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Abstract:
The demand for increasing performance is a continuous trend in computing. To-

day’s multi-core processors and future many-core processors require software devel-
opers to exploit concurrency in software as far as possible. To ease the task of de-
veloping concurrent software we present our Coordination-First approach and the co-
ordination modelling language SCOPE that introduces the space-based choreography
of processes, which internally orchestrate fine-grained workflow activities. The main
contributions are (1) the Coordination-First approach that addresses the conformance
to higher-level concurrency models in a standardised way by regarding the coordina-
tion model of a concurrent program as the first artefact in the software development
process using model-driven software engineering techniques, (2) the coordination lan-
guage SCOPE which conforms to the well-known BPMN 2.0 and differentiates be-
tween the space-based choreography of multiple concurrent process components and
the orchestration of fine-grained activities within a single process component, and (3)
the SCOPE workbench - an implementation of SCOPE based on the Xtext language
framework to show the feasibility of our approach.

1 Motivation

Today, multi-core processors are a commodity [Mar07, AMD11, Int11b] and many-cores
are on the verge of consumer market introduction [Int11a]. This shift imposes two con-
sequences for software development: Programs need to be concurrent to further exploit
performance gains in hardware development [Sut05], and parallel software design must
become far easier, more portable, and more standardised to decrease investment risks and
to be accepted by software developers in various domains. Current programming lan-
guages mostly support concurrency by lock-based programming based on the threading
model as the predominant model for general-purpose parallel programming. This model
is highly non-deterministic and requires software developers to cut away unwanted non-
determinism by means of synchronisation [Lee06]. Concurrency libraries can be regarded
as a loophole, but can turn out to be non-portable and platform-specific. On the other side,



there are clear indications that considering concurrency on higher levels of abstraction
yields performance speed-ups that are more significant than speed-ups gained from lower
abstraction levels [PJT09]. Eventually, the programming languages themselves have to in-
corporate higher-level concurrency models as first class language aspects. As long as this
is not the case, there is the clear need for means to enforce the compliance of lock-based
program code to higher-level concurrency models in a standardised way.

The goal of this work is to address the compliance to higher-level concurrency models by
regarding the coordination model of a concurrent program as the first artefact in the soft-
ware development process, and by providing conformance to the widely-known Business
Process Model And Notation 2.0 (BPMN 2.0) specification as a vehicle for dissemination
for different stakeholders [ABB+10]. The overall approach is based on combining coor-
dination modelling with model-driven development techniques. The contributions are (1)
the Coordination-First approach, (2) the high-level coordination language SCOPE1 which
conforms to the BPMN 2.0 and differentiates between the space-based choreography of
multiple concurrent process components and the orchestration of fine-grained activities
within a single process component, and (3) the SCOPE workbench, an implementation of
SCOPE based on the Xtext framework2 to show the feasibility of our approach.

2 The SCOPE Coordination Model

A higher-level concurrency model can be considered a coordination model. A coordina-
tion model describes the interaction of active and independent components by defining
the coordination laws that specify how the components coordinate themselves through the
given coordination media [Cia96]. The work of Wegner suggests that models of coordi-
nation have a significant impact on the engineering of complex systems [Weg97]. Today
this is shown by coordination-based programming-in-the-large approaches that are em-
ployed in industry and academia, see for example [SHG+09]. Most modern coordination
models coordinate fine-grained components denoted as activities within single composite
components denoted as workflows. Coordination is specified by control flows that define
the order of activities via small pieces of data treated as control information. This kind of
coordination modelling is called orchestration [Mel07].

