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1 Introduction

The development of software systems today is a difficult thing to do. During the past
decades the project size and complexity have grown extensively and now vast set of
goals have to be achieved in projects while various constraints must be adhered to.
These constraints are often induced by legacy systems which have to be integrated into
the new system or migrated to a new platform.

A common method in software development in is to divide software in smaller chunks
which are easier to handle. The fabric that holds all these chunks together, the big
picture, is called an software architecture.

Software architectures describe how components and connectors are arranged in soft-
ware systems. Today many of these software systems share common characteristics and
therefore their architectures share common characteristics too. So it is logical to put
these characteristics down in a special document called architecture pattern or if they
are more formalized architecture styles.

Architectural styles can represent generic styles [Monroe et al. 1997] or specialized,
technology induced MidArch styles [Giesecke et al. 2007]. They describe specific charac-
teristics of architectures, such as structural, topological, and behavioral characteristics.
Also they contain information on data types, functional and non-functional properties
[Metha 2004], like reliability, usability, or maintainability, as well as meta-properties
which describe the meaning or usage of an architectural style.

Architectural styles make design concepts explicit so they can be shared between soft-
ware engineers. A major problem with architectural styles is, that their building blocks
are not easily set in relation to each other. This means component types which belong
to different styles, but have a similar purpose are named differently. Also component
types of different styles with the same name, can represent totally different concepts. So
the relationship of styles have to be determined by the engineer herself. This is not a
big problem when there are only a view styles, however with middleware-oriented archi-
tectural styles, this is quite different, because they can be numerous. So the software
engineer has to analyze many style descriptions and compare them by hand.

Another problem of today’s style description is, that there is a big conceptual gap
between the description of styles and the way goals are described. While goals and
goal-derived system properties address specific needs of the customer, styles address the
needs of a system architect.

Therefore architectural styles today have two limitations in their concept. First, the
comparability of the functionality of architectural style elements is limited. And second,
the meaning of the elements in an architectural style is not defined or at least not set
into relationship to other elements.

Based on these limitations, I derive at two questions:
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e How can properties of elements of an architectural style be modeled?
e How can properties of different styles be made comparable with one another?

One way to address these two issues is to form a common and yet extendable vocabu-
lary for meta-properties (and of course functional and non-functional properties as long
as they are not part of the ADL approach used in MidArch [Giesecke et al. 2007]) of
architectural style elements in a language which is more formal than a spoken language
and is able to express relationships. One potential language for this purpose is the Web
Ontology Language (OWL) [McGuinness and van Harmelen 2004] an extension to the
Resource Description Framework (RDF) [Beckett 1999], which is capable of describing
elements as objects with properties, and is comparable to first order logic and the Z
notation [Spivey 1998].

The goal of my thesis is to test this approach by developing methods and tools to gen-
erate and use such vocabulary. Therefore I create a method to retrieve meta-information
on architectural styles and store this information in an OWL based knowledge base. In
the same way I develop a method for querying this knowledge base.

The thesis has the following outline. Chapter 2 discusses the foundations of my the-
sis. This comprises the definition of terms, the introduction of concepts, technologies,
and software components. Chapter 3 discusses the requirements of the knowledge base,
explains different solutions for these requirements, and finally defines the basic struc-
tures of the knowledge base. Chapter 4 discusses a technique to extract information
from technical documentation and engineers and store it in the knowledge base. The
querying technique, the counterpart to the modeling and storage technique is explained
in chapter 5. The two techniques are then evaluated by analyzing a view middleware-
oriented architectural styles, which have been defined and used in [Bornhold 2006]. This
information is used in chapter 6 for evaluation of the introduced techniques. Finally,
chapter 7 discusses the results of the evaluation and gives a glimpse on the future use of
meta-information in software development.
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The primary goal of my thesis is to make information about middleware-oriented archi-
tectural styles comparable and accessible for a wide range of software architects. There-
fore I develop a method to model meta properties of architectural styles, and describe
a usable access method to the knowledge stored in these properties. In this chapter, I
introduce and discuss basic concepts and technologies to describe and access knowledge.

Section 2.1 discusses the philosophical and linguistic terminology used in my thesis.
Section 2.2 introduces the Semantic Web and its technologies, in which ontologies play
a great role. In section 2.3, an ontology-based approach for architectural style modeling
is explained. Section 2.4 is dedicated to the MidArch Method and its style modeling
and selection procedures, because this method is the context for my work. Section 2.5,
discusses two projects with different knowledge modeling approaches which make use of
OWL-based ontologies to describe their knowledge. And finally in section 2.6, software
frameworks, programs, and libraries are described, which could be used to implement of
my method.

2.1 Disambiguation

This work is on meta-information for middleware-oriented architectural styles. The
meta-information is formulated with the help of knowledge-management concepts. To
understand these concepts, philosophical and linguistic terms have to be explained and
distinguished from each other. This is especially important because these terms have
different meanings in the sciences and arts.

The following text are therefor subdivided in three subsections. In section 2.1.1, I
discuss the terms data, information, and knowledge, because they are the building blocks
to understand the subsequent definitions. Section 2.1.2 is dedicated to the term ontology,
because ontologies play a great role in my approach. At last, linguistic terminology is
introduced in section 2.1.3. They are important to the knowledge retrieval process.

2.1.1 Data, Information and Knowledge

Data, information, knowledge, and ontology are philosophical terms and go back to def-
initions from Aristoteles and Platon [Kramer 1999, Schnelle 1976, Mittelstrafl 1980a,b].

The term data refers to values like numbers, words, images, or any other result of an
observation of variables. However data itself has no meaning or relation [FOLDOC 2007]
it is just a set of values without an interpretation. For example five is a value or green.
Five can be the number of apples in a basket or the age of a tree.
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To interpret data, the values have to be correlated. These relations are also represented
by data values. For the interpretability of data a system must be able to process data
as symbols. Through correlation, data gets a meaning and becomes information.

The term information is defined in information theory as: Any configuration of sym-
bols, which can be distinguished, identified, and created by a particular system, and
where the system is able to transform the configuration into other configurations under-
stood by the system [Schnelle 1976]. A symbol in this context is any data value which
can be distinguished from other values.

A more general description of information shows that information can be understood
as the form and representation of thought [Kramer 1999], which has an inter subjective
property.

While information is an abstract and inter subjective representation of thought, knowl-
edge is a subjective term. Knowledge involves a person or thing to be aware of infor-
mation and its implications [Mittelstral 1980b]. Using a strict definition of knowledge,
machines were not able to know things. However knowledge can also be seen as infor-
mation combined with pragmatics [Possner 1998, p. 515, which means, knowledge is
interpreted information.

In the context of knowledge management, knowledge can be implicit (tacit knowledge)
or explicit [Polanyi 1966]. Tacit knowledge is knowledge which is known by a person and
where the person can act on, but the knowledge is not available to other persons. Explicit
knowledge is therefore knowledge which has been expressed, so that other people can
incorporate it into their knowledge. By the strict definition of knowledge, explicit knowl-
edge is nothing more than information, because knowledge only exists when someone or
something is aware of the information.

In this work, I use the term knowledge for interpreted or interpretable information
and distinguish it from pure codified information. Thus they stand for different views
on information. Where knowledge refers to the use of information and information itself
refers to the codification and representation of information.

Based on this, the expression isles of knowledge an be explained. Isles of knowledge in
this context are sets of information which are disjoint. So someone or something would
not be able to infer information from all sets to gain new knowledge. Such situation is
unfortunate, because it hinders the gain of knowledge. Therefor isles of knowledge should
be interconnected by adding additional information. Also while developing knowledge
management systems, the creation of such isles should be avoided.

2.1.2 Ontology

The term ontology is borrowed from philosophy [Mittelstral 1980al, where it is a theory
of the study of being or existence. The theory tries to describe basic categories and rela-
tionships which define entities and and types of entities. In computer science, ontology
is defined as an explicit specification of a conceptualization. A conceptualization is an
abstract and simplified view of the world for a specific purpose [Gruber 1993] like a
model.
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An ontology in computer science is a set of classes, relationships, objects, and prop-
erties, which describe a domain of knowledge and its vocabulary. Figure 2.1 shows an
example with a class fish and two entities of this class salmon and shark. The entity
salmon has specific characteristics or properties, like born in fresh water, migrate to ocean
to mature, or have a distinct color called salmon pink. These properties differentiate the
entity from the other entity shark.

This example already embodies a small hierarchical, tree like, structure of fish with
two entities or objects in it. Such hierarchical structures are called tazonomies. The two
entities in the example’s taxonomy represent sets or classes of fish, because there is more
than one species called shark (see figure 2.1).

Salmon Shark
born in fresh water born in the ocean
have distinct color salmon pink mature in the ocean

migrate to ocean to mature

Fish
lives in water
swims in water
has fins

Figure 2.1: A small example taxonomy for the fish example with properties (in italics).

The fish taxonomy example already shows relationships to other entities. The salmon
for instance is born in fresh water. Fresh water describes bodies of water with low
concentration of salt and other dissolved matter, as found in lakes and streams. The
entity salmon has therefore a property which refers to entities in a water ontology.

The property has distinct color of salmon refers to a color named salmon pink. Colors
are normally not categorized in a taxonomy, but they can have several different rela-
tionships. Some of them can be ordered by their physical properties, like wavelength.
Colors can also have a complementary color, for example red with its complementary
color cyan.

The color example shows that not all entities or sets of entities can be represent by a
taxonomy in a sensible way. Nevertheless, the colors have relationships and therefore they
can be represent by an ontology. This is an important point, because ontologies allow
a wide range of relationship patterns, but are often confused or limited to taxonomies,
because taxonomies are so widely used to represent knowledge in a given domain.

2.1.3 Linguistic Terminology

This thesis discusses techniques (see chapter 4 and 5) which transform technical doc-
umentation into logic-based knowledge models like ontologies, rules, or clauses. While
the previous sections explained the terms information, knowledge, and ontology, which
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are important to understand the modeling and use of meta-information. This section
discusses the linguistic terminology used in my thesis.

First, I explain the basic elements of sentences. Second, I briefly describe the concept
of negation in language. Third, I introduce the term conjunction. And finally, I discus
the terms phrase, clause, and sentence, because they are used in content analysis and a
clear understanding of the differences is important.

Subject, Predicate, and Object

The terms subject and object describe entities in sentences. The subject in a sentence is
the origin of an action indicated by the predicate. The predicate defines the action to be
performed. It describes what the subject is doing. Objects, however, are the recipient
of the action, involved in the action itself, or they are the possessor of the subject
[Haegeman and Guéron 1999]. Linguistics define even more object types represented by
different cases, but for this thesis, these three types are sufficient.

The recipient of an action is called the indirect object and corresponds in English
with the dative case [Haegeman and Guéron 1999, p. 129]. The object involved in the
action is called the direct object and it corresponds in English with the accusative case
[Haegeman and Guéron 1999, p. 75, p. 124, p. 128].

For example in the sentence The server sends a message to the client. The subject is
the server indicating who is doing something. The action is expressed by the predicate
sends. The direct object is a message, because it is the thing involved in the action.
And the recipient of the action is the client, which is the indirect object.

The possessive object uses in English the genitive case [Haegeman and Guéron 1999, p.
412]. Tt indicates that the subject belongs to a possessor. For example The application’s
identity server grants permissions. The possessor in this sentence is the application
which has a server. The permissions are obviously the direct object.

Negation

Beside the basic elements subject, predicate, and object, sentences may contain negations
[Givén 1993, p. 187]. Negations are quite simple. They just negate a statement. For
example The server sends no message. The word no indicates in this example that the
server sends not a message. Because no alternative is given, the context suggests that
the server is sending nothing at all. However the word no inverts the meaning of the
object not the predicate.

A negation on the predicate is done with not which is also used in concatenations like,
cannot [Givén 1993, p. 187]. For example: The client cannot connect to the server. In
this example the word cannot inverts the predicate connect indicating the action is not
possible.

Beside no and not, there are other negative structures in English which are depend
on the logical structure of the text. A detailed discussion of negative structures can be
found in [Swan 2005, p. 344-350,352-356].

10
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Conjunction

The last relevant part of speech used in this thesis are conjunctions [Givén 1993, p. 78].
Conjunctions, like and, but, and or, are words which connect words, phrases or clauses.
The meaning of and is to define sets of entities or actions. For example: The server
sends and receives messages. or The server provides sounds and images.

The conjunction or mostly defines alternatives. For example: The server sends or
receives messages. Compared to the example with and, there is a important difference.
The server is either sending messages or receiving messages. So the or indicates an
exclusive alternative. The sentence with and, however, allows to conclude that the
server is doing both [Givén 1993, p. 78f].

The conjunction but is normally used to join two clauses, where the second clause
contradicts the first one. Also it is used to exclude entities or actions. For example: The
server sends but never receives messages.

Phrase, Clause, and Sentence

In the previous paragraphs, the terms phrase, clause, and sentence have been used, but
not defined explicitly. The term phrase is defined as a group of words which represent
a single syntactic unit (non-terminal) [Haegeman and Guéron 1999, p. 64]. There are
different types of phrases which represent different syntactic units, like subject, object,
or predicate. Subject and object phrases are also called noun phrases, because they have
similar properties.

A clause consists of one or more phrases to formulate a complete or incomplete thought
[Haegeman and Guéron 1999, p. 22]. A complete thought is represented by an inde-
pendent clause for example The server sends a message. An incomplete thought is
represented by a dependent clause, like because it received an request.

A sentence is build with clauses. The simplest sentence consists of one independent
clause. More complex structures are achieved with conjunctions, which allow the con-
junction of independent clauses. These structures are called compound sentences. Addi-
tionally an independent clause can be combined with one or more dependent clauses to
construct complex sentences [Haegeman and Guéron 1999, p. 23]. And finally, compound
and complex sentences can be mixed to get even more complex structures.

An understanding of these structures is necessary in content analysis, which is used
in chapter 4 and 5 for the decomposition of information and information retrieval.

2.2 The Semantic Web

The Semantic Web was introduced by Berners-Lee et al. [2001] as an extension to the
existing World Wide Web. The idea is to make data and information, which are right
now bound to applications, available to agents and a variety of programs, so that these
programs can combine information from different sources and can infer answers for user
specified questions. To allow multiple programs to interpret a multiplicity of data the

11
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data and the rules to interpret them have to be expressed in a common set of languages
and technologies as shown in figure 2.2.

User Interface & Applications

Trust l
—Unifying Logic _) J

Ontology:
Query: OwWL Rule:
SPARQL RIF
RDFS l

Data interchange:
RDF I

Crypto

XML

URI/IRI '

Figure 2.2: Technology stack of the Semantic Web [W3C 2007]

The Semantic Web Initiative developed in the past seven years languages and tech-
nologies to form the Semantic Web. The basis are classic web technologies like Unified
Resource Identifier (URI) to identify entities and XML as one possible syntactic repre-
sentation of data. On that foundation the initiative defined the Resource Description
Framework which allows simple subject-predicate-object structures (clauses 2.1.3) to be
expressed. Based on that the Web Ontology Language (OWL) and a rule language are
defined, to express information and rules about their interpretation. Currently different
approaches for query languages and their properties [RIF-WG 2008] are discussed. As
a preliminary result, the RDF query language, SPARQL was defined, as well as the
SWRL/RuleML language.

The layers Unifying Logic, Proof, and Trust are currently not subject to standardiza-
tion. However, some work has already been done, and a small set of usable reasoners
exist. They cover the layers Unifying Logic and Proof, where Trust is subject to a
different standardization effort.

The following subsections explain the basic technologies of the Semantic Web tech-
nology stack. Starting with RDF, as a basis notation, followed by OWL, and the rule
language specification SWRL.

12
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2.2.1 Resource Description Framework

The Resource Description Framework (RDF) comprises several specification documents,
including documents about the abstract syntax of RDF, the serialization of RDF data
in XML, the semantics of RDF, and their description language. In most cases, the
term RDF is used to address the RDF /XML syntax specification [McBride 2004] which
describes the grammar of RDF as well as its XML representation. In this thesis I refer to
RDF as the abstract syntax defined in [McBride 2004], because the abstract syntax allows
to describe all relevant aspects in a compact manner. Also different representations of
RDF can be derived from the abstract syntax.

RDF describes information in triples of subject, predicate, and object. A set of such
triples form an RDF graph, like the example in figure 2.3. The subject and object
elements are visualized as ellipse or boxes where the predicate symbolized by an arrow
usually called an arc starting at the subject and pointing toward the object. The subject
of a triple is either an URI, a literal, or a blank node. The URI refers to any possible
resource on the Internet. A literal is a simple text string. And a blank node, is a node
without URI or literal name, but it is still identified as a unique node. This means all
blank nodes are distinguishable.

L subClassOf
SalamiPizza

hasTopping

hasTopping

Figure 2.3: A simple RDF-graph about Italian cuisine.

The second central specification off the Resource Description Framework is the RDF
Vocabulary Description Language [Brickley and Guha 2004] also referred to as RDF
Schema (RDFS). Where RDF specifies the syntax of RDF graphs, RDFS specifies the
semantic of such RDF graphs. The example RDF-graph in figure 2.3 shows four ellipses
representing objects and subjects as well as three arcs representing predicates. In RDF
the predicates do not have any meaning and only the knowledge of a human being allows
the conclusion that SalamiPizza has both toppings TomatoSauce and Salami.

A software system however cannot come to the same result, on the basis of RDF,
because subClassOf has no meaning in RDF. The RDFS however defines such meanings.
For instance the predicate rdfs:subClassOf is defined in RDFS as a property which
expresses the inheritance of properties, between RDF entities. Through such semantic
definitions, RDFS allows to build simple ontologies, which are used as a basis for the
Web Ontology Language explained in the next section.

13
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2.2.2 Web Ontology Language

The RDF Vocabulary Description Language is able to define simple ontologies, but its
vocabulary is not expressive enough to create complex ontologies for knowledge bases.
The Web Ontology Language (OWL) [McGuinness and van Harmelen 2004] is specifically
suited for this task. It comes in three variants, called OWL Lite, OWL DL, and OWL
Full. OWL Full represents the full language without any restrictions, where OWL DL
is a sub-set of OWL Full and OWL Lite is a further sub-set of OWL DL for simpler
purposes.

OWL Full has the greatest expressive power of all three OWL languages. Every
valid RDF graph is also a valid OWL Full structure and vice versa. In OWL Full
classes could be treated as individuals. This ability allows to build a taxonomy tree in a
knowledge base of animals, where the leaves are concrete animal types which could also
be understood as individuals.

However in another knowledge base such animal types can be used as a class for a set
of real animals. For example, "cat” is an individual animal race in the animal taxonomy;,
but in another knowledge base "cat” stands for a class with some individuals called Tom,
Kitty, or Hamlet. In addition to this double usage, OWL Full considers data values also
to be part of the individual domain. This means the set of datatype properties and the
set of object properties are not disjoint sets.

However, OWL Full expressiveness can lead to knowledge bases that cannot be handled
with description logic reasoners[Baader et al. 2007]. Results from such knowledge bases
might not be unique or complete. One solution to this problem of ambiguity is to place
some restrictions on the OWL language to make it compatible with description logic.

OWL DL requires a pairwise separation between classes, data types, data type prop-
erties, object properties, annotation properties, ontology properties, individuals, data
values and the built-in vocabulary. This has various implications. First, classes cannot
be individuals like in OWL Full. Second, the set of object properties and datatype prop-
erties are disjoint. Third, datatype properties cannot be of the property types inverse
of, inverse functional, symmetric, or transitive. Finally, cardinality constraints cannot
be placed on transitive or inverse properties [Bechhofer et al.].

In comparison, while OWL Full allows the use of all RDFS vocabulary, OWL DL
allows only some few RDF'S terms, like rdfs:range and rdfs:domain. Axioms in OWL
DL must be well-formed and form a tree-like structure. Additionally, axioms about
individual equality and difference must be about named individuals only, which means,
that unnamed nodes are not allowed.

The third OWL language is called OWL Lite. It is designed to suit purposes of
migrating simple taxonomies to OWL. OWL Lite provides a minimal subset of OWL
language features, which are relatively easy to be supported by applications. It is a
simplified version of OWL DL and therefore inherits the restrictions of OWL DL. In
addition, OWL Lite forbids the use of owl:oneOf, owl:union0f, owl:complementOf,
owl:hasValue, owl:disjointWith, and owl:DataRange which are widely used in more
complex knowledge bases. This limits OWL Lite mostly to simple information structures.

14
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There are also restrictions on the usage of several other OWL elements with the
intention to ease tool development. For instance set intersections are only allowed on
sets with more than one element and the elements of these sets must be class names or
property restrictions. More detailed information on these restrictions can be found in
[Bechhofer et al.] and are beyond the scope of this thesis.

For the purpose of this thesis, OWL DL is the best choice, because it is the most
expressive language which still conforms to description logic [Baader et al. 2007]. OWL
Full can lead to undecidable structures and OWL Lite is not expressive enough. Therefor
I use OWL DL in this thesis.

OWL DL Semantic Structure

In the following, I explain OWL DL as the most suitable language for the Semantic Web.
As an example, I am using the knowledge base of "Pizza” from [Horridge et al. 2004],
because it serves as a very descriptive example.

OWL DL has an XML serialization of its syntax, but it has also a, so called, abstract
syntazx notation which is more compact and easier to read for humans. The abstract
syntax does not have a structure for every element of the XML serialization, because
some elements only exist to ease the development, but do not increase the expressiveness.
To give a complete picture on OWL DL, I describe all examples in both notation.

I start the explanation with the term class and the composition of classes in OWL.
Followed by the discussion of property description. At last I describe the term individual
and the definition of individuals.

OWL DL Classes

The OWL term class does not correspond to the term class used in most object-oriented
programming languages. An OWL class is better compared to a mathematical set. Such
set could be defined by individuals enumerating the elements of the set, or by property
restrictions defining constraints on individuals belonging to a class. Additionally these
classes can be constructed with set operators, like union, intersection, and difference.

The basic building blocks of OWL classes are class azioms [Bechhofer et al.]. The
simplest class axiom is the plain declaration of a class as shown in listing 2.1. The class
Pizza from the listing does not express anything, because it is not populated by any
individuals, nor associated with other classes or properties.

<owl: Class rdf:ID="Pizza”/>

Class( Pizza partial owl: Thing)

Listing 2.1: Definition of a simple class

Beside simple declaration, classes can also be defined by: sub-classing, enumerating
their individuals, stating that a class is the equivalent or definitely the opposite of another
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class. In order to understand the definition of classes in OWL, it is necessary to explain
their relationship to individuals.

In OWL, individuals belong to sets which are associated to classes. Such sets are
called class extensions. This is important, because a class extension can be associated
to different classes which are not directly related to each other. Also, all set operators
in classes work with the individuals forming the class extension.

These operators and properties are called class arioms. An important class axiom,
which is heavily used in taxonomies, is the RDFS property rdfs:subClassOf. It is used
to define a class as a sub-set of another class. To be more precise the class extension
of the sub-class is a sub-set of the parent class extension. It is possible to specify more
than one class to be a parent of a class. This leads to a class extension which is the
intersection of all class extensions of the parent classes.

The owl:equivalentClass construct allows to express that two classes have the same
class extension, while their definition could be completely different from each other. This
is useful to combine knowledge bases from different sources, where classes are defined
with different viewpoints in mind, but describing the same concept.

The opposite of the owl:equivalentClass is owl:disjont With. In OWL classes are not
disjoint by default, which means it has to be expressed explicitly. This is called an Open
World Model [Horridge et al. 2004]. Therefore two classes which are not related have to
be separated from each other.

<owl: Class rdf:ID="Pizza”>
<owl:disjointWith rdf:resource="Drink”/>
</owl:class>

Class( Pizza partial owl: Thing)
DisjointClasses( Pizza Drink)

Listing 2.2: Disjoint classes

For instance, to separate drinks from pizza, the definition in listing 2.2 serves as an
example. It separates all Pizza individuals from those who belong to Drink. If we now
define SalamiPizza as a sub-class of Pizza the class extension of SalamiPizza will also
be disjointed with Drink, because all individuals of SalamiPizza also belong to Pizza.

Until now, I explained only classes which can be composed from other classes. In
the following, I describe how these classes get their meaning by populating their class
extension or by applying restrictions to properties.

In listing 2.3 the class Pizza is described by an enumeration of three different elements.
Asked about what kinds of pizza are known a system could answer with these three
elements. If asked about the term SalamiPizza the system could state it is a Pizza.
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<owl: Class rdf:ID="Pizza”>
<owl:oneOf rdf:parseType="Collection”>
<owl:Thing rdf:about="#MargerithaPizza”/>
<owl:Thing rdf:about="#PepperoniPizza”/>
<owl:Thing rdf:about="#SalamiPizza”/>
</owl:oneOf>
</owl: Class>

Class( Pizza partial oneOf (
MargerithaPizza
PepperoniPizza
SalamiPizza

)

Listing 2.3: Class defined by an enumeration of individuals

But there are more than three varieties of pizza and of course the system still does
not know anything about the term or the structure of Pizza. Therefore the class needs
to be associated with additional information. For this little example of Italian cuisine, a
pizza is composed of a base and some toppings. These two properties could be expressed
by object properties and restrictions applied to them.

OWL has two different types of property restrictions. One restricts the cardinality of
the property the other restricts the set of values. A cardinality restriction could be a
minimum, maximum or a fixed number. For instance there is only one pizza base for a
concrete pizza (see listing 2.4).

<owl: Class rdf:ID="Pizza”>
<owl: Restriction>
<owl:onProperty rdf:resource="#hasBase”/>
<owl: cardinality
rdf:datatype="&xsd;nonNegativelnteger”>1</owl: cardinality>
</owl:Restriction>
<owl: Restriction>
<owl:onProperty rdf:resource="#hasTopping”/>
<owl:allValuesFrom rdf:resource="#PizzaTopping”/>
</owl: Restriction>
</owl: Class>

Class( Pizza partial
restriction(hasBase cardinality (1))
restriction(hasTopping allValuesFrom( PizzaTopping))

Listing 2.4: Class with a property restriction

A restrictions on value sets limits the range of a property. With owl:hasValue the
restriction could be set to a specific value. The other two value restrictions are equivalent
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to the math quantifiers for sets V (for all) and (3 (exists) and named owl:allValuesFrom
and owl:someValuesFrom. The owl:allValuesFrom restriction expresses that all values
of the given property must be of the specified type or range. In my example all toppings
must be of the type PizzaTopping. This excludes for instance Drink from the list of
values, because they are not sub-classed from PizzaTopping.

Beside these basic description methods, OWL allows to compose classes with the
set operators LI (union), M (intersection), and — (complement) named owl:unionOf,
owl:intersectionOf, and owl:complement0Of. These operators work on the instances
of the class. That means, a class which is defined as an intersection of two other classes
is defined by those individuals which belong to both defining classes. Analogous union
means that the individuals of the defined class are instances of one of the two defining
classes.

The complement defines the set of individuals of a class by negation. So all indi-
viduals which are not instances of the complemented class are instances of the defined
class. In listing 2.5 the class NonVegetarianPizza is defined as the complement of
VegetarianPizza. However, this definition is incomplete, because a non-vegetarian
pizza should still be a pizza. The second definition in listing 2.5 is therefore a bet-
ter description for non-vegetarian pizza, because it intersects the set of non-vegetarian
individuals with the set of Pizza instances.

<owl: Class rdf:about="#NonVegetarianPizza”>
<owl:complementOf rdf:resource="#VegetarianPizza”/>
</owl: Class>
<owl: Class rdf:about="#NonVegetarianPizza”>
<owl:intersectionOf rdf:parseType="Collection”>
<owl: Class>
<owl:complementOf rdf:resource="#VegetarianPizza”/>
</owl: Class>
<rdf:Description rdf:about="#Pizza”/>
</owl:intersectionOf>
</owl: Class>

Class(NonVegetarianPizza complete
complementOf ( VegetarianPizza))
Class(NonVegetarianPizza complete
intersectionOf (
complement0f ( VegetarianPizza)
Pizza

Listing 2.5: Complement of a class

OWL DL Properties

Up to this point, classes and the methods of their composition have been explained. Now
OWL property axioms are explained. First, the two classes of properties in OWL DL
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are explained. Second, inheritance of property characteristics with rdfs:subPropertyOf
is described. Third, the axioms domain and range are discussed. Fourth, the definition
of properties through equivalence and inversion with the axioms equivalentProperty and
inverseOf are explained. Fifth, the axioms for the property characteristics functional
and inverse functional and their relationship with mathematical relation types surjective
and injective are discussed. Finally, the transitive and symmetric characteristics of
properties and their corresponding axioms are explained.

OWL has two different types of properties, called datatype property and object prop-
erty. Datatype properties link individuals to data values, while object properties link
individuals to individuals [Bechhofer et al.]. A property can therefore be seen as a binary
relation, where subjects are related to objects or values. Each element of such a relation
is called an instance of a property and all instances of a property form the property
extension of that property.

The definition of properties in OWL is based on the property concept of RDFS [Brick-
ley and Guha 2004]. The two types owl:DatatypeProperty and owl:0bjectProperty
are subclasses of rdf :Property. In OWL Full object and datatype properties are not
disjoint. However, in OWL DL and Lite they are disjoint.

The simplest way to define a property is just by name. Listing 2.6 defines the property
hasBase and states that the values of this property has to be individuals, because it is
defined as an object property. Beside this declarative axiom for properties, RDF and
OWL define nine other axioms.

<owl: ObjectProperty rdf:about="#hasBase”/>

ObjectProperty(hasBase)

Listing 2.6: Simple property axiom

The rdfs:subPropertyOf axiom allows to express that a property is a sub-property
of another property. This implies that all instances of the sub-property also belong to
the parent property. In listing 2.7 the property hasBase is defined as sub-property of
hasIngredient. This implies that having a "base” means also having an “ingredient”.

The next two axioms define the domain and range of an property. A property is a
relation between subjects and objects. The subjects are individuals and belong to a class
extension specified by the domain.

While the domain specifies the subjects, the range specifies the objects of a property.
As shown in listing 2.7 the individuals of the class Pizza have the property hasBase and
the base must be an individual from PizzaBase. This ensures that a topping cannot be
erroneously assigned to a pizza as a pizza base.
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<owl: ObjectProperty rdf:about="#hasBase”>
<rdfs:subPropertyOf rdf:resource="#hasIngredient”/>
<rdfs:range rdf:resource="#PizzaBase”/>
<rdfs:domain rdf:resource="#Pizza”/>
<owl:inverseOf rdf:resource="#isBase0f”/>

</owl: ObjectProperty>

SubProperty0f (hasIngredient
ObjectProperty (hasBase
inverseOQf (isBaseOf)
domain( Pizza) range( PizzaBase))

Listing 2.7: Property definition

In some cases it is useful to define a property as the inverse of another property. For
example, a salami pizza might have a thin and crispy base. The inverse expression would
be: the thin and crispy base is the base of a salami pizza. Formally, the instances of the
property extension are inverted. So all subjects become objects and all objects become
subjects. To state that a property is the inverse of another property the inverseOf
property is used.

Another relational property axiom is equivalentProperty. This axiom states that the
property has the same property extension as the referenced property. This does not
imply that both properties are equivalent. They can still relay to two different concepts.
To state that two properties are identical, the sameAs axiom must be used.

In some cases it must be guaranteed that there is only one object to a subject. Which
means, an individual can only have one value for a specific property. For example there
shall only be one "base” per pizza. This can be ensured by declaring the property to be
functional (see listing 2.8). Such a functional property is a surjective relation between
the domain and the range.

As shown in listing 2.8 a property can also be declared as inverse functional. This
means, that the subject in the property relation is fully determined by the object. This
corresponds with an injective relation between domain and range.
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<owl: ObjectProperty rdf:about="#hasBase”>
<rdf:type rdf:resource="&owl; FunctionalProperty”/>
<rdf:type rdf:resource="&owl;InverseFunctionalProperty”/>
<rdfs:subPropertyOf rdf:resource="#hasIngredient”/>
<rdfs:range rdf:resource="#PizzaBase”/>
<rdfs:domain rdf:resource="#Pizza”/>
<owl:inverseOf rdf:resource="#isBase0f”/>

</owl: ObjectProperty>

SubProperty0f (hasIngredient
ObjectProperty(hasBase
inverseOQf (isBaseOf)
Functional InverseFunctional
domain( Pizza) range( PizzaBase))

Listing 2.8: Definition of a functional property

The last two property types describe transitive and symmetric properties. A transitive
property defines that if a tuple (a,b) is an instance of the property and (b, c) is also an
instance of the same property then (a,c) is also an instance of the property, even if it
is not explicitly specified. For example, Oldenburg is in Germany and Germany is in
FEurope. Therefore Oldenburg is in Europe too.

A symmetric property describes when there is an instance (a,b) of the property then
there is also an instance (b, a). For example if Alice is a friend Bob than Bob is also a
friend of Alice.

OWL DL Individuals

The last aspect to explain of OWL is the definition and the handling of individuals.
They can be defined by class membership, property values, and by identity.

In listing 2.9 the individual Margaritha is defined as member of the class Pizza
with a ThinAndCrispyBase and three toppings. So this individual is defined by class
membership and four properties.
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<Pizza rdf:ID="#Margaritha”>
<hasBase rdf:resource="#ThinAndCrispyBase”/>
<hasTopping rdf:resource="#MozzarellaCheese”/>
<hasTopping rdf:resource="#TomatoTopping”/>
<hasTopping rdf:resource="#0reganoTopping”/>
</Pizza>

Individual ( Margaritha type (Pizza)
value (hasBase ThinAndCrispyBase)
value(hasTopping MozzarellaCheese)
value (hasTopping TomatoTopping)
value(hasTopping OreganoTopping)

Listing 2.9: Individual defined through class membership

The definition of individuals by identity is realized through three axioms: owl:sameAs,
owl:differentFrom, and owl:AllDifferent. The axiom owl:sameAs is used to express that
an individual is identical to another, like an alias. However, the individual may have
additional property values.

<owl: AllDifferent >
<owl:distinctMembers rdf:parseType="Collection”>
<owl: Thing rdf:about="#Margaritha” />
<owl: Thing rdf:about="#Italian” />
<owl:Thing rdf:about="#SalamiPizza” />
</owl:distinctMembers>
</owl: AllDifferent >

DifferentIndividuals( Margaritha Italian SalamiPizza)

Listing 2.10: Individuals separated with owl:Al11Different axiom

The axiom ow!l:differentFrom allows to state that two individuals are definitely not the
same. This is important in ontologies with an open world model [Horridge et al. 2004]
as it is the case with OWL ontologies. However, in ontologies with many individuals
this could lead to a vast set of owl:differentForm statements to keep them all disjoint.
Because this is an error-prone and costly approach, OWL provides the owl:AllDifferent
construct to separate all individuals in a collection (see listing 2.10).

2.2.3 The Rule Language SWRL

The strength of OWL is the modeling of knowledge in form of ontologies based on
classes, individuals, and properties. However, general rules about individuals, classes,
and properties cannot be expressed in a straightforward way. For instance, an OWL-
property called hasParent can be defined as a relation between humans. Furthermore
the class human might have a cardinal restriction to that property of two humans.
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Expressing that a human has tow biological parents. A property hasSibling would also
be defined as a relation between humans. The problem is that for all human individuals
the relationships have to be set explicitly, because OWL is not able to express rules.

Yet a rule language is able to express hasSibling as general rule instead of setting
each relationship by hand. The hasSibling rule would state that two humans who have
the same parent are siblings. So rules can be used to define knowledge of individuals
which is hard to define in OWL. Additionally, any rule would apply to all individuals in
OWL. Furthermore every time a new individual is added, the sibling relations have to
be adapted.

But rules cannot only be used to define knowledge, they can also be used to formulate
queries. OWL by itself has no querying capabilities. Sent to a reasoner, the program tries
to determine additional information out of the given definitions, but to find information
the ontology has to be browsed by hand. Therefore search engines utilizing OWL use
an additional search language such as SPARQL [Prud’hommeaux and Seaborne 2008] to
allow searches on OWL databases.

The simpler search languages just look for classes, individuals, or properties which
match the expression given in the search request. However, they can only find individuals
which are already there and are not able to conclude answers to a given question from
the present knowledge. A more complex language is SPARQL [Prud’hommeaux and
Seaborne 2008]. SPARQL works on RDF-triples, however it can only search RDF-
graphs, which means it can only find defined information by looking for objects, which
have certain relationships to other objects in the RDF-graph. Also SPARQL does not
know of rules, because a rule language is not in the scope of RDF. Rule languages
however can be used to formulate questions which then can be answered by deductions
utilizing facts and rules from a knowledge base.

Different organizations and research groups have proposed such rule languages to
supplement OWL with rules and rule based querying. In an effort to coordinate the
rule language standardization process the W3C has initiated a working group, called
Rule Interchange Format (RIF) Working Group. One goal of this working group is the
development of a rule language called Basic Logic Dialect (RIF-BLD) [Boley and Kifer
2007]. The document about RIF-BLD is still a work in progress.

The language is composed of two sub-languages. One to formulate conditions, which
could be used in rule bodies, the antecedent, or in queries [Boley and Kifer 2007]. The
second sub-language is based on clauses with no more then one positive literal, called
Horn clauses [Horn 1951]. The work on RIF-BLD looks quite promising, however, the
language specification is still under development and no software exists which supports
RIF-BLD or any sub-set of that language.

The National Research Council of Canada, Network Inference now Cerebra Inc.,
and Stanford University proposed a rule language called Semantic Web Rule Language
(SWRL) [Horrocks et al. 2004]. It is not a language as powerful as RIF-BLD. SWRL
is also not an official W3C standard, but it is widely supported by reasoners like Pellet
(see section 2.6.2), Fact++, or Jess (see section 2.6.4) and ontology editors, like Protégé
(see section 2.6.1). Therefore I use SWRL as rule language, which can be replaced by
RIF-BLD in future, when the language is final and rule engines and reasoners exist. The
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language SWRL is based on RuleML [Hirtle et al. 2006] and allows therefor combine
RuleML with the OWL DL sub-language.

The rules are disjunctions of literals with no more then one positive literal, which
are called horn clauses [Horn 1951]. They can be written as an implication between
an antecedent (body) and consequent (head), where both, antecedents and consequents,
are a conjunction of atoms, called predicates. Because SWRL rules are based on Horn
clauses, an empty antecedent implies 'true’, while an empty consequent is interpreted as
"false’.

n m
/\ atom; — /\ atom
i=1 j=1

Atoms in SWRL are predicates accepting one or more terms as parameter. The
predicates represent OWL descriptions and properties, or predefined predicates, such as
sameAs(x,y) or differentFrom(x,y).

OWL descriptions are predicates C'(x) with one parameter where C' is the name of a
class or a data range in OWL and z is an individual name or a value of a data range.
The predicate holds iff « is an instance of C', or for data ranges iff x is a value of the
data range C'.

In OWL, properties are relations between a domain and a range. The domain is an
OWL class and the range is an OWL class or a data range. The property predicate
P(x,y) has therefore two parameters, where x represents an individual from the domain
and y an individual or a data value from the range of the property. The predicate holds
iff  has the property y.

Besides the OWL classes and properties, SWRL has two predefined built-in predi-
cates, called sameAs(zx,y) and differentFrom(x,y). sameAs(x,y) holds iff x is the same
individual or data value as y and differentFrom(x,y) holds iff z is not the same as y.
Additionally to these two predicates, it is possible to extended a reasoner with other
predicates, which can be used with the builtin(r, z1, ..., x,) predicate. The parameter r
is the name of such an built-in predicate and z1, ...z, are the parameter for the built-in
predicate.

The letters = and y in this description are either variables, OWL individuals or OWL
data values. To distinguish variables from individuals and data values, SWRL prefixes
variables with a question mark.

The specification of SWRL is given in an abstract syntax notation similar to the OWL
abstract syntax notation. Additionally an XML representation of SWRL is defined for
internal use of tools. And because XML is hard to read, a human readable form with
antecedent — consequent is specified as well. Both antecedent and consequent are a
conjunction of atoms. For example the rule

hasParent(?x,7y) A hasBrother(?y,?z) — hasUncle(?xz,?z)

expresses that any individual z which has a parent y and where that parent has a brother
z has an uncle. And the uncle of the individual x is z.
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Beside the additive nature of SWRL to OWL, there are also structures which can
be expressed in both languages. In OWL, a property can be transitive or symmet-
ric. These characteristics can also be expressed by rules. For instance, the property
isLocatedIn(z,y) for geographic regions is transitive, which means if Oldenburg is lo-
cated in Germany and Germany is located in Europe, then Oldenburg is located in
Furope too. This transitive example is expressed in OWL as:

ObjectProperty(isLocatedIn Transitive domain(Region) range(Region))

or in SWRL as a rule:
isLocatedIn(?x,7y) A isLocatedIn(?y,?z) — isLocatedIn(?x,?z)

The symmetric characteristic can be expressed in OWL with an object property that
has the type Symmetric. In SWRL the same symmetric characteristic can be expressed
by a rule i.e. P(?x,7y) — P(?y,?x).

Besides the transitive and symmetric characteristics, the relationships describing of
similarity and difference can be expressed in SWRL with the predicates sameAs and
differentFrom and in OWL with the properties owl:sameAs and owl:differentFrom.
The two predicates can be seen as “syntactic sugar” [Horrocks et al. 2004], because they
do not increase the expressiveness of the language. However, they are convenient for
rule designers.

SWRL is a language to describe and define knowledge with rules. Such rules, could in
theory, be used to formulate queries which can in return be used to infer new knowledge.
However SWRL alone has no idioms to display the results. Therefore the Protégé-project
developed a small addition to SWRL, called SQWRL [SQWRL 2007].

SQWRL is not an official or proposed standard, however it is a rule based way to
formulate queries. SQWRL introduces a small set of predicates, which can be used in
the consequent. SQWRL’s predicates are influenced by SQL and provide the following
features:

o squrl:select allows to output variables and variable combinations, similar to SQL
query results.

e squwrl:count counts the number of identical variable values in the result set. It
works similar to the SQL GROUP BY statement.

e squwrl:avg, sqwrl:maz, and squwrl:min calculates the average, the maximum, and
minimum of variable values respectively if they are numerial.

o squrl:orderBy and squrl:orderByDescending sorts the results of a query in an as-
cending and descending way.

e squrl:selectDistinct allows to eliminate duplicate results.

Together with SWRL-based predicates, SQWRL can be used to create complex queries
which is the case in the knowledge querying technique in chapter 5.
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2.3 Ontology-based Architectural Style Modeling

Pahl et al. [2007] introduced an approach to model architectural styles as ontologies.
Their goal is a rich yet easily extensible semantic style modeling language with operators
to combine, compare, and derive architectural styles. Beside descriptions, which can
be made in architecture description languages, they want to store information about
maintainability, dependability and performance in the ontology. The ontology language
they use is called ALC specified in [Baader et al. 2007]. ALC is, however, not used as a
replacement for an ADL, instead it is used to augment existing ADLs [Pahl et al. 2007].

In subsection 2.3.1 the language basics of ALC is introduced and compared to OWL,
because both languages are designed for ontologies. Subsection 2.3.2 introduces their
respective basic ontology vocabularies. And subsection 2.3.3 explains how architectural
styles and relationships between them are expressed with ontologies.

2.3.1 Description Logic Language ALC

The ontology language ALC is a member of the family of attributive languages AL
[Baader et al. 2007, p. 51]. The letters AL stand for attributive language and the
the letter C indicates that ALC allows the unification of concepts and full existential
quantification, where AL only allows this with the universal concept [Baader et al. 2007,
p. 52].

ALC is a description logic language with similarities to OWL DL. It provides a set of
operators and notational elements for ontologies. In [Pahl et al. 2007] ALC is used to
define an ontology for architectural styles. In addition to the operators defined for ALC,
[Pahl et al. 2007] defines extra operators to apply restrictions to architectural styles or
perform refinements on them.

ALC consists of three basic notational elements: concepts, roles, and individuals also
called nominals. A concept is a set of objects, where all objects have the same properties
(but not necessarily the same property values). This corresponds with the definition of
class extension in OWL. Roles in ALC are relations of concepts to concepts. Their
definition corresponds with OWL properties, which are relations between a domain and
a range. The third type of notation element are nominals also called individuals. A
nominal is a named element of a concept.

On a logical basis, individuals can be seen as values or constants, concepts as unary
predicates and roles as binary predicates, just like their counterparts in OWL and SWRL.
Therefore everything which can be expressed in OWL and SWRL can be expressed in
ALC. Table 2.1 shows the correspondents of OWL and ALC descriptions, data ranges,
properties, individuals, and data values, where table 2.2 shows OWL DL axioms and
facts.

The ALC language allows the composition of concepts through a set of operators.
Let C' and D be concepts in ALC. The negation of a concept (—C), the disjunction or
union of concepts (C'U D), the intersection or conjunction of concepts (C 11 D), and the
implication of concepts (C' — D) are also concepts.
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OWL Abstract Syntax

| DL/ALC Syntax

Descriptions(C')

A A
owl:Thing T
owl:Nothing 1
intersection0f (Cy...C},) cin...nc,
union0f (Cy...Cp) ciu...uC,
complement0f (C') -C
one0f (0; . ..0p) {o1}u...U{on}
restriction(R someValuesFrom(C)) 3R.C
restriction(R allValuesFrom(C)) VR.C
restriction(R hasValue(o)) R:o
restriction(R minCardinality(n)) >nR
restriction(R maxCardinality(n)) <nR
restriction(U someValuesFrom((C)) 3U.D
restriction(U allValuesFrom((C')) YU.D
restriction(U hasValue(v)) U:v
restriction(U minCardinality(n)) >nU
restriction(U maxCardinality(n)) <nU
Data Ranges(D)

D D
oneOf (v ... vy) {ni}uU...U{v,}
Object Properties(R)

R R
inv(R) R™
Datatype Properties(U)

U \ U
Individuals(o)

0 ‘ o)

Data Values(v)

v ‘ v

Table 2.1: Correspondents of OWL DL descriptions, data ranges, properties, individuals,
and data values in abstract OWL syntax with description logic (DL) syntax

[Baader et al. 2007, p. 474].

These set-theory-based operators alone are not sufficient to describe complex struc-
tures. Therefore ALC defines value restrictions and existential quantification. In OWL
these terms are represented by property restrictions.
pressed as: VR.C', where R is a role and C' is a concept. This restricts the role’s range
to C. The existential quantification is expressed as dR.C, which forces the elements of
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OWL Abstract Syntax

DL/ALC Syntax

Class(A partial C;...C,)
Class(A complete C...CY)
EnumeratedClass(A4 o1...0,)
SubClass0f (Cy C5)
EquivalentClasses(C;...Cy)
DisjointClasses(Cy...Cy)

ACCin...nc,
A=Cin...nC,
A={o1}U...U{on}
C1 C Gy
Ci=...=C,
CinC;CLi#y

SameIndividual(oy...0,)
DifferentIndividuals(o;...o,)

Datatype (D)

ObjectProperty(R super(R;) ...super(R,) RCR;
domain(C4) ...domain(C),) >1RLC C;
range(C7) ...range(C}) TLCVR.C;
[inverseOf (Ry)] R=R,
[Symmetric] R=R"
[Functionall TC<L1R
[InverseFunctionall TCL1R™
[Transitive]) Tr(R)

SubProperty0f (R; R2) Ry C Ry

EquivalentProperties(R;...Ry) Ri=...=R,

DatatypeProperty(U super(U;) ...super(U,) | ULCU;
domain(Cy) ...domain(C),) > 1U C C;
range(D;) ...range(D;) T CVU.D;
[Functionall) TCELS1U

SubProperty0f (U; Us) Ui C U,

EquivalentProperties(U;...U,) Uy=...=U,

Individual(o type(C)) ...type(Cy) ocC;
value(Rjo01) ...value(R,0,) (0,0;) € R;
value (Uyv1) ...value(U,v,)) (0,v;) € U;

{o1} =...={on}
{oi} E# {0}, i # j

Table 2.2: OWL DL axioms and facts in abstract syntax notation compared to descrip-
tion logic syntax used by ALC [Baader et al. 2007, p. 476].

the concept to have a value for role R of the range C. As these restrictions work on
concepts, the result are also concepts.

Like OWL, ALC allows to build sub-classes of classes. This is done by indicating that
a concept is a sub-concept of another concept C' ©T D. So C is a sub-concept of D.
Analogous sub-properties in OWL are sub-roles in ALC expressed as S C R.

2.3.2 Basic Architectural Style Ontology Vocabulary

After the definition of the ALC language basics in the previous section, the definition of
the architectural style ontology vocabulary can be explained. The vocabulary consists
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of five major concepts: configuration, component, connector, role and port types. All
five types are considered sub concepts of ArchType [Pahl et al. 2007, p. 4]. In addition
to these concepts, the roles hasPart, hasInterface, and hasEndpoint are defined.

The concept configuration type is defined as a set of component, connector, role and
port types with Configuration = JhasPart.(Component I Connector Ll Rolell Port). The
3 indicates that the concept must have component, connector, role and port types. The
relation hasPart connects them to configuration types. Therefore the term Configuration
represents the most generic architectural style.

The component type is defined as an architectural style element (ArchType) which
has a port type assigned: Component = ArchType 1 Jhasinterface. Port. Analogue the
connector type is defined as an ArchType which has a role type assigned. The role type
of a connector type must not be confused with the concept named roles in ALC. A
ALC role is a relation between two concepts and the role type of a connector type is a
property of the connector. A slight inaccuracy exists in the definition of the connector
type in [Pahl et al. 2007], as the definition does not ensure that a connector needs to
have two endpoints. However it can be assumed that the connector type has at least
two endpoints. Otherwise it would not be able to connect anything.

The role hasPart is a relation of configuration types to component, connector, port,
and role types. The hasInterface role is a relation of component types to port types.
Further hasEndpoint is a relation of connector types to role types. These three roles are
part of the basic vocabulary of the ontology and can be extended if necessary.

2.3.3 Definition of Architectural Styles

On the basis of the vocabulary introduced in section 2.3.2, architectural styles can be
defined by extending the basic vocabulary of elementary architectural styles. To explain
this I use the Pipes-and-Filter style as an example from [Pahl et al. 2007].

The Pipes-and-Filter style has three component types DataSource, DataSink, and
Filter. They form the set of Pipes-and-Filter component types. Analogically, the style
has a connector type called Pipe. In a formal way this can be described as:

PipeFilterPort T Port

PipeFilterPort = (Output, Input)
DataSource = < lhasPort 1 3hasPort.Output
DataSink = < lhasPort M dhasPort.Input
Filter = < 2hasPort ™ (3hasPort.Output U IhasPort.Input)
PipeFilterComponent = (DataSource, DataSink, Filter)
PipeAndFilterStyle T Configuration
PipeAndFilterStyle = ZhasPart.(PipeFilterComponent

PipeFilterConnector U PipeFilter Port L
PipeFilter Role)
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Architectural styles and especially middleware-oriented styles are rarely used without
modifications, restrictions or some refinement. The approach in [Pahl et al. 2007] there-
fore defines a set of special operators for architectural styles. The restriction, intersection
and union operators in [Pahl et al. 2007] can be realized in OWL DL as well (see table
2.1). However, the refinement operator requires the assignment of properties to classes,
which is not possible in OWL DL, because in OWL DL classes cannot be individuals.

