
Approaches to High�Level Programming and

Prototyping of Concurrent Applications

Wilhelm Hasselbring

University of Dortmund

Concurrent programming is conceptually harder to undertake and to understand than sequen�
tial programming� because a programmer has to manage the coexistence and coordination of
multiple concurrent activities� To alleviate this task several high�level approaches to concurrent
programming have been developed� For some high�level programming approaches� prototyping for
facilitating early evaluation of new ideas is a central goal�

Prototyping is used to explore the essential features of a proposed system through practical
experimentation before its actual implementation to make the correct design choices early in the
process of software development� Approaches to prototyping concurrent applications with very
high�level programming systems intend to alleviate the development of parallel algorithms in quite
di�erent ways� Early experimentation with alternate design choices or problem decompositions
for concurrent applications is suggested to make concurrent programming easier�

This paper presents a survey of approaches to high�level programming and prototyping of
concurrent applications to review the state of the art in this area� The surveyed approaches are
classi�ed with respect to the prototyping process�

Categories and Subject Descriptors� D���	 
Programming Techniques�� Concurrent Program�
ming�Parallel Programming� Distributed programming
 D���� 
Software Engineering�� Tools
and Techniques�Computer�aided software engineering �CASE�� Petri nets� Software libraries

D���m 
Software Engineering �� Miscellaneous�Rapid prototyping
 D�	�� 
Programming

Languages�� Language Classi�cations�Concurrent� distributed� and parallel languages� Very
high�level languages
 D�	�	 
Programming Languages�� Language Constructs and Features�
Concurrent programming structures

General Terms� Languages

Additional Key Words and Phrases� Concurrency� Parallelism� Distribution� Rapid prototyping�
Very high�level languages

Address� Computer Science Department� Informatik ��� D������ Dortmund� Germany
 email�
hwilli�ls���informatik�uni�dortmund�dei�



� � W� Hasselbring

Contents

� INTRODUCTION �

� APPROACHES �

��� Low�Level versus High�Level � � � � � � � � � � � � � � � � � � � � � � � �
��� High�Level Libraries � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Set�Oriented Data Parallelism � � � � � � � � � � � � � � � � � � � � � � �
��� Concurrent Functional Languages � � � � � � � � � � � � � � � � � � � � �
��	 Concurrent Logic Languages � � � � � � � � � � � � � � � � � � � � � � � 

��� Concurrent Object�Based Languages � � � � � � � � � � � � � � � � � � ��
��� Composition and Coordination Languages � � � � � � � � � � � � � � � ��
��� Graphical Programming Systems � � � � � � � � � � � � � � � � � � � � �	

� TRANSFORMING PROTOTYPES INTO EFFICIENT IMPLE�

MENTATIONS ��

� CONCLUSIONS ��

�� INTRODUCTION

There has been particular attention on concurrent programming within the com�
puter science community during the last decades� We regard concurrency as the
potential for parallel execution and distribution of activities� Thus� concurrent pro�
gramming encompasses parallel programming and distributed programming� Sev�
eral motivations for concurrent programming exist


��� Decreasing the execution time for an application program�

��� Increasing the fault�tolerance�

��� Exploiting explicitly the inherent parallelism of an application�

Achieving speedup through parallelism is a common motivation for executing an
application program on a parallel computer system� Usually� parallel program�
ming aims at high�performance computing� Another motivation is achieving fault�
tolerance
 for critical applications like controlling a nuclear power plant� a single
processor may not be reliable enough� Distributed computing systems are poten�
tially more reliable
 as the processors are autonomous� a failure in one processor
does not a�ect the correct function of the other processors� Fault�tolerance can�
therefore� be increased by replicating functions or data of the application on several
processors� If some of the processors crash� the others can continue the job�
However� the main motivation for integrating explicit parallelism into high�level

prototyping languages is to provide means for explicitly modeling concurrent ap�
plications� Consider� for instance� concurrent systems such as air�tra�c�control
and airline�reservation applications� which must respond to many external stimuli
and which are therefore inherently parallel and often distributed� To deal with
nondeterminism and to reduce their complexity� such applications are preferably
structured as independent parallel processes�
Combining concurrent programming with prototyping intends to alleviate con�

current programming on the basis of enabling the programmer to practically ex�



Approaches to High�Level Programming and Prototyping of Concurrent Applications � �

periment with ideas for concurrent applications on a high level neglecting low�level
considerations of speci�c parallel and distributed architectures in the beginning of
program development� Prototyping concurrent applications intends to bridge the
gap between conceptual design of concurrent applications and practical implemen�
tation on speci�c parallel and distributed systems�
To be useful� prototypes must be built rapidly� and designed in such a way that

they can be modi�ed rapidly� Therefore� prototypes should be built in very high�
level languages to make them rapidly available� Consequently� a prototype is usually
not a very e�cient program since the language should o�er constructs which are
semantically on a very high level� and the runtime system has a heavy burden for
executing these highly expressive constructs� The above�mentioned primary goal of
parallel programming � decreasing the execution time for an application program
� is not the �rst goal for prototyping concurrent applications� The �rst goal is
to experiment with ideas for concurrent applications before mapping programs to
speci�c parallel architectures to achieve high speedups�

Section � presents a survey of approaches to high�level programming and pro�
totyping of concurrent applications� For each approach� �rst the general idea is
discussed� Then� a short presentation of an example system follows before some
sample systems are listed� The short example is intended to give a �rst impression of
the particular approach� For the listed sample systems a brief characterization and
some references are given� We do not intend to provide a comprehensive bibliogra�
phy in this paper� For each included approach just a few representative references
will be given� We also do not intend to provide a comprehensive survey of concur�
rent programming languages� Only approaches which are designed for prototyping
or appear to be good candidates for prototyping are included� The transformation
of prototypes into e�cient implementations is discussed in Section �� and Section �
draws some conclusions�

�� APPROACHES

��� Low�Level versus High�Level

There exist many approaches to concurrent programming� The traditional model
of message passing is that of a group of sequential processes running in paral�
lel and communicating through passing messages� This model directly re�ects the
distributed memory architecture� consisting of processors connected through a com�
munication network� Many variations of message passing have been proposed� With
asynchronous message passing� the sender continues immediately after sending the
message� With synchronous message passing� the sender must wait until the re�
ceiver accepts the message� Remote procedure call and rendezvous are two�way
interactions between two processes� Broadcast and multicast are interactions be�
tween one sender and many receivers� Languages based on the message passing
model include occam� Ada� SR� and many others� As these languages with their
variations of message passing have been studied extensively in the literature� we
refer to Bal� Steiner� and Tanenbaum ��
�
� for an overview� and do not discuss
them in detail here�
For some applications� the basic model of message passing may be the optimal

solution� This is� for example� the case for an electronic mail system� For other



� � W� Hasselbring

applications� however� this basic model may be too low�level and in�exible�
Processes that are collaborating on a problem will ordinarily need to share data�

but in the message�passing model data structures are sealed within processes� and
so processes cannot access the others� data directly� Instead they exchange mes�
sages� This scheme adds complexity to the program as a whole
 it means that
each process must know how to generate messages and where to send them� This
greatly increases the complexity of programs� and also restricts algorithm design
choices� inhibiting experimentation with alternate algorithm choices or problem de�
compositions� Refer to Bal ��

�� for an extensive discussion of the shortcomings of
the message�passing model� To quote from Agha ��

��
 �Programming using only
message passing is somewhat like programming in assembler
 sending a message is
not only a jump� it is a concurrent one��
In contrast to the message�passing model� the shared�memorymodel allows appli�

cation programs to use shared memory as they use normal local memory� The pri�
mary advantage of shared memory over message passing is the simpler abstraction
provided to the application programmer� an abstraction the programmer already
understands well�
Because of the problems with the low�level programming models for message

passing� many models which emphasize some kind of shared data have been de�
veloped that intend to deliver a higher level of abstraction to alleviate concurrent
programming� These high�level programmingmodels appear to be good candidates
for prototyping concurrent applications�
The traditional method for communication and synchronization with shared data

is through shared variables� The use of shared variables for coordination of concur�
rent processes with� e�g�� semaphores or critical sections has been studied extensively
�Andrews �

��� However� we regard shared variables as a low�level medium for co�
ordination� because the synchronization� which is necessary to prevent multiple
processes from simultaneously changing the same variable �avoiding lost updates��
is di�cult� Several other coordination models based on shared data exist� however�
which are better suited for concurrent programming and consequently proposed for
prototyping concurrent applications�
Our survey of approaches to high�level programming and prototyping of concur�

rent applications starts with high�level libraries for message passing �Section ����
to continue with data parallelism �Section ����� concurrent functional languages
�Section ����� concurrent logic languages �Section ��	�� concurrent object�based lan�
guages �Section ����� composition�coordination languages �Section ����� and graph�
ical programming systems �Section ����� Figure � classi�es the approaches surveyed
in the paper into a simple taxonomy�

��� High�Level Libraries

Idea� Mechanisms for concurrent programming are often provided to the pro�
grammer through libraries of functions on an operating�system level� As the use
of many of these libraries is very complicated� it has been proposed to use some
kind of high�level libraries for prototyping concurrent applications� These high�
level libraries intend to alleviate their use by the provision of simple interfaces and
more �exibility than the lower�level libraries provide� while relinquishing e�ciency
to some extent�



Approaches to High�Level Programming and Prototyping of Concurrent Applications � �

library

graphical
representation

Petri−Nets

state−transition
diagrams

other
data−flow
diagrams

data−parallel

functional
logic

composition and
coordination
languages

surveyed approaches

linguistic approaches

object−based

Fig� �� A taxonomy for the approaches surveyed in the paper�

Such libraries only support unstructured programming since there exists no com�
piler support for checking the proper use of the libraries� It could be argued that
these approaches are not really high�level approaches� but they are included in this
survey because some are explicitly designed for prototyping concurrent applications�

An Example� IPC FBase �Cao et al� �

�� is a library which supports prototyp�
ing on Transputer networks� The Transputer is a processor providing four serial
links� which may be connected to other Transputers� Transputer processors are
usually con�gured into a two�dimensional grid� To alleviate programming of such
systems� the library IPC FBase supports high�level functions for routing and dy�
namic recon�guration to allow early prototyping and performance evaluation of
di�erent parallel algorithms on Transputer networks� Examples for topology emu�
lation functions are


soft pipe�NumberOfNodes�
soft ring�NumberOfNodes�
soft tree�NumberOfNodes�
soft star�NumberOfNodes�

Corresponding to each basic network topology� a routing function is provided which
supports two�way communication �routing pipe�� etc��� These functions are in�
tended to o�er the programmer the possibility to experiment with parallel algo�
rithms for di�erent processor topologies� With traditional programming languages
for Transputer systems �e�g� occam or Parallel�C�� it is somewhat arduous to sim�
ulate and recon�gure di�erent topologies on the grid�based architecture�

As a case study� Cao� de Vel� and Wong ��

�� discuss a parallel tree search
algorithm which uses the tree topology� The algorithm uses the divide�and�conquer
technique� in which the overall search is broken down into a collection of smaller



� � W� Hasselbring

searches that can be undertaken in parallel� With the tree topology� the search
involves communication of a search key to the root� dispersion of the key through
the branches and to all the leaves� check for the existence of the key in each leaf�
and to gather in the results from all the leaves via the branches� With the functions
for emulation of and routing in trees� it was straightforward to implement the �rst
versions of this parallel algorithm�

Some Sample Systems� In addition to IPC FBase� there exist some other ap�
proaches to prototyping with high�level libraries


�Polylith �Purtilo et al� �
��� Purtilo and Jalote �

�� is a module library for proto�
typing concurrent applications� that supports di�erent communication primitives
with speci�ed delays� and provides primitives to aid debugging and evaluation�
The environment also supports heterogeneous computation in which processes
can execute on di�erent hardware� Di�erent source languages can be used for
coding di�erent modules of the processes�

�StarLite �Son and Kim �
�
� provides a library of functions for prototyping trans�
action processing mechanisms for distributed database systems�

�The high�level library VAN �Virtual Agent Network� for prototyping computa�
tional agents in a distributed environment is presented in French and Viles ��

���

�It has also been proposed to prototype distributed information systems with
remote procedure call �RPC��based programs �Zhou �

���

��� Set�Oriented Data Parallelism

Idea� Data parallelism extends conventional programming languages so that some
operations can be performed simultaneously on many pieces of data� For example�
all elements in a list or in an array can be updated at the same time� or all items
in a database are scanned simultaneously to see if they match some criterion� For
an account to data�parallel algorithms refer to Hillis and Steele ��
��� and for an
account to data�parallel programming refer to Quinn and Hatcher ��

��� Data�
parallel operations appear to be done simultaneously on all a�ected data elements�
This kind of parallelism is opposed to control parallelism that is achieved through
multiple threads of control� operating independently�
Data parallelism is a relatively well�understood form of parallel computation

as it is the simplest of all styles of concurrent programming� yet developing sim�
ple applications can involve substantial e�orts to express the problem in low�level
data�parallel notations� Approaches to prototyping data�parallel algorithms usually
extend a sequential prototyping language with some high�level data�parallel con�
structs to allow experimentation with di�erent data and problem decompositions�
In contrast to most traditional data�parallel approaches� high�level data�parallel ap�
proaches usually provide some kind of set�oriented� nested data�parallel constructs�
The data�parallel approach lets programmers replace iteration �repeated execu�

tion of the same set of instructions with di�erent data� by parallel execution� It does
not address a more general case� however
 performing many interrelated but dif�
ferent operations at the same time� This ability is essential in developing complex
concurrent application programs� Therefore� the capabilities of the data�parallel
approach for prototyping concurrent applications are limited�



Approaches to High�Level Programming and Prototyping of Concurrent Applications � �

An Example� Let us take a look at a data�parallel extension of SETL� SETL is
a set�oriented language designed for prototyping �sequential� algorithms �Kruchten
et al� �
���� In PSETL �Hummel and Kelly �

��� parallelism is introduced into
SETL through the use of explicit parallel iterators� which are used in iterator ex�
pressions and in loops over sets and tuples� For instance� the instructions in the
following nested loop are executed in parallel and not executed in sequential itera�
tions


MySet 
� fg�
for Range par over f���������� �������	����� ��	����
����g do

MySet 
� MySet � ff�Index�
 Index par over Rangeg�
end for�

The expression �ff�Index�� Index par over Rangeg� is a nested parallel loop
over the tuple Range� This example computes the set of all values of some function
f applied to the indexes in the given ranges�

Some Sample Systems� In addition to PSETL� there exist some other approaches
to prototyping data�parallel algorithms


�Parallel ISETL �Jozwiak �

�� is a variation of ISETL �Dubinsky and Leron �

��
that supports data parallelism� ISETL is an interactive implementation of SETL�

�Proteus �Mills et al� �

�� is another variation of ISETL that supports control and
data parallelism for prototyping concurrent applications� In addition to the data�
parallel constructs� Proteus supports future synchronization �see Section ���� and
shared variables for control parallelism�

�NESL �Blelloch �

�� is a data�parallel extension to a set�oriented language which
emphasizes nested data�parallel constructs� NESL is somewhat di�erent as it has
an ML�like syntax with strong typing� It has been designed for teaching and high�
level programming� The NESL compiler is able to generate e�cient code on the
basis of an underlying performance model �Blelloch et al� �

���

��� Concurrent Functional Languages

Idea� A functional program comprises a set of equations describing functions and
data structures which a user wishes to compute� The application of a function to
its arguments is the only control structure in pure functional languages� Functions
are regarded in the mathematical sense that they do not allow side e�ects� As a
consequence� a value of a function is determined solely by the values of its argu�
ments� No side e�ects are allowed� No matter what order of computation is chosen
in evaluating an expression list� the program is guaranteed to give the same result
�assuming termination��
Therefore� functional programs are implicitly parallel� Because they are free of

side e�ects� each function invocation can evaluate all of its arguments and possibly
the function body in parallel� The only delay may occur when a function must wait
on a result being produced by another function�
However� the real problem with e�ciency in functional programs is not discov�

ering parallelism but reducing it so as to keep the overhead on an acceptable level�
Concurrent functional languages address this problem by allowing the programmer
to insert annotations which specify when to create new threads of control� Multilisp



	 � W� Hasselbring

�Halstead �
�	� is a typical parallel functional language� which augments Scheme
with the notion of futures where the programmer needs no knowledge about the
underlying process model� inter�process communication or synchronization to ex�
press parallelism� She or he only indicates that she�he does not need the result
of a computation immediately �but only in the �future�� and the rest is done by
the runtime system� Refer to Szymanski ��

�� for a collection of papers on several
concurrent functional languages�
Processes sometimes cooperate in a way that cannot be predicted� It is impossi�

ble� for instance� to predict from which terminal of a multi�user computing system
the next request for a particular service might come� Moreover� the system behav�
ior necessarily depends on previous requests� Therefore� pure functional languages
are not suitable for programming cooperating processes
 they are deterministic
and they do not have variables� Processes described as functions cannot include
choices of alternative actions and they cannot remember their states from one action
to another� Nondeterminism would destroy referential transparency in functional
programming languages� Both nondeterminism of events and dependence on the
process history are strong arguments for an imperative rather than applicative pro�
gramming model for cooperating processes� This is due to the determinism and the
lack of variables which make pure functional languages impractical for program�
ming concurrent applications� Therefore� approaches to prototyping concurrent
applications with functional languages usually support some kind of state�

An Example� In the PSP approach �Heping and Zedan �

��� a functional lan�
guage has been extended with state variables to allow prototyping parallel respon�
sive systems� A PSP function for changing the direction in a lift system is presented
as an illustrating example


fun Change direction��r�bool
� let val up request � �exists i mem

�up buttons sor down buttons sor panel buttons�
suchthat i � position�

val down request � �exists i mem
�up buttons sor down buttons sor panel buttons�
suchthat i � position�

in

if �Been served��� and �up request or down request��
then if �direction and up request�

then true

else if �not direction and down request�
then false

else not direction
else direction

end

In this small example� position� direction� up request� down request� up buttons�
down buttons� and panel buttons are global state variables� Refer to Heping and
Zedan ��

�� for a discussion of the complete prototype implementation of this lift
system�



Approaches to High�Level Programming and Prototyping of Concurrent Applications � 


Some Sample Systems� Another approach extends a functional language with
state variables to support prototyping


�PAISLey �Zave and Schell �
��� Nixon et al� �

�� is a functional programming
language that combines asynchronous processes and functional programming to
overcome the problems with pure functional languages for programming cooper�
ating processes� Parallelism in PAISLey is based on a model of event sequences
and used to specify functional and timing behavioral constraints for asynchronous
parallel processes� Each process computes some function of its inputs and runs
in parallel with the other processes� Each computation is activated by an event�
The process then evaluates the function and returns the result� This result is
used as the process state� Therefore� the life of a process is represented by a
series of state changes� each of which is considered to be the result of a computa�
tion� The connection between two functions is established via channel attributes
of the function calls�

However� some pure functional languages have also been used for prototyping


�The Crystal approach �Chen et al� �

�� starts from pure functional programs
�prototypes� through a sequence of transformations to the generation of e�cient
target code with explicit communication and synchronization�

�The functional subset of Standard ML has been used for prototyping parallel
algorithms for computer vision �Wallace et al� �

�� Michaelson and Scaife �

	��

��� Concurrent Logic Languages

Idea� Logic programming languages� of which PROLOG �Clocksin and Mellish
�
��� is best known� express programs as a set of clauses� which may be read
procedurally or declaratively� For example� the following clauses


A �� B�C�D

A �� E�F

can be interpreted as �to do A� do either B� C� and D� or do E and F�� Alternatively�
we can view it as �A is true� if either B� C� and D are true� or E and F are true��
PROLOG programs express two distinct forms of implicit parallelism� Firstly�

several di�erent clauses may be evaluated separately� This is called OR�parallelism�
since only one of them must succeed� Secondly� each subgoal �in the above example
B� C� D� E� and F are subgoals� can be executed in parallel� although data depen�
dencies may limit the extent of parallelism� This is called AND�parallelism� since
all of the subgoals must succeed for the clause to succeed� AND�parallelism is the
simultaneous reduction of several di�erent subgoals in a goal� OR�parallelism is the
simultaneous evaluation of several clauses for the same goal� AND�OR�parallelism
is implicit parallelism similar to the implicit parallelism found in functional lan�
guages� which does not give additional expressiveness�
AND�parallel committed choice logic is an approach to concurrent logic languages

which uses guards in the clauses �Shapiro �
�
�� Subgoals are uni�ed in parallel�
This approach uses shared logical variables as a communication medium� In OR�
parallel committed choice logic� all clauses that match a goal are tried in parallel
and when one can be uni�ed� the execution to this clause commits� If more clauses



�� � W� Hasselbring

can be uni�ed� one is chosen nondeterministically� A clause in committed choice
logic has the structure


A �� G�� ���� Gm � B�� ���� Bn

G�� ���� Gm are guards� and the rest is like ordinary PROLOG clauses� Such a
clause includes a commit operator � �omitted if the guard is empty� used to sepa�
rate the right�hand side of the clause into a conjunction of guard conditions and a
conjunction of subgoal predicates� The guard conditions must evaluate to true to
enable the evaluation of the subgoals� The commit expresses don�t�care nondeter�
minism� i�e�� the termination of the OR�parallel evaluation of alternative clauses

if more than one clause can apply to reduce a subgoal� one is chosen arbitrarily
and no backtracking can take place if that choice later results in a failure� The
underlying idea in the family of committed choice concurrent logic languages is to
model synchronization between processes by imposing some constraints on the uni�
�cation mechanism� Shapiro ��
�
�� Ciancarini ��

��� and de Kergommenaux and
Codognet ��

�� present surveys of several concurrent logic languages and systems�
As PROLOG has been used for prototyping sequential algorithms �Budde et al�

�
���� concurrent logic languages seem to be good candidates for prototyping con�
current applications�

An Example� As an example for a committed choice logic program� let us consider
a parallel quick�sort program in the Reactive Guarded De�nite Clauses �RGDC�
notation� which is copied from Huntbach and Ringwood ��

	�


qsort�� �� L� 
� L
�� ��
qsort ��HjT�� Q� 
� qsort�S�SS�� qsort�L�SL�� append�SS� �HjSL�� Q��

part�T�H�S�L��
part�� �� X� S� L� 
� S
�� �� L
�� ��
part��HjT�� X� S� L� 
� H�X j S
��HjS��� part�T�X�S��L��
part��HjT�� X� S� L� 
� H�X j L
��HjL��� part�T�X�S�L���
append�� �� L� L�� 
� L�
�L�
append��HjT�� L� A� 
� A
��HjA��� append�T� L� A���

Parallel sorting is split into parts using the guards H�X and H�X� Synchronization
is implicit through data dependencies� The symbol j is overloaded
 it is used for list
concatenation and to separate the guards� For a detailed discussion of this compact
parallel quick�sort program refer to Huntbach and Ringwood ��

	��

At least for developers who are familiar with logic programming� this approach
provides a way for experimenting with concurrent applications on a very high level�

Some Sample Systems

�Strand �Foster and Taylor �
�
� is a commercial system based on committed
choice logic which comprises a language� a development environment and con�
current programming libraries to support prototyping of parallel algorithms�

�PROLOG has been used for simulation and prototyping of Estelle protocol spec�
i�cations in the V�eda system �Jard et al� �
����



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

��	 Concurrent Object�Based Languages

Idea� An approach to imperative programmingwhich has gained widespread pop�
ularity is that of object�oriented programming �Meyer �

��� In this approach� an
object is used to integrate both data and the means of manipulating that data� Ob�
jects interact exclusively through message passing by method invocation and the
data contained in an object is visible only within this object itself� The behavior
of an object is de�ned by its class� which comprises a list of operations that can
be invoked by sending a message to an object� All objects must belong to a class�
Objects in a class have the same properties and can be manipulated using similar
operations� The de�nition of an object class can act as a template for creating
instances of the class� Each instance has a unique identity� but has the same set of
data properties and the same set of operations which can be applied to it�
Inheritance allows a class to be de�ned as an extension of another �previously

de�ned� class� Typically when a new class is created� a place for it is de�ned
within the class hierarchy� The e�ect of this is that the new class inherits the state
attributes and operations of its superclass in the hierarchy� Objects may inherit
features from more than one class in some approaches �multiple inheritance��
There are several possibilities for the introduction of concurrency into object�

oriented languages� viz�


�Objects are active without having received a message�

�Objects continue to execute after returning results�

�Messages are sent to several objects at the same time�

�Senders proceed in parallel with receivers�

These possibilities can be realized by associating a process with each object� Just as
a parallel�processing environment implies multiple processes� a concurrent object�
oriented system spawns multiple active objects� each of which can start a thread
of execution� Objects are usually addressed by an object reference �returned upon
creation of the object� or by a global object name�
Concurrent object�oriented languages use three types of communication
 syn�

chronous� asynchronous� and eager invocation� Synchronous communication uses
remote procedure calls� It is easiest to implement� but sometimes ine�cient because
of the necessity for both the sender and receiver to rendezvous� Asynchronous
communication eliminates the wait for synchronization and can increase parallel
activity� Eager invocation� or the futures method� is a variation of asynchronous
communication �see also our discussion of futures in Multilisp in Section ����� As
in asynchronous operation� the sender continues executing� but a future variable
holds a place for the result� The sender executes until it tries to access the future
variable� When the result has been returned� the sender continues� if not� it blocks
and waits for the result�
Probably the most di�cult aspect of integrating parallelism into object�oriented

languages is that inheritance greatly complicates synchronization� When a subclass
inherits from a base class� programs must sometimes rede�ne the synchronization
constraints of the inherited method� If a single centralized class explicitly controls
message reception� all subclasses must rewrite this part each time a new operation
is added to the class� The subclass cannot simply inherit the synchronization code�



�� � W� Hasselbring

because the higher�level class cannot invoke the new operation of the subclass�
The concurrent object�oriented languages resolve these synchronization problems
in di�erent ways as discussed in Agha ��

��� Matsuoka and Yonezawa ��

��
provide a detailed discussion of this so�called inheritance anomaly in concurrent
object�oriented languages� where re�de�nitions of inherited methods are necessary
in order to maintain the integrity of parallel executing objects� Inheritance anomaly
represents the situation where the synchronization on a parent class needs to be
changed as a result of the extension on that class via inheritance �Mitchell and
Wellings �

��� This anomaly could eliminate the bene�ts of inheritance� Meyer
introduces the subject with the warning


�Judging by the looks of the two parties� the marriage between con�
current computation and object�oriented programming� a union much
desired by practitioners in such �elds as telecommunications� high per�
formance computing� banking and operating systems � appears easy
enough to arrange� This appearance� however� is deceptive
 the prob�
lem is a hard one�� �Meyer �

�� page 	��

Due to the problems for synchronization which are caused by inheritance� concur�
rent object�based systems have been suggested for prototyping concurrent applica�
tions� Object�based languages do not support inheritance� The actor model is a
classical example for an object�based model �Agha �
��� Agha �

��� Actors extend
the concept of objects to concurrent computation
 Each actor potentially executes
in parallel with other actors and may send messages to actors of which it knows
the addresses�
To our knowledge there exists no published approach to prototyping concurrent

applications with concurrent object�oriented languages� in spite of the fact that
object�oriented languages � in particular Smalltalk � appear to be good candi�
dates for prototyping sequential systems �Barry �
�
� Budde et al� �

�� Bischof�
berger and Pomberger �

���

An Example� PDC �Weinreich and Ploesch �

	� is a concurrent object�based
system that extends C�� to use operating system processes as active objects� The
communication between active objects is handled by executing so�called remote
method calls which may be synchronous or asynchronous� It is not allowed to modify
or rede�ne remote methods through inheritance to avoid the problems with the
inheritance anomaly� Figure � displays a snapshot of active objects in PDC� Each
active object is a sequential process implemented in C��� The prototyping idea
here is to provide simple mechanisms for communication between active objects�
PDC is accompanied by the graphical tool ProcessBuild� which o�ers a graphical
representation for con�guring the active objects �see also Section �����

Some Sample Systems� Some other concurrent object�based systems have been
suggested for prototyping parallel algorithms


�RAPIDE �Luckham et al� �

�� is a concurrent object�based language speci�cally
designed for prototyping parallel systems that combines the partially ordered
event set �poset� computation model with an object�oriented type system for the
sequential components�



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

Active Object

Active Object

Active Object

local passive objects

(remote method calls)

method call for passive objects

communication between active objects

Fig� �� A snapshot of active objects in PDC� Each active object may contain several passive
objects� but no active objects�

�The PROTOB �Baldassari et al� �

�� approach considers nodes in PROT nets
�Bruno and Marchetto �
��� to be communicating objects �see also Section �����
Inheritance is not supported by PROTOB�

This is not an exhaustive list of concurrent object�based languages� Other examples
are the ABCL �Yonezawa �

�� series of languages and HAL �Houck and Agha �

���
which could be used for prototyping concurrent applications� Agha� Wegner� and
Yonezawa ��

�� provide a collection of papers on various concurrent object�oriented
approaches� and Wyatt� Kavi� and Hufnagel ��

�� provide a survey of concurrent
object�oriented languages�

��
 Composition and Coordination Languages

Idea� With composition and coordination languages� programming is split in two
separate activities
 a sequential language is used to build single�threaded computa�
tions� whereas a coordination language is used to coordinate the activity of several
single�threaded computations� A coordination language provides means for process
creation and inter�process communication which may be combined with sequential
computation languages �Carriero and Gelernter �

��� The concurrent extensions
of logic� functional and object�oriented languages discussed in the preceding sub�



�� � W� Hasselbring

sections are coordination languages� The present subsection discusses coordination
languages which are somewhat independent of the computation language�
With composition and coordination languages� concurrent systems are described

in terms of processes that comprise a system and the communication and control
interconnections between these processes� As discussed in Ciancarini ��

��� there
is a need for high�level coordination languages to simplify the design and imple�
mentation of concurrent applications� because most software engineers currently
develop concurrent applications using low�level communication primitives�

An Example� A coordination language should orthogonally combine two lan�
guages
 one for coordination �the inter�process actions� and one for �sequential�
computation �Carriero and Gelernter �

�� Ciancarini �

��� ProSet�Linda �Has�
selbring �

�� Hasselbring �

�� combines the sequential prototyping language
ProSet �Doberkat et al� �

�� with the coordination language Linda �Gelernter
�
�	� to obtain a concurrent programming language as a tool for prototyping con�
current applications� ProSet is an acronym for PROtotyping with SETs� The
procedural� set�oriented language ProSet is a successor to SETL �Kruchten et al�
�
���� The high�level structures that ProSet provides qualify the language for
prototyping�
To support prototyping of concurrent applications� a prototyping language must

provide simple and powerful means for dynamic creation and coordination of par�
allel processes� In ProSet�Linda� the concept for process creation via Multilisp�s
futures �Halstead �
�	� �see also Section ���� is adapted to set�oriented program�
ming and combined with Linda�s concept for synchronization and communication�
The parallel processes in ProSet�Linda are decoupled in time and space in a simple
way
 processes do not have to execute at the same time and do not need to know
each other�s addresses �this is necessary with synchronous point�to�point message
passing�� The shared data pool in the Linda concept is called tuple space� because
its access unit is the tuple� similar to tuples in ProSet� thus� it is rather natural
to combine both models on this basis� Reading access to tuples in tuple space
is associative and not based on physical addresses� but rather on their expected
content described in templates� This method is similar to the selection of entries
from a data base� ProSet�Linda supports multiple tuple spaces� Several library
functions are provided for handling multiple tuple spaces dynamically �Hasselbring
�

���
ProSet�Linda provides three tuple�space operations� The deposit operation

deposits a tuple into a tuple space


deposit � �pi�� ���� 	 at TS end deposit


TS is the tuple space at which the tuple 	 
pi
� ���
 � has to be deposited� The
fetch operation tries to fetch and remove a tuple from a tuple space


fetch � �name�� � x 
 at TS end fetch


This template only matches tuples with the string 
name
 in the �rst �eld and
integer values in the second �eld� The optional l�values speci�ed in the formals �the
variable x in our example� are assigned the values of the corresponding tuple �elds�
provided matching succeeds� Formals are pre�xed by question marks� The selected
tuple is removed from tuple space� The meet operation is the same as fetch� but



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

the tuple is not removed and may be changed� Tuples which are met in tuple space
can be regarded as shared objects since they remain in tuple space irrespective of
changing them or not� With meet� in�place updates of speci�c tuple components
are supported� For a detailed discussion of prototyping parallel algorithms with
ProSet�Linda refer to Hasselbring ��

��� Some application experience with the
ProSet�Linda approach is discussed in Hasselbring and Kr ober ��

���

Some Sample Systems� Several other approaches to prototyping concurrent ap�
plications suggest the use of composition and coordination languages


�ISETL�Linda �Douglas et al� �

	� is a control�parallel extensions to ISETL very
similar to ProSet�Linda�

�The focus of the Parallel Composition Notation �PCN� �Chandy and Taylor �

��
approach� which is based on committed choice logic �see Section ��	�� is the
development of programs by the parallel composition of simpler components� in
such a way that the resulting programs preserve the properties of the components
that they compose�

�The parallel constructs of Compositional C�� �CC��� �Chandy and Kessel�
man �

�� are based on the ideas of Strand and PCN� while using C�� for the
sequential portions of the code� CC�� uses pure single assignment variables
and not logical variables as found in other concurrent logic languages such as
Strand or PCN� PCN and CC�� are explicitly designed for rapid prototyping of
concurrent applications �Chandy and Taylor �

�� Chandy and Kesselman �

���

�Durra �Barbacci and Lichota �

�� provides a con�guration language through
which one can specify the structure of Ada programs in conjunction with the
behavior� timing� and implementation dependencies� These speci�cations may
be validated by a run�time interpreter to allow prototyping�

��� Graphical Programming Systems

Idea� Graphical representations of parallel programs are annotated graphs
 data
�ow graphs� control �ow graphs etc� In particular for message�passing programs�
such multi�dimensional representations appear to be a good way to get over the
complex architecture of concurrent applications� The animation and simulation
features� as well as the code generation from the graphical representations may be
used to prototype some aspects of concurrent applications� Petri�Nets �Reisig �
�	��
state�transition diagrams like Statecharts �Harel �
��� and data��ow diagrams �De�
Marco �
��� are often used to build prototypes for message�passing programs since
they can be regarded as graphical representations of message�passing programs� A
variety of these and other graphical representations are suggested for prototyping
concurrent applications�

An Example� Enterprise �Schae�er et al� �

�� is a programming environment
for developing parallel programs� With Enterprise� the parallelism is expressed
graphically independent of the sequential code� The system automatically inserts
the code necessary to correctly handle communication and synchronization to allow
the rapid construction of parallel programs�
Enterprise supports coarse�grained parallel programs which make use of a small

number of regular techniques� such as pipelines� master�slave processes� and divide