Introduced by the Linda model [Gel85], space-based systems (SBS) represent a class of
coordination models that employs a data-sharing approach based on so called spaces as
active data management components. The activity of components is defined by the avail-
ability of passive data structures as pre- or postconditions. Consequently, we identify
space-based coordination as a kind of choreography, since the interaction between black-
box components is emphasised prior to the fine-grained coordination of activities within a
single component [Mel07]. SBS show appealing features for concurrent programming: (1)
SBS assume explicit indirect coordination amongst components. Instead of requiring soft-
ware developers to cut away unwanted non-determinism by fine-grained synchronisation,

1http://scope-dsl.sourceforge.net/
2http://www.eclipse.org/Xtext/



they introduce non-determinism on a higher level of abstraction by the space operations
to publish, consume, or read data objects. (2) While residing in spaces, data objects are
immutable. To modify a data object, components must explicitly remove it from a space,
modify it, and reinsert it. Data objects can never encounter conflicts or inconsistencies
when multiple components attempt to modify them, thus eliminating undesirable situa-
tions such as lost updates. (3) SBS ease concurrent programming by abstracting from the
location of components in space and time. Components do not have to exist at the same
time, and always remain anonymous to each other. (4) SBS abstract from the computa-
tional model. They are orthogonal to widespread general purpose programming languages
(GPLs) such as C++, C#, and Java, since the latter are based on the computational model
in principle.

Workflows and SBS represent abstractions of complex system behaviour that emphasise
different aspects of coordination, namely orchestration and choreography. We suggest
these to be combined into one single coordination model: SCOPE (Space-based COn-
current Process Engineering). This combination has three fundamental advantages: First,
Space-based choreography decouples components in space and time. Second, orchestra-
tion separates fine-grained activities of domain-specific computation from the coordina-
tion primitives to publish, read, or consume data from spaces. Third, the overall model is
significantly higher level than GPL-based implementations of SBS and workflows. It pro-
vides a viewpoint on the architecture of a concurrent program that is even understandable
by non-programmers. As such, SCOPE can be regarded as a representation of the problem
space instead of the solution space.

In [Gud11] we presented a programming library based on SCOPE named PROCOL (PRO-
cess COordination Library) that scales reasonably well on multi-core architectures, and
showed that the performance overhead that SCOPE imposes is a reasonable trade-off for
the ease of programming provided. Using our PROCOL programming framework, we
created an application that computes the Mandelbrot set concurrently and shows it on the
complex plane [Gud11]. The application represents a benchmark for massive concurrency
since each point of the complex plane can be computed independently. Also, it highlights
two kinds of concurrency: concurrent execution of the same work, and concurrent execu-
tion of different work. Figure 1 shows an informal overview of the coordination model
of the application represented as a BPMN 2.0 collaboration diagram. The pools repre-
sent the participants in the collaboration: ImageSpace represents a space and Mandelbrot
represents the only client. Firstly, the Mandelbrot’s process publishes (out) a configura-
tion data object which is constructed from the command line parameters. Secondly, all
application-specific sub-processes are started concurrently using a Parallel Sub-Process.
These coordinate themselves along the data flows of the space operations. ImageProvider
reads the configuration (rd) and constructs and publishes a set of unrendered image slices
(outg). These are consumed (in) by as many concurrent Renderer instances (a multiple-
instance sub-process) as there are image slices in order to produce rendered images. While
Renderer encapsulates the domain knowledge to compute the Mandelbrot set on the plane,
Presenter reads the configuration (rd), consumes the rendered image slices (looping in),
puts them together to a single image, and saves it into a file. As shown in [Gud11], the
application scales well on different multi-core machines.
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Figure 1: Coordination model of the space-based Mandelbrot application; concurrent components
are grey-shaded.

3 The Coordination-First Approach

Coordination-First consists of the development of a coordination model based on SCOPE
in an early phase of the development process, see Figure 2. Firstly, scoping describes the
parallel software system and its environment informally. The phase encourages the use
of architectural patterns. In the case of the Mandelbrot application, the applied pattern is
the master-worker pattern. Secondly, collaboration specifies concurrent components that
collaborate in a program based on the initial problem specification (the BPMN participant
pools in Figure 1). Thirdly, process definition defines the processes that implement the
behaviour of each participating component (the sub-processes in Figure 1). Subsequently,
analysis determines the performance and cost requirements from the problem specification
and decides whether the coordination model serves its purpose or whether previous activi-
ties must be re-iterated. The resulting model represents the specification of the concurrent
program. The approach can be regarded as a refinement of the coordination design phase
in the parallel software design method described by Ortega-Arjona [OA10]. Thereby, Co-
ordination-First puts the emphasis on synthesis: It provides a “well-defined structure for
the software system [...] described in terms of software components in sufficient detail to
support the required partition of algorithm and/or data and to enable an analysis of its per-
formance and cost properties.” [OA10, p.318]. We omitted documentation as a separate
phase since we consider it as a cross-cutting activity that builds up across all phases in the
choreography-first approach.

Since the overall approach is oriented towards defining the expected behaviour of a soft-
ware system, we prospect Coordination-First as a basis for architecture-centric model-
driven software development (AC-MDSD) [VS06]. The benefits are (1) Knowledge cap-
ture: SCOPE models provide a basis for communication between software architecture
modellers, transformation developers, and programmers of application domain-specific
logic. (2) Reuse and portability: Reference models and transformations can be reused,
providing a basis for software product families. Different target platform transformation
sets can also be applied to the same coordination model. Reusing models and transforma-



tions can also save development time. (3) Quality: Model bugs, as well as the respective
responsibilities, are separated from implementation bugs – the former having to be cor-
rected only once in the transformation descriptions instead of multiple times in generated
source code. (4) Information hiding: Transformations can encapsulate platform-specific
coordination implementation, thus relieving software architecture modellers and applica-
tion domain-specific programmers.
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Figure 2: Coordination-first approach.

Table 1 subsumes the requirements that we considered for a realisation of Coordination-
First. To do so, we suggest BPMN 2.0 as a “host” language for SCOPE (requirement R1).
It provides three benefits for Coordination-First: (1) BPMN 2.0 is well-known by a variety
of roles in the IT industry and is widely supported by tools. It provides a promising vehicle
for the rapid dissemination and acceptance of the proposed approach. (2) BPMN provides
a comprehensive graphical outline view on behavioural architecture models, even across
non-technical stakeholders. (3) BPMN 2.0 already provides an operational semantics.
Using BPMN as a host language allows to aggregate the semantics of SCOPE models
from the operational semantics of the realising BPMN models.

Unfortunately, BPMN 2.0 also has some drawbacks: Firstly, the BPMN 2.0 metamodel
defines over 150 entities. Industry practice recommends to identify and use only a mean-
ingful subset of BPMN elements to cope with this complexity [SFS11]. However, subset
adherence is in the responsibility of the modeller and typically not supported by BPMN
tools. Secondly, SBS-specific aspects can make it necessary to extend BPMN 2.0. Al-
though BPMN 2.0 provides an explicit extension mechanism [ABB+10, pp.57-61], this
mechanism has several drawbacks: (1) domain-specific validation is not considered (re-
quirement R5), (2) custom graphical notation elements mapped to extensions are not guar-
anteed to be handled uniformly in tool chains (requirement R4), and (3), the extensions
themselves are not guaranteed to carry over in BPMN tool chains by definition [ABB+10,
p.57] (requirement R2 and R3). Finally, since the BPMN 2.0 specification defines the
operational semantics informally, a formal specification of SCOPE that conforms to the
BPMN 2.0 specification is still desirable.

As a consequence, we suggest an external Domain-Specific Language (DSL) for SCOPE
and subsequent model transformations. First, an external DSL based on an explicit BPMN
2.0 sub-metamodel guarantees BPMN subset adherence by nature. Also, it can support
metamodel and notation extensions directly, and can provide elaborate domain-specific
validation. Second, interoperability can be provided by a model-to-model transformation
that preserves extensions at least as BPMN annotations which can be handled uniformly
across tool chains. Iterative development processes can be supported by model transfor-
mations (like QVT [CCD+11]) that use trace information of subsequent transformation
executions to provide update behaviour. This means that only model changes are carried



over (updated) with each transformation run. Third, the BPMN 2.0 specification defines its
operational semantics in terms of token flow. A model transformation that maps SCOPE
models to token flow-based formalisms such as Petri nets can provide an evident way to
provide a BPMN-conformant semantics definition.

Key Requirement

R1 BPMN 2.0 conformance: SCOPE implementations should conform to the BPMN 2.0 specification in order to
benefit from its wide use and tool support.

R2 BPMN 2.0 interoperability: SCOPE implementations should be interoperable with BPMN 2.0 tools in order
to establish seamless development tool chains.

R3 Iterative development process: SCOPE implementations should support an iterative development process to
reduce cascading change effects when existing SCOPE models are manipulated.

R4 Usability: SCOPE implementations should be as comfortable as possible and meet current expectations to
contemporary tooling.

R5 Validation: SCOPE implementations should support the structural and domain-specific validation of SCOPE
models. Errors and warnings should be indicated instantaneously and corrected automatically, if possible.

Table 1: SCOPE implementation requirements.

4 Development of the SCOPE DSL

To realise a DSL for SCOPE, we employed a development process that is based on the
phase model of Mernik et al. [MHS05]. Figure 3 shows an overview of the activities
taken and their results. Regarding the question when a DSL is developed, we consider the
rationale given in Section 1 as a positive answer to the necessity assessment.
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Figure 3: SCOPE DSL development process.

4.1 Analysis

First, we conducted a domain analysis to answer the question of how to develop the DSL.
The SCOPE model from Section 2 represents the resulting domain model. Second, we
conducted a platform analysis that delivered an overview of the relevant BPMN 2.0 meta-
model fragments. We considered a minimal subset of BPMN 2.0 notation elements to
model space-based concurrent systems, and identified the related metamodel fragments
(marked platform model) in the BPMN 2.0 metamodel. These form the basis for the de-
sign of the abstract syntax of the SCOPE DSL (requirement R1) as well as for the model



transformations that are required for BPMN 2.0 interoperability (requirement R2). Finally,
we conducted the tool specification. We selected the Eclipse Xtext framework to imple-
ment the SCOPE DSL since it supports the development of language infrastructure for tex-
tual languages, including compilers and interpreters, domain-specific validation and quick
fixes based on the Extended Backus-Naur Form-like (EBNF) grammar language Xtext. In
the following, we give a rationale for the elements of the BPMN subset. For the sake of
brevity, we do not discuss the given conformity of the selected elements to the informal
operational semantics of the BPMN 2.0 specification. We reference pages instead, so that
one can re-check conformity if desired.
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Figure 4: BPMN subset.

Spaces: In SBS, the operational semantics of a space is determined by its implementation.
Spaces are considered to be black-box components in SCOPE models. Spaces can be rep-
resented as BPMN Participants. Participants itself represent concrete entities or roles that
interact with each other and can execute individual processes [ABB+10, p.114]. The use
of BPMN Participants for spaces has several benefits: (1) There is no constraint on the
locality of Participants. The BPMN subset would therefore abstract over the distribution
of SBS. The definition of space location would be in the responsibility of subsequent map-
ping, modelling, or transformation stages. (2) BPMN Participants do not necessarily have
to define their processRef property [ABB+10, p.116]. Also, they are represented graphi-
cally by (black-box) Pools that can be defined without a Process [ABB+10, p.114]. As a
consequence, the behaviour of space Participants does not have to be explicitly modelled
in BPMN diagrams. (3) Data objects can be represented as messages that are exchanged
between client processes and spaces. This lets us consider the message exchange pro-
tocol between clients and spaces as BPMN 2.0 Choreographies. We advise to indicate
space Pools with a black-box marker in its upper left corner to emphasise their black-box
execution semantics.

Client processes and intra-process activities: As a consequence of modelling spaces as
Participants, client processes are also modelled as Participants. A natural candidate for
activities that embody domain-specific logic is the BPMN Task element: It represents an
atomic activity that cannot be broken down to a finer level of detail [ABB+10, p.156]. We
introduce the Domain Task as a concrete Task type that represents atomic domain-specific
logic. The Domain Task can be indicated by an asterisk marker in its upper left corner.



Different concurrent activities can be modelled with BPMN Sub-Processes: “Expanded
Sub-Processes can be used as a mechanism for showing a group of parallel Activities in
a less-cluttered, more compact way. [...] This usage of expanded Sub-Processes for ’par-
allel boxes’ is the motivation for having Start and End Events being optional objects.”
[ABB+10, p.174]. The concurrent execution of the same activity can be modelled with
the Multiple Instance Loop Characteristics [ABB+10, p.432]. Thereby, the number of
instances to be generated is either specified by its feature loopCardinality or as the cardi-
nality of a collection data item (property) of the respective activity.