2 Foundations

2.4 MidArch Method

The MidArch method [Giesecke 2008, ch. 9] is designed to support software engineers
in developing and migrating middleware-oriented software architectures. The method
itself can be divided into the four activities definition, preparation, exploration, and

implementation which can be split into several tasks as shown in figure 2.4.

Activity 1:
Definition

1A
Define Project
Scope

Activity 2:
Preparation

2A
Specify Current
Architecture

1B
Determine
Target
Requirements

2B
Compose
Project-Specific
Quality Model

Activity 3:
Exploration

3A
Specify New
MidArch Style
—

Activity 4:
Implementation

4A
Develop Target
Architecture

3B
Select MidArch
Style Candidate

4B
Adopt Target
Architecture

3C
Specify
Candidate
Architecture

3D
Evaluate
Candidate
Architecture

3E
Assess
Evaluation

Results

Figure 2.4: Overview of the MidArch method with its activities and tasks. [Giesecke

2008)]
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The Definition activity (activity 1) comprises of two tasks. First, the project scope
is defined (task 1A) utilizing the current high-level system documentation. And second,
the target requirements are determined (task 1B) on the basis of the project scope, which
lead to a set of high-level requirements.

The activity 2, called Preparation activity, consists of two tasks. In task 2A the
current architecture of the system, which is to be migrated is reconstructed based on the
available information. If a new system is being built 2A is omitted. Task 2B is dedicated
to the development of a quality model for the project. The quality model is based on
the requirements defined in 1B.

Activity 3 is the central activity of the MidArch method. It is the Ezploration activity
with its five tasks (3A-3E). Task 3A is about forming a new MidArch style in an ADL for
a given platform. The task can be repeated if more than one style has to be defined. In
task 3B one or more existing MidArch styles are selected from a style repository. In task
3C the newly formed styles from task 3A or the selected styles from task 3B are used to
create candidate architecture descriptions. These candidate architectures are evaluated
in task 3D with the quality model from task 2B. All evaluation results are assessed in
task 3E and finally an architecture is selected for activity 4.

Based on the selected architecture from task 3E and the current architecture from task
2A a final architecture is defined in task 4A. Finally, the architecture is implemented in
task 4B utilizing a suitable architecture-based development method.

For my thesis the style modeling procedure from task 3A and style selection task 3B
are of importance, because the collection of meta-information is similar to task 3A and
the selection task might utilize meta-information in the selection process. Therefore the
two tasks are discussed in the following two subsections 2.4.1 and 2.4.2.

2.4.1 Style Modeling Procedure

Giesecke [2008, ch. 8] introduces a five step procedure for style modeling. Figure 2.5
illustrates the procedure and the involved artefacts.

The initial step (1) produces an informal description of the style based on expert knowl-
edge and the available documentation about the middleware product. The description
covers all style-relevant aspects in natural language and yields a list of requirements. In
the second step (2), relationships between the informal style description and general-
purpose styles are identified. The codification step (3) maps the informal description to
MidArch style modeling constructs as defined in [Giesecke 2008]. The codified informal
style description and the relationships to MidArch styles are used together with an ADL
to create a formal style description in the formalization step (4). In the reviewing step
(5), the formal style is checked for consistency and probably altered to ensure consistency
and instantiability.

2.4.2 Style Selection Procedure

In [Giesecke 2008, sec. 9.4] the selection of style candidates (task 3B) is briefly intro-
duced. The selection process works on the MidArch style taxonomy with a project-
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Figure 2.5: General MidArch Style modeling method and artefacts involved [Giesecke
2008]

specific quality model and derived requirements. The styles in the taxonomy are eval-
uated MidArch styles from previous MidArch instances. The evaluation data is stored
with the MidArch styles.

The selection process starts with a most generic style and proceeds hierarchically
through the MidArch taxonomy. In this process, the evaluation data of every style is
matched with the project-specific quality model. The results of these checks are ranked
and the best matches are considered as style candidates.

2.5 OWL-based Knowledge Base Projects

The topic of my thesis is to create an ontology for meta-information about architectural
styles. The development of an ontology is quite a complex process, because the domain,
which is described by the ontology, must be analyzed carefully and entities have to be
grouped. One problem is which of these entities are best represented by classes in OWL
and which as individuals. While individuals have values or other individuals assigned to
their properties, classes work with property restrictions to limit the number of possible
values. This distinction of individuals and classes is especially important when OWL
DL is used, because in OWL DL classes cannot be individuals like in OWL Full.

Instead of deducing an approach from scratch, I introduce two ontology projects, which
use OWL DL. The first is the Web of Pattern (WOP) project and the second is about
an Urban Infrastructure Knowledge Base. Both knowledge bases have to work around
the described issue of individuals and classes.
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2.5.1 The Web of Patterns Project

The Web of Pattern (WOP) is a toolkit for sharing knowledge about software design
patterns. The toolkit comprises two parts: a RDF/OWL-based knowledge base and a
set of Eclipse plug-ins. The toolkit can be used to detect patterns in Java code, create
new patterns from Java code, rate patterns stored in the on-line database, and find
relationships between patterns.

The ontology is formed around 13 classes, 17 object properties, and 11 data type
properties. The patterns themselves are coded as individuals. The relationship between
the patterns is implemented with the object property isSubPatternOf, which is a relation
from pattern to pattern. This is quite different from the approach in [Pahl et al. 2007]
where inheritance is expressed by sub-classing. The patterns in WOP are individuals,
where the styles in ALC are represented by classes. Beside pattern descriptions, the
ontology defines OWL classes to express concepts from the object oriented language
domain. Therefore the concepts class, method, constructor, and field from that language
domain are represented by OWL classes in WOP. The individuals of these OWL classes
are representations of object oriented language structures. For instance, the Abstract
Factory pattern is associated with the class AbstractFactory which is represented by an
individual in WOP. In addition the constructors, methods, and fields are represented by
individuals.

2.5.2 Urban Infrastructure Knowledge Base

The knowledge base for urban infrastructure [Osman and El-Diraby 2006] is designed
to help share knowledge between different fields of urban infrastructure planning, de-
ployment, and maintenance problems. The idea is to create an ontology which defines
a vast set of concepts, which can be used in all fields to collect information about that
field. Through the structure of the knowledge base the information is also available to
ontology users from other fields.

The ontology [Osman 2004] is a large set of classes and object properties with only
view exemplary individuals. The purpose of this ontology is mainly to describe concepts
and not concrete individuals. Therefor this ontology is more a class than an individual
based knowledge base. As the primary goal is to share knowledge and allow browsing
through the taxonomy, the class based approach is more suitable for this project, be-
cause the subClassOf relation has a defined semantic which is directly supported by the
applications used in this infrastructure knowledge base.

2.6 Software Systems and Components

My thesis proposes a basic ontology for meta-information of architectural styles. Such
a work cannot be done in reasonable time without proper tools. Further an ontology
which cannot be queried is quite useless. Therefore other components are required. In
the current section 2.6, I discuss different software components, applications and tools
which can be used for outcome of my thesis.
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2.6.1 Protégé-OWL

Protégé-OWL, from Stanford University, is one of the most popular OWL and RDF edi-
tor and development environments available today. It is based on the Protégé-platform,
has a large supporting community and a wide user base. The editor is written in Java
and can therefore run on many operating systems. It is under active development and

many related projects create plug-ins and enhancements for Protégé-OWL. The sources
of the project are published under GPL v2 [FSF 1991].
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Figure 2.6: Protégé’s individual editor tab. On the left the class tree is shown, followed
by the list of individuals for the selected class. The properties of the edited
individual are on the right.

The core functionality of Protégé-OWL is the creation and manipulation of OWL and
RDF knowledge bases. For this purpose it provides views, called tabs, for class, property,
individual, and annotation management. The editor view for manipulating individuals
can be seen in figure 2.6.

In addition to these editing capabilities the program integrates different reasoners
by means of the DIG-interface standard [DIG 2006]. The reasoners CEL [CEL 2008],
Fact++ [Tsarkov and Horrocks 2007], Pellet [Alford et al. 2007] and RacerPro [Racer
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2008] provide support for the DIG-interface. The Pellet reasoner is also directly inte-
grated into Protégé-OWL since version 3.4. The reasoners allow the user to check the
consistency of the OWL knowledge base, compute inferred types of an ontology, classify
the taxonomy, and perform a wide range of tests on the ontology.

Protégé-OWL does not only support OWL, it is also capable to support SWRL editing
and in cooperation with Jess [Jess 2008] (see subsection 2.6.4) it is able to perform queries
on a knowledge base with SQWRL.

The SWRL view allows the definition of rules on the basis of OWL properties. These
rules symbolize either knowledge of their own, or, when SQWRL predicates are used
in the consequent, queries about the knowledge. Jess itself is not able to process OWL
ontologies directly, because it is a rule engine. Therefore Protégé-OWL has to transfer
the knowledge for OWL and SWRL to a Jess-compatible rule format, and then feed
the knowledge to the rule engine. After processing the rules Protégé-OWL converts
the information back into OWL. All these features are controlled by logic behind the
SWRLJessTab, a part of the SWRL view in Protégé-OWL.

The bridge between OWL and Jess in Protégé-OWL has, however, some limitations,
because not all OWL axioms are transferred by the bridge. This is so, because newly
inferred knowledge from Jess might be in conflict of present OWL knowledge. Yet these
conflicts can be eliminated with a reasoner like Pellet [Protégé 2008].

A last notable feature of Protégé-OWL is its ability to function as a runtime environ-
ment for Protégé-based applications. Protégé-OWL has a form editor for this purpose.
The defined forms together with the Protégé-runtime can be used as separate applica-
tions.

2.6.2 Pellet

Pellet is an OWL reasoner with support for SWRL and SPARQL, the RDF query lan-
guage. The Pellet project was started at University of Maryland’s Mindswap Lab and
is now continued by Clark & Parsia. The reasoner is Open Source and is actively de-
veloped. Therefor any work based on Pellet can be used in future. Pellet also supports
the upcoming OWL DL 1.1 standard which will increase the expressiveness of OWL DL
without making it undecidable.

The Pellet reasoner supports the DIG-interface and works therefore with all frame-
works and tools which support DIG, such as Protégé-OWL and Jena [Jena 2008], a
Semantic Web framework. The reasoner supports querying on the basis of a subset of
the SPARQL query language. However, SPARQL is only an RDF query language and
does not support the semantics of OWL structures and SWRL rules. However, Pellet
allows to augment OWL DL structures with SWRL rules, but has no rule based query
interface at present. Therefore SWRL can only be used to describe general rules about
individuals and enhance the inference of knowledge in the knowledge base. Therefore
the query support must be realized with another program or component.
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2.6.3 Bossam

Bossam is another reasoner package which supports OWL and SWRL input. It was
developed at Electronics and Telecommunications Research Institute (ETRI) in Korea.
The reasoner is freely available, however, its source code is not available. The last version
is dated February 2007, the tool seems to be not actively under development. However
it has some promising features and might become a useful replacement for Pellet if its
development continues again.

Bossam is a reasoner for the Semantic Web and therefore supports OWL. In addition,
it understands SWRL rules and comes with its own rule based language Buchingae.
Buchingae is able to formulate more complex rules than SWRL and can also be used
as a query language, however, it is not supported by any other platform and especially
not by Protégé-OWL, which is the primary editor for my thesis. Another problem with
Bossam is, a software bug with certain OWL documents generated by Protégé-OWL or
other editors. Since the program is not available as source code and no new versions
have been released since February 2007, Bossam is not used in this work.

2.6.4 Jess

Jess [Jess 2008] is a rule engine from the Sandia National Laboratories written in Java.
It is used to develop and build expert systems. Jess cannot handle OWL classes or
SWRL rules directly; they have to be converted into Jess rule language constructs. The
Jess engine is not Open Source software, but it is freely available for academic research.
The project is actively maintained and developed.

Jess has its own set of Eclipse [Eclipse 2008] plug-ins which can be used for rule
development. Additionally, Jess has been integrated into Protégé-OWL and can therefor
be used through an extension called SWRLTab. This extension handles the transfer of
knowledge from OWL and SWRL to Jess. It also provides a query interface on basis of
SQWRL. The SWRLTab allows to formulate queries in Jess language, which makes it a
perfect tool for the knowledge query task.

The Jess language [Friedman-Hill 2008] is a language with functional and logical prop-
erties. The syntax is inspired by Lisp. So all expressions follow a prefix notation and are
list based, like (name pl p2 p3 ...). Similar to SWRL, variables are names prefixed
with a question mark. The language allows the definition of rules based on predicates,
as well as the definition of new functions and predicates. Therefore the Jess language is
not limited to the predicates induced by OWL properties and classes as SWRL is.
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The main goal of my thesis is the modeling of knowledge of middleware-oriented archi-
tectural styles. Current approaches of defining architectural styles focus on component
and connector types and their interaction. These modeling approaches use architecture
description languages (ADL) like ACME. ADLs allow to express the composition of ar-
chitectures and sometimes the composition of architecture styles, but lack the ability to
express properties of styles as a whole. For instance they cannot answer the question: Is
a style X a good choice for the migration from an architecture based on style Y? To an-
swer this question the meta-information about architectural styles is needed, especially
for middleware-oriented styles.

For example, a system based on Cocoon [Cocoon 2008] and Avalon [Avalon 2007]
shall be migrated to a new system where the deprecated Avalon is replaced by another
framework. Therefore information about the compatibility of middleware-oriented styles
is necessary. However the goal of this thesis is not to replace ADLs or architectural style
ontologies (see [Pahl et al. 2007]), the goal is to augment ADLs and architectural style
ontologies with a knowledge data base.

SpringContainer
Individual ] D,
Level SpringConnector %/
owl:Thing
Inheritable
Component
PortT; Type
ortlype Architecture
Family
RoleType Conncetor

Conceptual ) e
Level

Figure 3.1: Illustration of the individual and conceptual levels in a knowledge base and
their relation to each other.

In this chapter the domain model of the knowledge base is explained. A domain model
is a conceptual system describing entities or terms and their basic relationships within
a defined field of interest. The field of interest of this work are middleware-oriented
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architectural styles, and the entities of the model are styles, middleware-platforms, and
related objects.

A problematic aspect in this chapter is related to the term property. It is used in
the context of OWL for object or datatype properties, for properties of architectural
styles, and on the conceptual level for class properties, mostly formulated as property
restrictions. It is important to distinguish between these property types, because they
have different semantic meaning. For example a class can have a parent class. This
relationship is represented by a class property. However individuals can have an object
property for a relationship between two individuals with the same meaning.

The figure 3.1 on page 37 shows two distinct levels of the knowledge base. The lower
layer represents concepts and the relations between them, symbolized through lines.
These concepts are represented by OWL classes and the relations are defined through
object properties and restrictions to these object properties. The inheritance of classes
is represented by the circles in the lower layer. A class which is inside another class is
considered a sub-class. The upper layer represents the individuals of the knowledge base
and their concrete relationships to each other. The gray circles in the upper layer repre-
sent the classes from the conceptual level and symbolize the relationship of individuals
to classes.

The construction of a knowledge base is a difficult task, and many different aspects
have to be kept in mind. The bare definition of concepts do not suffice for a basic
knowledge base. First, the domain of the knowledge base is described and from the
description the requirements are deduced for the domain model.

In section 3.1 the domain model is explained and how it is used to support software
engineers in their decision making process. Section 3.2 discusses two possible basic
approaches for the domain model based on an simplified example domain. Section 3.3
introduces the founding class and property structure of the ontology, which represents
the most basic relationships in the ontology. In a model meta-model approach, this
would represent the meta-model part. However it can also be compared to libraries
in programs where the founding classes and properties are a basic library, like 1ibc on
Unix systems. Section 3.4 introduces some guidelines for populating the knowledge base,
which are utilized in fifth section. Section 3.5 introduces a basic set of styles and related
individuals as well as a classification and guidelines for properties and individuals for
middleware-oriented architecture styles, which should be helpful in the further knowledge
base development.

3.1 Requirements for the Knowledge Base

The domain for this knowledge base is induced through the usage of middleware-oriented
architectural styles in the MidArch method. Therefore the entities are derived from that
domain. A middleware-oriented architectural style can be defined through component,
connector, port, and role types, and additional configurations. The ontology-based ap-
proach for architectural styles [Pahl et al. 2007] is a good basis for my ontology, because
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it defines basic classes, properties, and individuals on the basis of a component and
connector model.

Before I can deduce requirements for the knowledge base and its domain model, I have
to describe usage scenarios for the knowledge base. These scenarios are determined by
the MidArch method and particular by the tasks Specify New MidArch Style and Select
MidArch Style Candidate (see section 2.4).

In task 3A (see figure 2.4), new styles are defined or existing ones are refined. During
this definition and refinement new meta-information about the styles can be found and
codified. In task 3B, a software engineer selects one or more styles as a basis for candidate
architectures. This selection process can be based on the GQM method [Basili et al.
1994], however a knowledge based approach can be helpful as well and improve the
decision making process.

These two use cases induce directly two requirements. First, there has to be a way
to store meta-information in the knowledge base, and second, there must be a retrieval
method. These requirements can be broken down in more distinct requirements.

3.1.1 Storing Meta-Information

The storing meta-information requirement has four aspects induced by the domain
model. First, basic concepts, like style, component and connector type must be de-
fined. Second, the relationships between these concepts must be defined through a set
of properties. Third, additional properties for general knowledge about the style must
be defined as well. And fourth, ranges for these properties have to be defined to ensure
a basic vocabulary, which introduces enough cohesion for the knowledge base. Cohe-
sion means in this case, that the nodes (i.e. individuals) in the knowledge base are
interconnected and no group exists, which is separate from others.

The foundation of the knowledge base is defined through basic concepts. While the
knowledge base is an open system which allows and encourages later extension, it is
important to define a common basis. This basis is build on a set of predefined classes
induced by the component and connector model of architectural styles.

The classes alone however, do not suffice to describe the foundation of the knowledge
base. It is important to define relationships between these concepts. These relationships
are expressed through object properties. One type of properties express the cognation
of individuals. For instance that a style is the parent style of another. Other properties
must describe facts like, styles have component and connector types. And finally there
have to be properties to describe meta-information of styles and their compositional
elements. In fact these properties are relevant to support the engineer in the decision
making process.

The properties used in meta-information modeling, introduce in most cases new sets
of values, which have to be defined through classes and individuals. This also applies to
the initial set of classes and the their basic population with individuals.
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3.1.2 Retrieve Meta-Information

The second requirement is about knowledge retrieval and can also be divided into several
sub requirements. First, if the classes and the object properties are defined in a useful
way information can be automatically inferred which can lead to new knowledge. Most
importantly the graph implied by individuals and their relationships must be cohesive,
for inference algorithm to produce more knowledge. This allows the user to browse the
knowledge base to find information about styles and style aspects.

Beside browsing, the process of querying or questioning the knowledge base is another
way to gain information. The intriguing feature of queries and questions is, that they
allow reasoning with the stored knowledge based on a defined problem.

For example the technology Avalon [Avalon 2007] is deprecated and therefore systems
using this framework should migrate to Spring [Spring 2008] or another Inversion of
Control technology. For Cocoon-based systems this is recommended, because Cocoon
switched from Avalon to Spring as its foundation technology with its new release [Co-
coon 2008]. Such knowledge could be retrieved by studying the Cocoon, Avalon, and
Spring web-pages, however the knowledge base could answer the question as well, when
initialized properly.

3.2 Ontology modeling Approaches

The basic elements of ontologies in OWL are classes, individuals and properties. How-
ever, the use of these elements to design an ontology depends, on the perspective of the
designer and how classes and individuals are seen.

This thesis’ ontology is about architectural styles, component and connector types, and
many other concepts. These concepts could be coded either as classes to represent sets
of elements or as individuals. Both approaches have their advantages and disadvantages,
which are discussed later in this section.

First, I illustrate the issue, with a simple style example representing the Awvalon and
Spring middlewares as well as Inversion of Control as a general purpose style. Second,
I discuss two possible modeling approaches. And finally I discuss their advantages and
disadvantages.

3.2.1 Example Knowledge Base

The Avalon framework [Avalon 2007] is mainly used to model web services and is main-
tained by the Apache Foundation. It is based on the Inversion of Control pattern [Fowler
2004], where components are embedded in a container, which controls these embedded
components [Bornhold 2006]. The Spring framework [Spring 2008] is another implemen-
tation of the Inversion of Control pattern and has the same main application, which
means it is used mainly in web services. However there are differences between both
frameworks.