�� � W� Hasselbring

and conquer� Enterprise does not directly support arbitrarily structured paral�
lel programs� but for many applications it relieves users from the tedious details
of distributed communication to let them concentrate on algorithm development�
The user speci�es the desired technique by manipulating icons using the graphical
user interface� The user interface is implemented in Smalltalk and allows program
animation for prototyping �Lobe et al� �

���
Figure � displays a snapshot while animating a parallel program with Enterprise�

Program animation is used to monitor and to identify weak points in the imple�
mented parallel algorithms� The double�line rectangle represents the enterprise�
which is the entire program� Each icon represents the state of a parallel process�
Message queues are displayed as connecting lines between the process icons� The
system assumes that the displayed events are partially ordered� It is possible to
monitor the parallel program while it is running or to replay the events� For a more
detailed discussion of this example refer to Lobe� Szafron� and Schae�er ��

���
Szafron and Schae�er ��

�� provide an experimental comparison of parallel pro�

gramming with the Enterprise system and with message�passing libraries based
on the experience in a graduate parallel and distributed computing course� This
comparison supported the claim that higher�level tools can be more usable than
low�level message�passing libraries�

Some Sample Systems� Petri�Nets� state�transition diagrams� data��ow diagrams
and some own notations are suggested for prototyping concurrent applications


��� Petri�nets are a popular formalism for designing and analyzing parallel algo�
rithms� Their simulation and animation can be used for prototyping concurrent
applications

�In Breant ��

��� it is proposed to use Petri�net prototypes for developing
occam programs� Petri�nets are used to validate and evaluate a model before
its implementation�

While providing a valuable formalism with which to describe and analyze con�
current systems� plain Petri�Nets cannot help with system decomposition and
structuring for large� complex systems� Several extensions of place�transition
nets are proposed for prototyping concurrent applications

�CommunicatingPetri�nets �CmPNs� �Bucci and Vicario �

�� have been pro�
posed for prototyping distributed systems� With CmPNs� subsystems are
modeled as Petri�nets� Connection diagrams model the global system struc�
ture� A tool supports animation and code generation for prototyping�

�The speci�cation formalism Concurrent Object Oriented Petri Nets �CO�
OPNs� �Buchs et al� �

�� combines algebraic speci�cations with Petri�nets�
The speci�cation is prototyped using a translation of the speci�cation into
PROLOG�

�The G�Net �Deng et al� �

�� formalism extends Petri�nets with modules to
allow prototyping of complex information systems�

�Generalized Stochastic Petri�nets �GSPNs� �Donatelli et al� �

�� are pro�
posed for prototyping functionality and performance of parallel algorithms�

�The PARSE �Gorton et al� �

	� process graph notation allows to describe a
parallel system in terms of a hierarchy of interacting components� These com�
ponents are either passive function or data servers� or active control processes�



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

Fig� 	� Animating a parallel programwith Enterprise� This is a copy of Figure � in Lobe� Szafron�
and Schae�er 
���	��



�	 � W� Hasselbring

Processes interact by message passing on designated communication paths�
Within the PARSE project� the integration of behavioral analysis techniques
involving Petri�Nets for design validation has been explored through �man�
ual� translation of process graphs into Petri�Nets to o�er a path to formal
veri�cation �Gorton et al� �

	�� Alternative architectural approaches can
be derived and expressed in the PARSE process graph notation� and perfor�
mance prototyping and formal validation tools allow various aspects of the
proposed solution to be rapidly explored �Hu and Gorton �

���

�PROT net �Bruno and Marchetto �
��� is a high�level Petri�net formalism for
prototyping parallel systems� With PROT nets� tokens represent processes�

�The language SEGRAS �Kr amer �

�� is based on an integration of alge�
braic speci�cations and high�level Petri�nets� Data objects are speci�ed as
abstract data types� while dynamic behavior is speci�ed graphically by means
of high�level Petri�nets� A subset of the language is executable to support
prototyping� Execution is based on term rewriting and Petri�net simulation�

��� Animation and simulation of communicating state�transition diagrams may be
used for prototyping concurrent applications


�Communicating Real�time State Machines �CRSMs� �Raju and Shaw �

��
are proposed for prototyping real�time systems� Individual CRSMs are sim�
ilar to Statecharts �Harel �
����

�For prototyping protocols� it has been proposed to translate LOTOS speci�
�cations into a set of Extended Finite State Machines �EFSMs� �Valenzano
et al� �

���

��� Data��ow diagrams are a popular formalism in software engineering �Ghezzi
et al� �

��� They are proposed for prototyping concurrent applications� as
well


�Extended data��ow diagrams �EDFGs� �Levy et al� �

�� are proposed to
support prototyping of distributed systems with an emphasis on client�server
applications� With EDFGs� a parallel system is described as a set of com�
municating graphs� where each graph is either a server or a client�

�Formal data��ow diagrams �FDFDs� �Fugetta et al� �

�� with precise seman�
tics for synchronization in combination with E�R�diagrams are proposed for
prototyping parallel systems� Execution of FDFDs is based on their formal
semantics�

�Data��ow diagrams are speci�ed in Jones� Dowdeswell� and Hintz ��

�� with
IDE�s Software Through Pictures tool �StP� to develop occam programs� The
occam code is generated from StP�s internal data dictionary to provide a �rst
executable program for prototyping�

�The Prototype System Description Language PSDL �Luqi et al� �
��� uses
data��ow diagrams with associated timing and control constraints to com�
pose reusable components from a software library for prototyping real�time
systems� The retrieval of reusable components is based on a term rewriting
system� The components are implemented with Ada�

��� Similar to Enterprise� many systems for prototyping concurrent applications
use their own notation
 JADE �Unger �
���� Transim �Hart and Flavell �

���
MCSE �Calvez et al� �

��� and ProcessBuild �Weinreich and Ploesch �

	� are



Approaches to High�Level Programming and Prototyping of Concurrent Applications � �


tools which support several graphical representations for prototyping through
simulation and animation of parallel algorithms� These graphs represent data
and control �ow in various ways�

�� TRANSFORMING PROTOTYPES INTO EFFICIENT IMPLEMENTATIONS

A Prototype may be classi�ed as throwaway� experimental or evolutionary �Floyd
�
���� A throwaway prototype describes a product designed to be used only to
help identify requirements for a new system� Experimental prototyping focuses on
the technical implementation of a development goal� In evolutionary prototyping� a
series of prototypes is produced that converges to an acceptable behavior� according
to the feedback from prototype evaluations� Once the series has converged� the
result may be turned into a software product by transformations� Evolutionary
prototyping is a continuous process for adapting the model of an application system
to changing organizational constraints�
This raises issues of software engineering
 once we are satis�ed with the proto�

type� how do we transform it systematically into a production e�cient program!
Such transformations are usually accomplished manually or semi�automatically
with some kind of tool support� Some manual transformations of prototypes into
e�cient implementations are discussed in the literature


�The Crystal �Chen et al� �

�� approach starts from a high�level functional prob�
lem speci�cation� through a sequence of optimizations tuned for particular par�
allel machines� leading to the generation of e�cient target code with explicit
communication and synchronization� This approach to automation is to design
a compiler that classi�es source programs according to the communication prim�
itives and their cost on the target machine and that maps the data structures
to distributed memory� and then generates parallel code with explicit commu�
nication commands� Regarding those classes of problems for which the default
mapping strategies of the compiler are inadequate� Crystal provides special lan�
guage constructs for incorporating domain speci�c knowledge by the programmer
and directing the compiler in its mapping�

�Nixon and Croll ��

�� manually transform PAISLey prototypes into occam pro�
grams�

�The stepwise re�nement of PCN programs is discussed in �Chandy and Taylor
�

���

�In Hummel� Talla� and Brennan ��

	�� high�level parallel algorithm speci�cations
are re�ned within PSETL �Hummel and Kelly �

��� High�level PSETL code is
successively transformed manually into lower�level architecture�speci�c PSETL
code�

�The manual transformation of ProSet�Linda prototypes into e�cient C�Linda
and message�passing implementations is discussed in Jodeleit ��

�� and in Kirsch
��

���

�It has been proposed to transform Standard ML prototypes into occam programs
�Wallace et al� �

���

Some kind of tool support to assist with the transformation has also been discussed




�� � W� Hasselbring

�In Breant ��

��� occam programs are produced semi�automatically from Petri�
nets�

�Ada program skeletons are automatically derived from PROT nets� a high�level
Petri�net formalism� to assist the programmer with the transformation �Bruno
and Marchetto �
����

�The semi�automatic re�nement system for the Proteus language �Mills et al� �

��
is based on algebraic speci�cation techniques and category theory to transform
prototypes to implementations on speci�c architectures� For the time being� these
transformations are restricted to the data�parallel constructs of Proteus �Prins
and Palmer �

��� Nyland� Prins� Goldberg� Mills� Reif� and Wagner ��

��
discusses the transformation of data�parallel Proteus programs to low�level data�
parallel systems and to message�passing libraries�

�Tool support for the transformation of PSDL �Luqi et al� �
��� prototypes is
discussed in �Berzins et al� �

���

It is unlikely that fully automatical transformation tools as they are known for
parallelization of imperative sequential languages such as C and Fortran �Bacon
et al� �

�� can be built for control�parallel prototypes� but some kind of tool
support is conceivable� Before building such transformation tools� it appears to be
reasonable to get an assessment of the requirements on such tools through practical
experience and to develop a theoretical foundation for such tools� The automatic or
semi�automatic transformation of control�parallel prototypes into e�cient low�level
programs is� therefore� still an unsolved problem and subject to further research�

�� CONCLUSIONS

To develop a concurrent application� you should start with executable prototypes
to experiment with ideas �neglect the execution performance in the �rst instance��
Powerful tools are needed to make prototyping of concurrent applications feasible�
Table � presents an overview of the linguistic approaches and Table � presents an

overview of the graphical approaches surveyed in the paper� The tables classify the
surveyed approaches with respect to the process of prototyping concurrent appli�
cations� The structure of the tables corresponds to the taxonomy in Figure �� The
information is extracted from the available literature� Note� that some approaches
belong to multiple categories� This is the case for the linguistic approaches PDC
and PROTOB which are accompanied by the graphical representations of Process�
Build and PROT nets� respectively� As we can see� most of the included approaches
have been designed for prototyping� some have methods for transformations� and
few are accompanied with tools to help with the transformation into e�cient im�
plementations�
Figure � illustrates the historical development of some of the surveyed linguistic

approaches� The graphical approaches are not included in this �simpli�ed� illus�
tration� because there would be no connections to the other approaches and the
dependencies among the graphical approaches already become apparent through
the structure of Table ��
This paper surveys several approaches to high�level programming and prototyp�

ing of concurrent applications and classi�es them with respect to the prototyping
process to review and structure the state of the art in this area� The approaches



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

intend to solve the problems in quite di�erent ways� The essential prototyping
activities are

��� programming�

��� evaluation and

��� transformation of prototypes into e�cient implementations�

Linguistic approaches emphasize programming concerns� Animation and simulation
of graphical representations concentrate on evaluation concerns� The systematic
transformation of prototypes into e�cient low�level programs is still an unsolved
problem�
Performance evaluation of speci�c embedded parallel hardware systems with con�

crete real�time requirements is not covered by this survey� We restrict ourselves to
software and refer the interested reader to Jelly and Gray ��

�� for the discussion
of performance evaluation approaches to prototyping parallel hardware systems�
However� several approaches which are surveyed in this paper are used for pro�
totyping concrete real�time systems on a software basis
 CRSM �Raju and Shaw
�

��� Durra �Barbacci and Lichota �

��� MCSE �Calvez et al� �

��� PAISLey
�Nixon et al� �

��� PSDL �Luqi et al� �
���� RAPIDE �Luckham et al� �

��� and
Transim �Hart and Flavell �

���
Despite the large number of publications and progress made with prototyping

concurrent applications and concurrent programming in general� the techniques for
systematically engineering concurrent applications are still not fully developed� In
particular the systematic transformation of prototypes into e�cient implementa�
tions is not well understood as yet and� therefore� a subject for further research�
However� the appearance of workshops on the subject is promising �PDSE �

��
PDSE �

��� Prototyping is one important concern for software engineering of
concurrent applications�

REFERENCES

Agha� G� ����� Actors� A model of concurrent computation in distributed systems� The
MIT Press�

Agha� G� ����� Concurrent object�oriented programming� Commun� ACM ��� � �Sept���
��������

Agha� G� ����� Linguistic paradigms for programming complex distributed systems� ACM
Computing Surveys 	
� � �June�� ��������

Agha� G�� Wegner� P�� and Yonezawa� A� Eds� ���	� Research Directions in Concurrent
Object�Oriented Programming� The MIT Press�

Andrews� G� ����� Concurrent Programming� Benjamin�Cummings�

Bacon� D�� Graham� S�� and Sharp� O� ����� Compiler transformations for high�
performance computing� ACM Computing Surveys 	�� � �Dec��� 	�������

Bal� H� ����� Programming Distributed Systems� Silicon Press�

Bal� H�� Steiner� J�� and Tanenbaum� A� ����� Programming languages for distributed
computing systems� ACM Computing Surveys 	�� 	 �Sept��� ����	���

Baldassari� M�� Bruno� G�� and Castella� A� ����� PROTOB� An object�oriented
CASE tool for modelling and prototyping distributed systems� Software� Practice and
Experience 	�� � �Aug��� ��	�����

Barbacci� M� and Lichota� R� ����� Durra� An integrated approach to software speci�ca�
tion� modeling� and rapid prototyping� In N� Kanopoulos Ed�� Proc� Second International



�� � W� Hasselbring

Workshop on Rapid System Prototyping �Research Triangle Park� NC� June ������ pp�
������ IEEE Computer Society Press�

Barry� B� ����� Prototyping a real�time embedded system in Smalltalk� ACM SIGPLAN
Notices 	
� ���

Berzins� V�� Luqi� and Yehudai� A� ���	� Using transformations in speci�cation�based
prototyping� IEEE Trans� Softw� Eng� ��� �� �	������

Bischofberger� W� and Pomberger� G� ����� Prototyping oriented software development
concepts and tools� Springer�Verlag�

Blelloch� G� ����� Programming parallel algorithms� Commun� ACM ��� 	 �March�� ���
���

Blelloch� G�� Hardwick� J�� Sipelstein� J�� Zagha� M�� and Chatterjee� S� ����� Im�
plementation of a portable nested data�parallel language� Journal of Parallel and Dis�
tributed Computing 	�� � �April�� �����

Breant� F� ����� Rapid prototyping from Petri�Net on a loosely coupled parallel archi�
tecture� In T� S� Durrani� W� A� Sandham� J� J� Soraghan� and J� Hulskamp Eds��
Proc� International Conference on Applications of Transputers �Glasgow� UK� ������ pp�
�������� IOS Press�

Bruno� G� and Marchetto� G� ����� Process�translatable Petri Nets for the rapid proto�
typing of process control systems� IEEE Trans� Softw� Eng� �	� � �Feb��� 	���	���

Bucci� G� and Vicario� E� ����� Rapid prototyping through communicating Petri nets� In
N� Kanopoulos Ed�� Proc� Third International Workshop on Rapid System Prototyping
�Research Triangle Park� NC� June ������ pp� ������ IEEE Computer Society Press�

Buchs� D�� Flumet� J�� and Racloz� P� ����� Producing prototypes from CO�OPN spec�
i�cations� In N� Kanopoulos Ed�� Proc� Third International Workshop on Rapid System
Prototyping �Research Triangle Park� NC� June ������ pp� ����	� IEEE Computer Society
Press�

Budde� R�� Kautz� K�� Kuhlenkamp� K�� and Z�ullighoven� H� ����� Prototyping � An
Approach to Evolutionary System Development� Springer�Verlag�

Budde� R�� Kuhlenkamp� K�� Mathiassen� L�� and Z�ullighoven� H� Eds� ����� Ap�
proaches to Prototyping� Springer�Verlag�

Calvez� J�� Pasquier� O�� and Herault� V� ����� A complete toolset for prototyping
and validating multi�transputer real�time applications� In M� Becker� L� Litzler� and

M� Tr�ehel Eds�� TRANSPUTERS��
 Advanced Research and Industrial Applications
�Saline Royale d�Arc et Senans� France� Sept� ������ pp� ������ IOS Press�

Cao� J�� de Vel� O�� and Wong� K� ���	� Supporting a rapid prototyping system for
distributedalgorithmson a transputernetwork� In J� KerridgeEd�� Transputer and Occam
Research� New Directions �She�eld� UK� ���	�� pp� �����	�� IOS Press�

Carriero� N� and Gelernter� D� ����� Coordination languages and their signi�cance�
Commun� ACM ��� � �Feb��� �������

Chandy� K� and Kesselman� C� ���	� CC��� A declarative concurrent object�oriented
programming notation� In G� Agha� P� Wegner� and A� Yonezawa Eds�� Research Di�
rections in Concurrent Object�Oriented Programming � pp� ����	�	� The MIT Press�

Chandy� K� and Taylor� S� ����� An Introduction to Parallel Programming� Jones and
Bartlett Publishers�

Chen� M�� Choo� Y�� and Li� J� ����� Crystal� Theory and pragmatics of generating
e�cient parallel code� In B� Szymanski Ed�� Parallel Functional Languages and Compilers �
Frontier Series� pp� ����	��� ACM Press�

Ciancarini� P� ����� Parallel programming with logic languages� a survey� Computer Lan�
guages ��� � �April�� ��	�����

Ciancarini� P� ����� Coordination models and languages as software integrators� ACM
Computing Surveys 	
� � �June�� 	���	���

Clocksin� W� and Mellish� C� ����� Programming in Prolog �	rd ed��� Springer�Verlag�

de Kergommenaux� J� and Codognet� P� ����� Parallel logic programming systems�ACM
Computing Surveys 	�� 	 �Sept��� ����		��



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

DeMarco� T� ����� Structured Analysis and System Speci�cation� Yourdon Press�

Deng� Y�� Chang� S�� de Figueired� J�� and Perkusich� A� ���	� Integrating software
engineering methods and Petri nets for the speci�cation and prototyping of complex infor�
mation systems� In M� Marsan Ed�� Proc� �
th International Conference on Application
and Theory of Petri Nets � Volume ��� of Lecture Notes in Computer Science �Chicago� IL�
June ���	�� pp� ������	� Springer�Verlag�

Doberkat� E��E�� Franke� W�� Gutenbeil� U�� Hasselbring� W�� Lammers� U�� and Pahl�

C� ����� ProSet � A Language for Prototyping with Sets� In N� Kanopoulos Ed��
Proc� Third International Workshop on Rapid System Prototyping �Research Triangle
Park� NC� June ������ pp� �	������ IEEE Computer Society Press�

Donatelli� S�� Franceschinis� G�� Ribaudo� M�� and Russo� S� ����� Use of GSPNs
for concurrent software validation in EPOCA� Information and Software Technology ��� �
�July�� ��	�����

Douglas� A�� Rowstron� A�� and Wood� A� ����� ISETL�Linda� parallel programming
with bags� Technical Report YCS ��� �April�� University of York� Dept� Computer Science�
Heslington� York� UK�

Dubinsky� E� and Leron� U� ���	� Learning abstract algebra with ISETL� Springer�Verlag�

Floyd� C� ����� A systematic look at prototyping� In R� Budde� K� Kuhlenkamp�

L� Mathiassen� and H� Z�ullighoven Eds�� Approaches to Prototyping� pp� ����� Springer�
Verlag�

Foster� I� and Taylor� S� ����� Strand� New Concepts in Parallel Programming� Prentice�
Hall�

French� J� and Viles� C� ����� A software toolkit for prototypingdistributed applications�
Technical Report CS������ �Sept��� University of Virginia� Dept� Computer Science�

Fugetta� A�� Ghezzi� C�� Mandrioli� D�� and Morzenti� A� ���	� Executable speci�ca�
tions with data��ow diagrams� Software� Practice and Experience 	�� �� ������	�

Gelernter� D� ����� Generative communication in Linda� ACM Trans� on Programm�
Lang� Syst� �� � �Jan��� �������

Ghezzi� C�� Jazayeri� M�� and Mandrioli� D� ����� Fundamentals of Software Engineer�
ing� Prentice�Hall�

Gorton� I�� Gray� J�� and Jelly� I� ����� Object based modelling of parallel programs�
IEEE Parallel and Distributed Technology �� � �Summer�� ����	�

Halstead� R� ����� Multilisp� A language for concurrent symbolic computation� ACM
Trans� on Programm� Lang� Syst� �� � �Oct��� �����	��

Harel� D� ����� Statecharts� A visual formalism for complex systems� Science of Computer
Programming 
� 	� �	������

Hart� E� and Flavell� S� ����� Prototyping transputer applications� In H� Zedan Ed��
Real�Time Systems with Transputers �Amsterdam� ������ pp� �������� IOS Press�

Hasselbring� W� ����� Prototyping Parallel Algorithms in a Set�Oriented Language� Ph�
D� thesis� Department of Computer Science� University of Dortmund� �Published by Verlag
Dr� Kova�c� Hamburg��

Hasselbring� W� ����� The ProSet�Linda approach to prototyping parallel systems� The
Journal of Systems and Software� �to appear��

Hasselbring� W� and Kr�ober� A� ����� Combining OMT with a prototyping approach�
The Journal of Systems and Software� �to appear��

Heping� H� and Zedan� H� ����� An executable speci�cation language for fast prototyping
parallel responsive systems� Computer Languages 		� �� ���	�

Hillis� W� and Steele� G� ����� Data parallel algorithms� Commun� ACM 	�� �� �Dec���
��������	�

Houck� C� and Agha� G� ����� HAL� a high�level actor language and its distributed im�
plementation� In Proc� 	�st International Conference on Parallel Processing �ICPP ����
Volume II �St� Charles� IL� Aug� ������ pp� ��������

Hu� L� and Gorton� I� ����� A performance prototyping approach to designing concurrent
software architectures� In Proc� Second International Workshop on Software Engineering



�� � W� Hasselbring

for Parallel and Distributed Systems �PDSE���� �Boston� Massachusetts� May ������

Hummel� S� F� and Kelly� R� ���	� A rationale for parallel programmingwith sets� Journal
of Programming Languages �� 	� ��������

Hummel� S� F�� Talla� S�� and Brennan� J� ����� The re�nement of high�level parallel
algorithm speci�cations� In Proc� Working Conference on Programming Models for Mas�
sively Parallel Computers �PMMP ���� �Berlin� Germany� Oct� ������ IEEE Computer
Society Press�

Huntbach� M� and Ringwood� G� ����� Programming in concurrent logic languages� IEEE
Software �	� � �Nov��� ������

Jard� C�� Monin� J��F�� and Groz� R� ����� Development of V eda� a prototyping tool
for distributed algorithms� IEEE Transactions on Software Engineering �
� 	 �March��
		��	���

Jelly� I� and Gray� J� ����� Prototyping parallel systems� a performance evaluation ap�
proach� In Proc� International Conference on Parallel and Distributed Computing and
Systems �Pittsburgh� PA� Oct� ������ pp� ����� ISSM Press�

Jodeleit� P� ����� Implementing the Salishan and Cowichan problems based on prototype
evaluation and transformation� Master�s thesis� Department of Computer Science� Univer�
sity of Dortmund� �in German��

Jones� D�� Dowdeswell� S�� and Hintz� T� ����� A rapid prototyping method for par�
allel programs� In T� Bossomaier� T� Hintz� and J� Hulskamp Eds�� The Transputer in
Australia �ATOUG��� �Sydney� Australia� June ������ pp� �������� IOS Press�

Jozwiak� J� ���	� Exploiting parallelism in SETL programs� Master�s thesis� University of
Illinois at Urbana�Champaign� Urbana� IL�

Kirsch� M� ����� Implementing parallel model matching algorithms for 	�D computer vi�
sion with Linda and message passing based on prototype evaluation and transformation�
Master�s thesis� Department of Computer Science� University of Dortmund�

Kr�amer� B� ����� Prototyping and formal analysis of concurrent and distributed systems�
In Proc� Sixth International Workshop on Software Speci�cation and Design ������� pp�
������ IEEE Computer Society Press�

Kruchten� P�� Schonberg� E�� and Schwartz� J� ����� Software prototyping using the
SETL programming language� IEEE Software �� � �Oct��� ������

Levy� A�� van Katwijk� J�� Pavlides� G�� and Tolsma� F� ����� SEPDS� A support en�
vironment for prototyping distributed systems� In P� Ng� C� Ramamoorthy� L� Seifert�

and R� Yeh Eds�� Proc� First International Conference on Systems Integration �Morris�
town� NJ� April ������ pp� �������� IEEE Computer Society Press�

Lobe� G�� Szafron� D�� and Schaeffer� J� ���	� Program design and animation in the
Enterprise parallel programming environment� Technical Report TR �	��� �March�� Uni�
versity of Alberta� Dept� Computing Science�

Luckham� D�� Vera� J�� Bryan� D�� Augustin� L�� and Belz� F� ���	� Partial orderings
of event sets and their application to prototyping concurrent timed systems� The Journal
of Systems and Software 	�� 	 �June�� ��	�����

Luqi� Berzins� V�� and Yeh� R� T� ����� A prototyping language for real�time software�
IEEE Trans� Softw� Eng� �
� �� �Oct��� ��������	�

Matsuoka� S� and Yonezawa� A� ���	� Analysis of inheritance anomaly in object�oriented
concurrent languages� In G� Agha� P� Wegner� and A� Yonezawa Eds�� Research Direc�
tions in Concurrent Object�Oriented Programming� pp� �������� The MIT Press�

Meyer� B� ���	� Systematic concurrent object�oriented programming� Commun�
ACM ��� � �Sept��� ������

Meyer� B� ����� Object�oriented Software Construction �second ed��� Prentice Hall�

Michaelson� G� and Scaife� N� ����� Prototyping a parallel vision system in Standard
ML� Journal of Functional Programming �� 	 �July�� 	���	���

Mills� P�� Nyland� L�� Prins� J�� Reif� J�� and Wagner� R� ����� Prototyping parallel
and distributed programs in Proteus� In Proc� Third IEEE Symposium on Parallel and
Distributed Processing �Dallas� TX� Dec� ������ pp� ���	��



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

Mitchell� S� and Wellings� A� ����� Synchronisation� concurrent object�oriented pro�
gramming and the inheritance anomaly� Computer Languages 		� �� ������

Nixon� P�� Birkinshaw� C�� Croll� P�� and Marriot� D� ����� Rapid prototyping of
parallel fault tolerant systems� In Proc� Euromciro Workshop on Parallel and Distributed
Systems �Malaga� Spain� ������ pp� �������� IEEE Computer Scociety Press�

Nixon� P� and Croll� P� ���	� The functional speci�cation of occam programs for time
critical applications� In J� Kerridge Ed�� Transputer and Occam Research� New Directions
�She�eld� UK� ���	�� pp� �	������ IOS Press�

Nyland� L�� Prins� J�� Goldberg� A�� Mills� P�� Reif� J�� and Wagner� R� ����� A
re�nement methodology for developing data�parallel applications� In EuroPar��� Parallel
Processing� Volume ���	 of Lecture Notes in Computer Science �Lyon� France� Aug� ������
pp� �������� Springer�Verlag�

PDSE� ����� First International Workshop on Software Engineering for Parallel and Dis�
tributed Systems �PDSE���� �Berlin� Germany� March ������

PDSE� ����� Second International Workshop on Software Engineering for Parallel and
Distributed Systems �PDSE���� �Boston� Massachusetts� May ������

Prins� J� and Palmer� D� ���	� Transforming high�level data�parallel programs into vector
operations� In Proc� Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming �San Diego� CA� May ���	�� pp� ��������

Purtilo� J� and Jalote� P� ����� An environment for prototypingdistributedapplications�
Computer Languages ��� 	��� ��������

Purtilo� J�� Reed� D�� and Grunwald� D� ����� Environments for prototyping parallel
algorithms� Journal of Parallel and Distributed Computing �� � �Aug��� �����	��

Quinn� M� and Hatcher� P� ����� Data�parallel programming on multicomputers� IEEE
Software �� � �Sept��� ������

Raju� S� and Shaw� A� ����� A prototyping environment for specifying� executing and
checking communicating real�time state machines� Software� Practice and Experience 	
� �
�Feb��� ��������

Reisig� W� ����� Petri Nets� Springer�Verlag�

Schaeffer� J�� Szafron� D�� Lobe� G�� and Parsons� I� ���	� The Enterprise model for
developing distributed applications� IEEE Parallel and Distributed Technology �� 	 �Aug���
������

Shapiro� E� ����� The family of concurrent logic programming languages�ACM Computing
Surveys 	�� 	 �Sept��� ��������

Son� S� H� and Kim� Y� ����� A software prototypingenvironmentand its use in developing
a multiversion distributed database system� In E� Plachy and P� Kogge Eds�� Proc� ��
�
International Conference on Parallel Processing� Volume II �University Park� PA� Aug�
������ pp� ������ Pennsylvania State University Press�

Szafron� D� and Schaeffer� J� ����� An experiment to measure the usability of parallel
programming systems� Concurrency� Practice and Experience 
� �� ��������

Szymanski� B� Ed� ����� Parallel functional languages and compilers� Addison�Wesley�

Unger� B� ����� Distributed software via prototyping and simulation � JADE� Technical
Report ���	����� �March�� University of Calgary� Dept� Computer Science�

Valenzano� A�� Sisto� R�� and Ciminiera� L� ���	� Rapid prototyping of protocols from
LOTOS speci�cations� Software� Practice and Experience 	�� � �Jan��� 	�����

Wallace� A�� Michaelson� G�� McAndrew� P�� Waugh� K�� and Austin� W� ����� Dy�
namic control and prototypingof parallel algorithms for intermediate� and high�level vision�
IEEE Computer 	�� � �Feb��� �	��	�

Weinreich� R� and Ploesch� R� ����� Prototyping of parallel and distributed object ori�
ented systems� The PDC model and its environment� In Proc� 	
th Hawaii International
Conference on System Sciences �HICSS�	
�� Software Track �Maui� Hawaii� Jan� ������
IEEE Computer Scociety Press�

Wyatt� B�� Kavi� K�� and Hufnagel� S� ����� Parallelism in object�oriented languages�
A survey� IEEE Software �� � �Nov��� ������



�� � W� Hasselbring

Yonezawa� A� ����� ABCL� An Object�Oriented Concurrent System� MIT Press�

Zave� P� and Schell� W� ����� Salient features of an executable speci�cation language
and its environment� IEEE Trans� Softw� Eng� �	� � �Feb��� 	���	���

Zhou� W� ����� A rapid prototyping system for distributed information system applica�
tions� Journal of Systems and Software 	
� � �Jan��� 	����



Approaches to High�Level Programming and Prototyping of Concurrent Applications � ��

Table �� Classi�cation of the surveyed linguistic approaches with respect to prototyping concur�
rent applications

Approach Designed for
Prototyping

Methods for
Transformations

Tools for Trans�
formations

High�level Libraries

IPC FBase 
Cao et al� ���	� � �

Polylith 
Purtilo et al� ����

Purtilo and Jalote �����

� �

StarLite 
Son and Kim ����� � �

VAN 
French and Viles ����� � �

Zhou 
����� � �

Set�Oriented Data Parallelism

NESL 
Blelloch et al� ����
 Blelloch
�����

�

Parallel ISETL 
Jozwiak ���	� � �

Proteus 
Mills et al� ����
 Prins and
Palmer ���	
 Nyland et al� �����

PSETL 
Hummel and Kelly ���	

Hummel et al� �����

�

Concurrent Functional Languages

Crystal 
Chen et al� ����� �

PAISLey 
Zave and Schell ����

Nixon and Croll ���	
 Nixon
et al� �����

�

PSP 
Heping and Zedan ����� � �

Standard ML 
Wallace et al� ����

Michaelson and Scaife �����

� �

Concurrent Logic Languages

RGDC 
Huntbach and Ringwood
�����

� � �

Strand 
Foster and Taylor ����� � �

V eda 
Jard et al� ����� � �

Concurrent Object�Based Languages

ABCL 
Yonezawa ����� � � �

HAL 
Houck and Agha ����� � � �

PDC 
Weinreich and Ploesch ����� � �

PROTOB 
Baldassari et al� ����� � �

RAPIDE 
Luckham et al� ���	� � �

Composition and Coordination Languages

CC�� 
Chandy and Kesselman ���	� � �

Durra 
Barbacci and Lichota ����� � �

ISETL�Linda 
Douglas et al� ����� � �

PCN 
Chandy and Taylor ����� � �

ProSet�Linda 
Hasselbring ����

Hasselbring ����
 Hasselbring and
Kr!ober �����

�



�	 � W� Hasselbring

Table �� Classi�cation of the surveyed graphical approaches with respect to prototyping concur�
rent applications

Approach Designed for
Prototyping

Methods for
Transformations

Tools for Trans�
formations

Based on Petri�Nets

Breant 
�����

CmPN 
Bucci and Vicario ����� � �

CO�OPN 
Buchs et al� ����� � �

G�Net 
Deng et al� ���	� � �

GSPN 
Donatelli et al� ����� � �

PARSE 
Gorton et al� ����
 Hu and
Gorton �����

� �

PROT nets 
Bruno and Marchetto
�����

SEGRAS 
Kr!amer ����� � �

Based on State�Transition Diagrams

CRSM 
Raju and Shaw ����� � �

EFSM 
Valenzano et al� ���	� � �

Based on Data�Flow Diagrams

EDFG 
Levy et al� ����� � �

FDFD 
Fugetta et al� ���	� � �

IDE 
Jones et al� ����� � �

PSDL 
Luqi et al� ����
 Berzins et al�
���	�

Other Notations

Enterprise 
Schae�er et al� ���	

Lobe et al� ���	
 Szafron and Schaef�
fer �����

� � �

JADE 
Unger ����� � �

MCSE 
Calvez et al� ����� � �

ProcessBuild 
Weinreich and Ploesch
�����

� �

Transim 
Hart and Flavell ����� � �



Approaches to High�Level Programming and Prototyping of Concurrent Applications � �


RGDC

PROLOG

Véda

Strand PCN

CC++

committed choice logic

Ada

Durra

SETL

ProSet-Linda

Linda

PSETL

NESL
Proteus

functional+state pure functional

ML

PSP

ISETL-Linda

Parallel ISETL

ISETL

Multilisp

Chrystal

message passing

PAISley

Actors

IPC_FBase, Polylith, Starlite, VAN, Zhou

ABCL, HAL, PDC, PROTOB, RAPIDE

Fig� �� An illustration of the historical development of some of the approaches surveyed in the
paper� The arrows indicate dependencies�




