):

(remove the processes which were pending for meets without intos from the meet-lists
of pending processes) A

(remove the associated process from the fetch-lists of pending processes) A
(reactivate the processes which were pending for meets without intos) A

(reactivate the associated process)

If we satisfy a matching, pending fetch, we do not add the tuple. Satisfaction of a meet with intos,
which matches implies the following actions (3):

(remove the processes which were pending for meets without intos from the meet-lists
of pending processes) A

remove the associated process from the meet-lists of pending processes) A

reactivate the processes which were pending for meets without intos) A

reactivate the associated process) A

add the changed tuple recursively with AddTuple)

(
(
(
(
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For a matching meet template with intos the changed tuple and not the original tuple has to be
added. This may satisfy other pending templates, and therefore AddTuple may call itself recursively
an arbitrary but finite number of times.

Successful depositing of a list of tuples then becomes straightforward:

— DepositOK
A Program
InTupList? . TuplList

V pair : ran InTupList? e second pair € IDsOF TSs

V pair : ran InTupList? o ¥ tup : ran(first pair) e
0 Program’ = 0 Program AddTuple (tup, second pair)

The exception ts_invalid_id will be raised when invalid tuple-space identities are given:

__ Depositinvalid
= Program
InTupList? . TuplList
Freeption! : Statement

= (V pair : ran InTupList? e second pair € IDsOF TSs)

Freeption! = ‘escape ts_invalid_id();’

It is not specified that the exception type_mismatch will be raised if the tuple-operands are not tuples.
Since Deposit deposits passive and active tuples in tuple space, the input-tuples cannot be first-class
PrOSET-values: we need objects of type APTuple. We only indicate exception handling for full tuple
spaces as described in appendix D. Some auxiliary definitions:

BlockMode ::= BlockIfFull | DoNotBlock

‘signal ts_is_full();’: Statement

See section D.2.1 for an informal description of the signal statement. The exception ts_is_full
will then be raised when the requested tuple space is full and blockiffull has not been specified
(DoNotBlock):

— FullTSEzception
= Program
InTupList? . TuplList
Blocking? . BlockMode
Freeption! : Statement

V pair : ran InTupList? e second pair € IDsOF TSs
Blocking? = DoNotBlock

Freeption! = ‘signal ts_is_full();’

The exception ts_is_full will only be raised when blockiffull has not been specified. Blocking
on full tuple spaces (provided that blockiffull has been specified):
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_ FullTSBlock
A Program
InTupList? . TuplList
InProc? : Process
Blocking? : BlockMode

V pair : ran InTupList? e second pair € IDsOF TSs
Blocking? = BlockIfFull

TSs' = {ts: TSs; ts’ : TupleSpace; pair : van InTupList? | ts'.Id = ts.Id A

ts'. Limit = ts. Limait A

ts'. Tuples = ts. Tuples A

ts’. PendFetch = ts.PendFetch A

ts’.PendMeet = ts. PendMeet A

ts' . PendFull = if ts'.Id = second pair
then ts. PendFull U

{ InProc? — head(first(head InTupList?)) }
else ts. PendFull
ols'}

ActiveProcs’ = ActiveProcs \ {InProc?}

The condition for full tuple spaces (TSisFull) will be added to FullTSExzception and FullTSBlock in
the schema composition for Deposit (see below).

When blockiffull has been specified, the tuple list has to contain exactly one tuple:

Y FullTSBlock e
1 = #InTupList? = #(first(head InTupList?))

Note that ts_invalid_id and not ts_is_full will be raised if both exceptional conditions — invalid
tuple-space identity and full tuple space — hold.
The following schema composition then constitutes Deposit:
Deposit = (DepositOK A = TSisFull)
\%
((FPullTSException v FullTSBlock) A TSisFull)

\%
Depositinvalid

2.6.3 Fetching tuples

This section defines the Feich operation incrementally. The informal specification is given in sec-
tion D.2.2. The structure of the input for the Fetch operation is similar to the input for the Deposit
operation, except that tuples are replaced by templates with associated optional statements:

TempList == seq; (seq; ( Template x OptStmt) x Value)

We shall need some auxiliary projection functions for Z-tuples with four components:
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—[A, B, C, D]
GetTS : AxBx(CxD— A
GetTemp: AXx Bx CxD—B
GetTup : AXx Bx CxD—C
GetOS :AxXxBx(CxD—D

Va:A;b:B;c:C;d:De
GetTS(a,b,c,d)=a A
GetTemp(a, b, c,d)=b A
GetTup(a, b, c,d)=c A
GetOS(a, b, c,d)y=14d

Fetching of a matching tuple:

__ FetchMatch

A Program
InTempList? : TempList
InProc? : Process

V pair : ran InTempList? o second pair € IDsOF TSs

A pair : ran InTempList?; ts : TSs | (ts.1d = second pair) e
tos : ran(first pair); tup : dom ts. Tuples o tup Matches (first tos)

let Matchings == {ts : TSs; pair : van InTempList?; TEMP : Templale;
TUP : APTuple; OS : OptStmt | (I tos : ran(first pair); tup : domts. Tuples o
tup Matches (first tos) A TEMP = first tos AN TUP = tup A OS5 = second t0s)
o (15, TEMP, TUP, 0S) } o
(3 SelMatch : Matchings o
GetTemp SelMatch FormalAssign GetTup SelMatch A
OptEzecute (GetOS SelMatch) A
(((GetTS SelMatch).PendPull = {}) =
(TSs" ={ts: TSs; ts' : TupleSpace | ts.Id = ts'.Id A
ts'. Limit = ts. Limait A
ts'. Tuples = if ts'.Id = (GetTS SelMatch).ld
then ts. Tuples J [Get Tup SelMatch]
else ts. Tuples A
ts'.PendFetch = ts.PendFetch A
ts’.PendMeet = ts. PendMeet A
ts'. PendFull = ts. PendFull @ is'} A
ActiveProcs’ = ActiveProcs)) A
(((GetTS SelMatch).PendPull # {}) =
(3 SelBlocked : (GetTS SelMatch).PendFull o
(TSs" = {ts: TSs; ts' : TupleSpace | ts.Id = ts'.Id A
ts'. Limit = ts. Limait A
ts'. Tuples = if ts'.Id = (GetTS SelMatch).ld
then (1s. Tuples J [GetTup SelMatch])
Wlsecond SelBlocked]
else ts. Tuples A
ts'.PendFetch = ts.PendFetch A
ts’.PendMeet = ts. PendMeet A
ts'. PendFPull = if ts'.Id = (GetTS SelMatch).1d
then ts. PendFPull \ {SelBlocked }
else ts. PendFull ® is' } A
ActiveProcs' = ActiveProcs U {first SelBlocked }))))
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The set Matchings contains all the matching tuples. They are collected together with the correspond-
ing tuple space, the template, and the optional statement. One such tuple is then selected, for which
the following actions are necessary:

assign the tuple fields to the Fvalues in the corresponding formals (optional)) A
execute the associated statements (optional)) A
remove the matching tuple from the tuple space) A
if the tuple space was full and there are processes pending on this full tuple space:
(remove one of these pending processes from PendFull) A
(add the corresponding tuple to the bag Tuples) A
(reactivate the pending process))

o —

As you can see, fetching a tuple may reactivate a process that is blocked with a deposit operation
on a full tuple space.

If no matching tuple has been found, the templates together with the requesting process will be added
to the appropriate lists of pending fetch templates, provided that no else statements are specified:

__ FetchNoMatch
A Program
InTempList? : TempList
InProc? : Process

Else? : OptStmt

V pair : ran InTempList? o second pair € IDsOF TSs

= (I pair : van InTempList?; ts : TSs | (ts.]d = second pair) e
tos : ran(first pair); tup : domts. Tuples o tup Matches (first tos))

FElse? = NoStmti

TSs' = {is : TSs; is' : TupleSpace; pair : van InTempList? | is’.1d = ts.1d A
ts'. Limit = ts. Limait A
ts'. Tuples = ts. Tuples A
ts’.PendMeet = ts. PendMeet A
ts'. PendFull = ts. PendFull A
(let NewPends == { tos : ran(first pair); pe : Pending | pe.proc = InProc? A
pe.lemp = first tos A pe.os = second tos @ pe } @
ts'.PendFetch = if ts'.Id = second pair
then ts. PendFetch U NewPends
else ts. PendFetch)
ols'}

ActiveProcs’ = ActiveProcs \ {InProc?}

If no matching tuple has been found and else statements are specified, our program state does not
change and the else statements are executed:
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_ DoElseStmt
= Program
InTempList? : TempList
InProc? : Process
Else? : OptStmt

V pair : ran InTempList? o second pair € IDsOF TSs

= (I pair : van InTempList?; ts : TSs | (ts.]d = second pair) e
tos : ran(first pair); tup : domts. Tuples o tup Matches (first tos))

Else? # NoStmt
OptEzecute Else?

The exception ts_invalid_id will be raised when invalid tuple-space identities are given:

__InvalidTempList
= Program
InTempList? : TempList
InProc? : Process
Freeption! : Statement

= (V pair : ran InTempList? o second pair € IDsOF TSs)

Freeption! = ‘escape ts_invalid_id();’

No into expressions are allowed for fetch operations:

__ DisallowIntos
InTempList? : TempList

V pair : ran InTempList? o ¥ tos : ran(first pair) e
= HasIntos(first tos)

We specify this condition in a separate schema to allow the reuse of DoFElseStmt and Invalid Temp List
for the Meet operation (see below).