Space coordination primitives: Publishing a data object to a space can be modelled us-
ing a Send Task. A Send Task is designed to send a Message to an external Participant.
This relates to the non-blocking space coordination primitives out (publish a data object)
and outg (publish a group of objects). A Send Task must be named either out or outg,
depending on which space coordination primitive is used. Receiving data objects from
a space requires assembling and sending a query template to the space before a match-
ing data object can be received. Also, it must be possible to differentiate between the
blocking space coordination primitives in (consume) and rd (read) and their non-blocking
siblings inp (non-blocking), ing (non-blocking group), rdp, and rdg. We use a predefined
BPMN Sub-Process idiom that contains a Send Task to model assembling and sending
the query template to the space, and a subsequent Receive Task to model receiving a re-
sponse message from the space (see Figure 5). Blocking space coordination primitives are
distinguished from their non-blocking siblings only by the name of the Sub-Process and
the content of the response message from the space: Non-blocking operations simply can
contain messages with no data objects enclosed, or null data objects, respectively. The
predefined Sub-Process must be named either in, inp, ing, rd, rdp, or rdg, depending on
which space coordination primitive it should represent. We advise to indicate the prede-
fined Sub-Process by two markers in its upper left corner: the black Message marker of a
Send Task and the white Message Marker of a Receive Task.
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Figure 5: BPMN space query idiom.
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Figure 6: Interoperability by QVT transformation.

Data objects and inter-process data exchange: Much of the benefits of the SCOPE
model relies on the fact that in SBS, the lifecycle of data objects is not necessarily bound
to the lifecycle of the processes that produced them. This means that data objects and
query templates cannot be represented as BPMN Data Objects since the lifecycle of the
latter is bound to the lifecycle of their parent Process or Sub-Process [ABB+10, p.207].



Instead, Messages are a natural choice to represent SBS data objects [ABB+10, p.93].
The data object to be sent or received does not have to be modelled explicitly since the
Item Definition is an optional part of the Message [ABB+10, p.95]. Also, Messages can
be used in a BPMN Choreography [ABB+10, p.93]. The BPMN standard differentiates
between initiating and non-initiating Messages. Since we cannot guess the responses from
space Participants, we regard only initiating Messages in SCOPE. These are Messages that
represent query templates for the in, inp, ing, rd, rdp, and rdg coordination primitives, and
Messages that represent data objects for the out and outg space coordination primitives.
Inter-process data exchange is represented as Message Flows [ABB+10, p.120].

Intra process control flows: We use the BPMN Start Event to model the instantiation of
a client process [ABB+10, p.238]. Analogously, we use the BPMN End Event to model
the termination of a client process. In contrast to the BPMN standard, we restrict pro-
cesses to only allow one single Start Event and one single End Event within a Process.
[ABB+10, pp.246,426]. Control flows are represented in BPMN in terms of Sequence
Flows [ABB+10, p.97]. In the BPMN subset, we use Sequence Flows to model the flow
of control between Start and End Events, Activities and Gateways. To enforce block-
structured control flows as far as possible we adhere to the following conventions in Se-
quence Flows: (1) Do not use arbitrary control flow loops. (2) Do not use Gateways to
control concurrency. Instead use Sub Processes and Loop Activities. Structured loops in
the control flow of a Process can be modelled with conventional Standard Loop Character-
istics [ABB+10, p.432]. Thereby, its testBefore feature determines if the loopCondition
is evaluated before (true) or after (false) the Activity is executed. loopMaximum deter-
mines the maximum number of executions, including unbounded. For structured loops in
the BPMN subset, we assume that the testBefore attribute is always true. Control flow
decisions can be represented in the BPMN by Exclusive Gateways, Inclusive Gateways,
Parallel Gateways, Event-based Gateways or Complex Gateways. From these we only con-
sider the Exclusive Gateway in the BPMN subset since its semantics are uncomplicated
[ABB+10, p.435]. We require each Exclusive Gateway to have its default Sequence Flow
specified to prevent an exception is thrown when all conditions of the gateway evaluate to
false. We refrain from using Inclusive Gateways since they require that a backwards search
for tokens in the upstream Sequence Flows [CCH10] is executed. We also refrain from us-
ing Event-based Gateways since the subset currently does not consider Events except for
Start and End Events. We do not use the Complex Gateway since it shares the complicated
upstream search behaviour of the Inclusive Gateway and imposes the possibility of race
conditions [ABB+10, p.437].

4.2 Implementation

Abstract syntax: The grammar of a language is defined by its abstract syntax. The ab-
stract syntax can be represented by a metamodel. Figure 7 presents an overview of the
SCOPE metamodel that was developed based on the results of the analysis phase. The
actual metamodel development can be considered as language piggybacking: Domain-
specific elements were added to parts of a host language (the previously identified BPMN



Figure 7: SCOPE metamodel.

2.0 subset) [MHS05].

First, we discuss which elements we retained from the BPMN 2.0 specification: The
main element of a SCOPE model is Definitions. In accordance with the specification,
we use it to define the scope of visibility and the namespace for all contained elements
[ABB+10, p.51]. The Import class is used to reference elements contained in other Def-
initions [ABB+10, p.53]. The interaction between spaces and clients are defined by Col-
laboration, which defines them as Participants. Client Participants can reference a Process
in order to be executable. Processes have Properties (renamed to ProcessProperties) and
a Sequence Flows elements. We refactored the graph-based Sequence Flow modelling of
the BPMN 2.0 standard into a block-based structure: Instead of defining the sourceRef
and the targetRef of a single Sequence Flow, we define the order of execution of Flow
Nodes within a Process by the order of references to them with the nodeRefs property of
the Sequence Flows or Conditional Sequence Flows elements. Start and End Events can be
omitted since the order of the references indicate the start and end of the Sequence Flows.
Flow Node is an abstract superclass for elements in Sequence Flows. As Flow Nodes, we
consider the Exclusive Gateway and Activities. Activities can have Loop Characteristics
to model looping or multiple instantiation. The Call Activity can be used to invoke other
Processes (considered as sub-processes in the BPMN subset) from the current one.

We added the following elements to model space-based inter-process communication: We



differentiate between Space and Client Participants. Spaces do not have a reference to a
Process since their behaviour is assumed to be black-box. The Domain Task is an Activity
(more specifically a custom BPMN 2.0 Task) that represents domain-specific logic. It has
a weight attribute that allows software architects to specify a relative processing time esti-
mate that can be used for simulation before domain-specific logic is actually implemented
in the subsequent analysis phase (see Sec. 3). The Space Send Task is a BPMN 2.0 Send
Task that publishes data objects to a Space. The data objects to be published are specified
by a reference to a Process Property. Complex data objects are defined as Object Types.
The Space Access Task represents the BPMN 2.0 idiom for consuming or reading data
objects from spaces (see Sec. 4.1). The data objects to be consumed or read are specified
via a Query Specification that requests an Object Type. Actual values to be matched are
identified with an Object Property Assignment Expressions that allows to assign the ex-
pected Value Expressions to the Object Properties of the requested data object. Finally we
model the conditions of Conditional Sequence Flows as probabilities using Real Values
instead of providing a complete expression system. It can be used for simulation before
domain-specific logic is implemented.

There are some additional classes in the metamodel: Process Property Call, Process Prop-
erty Navigation Expression, Object Property Call, Object Property Navigation Expression,
and Object Property Assignment Expression. They support the grammar definition in the
Xtext framework. The differentiation between Process and Object Properties also simpli-
fies grammar definition. The elements Type and Value Call and their subclasses represent
a simple type system that can be extended in future versions of the SCOPE language.

Concrete syntax: The concrete syntax of SCOPE was developed on basis of its abstract
syntax metamodel. We selected a textual notation as the primary concrete syntax. The fol-
lowing code listing illustrates the implementation of the Mandelbrot example from Section
2 in SCOPE. Firstly, the collaboration defines the interacting participants. Secondly, the
individual processes are defined. Therefore, the model addresses the phases collaboration
and process definition in the Coordination-First approach. MandelbrotImpl represents the
executable main process as it calls all other processes and is referenced by the Mandelbrot
client. Domain Tasks are initially weighted equally. The notation employs an SQL-like
rendering for the Object Property Assignment Expressions: “where”-clauses greatly sim-
plify the specification of templates to be sent as queries to spaces (see, for example, lines
10 and 22 in the listing).

definitions mandelbrot.processes {
import mandelbrot.types.*
import mandelbrot.types.Configuration.*
collaboration Mandelbrot {
space ImageSpace
client MandelbrotClient : MandelbrotProc }

process ImageProvider attends Mandelbrot {
Configuration config init;
list<Image> images;
config = read Configuration from Mandelbrot.ImageSpace;
createImagePartitions weighted 1.0;
publish-group images to Mandelbrot.ImageSpace; }

process MandelbrotProc attends Mandelbrot {
Configuration config init;
publish config to Mandelbrot.ImageSpace;
parallel {



call ImageProvider;
multi-instance (config.numberOfImagePartitions) call Renderer;
call Presenter; } }

process Renderer attends Mandelbrot {
Image image;
image = consume Image where (Image.isRendered = false) from Mandelbrot.ImageSpace;
renderImage weighted 1.0;
publish image to Mandelbrot.ImageSpace; }

process Presenter attends Mandelbrot {
Configuration config;
list<Image> images;
matrix<integer> mandelbrotMatrix;
config = read Configuration from Mandelbrot.ImageSpace;
images = loop(config.numberOfImagePartitions) consume Image

where (Image.isRendered = true) from Mandelbrot.ImageSpace;
computeMatrix weighted 1.0;
saveMandelbrotImageAsFile weighted 1.0;
xor {

case 0.7 : printGui weighted 1.0; } } }
definitions mandelbrot.types { <...> }

In contrast to a graphical notation, the textual notation supports the iterative collaboration
among stakeholders (requirement R3) due to its block-based structure. It allows to separate
models across different files and to separate work within a single file across different model
blocks. Additionally, textual notations profit from broad tool support (requirement R4).
This is in particular the case with version management systems. Figure 8 illustrates a
part of the Mandelbrot scenario within the SCOPE workbench that was developed using
the Xtext Framework. To increase user acceptance we put particular effort into domain-
specific validation and appropriate IDE-supported quick fixes (see the error message at the
bottom and the quick fix pop-up to the left, requirement R5). The domain-specific outline
view (right) and the dynamically searchable quick outline (bottom) provide additional user
support (requirement R4).

Interoperability between the SCOPE workbench and third party tools that conform to the
BPMN 2.0 specification is guaranteed by a Query View Transformation (QVT) transforma-
tion (requirement R2). QVT is a standard of the Object Management Group for model-to-
model transformations [CCD+11]. We chose medini QVT3 to execute the transformation
since it is integrated in the Eclipse IDE environment and since it supports both the BPMN
2.0 metamodel as well as the SCOPE metamodel using EMF Ecore, see Figure 6. The
transformation rules map the SCOPE metamodel to the complete BPMN 2.0 metamodel.
Graphical BPMN models require additional layout information. These are generated af-
ter the transformation. We used simple default layout information since the development
of layout algorithms for complex graphical languages such as the BPMN 2.0 are out of
the scope of this work. If necessary, an appealing layout can be created by subsequent
stakeholders in any BPMN 2.0 conformant modeling tool. The QVT transformation en-
gine makes use of tracing information over multiple executions. Only changes to the
SCOPE model are transformed to BPMN when transformations are repeated. This facili-
tates a robust update behaviour of the SCOPE tooling. Changes to SCOPE models can be
propagated to BPMN models even after the BPMN models were modified (requirement
R3). Overall, the QVT transformation maps all SCOPE elements and their relations to
the corresponding BPMN elements and establishes conformance of SCOPE to BPMN 2.0

3http://projects.ikv.de/qvt



Figure 8: SCOPE workbench for coordination engineering.

(requirement R1 and R2).

Regarding an explicit operational semantics definition of SCOPE, we already identified a
model transformation that maps SCOPE models to Petri nets as a way to provide a BPMN-
conformant semantics definition. We consider such transformation as future work. Also,
we currently develop a transformational mapping of SCOPE to the PROCOL programming
framework, since both are based on the SCOPE model abstraction. Finally, we will address
evaluation by considering practical application scenarios developed with the Coordination-
First approach and the SCOPE DSL.

5 Related Work

Mernik et al. describe patterns for the analysis, design, and implementation of a DSL
[MHS05]. These comprise design patterns to exploit an existing host language. The au-
thors denote the exploitation of parts of a host language, which are subsequently extended
by domain-specific elements, as piggybacking. Because we used parts of the BPMN 2.0
specification and extended them by elements specific to SBS, our SCOPE DSL can be
categorized as language piggybacked.

There are many examples for the extension of the BPMN for domain-specific aspects. For



instance, Awad et al. describe how BPMN 1.1 process diagrams can be extended by con-
straints for resource assignment [AGMW09]. The authors extend a BPMN metamodel for
additional classes such as roles that are assigned to task instances via resources, while con-
straints on the assignment of resources to tasks are modelled using the Object Constraint
Language (OCL). Rodrı́guez et al. developed their own metamodel based on BPMN 1.0
process diagrams, and extended it by security requirements aspects [RFMP07]. These
examples have in common that they rely on an own metamodel interpretation for their pre-
BPMN-2.0 dialect. In contrast to our piggybacking approach, it remains to be proven that
these approaches conform to the current BPMN 2.0 metamodel. Schleicher et al. describe
an extension of the BPMN 2.0 metamodel [SLSW10]. They use the extension mechanism
of the BPMN 2.0 specification to add so-called compliance scopes to process diagrams.
In contrast to the piggybacking approach, the approach is limited in interoperability. The
BPMN 2.0 extension mechanism and custom graphical notations for extensions are not
widely and uniformly supported across tool chains, and means for higher-level validation
of BPMN models extended by domain-specific elements are often missing.

Regarding our prospects of using SCOPE models for AC-MDSD, there are few compa-
rable approaches. Tan et al. present an infrastructure to use design patterns to generate
parallel code for distributed and shared memory environments [TSS+03]. Programmers
are required to select appropriate parallel design patterns, and to adapt the selected patterns
for the specific application by selecting appropriate code-configuration options. Our ap-
proach does not necessarily consider the modification of generated code for performance
fine tuning. Hsiung et al. present an approach of model-driven development of multi-core
embedded software [HLC+09]. The approach is based on SysML models as an input, and
generates multi-core embedded software code in C++. The code architecture consists of an
OS, the Intel Threading Building Blocks library [Rei07], a framework for executing con-
current state machines, and the application code. The described approach is restricted to
multi-core embedded software and abstracts from a specific target platform. Coordination-
First is instead applicable to different target platforms. In [PBM+09], Pllana et al. propose
an intelligent programming environment that targets multi-core systems. This environment
is envisioned to combine model-driven development with software agents and high-level
parallel building blocks to automate time-consuming tasks such as performance tuning.
UML extensions are proposed for graphical program composition. Our approach and that
of Pllana et al. share the focus on multi-core systems. While the latter exclusively con-
siders those, we also intent Choreography-First and SCOPE to be applicable to distributed
system development by providing appropriate model-to-platform transformations.

6 Conclusion

In this paper we introduced the Coordination-First approach. The separation of collabora-
tion from process definition, and the application of model-driven techniques are essential
parts of this approach. To support the approach, we developed the space-based coordina-
tion language SCOPE, and realised a workbench for SCOPE. Both, the language and the
workbench, conform to the BPMN 2.0 specification and are interoperable with BPMN 2.0-



conformant tools. Additionally, SCOPE models can be validated on domain-level rather
than only on the level of the underlying BPMN 2.0, and support iterative software devel-
opment processes.
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