The disjunction of FetchMatch, FetchNoMatch, DoElseStmt, and Invalid TempList in conjunction with
Disallowlntos then constitutes Fetch:

Fetch = (FetchMatch v FetchNoMatch v DoFElseStmt V Invalid TempList) A DisallowIntos

Note that, although processes are unique, a tuple-space operation such as the following would yield
two identical pending templates for tuple space TS:

fetch (1) xor (1) at TS end fetch;

But since the set of pending processes with associated templates is a set, only one such pair would
be added to the corresponding set in TupleSpace: the second added template would replace the first
one. However, this produces no problems, because it does not matter which one of such identical
templates might be selected, provided one could be selected at all. If statements are specified, the
process attributes would be different, and therefore the second added template would not replace
the first one (provided that the statements are different). Replacing these sets e.g. by bags would
complicate our specification unnecessarily.
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2.6.4 Meeting tuples

This section defines the Meet operation incrementally. The informal specification is given in sec-
tion D.2.3. Meeting tuples is similar to fetching tuples except that the matching tuple 1s not removed
from tuple space and that it may be changed via into expressions while meeting it:

__ MeetMatch
A Program
InTempList? : TempList
InProc? : Process

V pair : ran InTempList? o second pair € IDsOF TSs

A pair : ran InTempList?; ts . TSs | (ts.1d = second pair) e
tos : ran(first pair); tup : dom ts. Tuples o tup Matches (first tos)

let Matchings == {ts : TSs; pair : van InTempList?; TEMP : Templale;
TUP : APTuple; OS : OptStmt | (I tos : ran(first pair); tup : domts. Tuples o
tup Matches (first tos) A TEMP = first tos AN TUP = tup A OS5 = second t0s)
o (15, TEMP, TUP, 05)}
(3 SelMatch : Matchings o
GetTemp SelMatch FormalAssign GetTup SelMatch A
OptEzecute (GetOS SelMatch) A
(= HasIntos(GetTemp SelMatch) =
(TSs" ={ts: TSs; ts' : TupleSpace | ts.Id = ts'.Id A
ts'. Limit = ts. Limait A
ts’. Tuples = ts. Tuples A
ts'.PendFetch = ts.PendFetch A
ts’.PendMeet = ts. PendMeet A
ts'. PendFull = ts. PendFull @ is'} A
ActiveProcs’ = ActiveProcs)) A
(HasIntos(GetTemp SelMatch) =
(3, Program’ e
TSs" = {ts: TSs; ts" : TupleSpace | ts”.1d = is.Id A
ts"” . Limit = ts.Limit A
ts" . Tuples = if ts"".Id = (GetTS SelMatch).Id
then ts. Tuples J [Get Tup SelMatch]
else ts. Tuples A
ts"” . PendMeet = ts.PendMeet A
ts"”.PendFetch = ts. PendFetch A
ts" . PendFull = ts.PendFull @ ts" } A
ActiveProcs” = ActiveProcs A
0 Program’ = 0 Program” AddTuple
(GetTemp SelMatch Evallntos GetTup SelMatch, (GetTS SelMatch).1d))))

If there exists a template in the given InTemplList?, which Matches a tuple in the associated tuple
space, then the following actions are necessary:

(assign the tuple fields to the Lvalues in the corresponding formals (optional)) A
(execute the associated statements (optional)) A
(if there are intos:

(remove the matching tuple from the tuple space) A

(add the changed tuple via AddTuple))

If no intos are specified, our program state does not change. If intos are specified, the matching
tuple has to be removed and the changed one has to be added. The addition of the changed tuple
might satisfy other pending processes with templates matching the changed tuple.
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If no matching tuple has been found, the templates together with the requesting process will be added
to the lists of pending meet templates, provided that no else statements are specified:

_ MeetNoMatch
A Program
InTempList? : TempList
InProc? : Process

Else? : OptStmt

V pair : ran InTempList? o second pair € IDsOF TSs

= (I pair : van InTempList?; ts : TSs | (ts.]d = second pair) e
tos : ran(first pair); tup : domts. Tuples o tup Matches (first tos))

FElse? = NoStmti

TSs' = {is : TSs; is' : TupleSpace; pair : van InTempList? | is’.1d = ts.1d A
ts'. Limit = ts. Limit A
ts'. Tuples = ts. Tuples A
ts'.PendFetch = ts.PendFetch A
ts'. PendFull = ts. PendFull A
(let NewPends == { tos : ran(first pair); pe : Pending | pe.proc = InProc? A
pe.lemp = first tos A pe.os = second tos @ pe } @
ts’. PendMeet = if ts'.1d = second pair
then ts. PendMeet U NewPends
else ts. PendMeet)
ols'}

ActiveProcs’ = ActiveProcs \ {InProc?}

MeetNoMatch 1s similar to FetchNoMatch, except that PendMeet and PendFetch are exchanged.

The disjunction of MeetMatch, MeetNoMatch, DoFElseStmt, and Invalid TempList then constitutes the
Meet operation:

Meet = MeetMatch vV MeetNoMatch vV DoElseStmi V Invalid TempList

2.7 Execution

Internal computations of processes do not change the program state of our specification. We can
model them via the operation NoOp:

An execution of a program is therefore an infinite sequence of program state changes, each one related
to 1ts immediate successor by the operation schemas defined above. We shall model this by defining
an ezxecution history as follows:
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_ Fzxecution
History : N — A Program

3, AProgram e History 0 = 0 InitProgram

Vi: Nl L]
A A Program e
History 1 = 6A Program A
(History i).TSs = (History (i — 1)).TSs" A
(History ). Active Procs = (History (i — 1)). Active Procs’ A
(NoOp Vv
ProgramTermination V
(3 ProcessCreation; p : Process @ p = NewProcess?) V
(3 Process Termination; p : Process  p = ToKill?) Vv
(3 CreateTS; v : Value @ v = InLimit?) Vv
(3 ExistsTS; v : Value @ v = InTST)V
(3 ClearTS; v : Value @ v = [nTS?) V
(3 RemoveTS; v : Value @ v = InTS?) V
(3 Deposit; tl - TupList; b : BlockMode; p : Process o
tl = InTupList? A b = Blocking? A p = InProc?) V
(3 Fetch; tl - TempList; e : OptStmt; p : Process o
tl = InTempList? A e = Else? A p = InProc?) V
(3 Meet; tl . TempList; e : OptStmt; p : Process o
tl = InTempList? A e = Else? A p = InProc?))

YV AProgram; i : Ny e
History i = 0 Program Termination = (V3 :Ny | j > ¢ @ Historyj = 6NoOp)

[Z A schema reference may be used as an expression: its value is the set of bindings in
which the values of the components obey the property of the schema. 7|

For any given program, there is therefore a set of valid execution histories. The first state change in
the sequence represents the initialization. It 1s not required that programs terminate. However, they
may terminate: after ProgramTermination only NoOps are allowed. We model terminating programs
via infinite sequences to keep the specification simple.

We presented an operational semantics which defines the possible state changes of our Program state
through the operations on this state. We model concurrency as usual when operational semantics are
used:

“As usual when parallelism is specified by an operational semantics, concurrency is de-
cribed by an arbitrary interleaving of a set of atomic transactions performed by the acting
processes [Milner, 1989).

The interleaving approximation does not provide true concurrency, but it is sufficient as
tuples are indivisible units which are manipulated by atomic actions. ... The possibility
of blocking operations are modeled by the match relation: ...”

[Ciancarini el al., 1992, page 7]

Note that the notions of distribution and asynchrony are not captured by such an operational seman-
tics. The goal of the presented work is not to specify as much parallelism as possible. The goal is to
provide a precise specification of the semantics of generative communication in PROSET.

2.8 TFairness

The reader 1s referred to section D.2.4 for an informal discussion of weakly fair selection. We specify
weakly fair selection of processes that are pending for templates via the following global property for
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execution histories:

V Ezecution; i : N; ts : TupleSpace; pp : Pending | ts € (History i). TSs A
pp € (ts.PendFetch Uts. PendMeet) o
= (Jeard : N o card = #{5 :N; ots : TupleSpace | ots € (Historyj).TSs A ots. Id = ts.Id A
(Ftup : dom ots. Tuples o tup Matches pp.temp) e j})
=
(Fk :N; ots : TupleSpace | k > i A ots. Id = ts.1d A ots € (History k). TSs o
pp ¢ (ots.PendFetch U ots. PendMeet))

We use the name ois as an acronym for other tuple spaces. An informal outline of this predicate
follows:

(forall Executions where a TupleSpace in (History i) contains a pending meet or fetch:
(there exists infinitely often a matching tuple in the Ezecution)
=
(this pending meet or fetch will be selected sometime after (History i)))

We check that a set is finite in the following way. The predicate

- (Jeard :Necard =4#{...})

provides true if {...} is an infinite set. The set comprehension in the above property contains the
indices to the history components, which contain matching tuples for the template of pending process
pp. If this 1s an infinite set, this templates has to be selected sometime.

We specify weakly fair selection of processes that are pending for full tuple spaces in a similar way:

Y Ezeculion; i : N; ts : TupleSpace; b : Process X AP Tuple |
ts € (History i).TSs A b € ts.PendFull o
= (Jeard : N o card = #{5 :N; ots : TupleSpace | ots € (Historyj).TSs A ots. Id = ts.Id A
IntValue Of ots.Limit > BagSum ots. Tuples  j })
=
(Fk :N; ots : TupleSpace | k > i A ots € (History k). TSs A ots.Id = ts.1d e
b & ots.PendFull)

If you replace matching tuples by non-full tuple spaces in the above informal outline, this may also
help to understand the last formula.

In section 3.4 we shall sketch how to design a workable implementation for our specification of weakly
fair selection of pending templates.

3 Correctness of the design for an implementation

Once a semantics of tuple space has been given, it 1s obvious to consider the properties of an imple-
mentation design, too. Obtaining a design for an implementation from a specification may be done via
top-down, step-wise data and operation refinement. Data refinement is the process of transforming
one data type into another one: an abstract data type is transformed into a more concrete one. It is
possible to carry out data refinement in Z by using appropriate schemas. In order to prove that the
design 1s a correct refinement of the specification we have to prove a number of things. Firstly we
have to prove that the initial states correspond to one another and then — for each operation in the
design — we have to prove that it is both correct and also that it is applicable.
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3.1 Semantics vs. implementation design

The semantics of the specification is called the universal semantics, since it is the union of all valid
semantics of possible implementation designs. No real implementation design is likely to implement
this universal semantics, however, this does not mean that it is not a valid interpretation of the
semantics. So the design for any implementation which is a subset of the universal semantics is a
valid interpretation of the specification. What this means is that if a program is proven correct
according to the universal semantics, and then run on a system which has a valid interpretation of
those semantics, then the program will run correctly. The distinction between universal semantics
and valid interpretations is a useful framework for the validation of implementation designs.

The core of the above is that an implementation design is correct if it enables a subset of the action
sequences, leading to a subset of the possible blocked states, deducible from the specification. It
should be noted that by this property an implementation design will be correct, even if it for a certain
program state only enables a subset of the set of actions deducible from the specification, i.e. the
implementation design need not enable every operation deducible from the specification.

We can relate our specification of a program to an implementation design, and hereby provide a
correctness relation one such design must satisfy. The property of this relation specifies that the
specification must be able to simulate an implementation design, i.e. trace all its actions. Furthermore
the implementation may only block whenever the specification says so. Whatever an implementation
does in a certain configuration, it must also be possible to do in the context of the specification.
Furthermore, if no actions may be deduced in the context of the specification, the implementation
must block, too.

In summary, if a certain behavior of a program is deducible for all computations within the spec-
ification, the implementation design must show the same behavior of the program. Conversely, if
nondeterministic behavior may be deduced from the specification, the implementation design need
not reflect this; a fully determinate behavior i1s considered correct.

An underlying problem in the correctness of an implementation design is scheduling: it is of course
undesirable to demand that an implementation has all the nondeterminism inherent in the specifica-
tion. That is, we will at most demand that the set of possible behaviors of an implementation design
is a subset of the possible behaviors of the specification, a subset which must fulfill two requirements
to be considered correct:

liveness If a set of processes is able to act in the context of the specification, then at
least one of them must be able to do so in the context of the implementation design,
too. The implementation design must have a subset of the liveness properties of the
specification. This implies that whenever a process in the context of the specification
is guaranteed to terminate, the process also terminates in the context of the design.

deadlock If no process can act in the context of the specification, then they neither may
be able to do so in the context of an implementation design. The specification and
an implementation must have the same deadlock properties.

Given that the tuple space operations will not be atomic in an implementation — they will be trans-
actions composed by some low-level atomic actions of the specific implementation — these demands
become problematic: exactly when do the tuple space operations take effect in an implementation, and
can they be ordered such that they satisfy the liveness properties. An interesting aspect in correctness
of an implementation design is how to deal with different granularity of atomicity and to provide a
correctness relation which bridges this.

3.2 Optimizations

If optimizations are introduced, a model of the optimizations could be developed and incorporated
into the existing model. This could then prove that the optimizations were safe, in the sense that
they do not alter the semantics of the specification.
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3.3 Finite computer systems

The specification of program states implies some unboundness, which an implementation with limited
resources somehow has to relax. A restriction, which may be imposed by an implementation, is e.g. an
upper bound of active processes. Thus an implementation will never be able to satisfy the correctness
relation fully, only a weaker property: given a set of implementation constraints, and a set of programs
not violating them, then the implementation is correct with respect to these programs.

3.4 Fairness

Let us now consider the implementation design of the fairness properties specified in section 2.8 as an
example for refinement. We only sketch the design in the present paper.

We say that a given implementation design of our specification is correct if the set of possible execution
histories of a particular program under the implementation design is a subset of the execution histories
of that program. Note that, in general, there is no means of determining exactly what this subset will
be for any particular implementation design.

For data refinement an abstraction relation between the abstract state space of the specification and
the concrete state space of an implementation design has to be given. Operation refinement leads
to algorithm development. The before and after states of operations of an implementation design
must provide before and after states of the corresponding operations which are related to each other.
What we require is that any program which is a correct implementation of the design is also a correct
implementation of the specification. The operations in the design model those in the specification.
See e.g. [Spivey, 1992b, sections 1.5 and 5.6] for a simple example.

The specified weak fairness property for pending processes in the specification could be implemented
by using FIFO queues for pending processes instead of sets as in TupleSpace (section 2.3). In a FIFO
(first-in first-out) queue always the possible candidate who waits longest is selected first. The design
for tuple spaces then could use injective sequences for pending processes:

— TupleSpaceDesign
1d : Value

Lemit © Value
Tuples : bag APTuple
PendFetchDesign : 1seq Pending
PendMeetDesign : iseq Pending
Blocked : Process > APTuple

(Type Id = atom) A (Id ¢ dom ValuesOfType)
(Type Limit = integer) V (Type Limit = om)

[ iseq X is the set of injective finite sequences over X: these are precisely the finite
sequences over X which contain no repetitions. _Z|

Similar changes may be done for the other tuple-space components. The matching procedure would
select matching templates according to their position in the sequences. Also multiple sequences for
pending processes, separated with respect to possible matching tuple sets, may be useful. The specifi-
cation does not restrict us to a particular implementation design (as long as it is a valid interpretation
of the specification). An implementation according to the design given above restricts the nondeter-
minism possible in the specification, but still prevents starvation.

We can document the correspondence between specification and design with a schema Abstraction
that defines the abstraction relation between the abstract state space TupleSpace and the concrete
state space TupleSpaceDesign:
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_ Abstraction
TupleSpace
TupleSpaceDesign

V pf . PendFetch; pfd : ran PendFetchDesign e
pf € ran PendFeichDesign A pfd € PendFetch

VYV pm : PendMeet; pmd : ran PendMeetDesign e
pm € ran PendMeetDesign A pmd € PendMeet

Having explained what the concrete tuple-space design is, and how concrete and abstract state spaces
are related, we can begin to give designs for the operations of the specification. It is necessary to
prove that the operations for the concrete state space are correct implementations of the operations
for the abstract state space, and that the global properties, such as fairness, hold. However, this is
subject for further work.

4 Conclusions

A formal specification of PROSET-Linda has been presented by means of the formal specification
language Z. The specification of the formal semantics of generative communication in PROSET led
us to the recognition of several omissions and imperfections in our previous informal specification.
Nevertheless, the main advantage of using 7 lies in subsequent developments of this work. Changes in
the language can be analyzed by formal transformations of its current specification. Implementations
can be formally derived, different strategies can be identified and choices for optimizations can be well
motivated and documented. Z specifications could be informally developed into programs, which gives
the implementor /user more confidence in the final system. There may be bugs, but they are less likely
to be at the conceptual level. Formal development involves some sort of transformation/refinement.
Refinement 1s usually regarded as a step-wise approach, possibly with proof obligations for each step.
Such development may be aided by tools. Many people regard this method of development as tedious,
but it allows the developer to have confidence in the end product (provided the specification and
development method are “correct”). A fully formal development process is more expensive in terms
of time and education, but much cheaper in terms of maintenance.

However, while constructing the presented formal specification in Z we recognized one important
drawback of using 7 with the fuzz package [Spivey, 1992a]: the principle of definition before use,
which leads to a bottom-up development of the specification. It would be more natural to write and
explain the specification in a top-down manner. The important point is just that any specification
must be written in a way such that its definitions can be ordered to satisfy the principle of definition
before use [Spivey, 1992b, page 47]. This avoids recursive definitions in which a schema includes itself,
for instance. Therefore, it should be possible to develop a tool for Z that allows the introduction of
paragraphs in any order and ensures that the principle of definition before use can be satisfied. It
would be nice to have a fuzz directive, which announces a forthcoming definition. The existing fuzz
directives allow preliminary, invisible definitions, but the later final definitions cannot be type-checked,
because they are redefinitions of global names.

There exist also some proposals for object-oriented extensions to Z. However, their goal is not to
overcome the restriction to a bottom-up development of Z specifications. E.g., the goal of the MooZ
specification language [Meira and Cavalcanti, 1992] is to provide object-oriented structuring facili-
ties to Z so that the specification of large software systems can be constructed and managed more
adequately, but still employs the principle of definition before use. The object-oriented paradigm
promotes the use of a bottom-up development in which the whole system is constructed from its
component parts.

Concurrency is described by arbitrary interleavings of the atomic actions of the participating processes.
However, nothing in the semantics given here prevents causal independent actions to occur in parallel.
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The concurrency of programs is modeled by the nondeterministic interleaving of atomic actions, i.e.
an asynchronous model. Atomic transitions happen one after another in a non-fixed arbitrary order.
The interleaving semantics defined by the execution history suggests a centralized implementation,
because the execution history has a unique thread of control, but if no local configuration is shared by
two configurations, they have no way to communicate and thereby, no possible interference arises from
a parallel occurrence of their transitions. Our work provides a distributed semantics since there is no
global state in our (global) configurations: local configurations for multiple tuple spaces are specified
instead. The overall transition of programs is specified in terms of individual process transitions:
a transition is based on a partial view of tuple spaces. This rule reflects the local decision making
property of Linda: the transitions involve only small subsets of tuples. This local decision making
property is the source for time and space decoupling of processes, which makes programming in Linda
so easy compared to other paradigms for coordinated programming such as message passing.

Weakly fair selection of pending processes has been specified for ezecution histories and we sketched
the design for a workable implementation for it. [Dijkstra, 1988] argues that “fairness, being an
unworkable notion, can be ignored with impunity” because finite experiments cannot distinguish
between fair and unfair implementations. Conversely, we view fairness as a simplifying assumption
to increase abstraction. Concepts that cannot be verified by finite experiments, such as liveness
properties, are introduced to make program design simpler. Fairness is such a liveness property,
which allows us — among other things — to reason about program termination in the presence of
nondeterminism. Another approach to abstraction is the use of real numbers to specify numerical
calculations: even though they cannot be represented exactly by computers, real numbers provide a
convenient language for describing calculations which the computer will carry out approximately.

We specified the conditions under which exceptions have to be raised. The actions to be taken to
handle such situations were only sketched. This is due to the fact that the present paper only presents
a specification of generative communication in PROSET, and not a specification of the entire language.
A rigorous formal specification of exception handling is in general not a light-weight exercise.

The concept for process creation in PROSET is adapted from Multilisp’s futures. The resolving and
touching of futures is only specified for processes within active tuples in tuple space, and not for
processes spawned outside of tuple space. This limitation is also due to the fact that this paper is not
a specification of the entire language.

We sketched how to develop an implementation design for the presented specification. The goal is
to verify that the implementation meets the specification. Note that an implementation, which is
considered to be correct, cannot be claimed to be fully reliable. An implementation design that has
been verified is not immune from bugs, although the probability that it contains bugs is very much
smaller than if it had not been verified. We want reliability and not perfection. Writing a proof is
somewhat like writing a program, and is subject to error in the same ways that programs are subject
to error. Nevertheless, a machine checked proof does give us a very high degree of confidence in the
correctness of a program, even though it cannot guarantee total reliability. Some chance of failure
always remains, no matter how remote. [DeMillo et al., 1979] argue that believing a proof is a social
process and that proofs consisting entirely of calculations are not necessarily correct. A proof for a
refinement step is a message to the community, which says that we believe it is correct. Therefore,
our goal is not to design a fully reliable implementation — we even do not believe that this would be
possible in practice. Our goal is to gain high confidence in the design for an implementation.

PROSET and Z appear to be a good combination for software engineering in general. Prototyping is
not meant to replace the entire software life cycle model. It is intended as a completion. Because of
the similarities between PROSET and Z it may be a good idea to build an executable prototype —
derived from a specification written in Z — in PROSET. Presenting an executable prototype for a
specification is often called specification animation. In [Diller, 1990], prototypes for Z specifications
were constructed in Miranda and Prolog, but set-oriented programming techniques may be a more
adequate choice for constructing prototypes from Z specifications than functional or logic programming
techniques.



A The prototyping language PROSET 34

A The prototyping language PROSET

This appendix provides a brief introduction to data and control structures of the prototyping language
PROSET. Tor a full account see [Doberkat et al, 1992]. The high-level structures that PROSET
provides qualify the language for prototyping.

A.1 Data structures

PROSET provides the first-class data types atom, integer, real, string, boolean, tuple, set,
function, modtype, and instance. It is a higher-order language, because functions and modules
have first-class rights, too. First-class means to be expressible without giving a name. It implies
having the right to be anonymous, being storable in variables and in data structures, being comparable
for equality with other objects, being returnable from or passable to a procedure. Each variable or
constant is meant to be an object for our terminology. PROSET 1s weakly typed, i.e. the type of an
object is in general not known at compile time. Integer, real, string and boolean objects are used as
usual. Atoms are unique with respect to one machine and across machines. They can only be created
and compared. The unary type operator returns a predefined type atom corresponding to the type
of 1ts operand.

Atom, integer, real, string, boolean, function and module objects are basic, because they are not
built from other objects. Tuples and sets are compound data structures, which may be heterogeneous
composed of basic data objects, tuples, and sets. Sets are unordered collections while tuples are
ordered. The following expression creates a tuple consisting of an integer, a string, a boolean and a
set of two reals:

[123, "abc", true, {1.4, 1.5}]
Such expressions are called tuple former. Sets consisting only of tuples of length two are called maps.

There is no genuine data type for maps, because set theory suggests handling them this way. The
following statement assigns a set that is a map to the variable M:

M := { [1,”31”], [”32”,2], [3’n33n] };

Now the following equalities hold:

domain(M) = {1, "s2", 3}
range(M) = {"s1", 2, "s3"}
M(l) = ”Sl”

n{1) = (re17)

Domain and range of a map may be heterogeneous. M{1} is the multi-map selection for relations.

There 18 also the undefined value om which indicates e.g. selection of an element from an empty set.
om itself may not be element of a set, but of a tuple.

A.2 Control structures

The control structures show that the language has ALGOL as one of its ancestors. There are if,
case, loop, while and until statements as usual and in addition some structures that are custom
tailored to the compound data structures. First have a look at expressions forming tuples and sets:

[1 .. 10];
S :={2%x: x in T | x > 5}; -- result: {12, 14, 16, 18, 20}
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The iteration “x in T’ implies a loop in which each element of the tuple T 1s successively assigned
to x. The visibility of x 1s bound to the set former. For all elements of T, which are satisfying the
condition “x > 5” the result of the expression “2#x” is added to the set. As usual in set theory “|”
means such that. With this knowledge the meaning of the following for loop should be obvious:

for x in S | x > 15 do <statements> end for;

The iteration proceeds over a copy, which is created at first. The quantifiers (3, V) of predicate calculus
are provided, e.g.:

if exists x in S | p(x) then <statements> end if;

Additionally PROSET provides the whilefound loop:
whilefound x in S | p(x) do <statements> end whilefound;

The loop body 1s executed provided an existentially quantified expression with the same iterator would
yield true. The bound variables are local to the whilefound loop as they are in for loops and in
quantified expressions. Unlike for loops the iterator is reevaluated for every iteration.

A.3 An example

In Fig. 2 a solution for the so-called queens’ problem is given to provide a first impression of the
language. Informally, the problem may be stated as follows:

Is it possible to place N queens (N € N) on an Nx N chesshoard in such a way that they do
not attack each other?

Anyone familiar with the basic rules of chess also knows what “attack” means in this context: in order
to attack each other, two queens are placed in the same row, the same column, or the same diagonal.

The program in Fig. 2 does not solve the above problem directly. It prints out the set of all positions
in which the N queens do not attack each other. If it is not possible to place N queens in non-attacking
positions, this set will be empty. We denote positions on the chessboard by pairs of natural numbers
for convenience (this is unusual in chess, where characters are used to denote the columns). [1,1]
denotes the lower left corner. The program in Fig. 2 with N=4 produces the following set as a result:

{{l1, 31, [2, 11, [4, 21, [3, 41},
{[3, 11, [1, 21, [2, 41, [4, 31}}

As sets are unordered collections, the program may print the fields and positions in different sequences.
Note that there are no explicit loops and that there is no recursion in the program. All iterations are
done implicitly. One may regard this program also as a specification of the queens’ problem.
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program Queens;
constant N := 4;
begin
fields := {[x,y]: x in [1..N], y in [1..N1};

put ({NextPos: NextPos in npow(lN, fields) | NonConflict(NextPos)});

procedure NonConflict (Position);
begin
return forall F1 in Position, F2 in Position |
((F1 /= F2) !'implies
(F1(1) /= F2(1) and F1(2) /= F2(2) and
(abs (F2(1)-F1(1)) /= abs(F2(2)-F1(2)))));
end NonConflict;

procedure implies (a, b);
begin

return not a or b;
end implies;

procedure abs (i);

begin
return if i >= 0 then i
else -i
end if;
end abs;

end Queens;

Figure 2: The queens’ problem. npow(k, s) yields the set of all subsets of the set s which
contain exactly k elements. NonConflict checks whether the queens in a given position
do not attack each other. It is possible to use procedures with appropriate parameters as
user-defined operators by prefixing their names with the “!” symbol. This is done here

with the procedure implies. T(i) selects the i*" element from tuple T.
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B The specification language Z

This appendix provides a brief informal introduction to the formal specification language Z. For a full
account we refer to [Diller, 1990]. [Spivey, 1992b] is the de-facto standard for Z. The present appendix
and the notes, which are enclosed in the symbols [Z_ and 7, are derived from these texts.

A 7 specification document consists of interleaved passages of formal, mathematical text and informal
prose explanation. The formal text consists of a sequence of paragraphs which gradually introduces
the schemas, global variables and basic types of the specification. Each paragraph builts on the ones
which come before it (definition before use).

Types in Z are sets: every mathematical expression which appears in a Z specification is given a type
determining a set known to contain the value of the expression. Each variable is given a type by its
declaration. The basic types or given sets of a specification have no internal structure of interest.
A given set may serve to the purpose of abstraction or generality. An object of the real world that
does not need to be given a model at a particular abstraction level can be represented by a given set.
The predefined basic types are N and 2. N is the set of natural numbers {0,1,2,...}, and Z is the set
of integers. Basic type definitions introduce new basic type names, which become part of the global
vocabulary of basic types. They are introduced as follows:

[PERSON , IDENTITY]

Such a basic type definition introduces one or more basic types. These names must not have a previous
global declaration, and their scope extends from the definition to the end of the specification. From
these atomic objects, composite objects can be put together in various ways. These composite objects
are the members of composite types put together with the type constructors of Z. There are three
kinds of composite types: set types, Cartesian product types (tuples), and schema types.

An abbreviation definition introduces a new global constant, which may later be used as an abbre-
viation for the specified expression. The following example introduces the name BIJECTION as an
abbreviation for the set of bijections from PERSON to IDENTITY :

BIJECTION == PERSON — IDENTITY

All kinds of functions, such as bijections, are relations with appropriate implicit constraints. Relations
are sets of pairs. Pairs are tuples with two components.

The formal part of a Z specification makes use of two-dimensional graphical constructs for schemas,
axiomatic descriptions, and generic descriptions.

B.1 Schemas

Schemas provide a means for structuring specifications. They can be used to describe both the static
aspect of a system (the state space and invariant relations on the state), and the dynamic aspects
(the operations which change the state). The general form of schemas in Z is as follows:

_S5
D

P

where S is the name of the schema, D is a declaration and P a predicate. D is also called the signature
of 5. For instance the declaration z,y : Z in a schema introduces the variables z and y with type
Z, which are then called the components of this schema. Such variables are local to the respective
schema, unless the schema is included elsewhere. A schema is included through using its name as a
declaration. The component names are then visible within the scope of the respective declaration. P
is also called the property of the schema. When multiple schemas are combined, then their signatures
are joined, and their properties are combined accordingly. The schema name S is global.
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There are some standard decorations for names used in describing operations: ’ for labeling the final
state of an operation, 7 for labeling its inputs, and ! for labeling its outputs. If we decorate a schema
name, this means a copy of this schema in which all the component names have been decorated
accordingly.

It is possible to have generic schemas:

_S[X1, . Xa]
D

P

where the X; are the formal generic parameters which can occur in the types assigned to the identifiers
in the declaration D. Later when the generic object is used, actual generic parameters (set-valued)
are supplied. These determine the sets which the formal parameters take as their values. The above
generic schema might be instantiated as follows:

12 8[A1, ..., Al

where the A, are the actual generic parameters (set-valued) and I is the instantiated schema. New
schemas may also be defined this way (via =) by combining old ones with the operations of the schema
caleulus [Spivey, 1992b]. For example, the effect of the schema V operator is to make a schema in
which the predicate part is the result of joining the predicate parts of its arguments with the logical
connective V.

The schema A State is implicitly defined as the combination of the before-state State and the after-state
State’ whenever a schema State is introduced:

AState
State
State’

This 1mplicit definition may be overridden by explicit definitions. The schema ZS5tate is implicitly
defined as the state space of a data type whenever a schema State is introduced:

__=State
State
State’

6State’ = 0State

Such implicit definitions may be overridden by explicit definitions. #5State is the binding formation
of values to the components of the schema State. Let the components of State be z;,...,2z,. The
following law holds:

0State’ = 0State < x] =21 A ... ANz}, =z

A state schema groups together variables and defines the relationship that holds between their values.
At any instant, these variables define the state of the system which they model. An operation schema
defines the relationship between the before and after states corresponding to one or more state schemas.

B.2 Axiomatic descriptions

The general form of an axiomatic description in Z is as follows:

}ii
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where D is a declaration which introduces one or more global variables and P is an optional predicate
that constrains the values that can be taken by the variables introduced in D. The variables declared in
D cannot have been previously declared globally and their scope extends to the end of the specification.
D becomes part of the global signature of the specification and P contributes to a global property.

A predicate may appear on its own as a paragraph; it specifies a constraint on the values of previously
declared global variables. The effect i1s as if the constraint had been stated as part of the axiomatic
descriptions in which the variables were introduced. Therefore, the predicate P in the above axiomatic
description box could also be placed behind this box without changing the semantics.

B.3 Generic descriptions

The general form of a generic description in Z is as follows:

:[Xla"'aXn]
D

P

where the X; are the formal generic parameters which can occur in the types assigned to the identifiers
in the declaration D. The variables declared in D cannot have been previously declared globally
and their scope extends to the end of the specification. The predicate P constrains the identifiers
introduced in D.

Generic descriptions may be used to define concepts such as relations, functions, sequences, bags and
the operations on them.

B.4 Free type definitions

A new basic type may also be introduced by a free type definition, where recursive structures are
allowed. A free type definition such as

T ©:= Constant | PtoT {PERSONY | next{{T)
1s equivalent to the basic type definition

(7]
extended by the axiomatic description

Constant : T
PtoT : PERSON — T
nert : T — T

{({ Constant},ran Pto T, ran next) partition T

X — Y is the set of total injections from X to Y. Finite sequences are enclosed in { and ). Sets are
enclosed in { and }. ran yields the range of a relation. The left-hand operand of partition has to be an
indexed family of sets. partition holds when all these sets are disjoint and when their union is equal
to the right-hand operand. ran and partition are keywords in Z. A particular common example of an
indexed family of sets is a sequence of sets, which is at base only a function defined on a subset of N.

Note that the device of defining free type definitions adds nothing to the power of Z. It 1s a convenient
shorthand.
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B.5 Expressions

The expressions within the boxes and in global constraints are based on first-order logic and set
theory. Sets, tuples (with at least two components), and bindings of values to components of schemas
are fundamental to Z. Relations, functions, bags (multi-sets), and finite sequences belong to the basic
mathematical tool-kit of Z. Sequences may be empty. Here, we only present an example for a set-

forming expression in Z:
{z:N|z<10ezx*z}

wich corresponds to
{x*x: xin N | x <= 10 }

in PROSET. However, this is not a legal expression in PROSET, since N is an infinite set. Note
that compound objects in Z have to be homogeneous, whereas compound objects in PROSET may be
heterogeneously composed. The type of the above Z expression is “set of integers” and the type of the
above PROSET expression is simply “set”. The bound variables are local to the respective constructs
in both languages.
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C The coordination language Linda

This appendix provides a brief introduction to the coordination language Linda.! For a full account

to Linda see [Carriero and Gelernter, 1990]. Linda is a coordination language concept for explicitly
parallel programming in an architecture independent way, which has been developed by David Gel-
ernter at Yale University [Gelernter, 1985]. Communication in Linda is based on the concept of tuple
space, 1.e. a virtual common data space accessed by an associative addressing scheme.

Process communication and synchronization in Linda is reduced to concurrent access to a large data
pool, thus relieving the programmer from the burden of having to consider all process inter-relations
explicitly. The parallel processes are decoupled in time and space in a very simple way. This scheme
offers all advantages of a shared memory architecture, such as anonymous communication and easy
load balancing. It adds a very flexible associative addressing mechanism and a natural synchronization
paradigm and at the same time avoids the well-known access bottleneck for shared memory systems
as far as possible.

The shared data pool in the Linda concept is called tuple space. Its access unit is the tuple, similar
to tuples in PROSET (appendix A). Tuples live in tuple space which is simply a collection of tuples.
It may contain any number of copies of the same tuple: it is a multi-set, not a set. Tuple space is
the fundamental medium of communication. Process communication and synchronization in Linda
1s also called generative communication, because tuples are added to, removed from, and read from
tuple space concurrently. Synchronization is done implicitly.

Reading access to tuples in tuple space is associative and not based on physical addresses — in fact,
the internal structure of tuple space is hidden from the user. Reading access to tuples is based on their
expected content described in so-called femplates. This method is similar to the selection of entries
from a data base. Each component of a tuple or template is either an actual, i.e. holding a value of a
given type, or a formal i.e. a placeholder for such a value. A formal is prefixed with a question mark.
Tuples in tuple space are selected by a matching procedure, where a tuple and a template are defined
to match, iff they have the same structure (corresponding number and type of components) and the
values of their actuals are equal to the values of the corresponding tuple fields.

C-Linda defines six operators, which may be added to a sequential computation language. These
operators enable sequential processes, specified in the underlying computation language, to access the
tuple space:?

out(tuple); The specified tuple is evaluated and then added to the tuple space. The out-executing
process continues as soon as evaluation of the tuple is completed. The “out('data", 123);”
operation in Fig. 3 deposits the tuple ["data",123] into tuple space.

eval(tuple); Executing an eval operation causes the followingsequence of activities. First, bindings
for names indicated explicitly in the tuple are established in the environment of the eval-
executing process. At this point, the eval-executing process may continue. Each field of the
tuple argument to eval is now evaluated, independently of and asynchronously with the eval-
executing process and each other. The fields of an eval tuple are evaluated concurrently yielding
one thread of execution for every field. eval deposits active tuples into tuple space, which are
not accessible to the remaining four operations. Conversely, out deposits passive tuples into
tuple space, which are accessible to the remaining four operations, which are discussed below.
When every field has been evaluated completely, the tuple consisting of the values yielded by
each eval-tuple field, in the order of their appearance in the eval tuple, becomes available in
tuple space: the active tuple converts to a passive one. The “eval("p",p());” operation in
Fig. 3 deposits the active tuple ["p",p()], containing two processes, into tuple space.

The main program is the only process that lives outside of tuple space.

1Linda is a registered trademark of Scientific Computing Associates.
?Parts of this description were derived from [Carriero and Gelernter, 1990, appendix A].
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eval ("p", p());

out ("data", 123);

Tuple Space

[ "data", 123 ]

in ("data", ? 1);

Figure 3: Tuple-space communication in C-Linda.

in(template); The in operation attempts to withdraw a specified tuple from tuple space. Tuple
space is searched for a matching tuple against the template supplied as the operation’s argument.
When and if a tuple is found, it is withdrawn from tuple space, and the values of its actual fields
are bound to any corresponding formals in the template. Tuples are withdrawn atomically: a
tuple can be grabbed by only one process, and once grabbed it is withdrawn entirely. If no
matching tuple exists in tuple space, the process executing the in suspends until a matching
tuple becomes available. If many tuples satisfy the match criteria, one is chosen arbitrarily. The
“in("data",?1i);” operation in Fig. 3 withdraws the tuple [""data'",123] from tuple space and
assigns 123 to the integer variable 1.

rd(template); The rd operation is the same as in, with actuals assigned to formals as before, ezcept
that the matched tuple remains in tuple space. The “rd("p",?x);” operation in Fig. 3 has to
wait for the termination of p() to read the return value of p(). It i1s presupposed that the return
value of p() has the same type that the variable x is declared with.

inp(template) / rdp(template) In C-Linda, these operations attempt to locate a matching tuple
and return 0 if they fail; otherwise, they return 1 and perform actual-to-formal assignment as
described above. The only difference with in/rd is that the predicates will not block if no
matching tuple is found.

A tuple and a template match in C-Linda, iff

e the tuple is passive, and
e the numbers of fields are equal, and
e types and values of actuals in templates are equal to the corresponding tuple fields, and

e the types of the variables in the formals are equal to the types of the corresponding tuple fields.

A parallel programming language consists of a coordination language like Linda and a sequential
computation language. The first computation language, in which Linda has been integrated, is C.
Meanwhile there exist also integrations into higher-level languages such as Smalltalk, Lisp, and Prolog.
Implementations of C-Linda have been performed on a wide variety of parallel architectures: shared-
memory multi-processors as well as on distributed memory architectures.
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D The informal semantics of PROSET-Linda

This appendix provides a brief informal definition of generative communication in PROSET. For a more
detailed discussion and some examples see [Hasselbring, 1991]. As PROSET is a still evolving language,
some changes were made compared to the version in [Hasselbring, 1991]. The more interesting changes
are mentioned in footnotes.

D.1 Process creation

In this section we will present an adaptation of the approach for process creation known from Multilisp
to set-oriented programming, where new processes may be spawned inside and outside of tuple space.
We regard tuple spaces primary as a device for synchronization and communication between processes,
and only secondary for process creation.

D.1.1 Multilisp’s futures

Multilisp [Halstead, 1985] augments Scheme with the notion of futures where the programmer needs
no knowledge about the underlying process model, inter-process communication or synchronization to
express parallelism. He only indicates that he does not need the result of a computation immediately
(but only in the “future”) and the rest is done by the runtime system. Instead of returning the
result of the computation, a placeholder is returned as result of process spawning. The value for this
placeholder 1s undefined until the computation has finished. Afterwards the value is set to the result of
the parallel computation: the future resolves to the value. Any process that needs to know a future’s
value will be suspended until the future resolves thus allowing concurrency between the computation
of a value and the use of that value. The programmer is responsible for ensuring that potentially
concurrently executing processes in Multilisp do not affect each other via side effects. An example:

(let ((x (future expri))
(y expr2))
( body ))

The value for x, which will be the result value of ezpri, is evaluated concurrently to ezpr2 and body.
The value for y, which will be the result value of ezpr2, is evaluated before the evaluation of body will
be started. When body needs the value of x, and x is not yet resolved, it touches the future of x and is
suspended until the future resolves. Most operations, e.g. arithmetic, comparison, type checking, etc.,
touch their operands. This is opposed to simple transmission of a value from one place to another,
e.g. by assignment, passing as a parameter to a procedure, returning as a result from a procedure,
building the value into a data structure, which does not touch the value. Transmission can be done
without waiting for the value.

D.1.2 Process creation in PROSET

Futures in Multilisp provide a method for process creation but no means for synchronization and
communication between processes, except for waiting for each other’s termination. In our approach
the concept for process creation via futures is adapted to set-oriented programming and combined
with the concept for synchronization and communication using tuple spaces.

Multilisp is based on Scheme, which is a dialect of Lisp with lexical scoping. Lisp and Scheme mani-
pulate pointers. This implies touching in a value-requiring context and transmission in a value-ignoring
context. This is in contrast to PROSET that uses value semantics, i.e. a value is never transmitted by
reference. However, there are a few cases where we can ignore the value of an expression: if the value
of an expression is assigned to a variable, we do not need this value immediately, but possibly in the
future.
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Process creation in PROSET is provided through the unary operator ||, which may be applied to an
expression (preferably a function call). A new process will be spawned to compute the value of this
expression concurrently with the spawning process analogously to futures in Multilisp. If this process
creator | | is applied to an expression that is immediately assigned to a variable, the spawning process
continues execution without waiting for the termination of the newly spawned process. At any time
the value of this variable is needed, the requesting process will be suspended until the future resolves
(the corresponding process terminates) thus allowing concurrency between the computation and the
use of a value. Consider the following statement sequence to see an example:

x := || pO; —-— statement 1
-— Some computations without access to x
y = Xx; -- statement 2

After statement 1 is executed the process p() runs in parallel with the spawning process. State-
ment 2 will be suspended until p() terminates, because a copy is needed (value semantics). Also, if a
compound data structure is constructed via a set or tuple forming enumeration, and this data struc-
ture is assigned immediately to a variable, we do not need the values of the enumerated components
immediately, thus the following statement allows concurrency as above:

x := { Il pO, 123, Il qO };

If you replace statement 1 in the previously discussed statement sequence by this statement, then
concurrency would be achieved as before. If the process creator || is applied in an expression that is
an operand to any operator, then this operator will wait for the return value of the created process.

In summary: concurrency is achieved only at creation time of a process and maintained on immediately
assigning to a variable, storing in a data structure, passing as a parameter to a procedure, returning
as a result from a procedure, and depositing in tuple space (this is discussed in section D.2.1). Every
time one tries to obtain a copy one has to wait for the termination of the corresponding process and
obtains only then the returned value.

Also statements, which spawn new processes, are allowed:

[ pQ);

Side effects and write parameters are not allowed for processes. Communication and synchronization
is done only via tuple-space operations. However, processes may access common, persistent data
objects via files or P-files. This is discussed elsewhere [Doberkat et al., 1992].

D.1.3 Program and process termination

The stop statement terminates the execution of a process or of an application program:

Statement —»@ - XpI‘ —

When executed in a spawned process, then this process will be terminated in the same way, as if a

return statement with the same expression had been executed in the main procedure of this process.
If no expression is specified, then om will be returned as usual.

When executed in a main program, which has been started form the operating system, then the value
of the optional expression is passed to the operating system. Its meaning depends on the operating
system. If no expression is specified, then om is passed to the operating system by default as success
code. There exists implicitly a “stop om;” statement at the end of each main program. Termination
of the main program terminates the entire application and thus all spawned processes.
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D.2 Tuple-space operations

PROSET provides three tuple-space operations:

Statement

The deposit operation deposits new tuples into tuple space, the fetch operation fetches and removes
a tuple from tuple space, and the meet operation meets and leaves a tuple in tuple space. It is possible
to change the tuple’s value while meeting it.

There is no difference between PROSET-tuples and passive Linda-tuples. Linda and PROSET both
provide tuples thus it 1s quite natural to combine them on the basis of this common feature. Tuple-
space operations are statements that yield no values. They should not be confused with operators in
expressions that always yield values.

D.2.1 Depositing tuples

The deposit operation deposits tuples into a specified tuple space:

N

blockiffull )—>| Expr

Deposit deposit

It is possible to deposit several tuples in an expression list into one tuple space and several such
expression lists into multiple tuple spaces by one statement, but there are no guarantees made for the
chronological order of availability of these tuples for other operations that wait for them (see below).
The tuples are handed over to the tuple-space manager, which adds them to the tuple space in an
arbitrary order.

All expressions are evaluated in arbitrary order, before any tuple is put into tuple space. The expres-
sions must yield tuples to be deposited in tuple space; if not, the exception type_mismatch will be
raised. Multiple tuple spaces will be discussed in section D.3.

We distinguish between passive and active tuples in tuple space. If there are no executing processes
in a tuple, then this tuple is added as a passive one (cp. out of C-Linda). If there are executing
processes in a tuple, then this tuple is added as an active one to tuple space. Depositing a tuple into
tuple space does not touch the value. When all processes in an active tuple have terminated their
execution, then this tuple converts into a passive one with the return values of these processes in the
corresponding tuple fields. Active tuples are invisible to the other tuple-space operations until they
convert into passive tuples. The other two tuple-space operations apply only to passive tuples.
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Limited tuple spaces

Because every existing computing system has only finite memory, the memory for tuple spaces will
also be limited. Pure tuple-space communication does not deal with full tuple spaces: there is always
enough room available. Thus most runtime systems for Linda hide the fact of limited memory from
the programmer. In PROSET-Linda the predefined exception ts_is_full will be raised by default
when no memory is available for a deposit operation. If there are multiple tuples specified in one
deposit operation, then none of them has been deposited when ts_is_full is raised. Conversely,
this exception will be raised, if at least one tuple cannot be deposited in any tuple space.

ts_is_full is raised with the signal statement of PROSET. Such an exception can be resumed
or aborted. If the handler then executes a return statement, the statement following the deposit
will be executed and none of the tuples of the respective deposit will be deposited (abort). If the
handler executes a resume statement, then the deposit operation tries again to deposit the tuples.
See [Doberkat et al., 1992] for a detailed discussion of exception handling in PROSET.

Optionally, the programmer may specify that a deposit operation will be suspended on a full tuple
space until space is available again:

deposit blockiffull
[ x]1 at TS
end deposit;

As you can see in the above syntax diagram, only one tuple may be deposited by a blocking deposit
operation. If we would allow to block for multiple tuples, it would not be obvious if we should deposit
them incrementally or all at once. Depositing all at once is in general not possible and incremental
depositing may produce strange results if only a subset of the specified tuples can be deposited.
Because of the unclear semantics, we do not allow multiple tuples for a blocking deposit operation.
You can use multiple deposit operations instead.

D.2.2 Fetching tuples

A fetch operation fetches and removes one tuple from a tuple space:

CO— [~}

{ xor }
—/

It is possible to specify several templates for multiple tuple spaces in one statement, but only one
template may be selected nondeterministically (section D.2.4). We use the keyword xor (exclusive
or) and not or to separate the individual alternatives, because only one template may be selected. If
there are no else statements specified (see below) then the statement suspends until a match occurs.
The selected tuple is removed from tuple space. If statements are specified for the selected template,
these statements are executed (only for this template):

TempList Template J
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A template consists of a list of ordinary expressions and so-called formals:

Template
F ormal
EXpI‘

The expressions are called actuals. They are at first evaluated in arbitrary order. The list is enclosed
in parentheses and not in brackets in order to set the templates apart from tuples. Note that a
template may be empty to match the empty tuple [1.3

As usual | means such that. The Boolean expression behind | may be used to customize matching.
PrROSET employs conditional value matching and not the type matching known from C-Linda and
similar embeddings of Linda into statically typed languages.

A tuple and a template match, iff all the following conditions hold:

The tuple is passive.

o The arities are equal. Trailing oms do not contribute to the arity of tuples and templates.*

Values of actuals in templates are equal to the corresponding tuple fields.

e The Boolean expression behind | in the template evaluates to true. If no such expression is
specified, then [true is the default.

The fields that are preceded by a question mark are the formals of the template:

Formal { 7 )}
\ J L

The Fvalues specified in the formals are assigned the values of the corresponding tuple fields provided
matching succeeds. If an Fvalue is specified more than once, it is not determined which of the possible
values 1s assigned. If no lvalue is specified, then the corresponding value will not be available. You
may regard a formal without an Fvalue as a “don’t care” or “only take care of the condition” field.
The symbol $ may be used like an expression as a placeholder for the value of the corresponding tuple
in tuple space.® The condition is enclosed within the parentheses to make the implicit scope of $
explicit.

3In [Hasselbring, 1991] empty template lists were not allowed, whereas empty tuples may be deposited in tuple space.
This inconsistency was derived form the heritage of C-Linda, where tuples and templates must have at least one field.
This is an example for a situation in which inconsistencies in an informal specification were found while constructing a
formal specification.

4Tn [Hasselbring, 1991] we did not specify how to handle templates with trailing oms while matching. This is
an example for a situation in which an omission in an informal specification was found while constructing a formal
specification.

5In [Hasselbring, 1991] conditions were specified at individual tuple fields, where the symbol $ was used as a place-
holder for the value of the corresponding tuple field and not for the entire tuple. This implied that it was not possible
to access the values of multiple tuple fields within such expressions. Now we have a more flexible and concise way for
specifying conditions for matching.
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Note that the template (1,o0m) matches the tuple [1], and that the template (om,1) does not match
the tuple [1]. If we would assign the arity 2 to the template (1,0m) then no tuple could ever match
this template.

Non-blocking matching

It is possible to specify else statements to be executed, if none of the templates matches:

1—(else )—>| Stmts }—[

We will use the notion non-blocking matching if else statements are specified as opposed to blocking
matching if no else statements are specified.

Else

D.2.3 Meeting tuples

The meet operation meets and leaves one tuple in tuple space. It is possible to change the tuple
while meeting it. Exchanging the keyword fetch with meet and the nonterminal Template with
MeetTemplate in the first syntax diagrams of section D.2.2; one obtains the syntax for the meet
operation:

i

Expr

Formal

()
Z/

MeetTemplate

Ik

The expressions are evaluated as usual, the formals are used to create templates, which are used for
matching as with the fetch operation (section D.2.4). If no else case is specified, then the statement
suspends until a match occurs. The values of the tuple fields that were fetched for the corresponding
formals of the template are assigned to the corresponding lvalues. If statements are specified for the
selected template, these statements are executed (only for this template).

If there are no intos specified behind the formals, then the selected tuple is not removed from tuple
space. This case may be compared with the rd/rdp operations of C-Linda. Except for the fact that
the meet operation without intos leaves the tuple 1t found in tuple space, it works like the fetch
operation.

Changing tuples

We allow to change tuples while meeting them in tuple space. This i1s done by specifying expressions
into which specific tuple fields will be changed. Tuples, which are met in tuple space, may be regarded
as shared data since they remain in tuple space; irrespective of changing them or not.
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If there are intos specified behind the formals then the tuple is at first fetched from the tuple space
as 1t would be done with the fetch operation. Afterwards a tuple will be deposited into the same
tuple space, where all the tuple fields without intos are unchanged and all the tuple fields with intos
are updated with the values of the respective expressions.

D.2.4 Nondeterminism and fairness while matching

There are two sources for nondeterminism while matching:

1. Several matching tuples exist for the templates: one tuple will be selected nondeterministically.

2. The selected tuple matches several templates: one template will be selected nondeterministically.

If in any case there 1s only one candidate available, this one will be selected. There are several ways
for handling fairness while selecting tuples or templates that match if there are multiple candidates
available. We assume a fair scheduler to guarantee process fairness, which means that no single
process is excluded of CPU time forever. We will now discuss fairness of choice which is important
for handling the nondeterminism derived from matching. There exist some fairness notions:

Weak Fairness If a process is enabled continuously from some point onwards then it
eventually will be selected. Weak Fairness is also called justice.

Strong Fairness If a process is enabled infinitely often then it will be selected infinitely
often.

In PROSET the following fairness guarantees are given for the two sources for nondeterminism as
mentioned above:

1. Tuples will be selected without any consideration of fairness.

2. Templates will be selected in a weakly fair way.

Since deposited tuples are no longer connected with processes, it is reasonable to select them without
any consideration of fairness. Linda’s semantics do not guarantee tuple ordering — this aspect remains
the responsibility of the programmer. If a specific order in selection is necessary, it has to be enforced
via appropriate tuple contents. The system is enabled to store the tuple space e.g. in a hash-based
way.

Fairness is also important for processes which are blocked on full tuple spaces:®

3. Processes which are blocked on full tuple spaces are selected in a weakly fair way when tuples
are fetched from the respective tuple spaces.

In cases 2 and 3 processes are involved and enabled after selection, whereas in case 1 this is not the
case for the selection of deposited tuples. Therefore, it is reasonable to employ weakly fair selection
in cases 2 and 3, and unfair selection in case 1.

To specify weakly fair selection of templates by means of temporal logic we introduce the following
abbreviations for predicates on a process P and a template T

8In [Hasselbring, 1991] we did not specify how to select processes which are blocked on full tuple spaces. This is
another example for a situation in which an omission in an informal specification was found while constructing a formal
specification.
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= “Process P executes a blocking fetch or meet operation with template 77

“There is a matching tuple for template 7" in tuple space”
“Process P is blocked with template 77

“Template T is selected for a matching tuple provided there exists one”

> o £ o
[l

= “Process P is activated (template T was selected)”

Now the above-given fairness guarantee may be formulated as follows:”

EAMAS = A (1)
EA-(MAS) = B (2)
BAOOM = O(SAA) (3)

Predicates 1 and 2 describe the behavior on executing blocking fetch or meet operations. Predicate 3
describes the selection of a template that belongs to a suspended process. “0OOM” means that there
is infinitely often a matching tuple available for the template. S (selection) is implied by “0COM”.

This is not a formal specification, since the predicates are based on English text and not on mathe-
matical formulas. In section 2.8 a formal specification is given.

Weakly fair selection of templates applies only to blocking matching: if a template that is used for
non-blocking matching does match immediately then this one is excluded of further matching and the
corresponding process is informed of this fact. This applies accordingly to non-blocking matching with
multiple templates, too. Templates (resp. processes), which are suspended because no tuple matches
them are weakly fair matched with tuples later deposited. The implementation has to guarantee this.

D.3 Multiple tuple spaces

Atoms are used to identify tuple spaces. As mentioned in appendix A atoms are unique for one
machine and across machines. They have first-class rights.

The expressions behind the keyword at within tuple-space operations have to yield valid tuple-space
identities. If not, the exception ts_invalid_id will be raised. Note that ts_invalid_id and not
ts_is_full will be raised if both exceptional conditions — invalid tuple-space identity and full tuple
space — hold. Note also that the exception type_mismatch and not ts_invalid_id will be raised if
an expression behind the keyword at within tuple-space operations yields not an atom.

PROSET provides several library functions to handle multiple tuple spaces:

CreateTS(limit): Calls the standard function newat to return a fresh atom. The tuple-space man-
ager is informed to create a new tuple space represented /identified by this atom. The atom will
be returned by CreateTS. Therefore, you can only use atoms that were created by CreateTS to
identify tuple spaces.

The integer parameter limit specifies a limit on the expected or desired size of the new tuple
space. This size limit denotes the total number of passive and active tuples, which are allowed
in a tuple space at the same time. CreateTS(om) would instead indicate that the expected or
wanted size is unlimited regarding user-defined limits, not regarding physical limits. A negative
limit is equivalent to 0 (no tuples may be deposited into such a tuple space).

ExistsTS(TS): Yields true, if TS is an atom that identifies an existing tuple space; else false.

"In temporal logic “Cp” and “Op” mean that predicate p holds eventually resp. always. See e.g. [Emerson, 1990] for
a full account to temporal logic.
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ClearTS(TS): Removes all active and passive tuples from the specified tuple space.

RemoveTS(TS): Calls ClearTS(TS) and removes TS from the list of existing tuple spaces.

If these functions are invoked with actual parameters that are not atoms, the exception type_mismatch
will be raised. If the functions ExistsTS, ClearTS, or RemoveTS are called with an atom, which is not
a valid tuple-space identity, then the exception ts_invalid_id will be raised.

Every PROSET program has its own tuple-space manager. Tuple spaces are not persistent. They exist
only until all processes of an application have terminated their execution.
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E Types of all names defined
globally

This appendix has been produced by the fuzz
type-checker for Z with the -t flag [Spivey, 1992a].
A comprehensive overview of all names defined
globally in the specification with their associated
types is given. Some line breaks were inserted to
fit into two columns. An index to these global
names may be found in the index of formal defi-
nitions at the end of this document.

Given Expression
Given LValue
Given Statement
Given Process
Var Execute _: P Statement
Given Value

Var atom: Value

Var boolean: Value

Var integer: Value
Var real: Value
Var string: Value
Var tuple: Value
Var set: Value
function: Value

Var

Var modtype: Value

Var instance: Value

Var TRUE: Value

Var FALSE: Value

Var om: Value

Var ValuesOfType: Value —-+> P Value
Var Type: Value -+> Value

Var Evaluate: Expression -+> Value

Var ProcRetVal: Process -+> Value
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Var _ \IsAssigned _: LValue <-> Value
Given TupleComp

Var TupleValue: Value -+> TupleComp

Var TupleProcess: Process -+> TupleComp
Abbrev APTuple: P (seq TupleComp)

Var APTupleToValue: APTuple -+> Value

Genconst Arity[1]:
(Value -+> @1) -+> (seq 01 -+> NN)

Var TupArity: APTuple -+> NN
Given OptLValue
Var NoLValue: OptLValue
Var IsLValue: LValue -+> OptLValue
Given OptInto
Var NoInto: OptInto
Var IsInto: Expression -+> OptInto
Schema Formal
Destination: OptLValue
Into: OptInto
End
Given TempComp
Var TempValue: Value -+> TempComp
Var TempFormal: Formal -+> TempComp
Schema Template
List: seq TempComp
Condition: Expression
End
Var _ \FormalAssign

_: Template <-> APTuple

Var _ \EvalIntos _
Template x APTuple -+> APTuple

Var TempArity: seq TempComp -+> NN
Var _ \CompMatches _: TupleComp <-> TempComp

Var _ \Matches _: APTuple <-> Template

Given OptStmt
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Var NoStmt: OptStmt
Var IsStmt: Statement —-+> OptStmt
Var OptExecute _: P OptStmt

Schema Pending
temp: Template
os: OptStmt
proc: Process

End

Schema TupleSpace

Id: Value

Limit: Value

Tuples: bag APTuple

PendFetch: F Pending

PendMeet: F Pending

PendFull: Process —-++> APTuple
End

Schema Program
TSs: F TupleSpace
ActiveProcs: F Process
End

Var ActuallyActiveProcesses: F Process
Var ActuallyPendingProcesses: F Process

Var ActuallyExistingProcesses: F Process

Schema \Delta Program
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
End

Schema InitProgram
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
End

Schema ProcessCreation
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
NewProcess?: Process
End

Var _ \SAR _:

F Process x F Pending -+> F Pending

Schema ProcessTermination
TSs: F TupleSpace

ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
ToKill?: Process

End

Schema ProgramTermination
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process

End

Var IDsOF: F TupleSpace —-+> F Value

Schema CreateTSok
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InLimit?: Value
Return!: Value

End

Abbrev \TypeMismatch: Statement

Schema \Xi Program
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
End

Schema CreateTSTypeMismatch
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InLimit?: Value
Exception!: Statement

End

Schema CreateTS
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InLimit?: Value
Return!: Value
Exception!: Statement

End

Schema ExistsTS
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTS7?: Value
Return!: Value
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Exception!: Statement
End

Schema ClearTSok
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTS?7: Value
Return!: Value

End

Abbrev \InvalidId: Statement

Schema ClearTSinvalid
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTS7?: Value
Exception!: Statement

End

Schema ClearTS
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTS7?: Value
Return!: Value
Exception!: Statement
End

Schema RemoveTSfromState
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTS7?: Value

End

Schema RemoveTS
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTS7?: Value
Return!: Value
Exception!: Statement
End

Abbrev TupList: P (seq (seq APTuple x Value))

Var HasIntos _: P Template

Var _ \AllTuples _

Value x TupList -+> seq APTuple

Genconst BagSum[1]: bag @1 -+> NN

Var IntValueOf: Value —-+> ZZ

Schema TSisFull
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTupList?: TupList
End

Var _ \AddTuple

Program x (APTuple x Value) -+> Program

Schema DepositOK
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTupList?: TupList
End

Schema DepositInvalid
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTupList?: TupList
Exception!: Statement

End

Given BlockMode

Var BlockIfFull: BlockMode
Var DoNotBlock: BlockMode
Abbrev \ExcTSisFull: Statement

Schema FullTSException
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTupList?: TupList
Blocking?: BlockMode
Exception!: Statement

End

Schema FullTSBlock
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTupList?: TupList
Blocking?: BlockMode
InProc?: Process

End
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Schema Deposit
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InTupList?: TupList
Blocking?: BlockMode
InProc?: Process
Exception!: Statement

End

Abbrev TempList:

P (seq (seq (Template x OptStmt) x Value))
Genconst GetTS[4]: @1 x @2 x 03 x @4 -+> @1
Genconst GetTemp[4]: @1 x 02 x @3 x @4 -+> 02
Genconst GetTup[4]: @1 x @2 x @3 x @4 -+> @3

Genconst Get0S[4]: @1 x @2 x @3 x @4 -+> @4

Schema FetchMatch
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList

End

Schema FetchNoMatch
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList
Else?: OptStmt

End

Schema DoElseStmt
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList
Else?: OptStmt

End

Schema InvalidTempList
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList
Exception!: Statement

End

Schema DisallowIntos
InTempList?: TempList
End

Schema Fetch
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList
Else?: OptStmt
Exception!: Statement

End

Schema MeetMatch
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList

End

Schema MeetNoMatch
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList
Else?: OptStmt

End

Schema Meet
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
InProc?: Process
InTempList?: TempList
Else?: OptStmt
Exception!: Statement

End

Schema NoOp
TSs: F TupleSpace
ActiveProcs: F Process
TSs’: F TupleSpace
ActiveProcs’: F Process
End

Schema Execution

History: NN -+> \Delta Program

End

Schema TupleSpaceDesign
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End

Id: Value

Limit: Value

Tuples: bag APTuple
PendFetchDesign: seq Pending
PendMeetDesign: seq Pending
Blocked: Process —++> APTuple

Schema Abstraction

End

Id: Value

Limit: Value

Tuples: bag APTuple

PendFetch: F Pending

PendMeet: F Pending

PendFull: Process —-++> APTuple
PendFetchDesign: seq Pending
PendMeetDesign: seq Pending
Blocked: Process —++> APTuple
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