For instance the way they realize the common Inversion of Control pattern. While
Spring uses dependency injection to vary the connections between components, Avalon
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’ Property ‘ Avalon ‘ Spring
Inherit concept Inversion of Control
Inversion of Control principle | Service Locator Dependency Injection
Configuration management Fortress Java-Beans
Supports pattern Aspect-oriented Programming
Supports pattern Separation of Concern
Supports pattern — Model View Controller
Has documentation missing excellent

Table 3.1: Properties of the Inversion of Control based styles Avalon and Spring

uses a service locator [Fowler 2004]. Other properties for this example are the way how
configuration management is handled in both approaches and which design patterns are
supported by both technologies.

Table 3.1 lists some properties in an example set. The exact meaning of the values is
here not relevant, however it can been seen that the two styles have common properties,
yet the values of these properties can be different. For example the Spring style supports
the Model View Controller pattern, while this information is not available about Avalon.
However both styles support Separation of Concern and Aspect-oriented Programming.
They also have a configuration management however it is implemented with different
methods. Such knowledge can be helpful in the assessment of alternatives, because in a
migration process the configuration have to be ported as well.

3.2.2 Individual based Approach

The individual approach uses only a minimal set of classes to describe basic concepts
and understands architectural styles and the elements belonging to a style as individuals.
Fach individual has a set of properties. One common property for all three architectural
styles is a control container. The OWL DL method of assigning a component type to an
architectural style is done by adding value (hasComponentType ControlContainer).

Without assistance of a rule language, this definition must be added to all three archi-
tectural styles. In more complex scenarios with many styles and where styles may even
have multiple parent styles, this results in copying many definitions, because properties
of the parent style are not inherited by the derived style automatically. This is due to
the fact that individuals do not share properties automatically, because the property
of inheritance has no syntactic meaning for the reasoner. However this drawback can
be attenuated with SWRL rules and a reasoner with SWRL support. The inheritance
aspect of hasComponentType can be expressed with a SWRL rule. Let’s assume the
property for inheritance is called hasParent, then the rule

hasComponentType(?x, Ty) A hasParent(?z,?z) — hasComponentType(?z, 7y)
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3 Model of the Knowledge Base

would define that hasComponentType is true for style 7z, if there is a style 7z which
is parent of 7z and which has the property hasComponentType associated with the
requested component type.

Class( Style partial
restriction(hasComponentType someValuesFrom( ComponentType))
restriction(hasParent maxCardinality (1))

)

Class(ComponentType partial owl: Thing)

EnumeratedClass( Pattern
ModelViewController
AspectOrientedProgramming
SeparationOfConcern

)

ObjectProperty (hasComponentType domain( Style) range(ComponentType))

ObjectProperty (hasParent domain(owl: Thing) range(owl: Thing))
ObjectProperty(haslnversionOfControlPrinciple domain( Style) range(
ServiceLocator
Dependencylnjection
)
ObjectProperty(supportsPattern domain( Style) range( Pattern))
ObjectProperty(hasDocumentation domain( Style) range(oneOf (
“excellent”
77900d77
"satisfactory”
"adequate”
"inadequate”
"missing”

)))

Individual ( InversionOfControl type Style
value ( hasComponentType ControlContainer)
)

Individual ( Spring type Style
value(hasParent InversionOfControl)
value ( hasComponentType SpringControlContainer)
value( hasInversionOfControlPrinciple Dependencylnjection)
value (supportsPattern( AspectOrientedProgramming))
value (supportsPattern(SeparationOfConcern))
value (hasDocumentation( excellent))

)

Individual (Awvalon type Style
value (hasParent InversionOfControl)
value (hasComponentType AwvalonControlContainer)
value( hasInversionOfControlPrinciple ServiceLocator)
value(supportsPattern( AspectOrientedProgramming))
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3 Model of the Knowledge Base

value (supportsPattern(SeparationOfConcern))
value (hasDocumentation( missing))
)
Individual( ControlContainer type ComponentType)
Individual (SpringControlContainer type ComponentType
value(hasParent ControlContainer)
)

Individual (AwvalonControlContainer type ComponentType
value (hasParent ControlContainer)
)

Implies(
Antecedent (hasComponentType(?x,?7y) hasParent(?z,7x))
Consequent (hasComponentType(?z,7y))

)

Listing 3.1: The Spring and Avalon example coded in an individual-based approach using
OWL and SWRL in abstract syntax notation

Listing 3.1 shows the example knowledge base in form of an individual approach.
The basic concepts style and component type are defined as classes. The list of known
pattern are described by an enumerated class (see section 2.2.2), which is used as range in
supportsPattern property. The property hasComponentType is defined as object property
in line 14. The additional rule, which makes this property inheritable can be found at
the end the listing (row number 59).

3.2.3 Classes based Approach

The second approach is based on modeling Avalon, Spring and Inversion of Control as
classes similar to the approach in [Pahl et al. 2007]. Listing 3.2 illustrates this class
based approach.

Class( Style partial
restriction(hasComponentType someValuesFrom( ComponentType))
restriction(hasParent maxCardinality (1))

)

Class(ComponentType partial owl: Thing)

EnumeratedClass( Pattern
ModelViewController
AspectOrientedProgramming
SeparationOfConcern

)

ObjectProperty(haslnversionOfControlPrinciple
domain ( InversionOfControl)
range (
ServiceLocator
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Dependencylnjection
)
ObjectProperty(supportsPattern domain(Style) range( Pattern))
ObjectProperty (hasDocumentation domain( Style) range(oneOf (
Vexcellent”
7good”
"satisfactory”
"adequate”
"inadequate”
"missing”

)))

SubClassOf (
Class(InversionOfControl partial
restriction(hasComponentType someValuesFrom( ControlContainer))
restriction(hasInversionOfControlPrinciple minCardinality (1)))
Style

)

SubClass0f (Class(SpringControlContainer partial ... )
ControlContainer)
SubClass0f (Class(AvalonControlContainer partial ... )

ControlContainer)

SubClass0f (Class( Spring partial
restriction(hasComponentType
someValuesFrom( SpringControlContainer))
restriction(haslnversionOfControlPrinciple
value( Dependencylnjection))
restriction(supportsPattern value(AspectOrientedProgramming))
restriction(supportsPattern value(SeparationOfConcern))
restriction(hasDocumentation value(ezcellent)))
InversionOfControl
)
SubClass0f (Class(Avalon partial
restriction(hasComponentType
someValuesFrom( AvalonControlContainer))
restriction( haslnversionOfControlPrinciple
value( ServiceLocator))
restriction(supportsPattern value(AspectOrientedProgramming))
restriction(supportsPattern value(SeparationOfConcern))
restriction(hasDocumentation value(missing)))
InversionOfControl

)

Listing 3.2: The Spring and Avalon example coded in an class-based approach using
OWL in abstract syntax notation

The foundation for this knowledge base is identical to the individual based approach.
The concepts style and component type are defined as classes. However the distinct
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styles are defined as specialization of these basic classes. This means all styles are
defined as sub-classes of the class Style. The styles Avalon and Spring are sub-classes
of InversionOfControl which is itself a sub-class of Style. This has the effect that all
definitions which apply to Style also apply to Spring.

Style properties in this approach are defined as object properties and expressed as
restrictions in the class specifications. A restriction allows to restrict the value of a
property to a certain set of values (see section 2.2.2). Because the inheritance is realized
through sub-classing, restriction of the parent class are also valid in the descendant class.
This results in implicit property inheritance, which means the inheritance of properties
are not expressed through explicit rules, but through the inheritance of model classes.

3.2.4 Discussion

The class based approach has several advantages over the individual based approach.
First architectural-styles can be defined as sub-classes of other styles, just like in [Pahl
et al. 2007]. This is even more useful when looking at the component types. While the
individual approach assigns new component types to Spring and Avalon called Spring-
ControlContainer and AvalonControlContainer, the class approach just restricts the use
of component types to SpringControlContainer and AwvalonControlContainer respec-
tively. This leads in the individual approach to a situation where ControlContainer and
a specialization of this component type are associated with a style. In the class-based
approach the property is just restricted a little more to allow only the specialized ver-
sion. Through its implicit inheritance property the class-based approach does not need
explicit rules to simulate inheritance.

However the class-based approach has also some disadvantages. The rule languages
are all based description logic for decidability reasons. These languages interpret classes
as unary and properties as binary properties, and the universe of values is formed by the
individuals of the knowledge base (see section 2.2.3). To query such knowledge base, a
rule language can be used as well, because a query is just a rule with an empty consequent
(see section 2.2.3). Therefore it is not possible to use rule based querying in the class
based approach. While OWL Full would allow the use of classes as individuals, the logic
OWL Full implies is undecidable. To be more precise the logic, which is necessary to
implement OWL Full, allows ontology structures which are no longer decidable. This is a
real problem for automatic reasoning. Therefore OWL DL is the only suitable language
and therefore rule languages cannot be used to query the knowledge base.

The existing reasoner and rule engines are designed to work with OWL DL. However
some of them are able to process OWL DL together with a rule language like SWRL (see
section 2.6.2 and 2.6.3). Through these rule languages the expressiveness of OWL DL
can be enriched and explicit inheritance can be implemented. Although this leads to a
lot of definitions, it allows to work explicitly with inheritance, which gives a more direct
control over what can be inherited and what is better left out. The implicit inheritance
can be compared to an opt-out policy, where it has to be stated explicit that something
shall not apply, while the explicit inheritance can be compared to an opt-in policy, where
it has to be stated explicit that something shall apply.
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While the class based approach has a lot of advantages, its limitation in querying is
rather unpleasant. The knowledge could be modeled in a cleaner and more consistent
way, but querying is not possible on such a structure. consequently the individual
approach has to be applied. Furthermore future rule languages such as [Boley and
Kifer 2007] have negation operators, which allow the definition of rules, which block
inheritance of a more generic component type when a specialized one is defined. So this
disadvantage is merely a temporary one.

3.3 Basic Ontology

In the previous section I discussed two possible ways to construct the knowledge-base.
Both have their advantages and disadvantages. However only the individual approach
has all features needed to develop a working knowledge base.

Before I can start working with the knowledge base, I have to define its basic concepts
and relationships between these concepts. Because knowledge bases tend to grow, it is
possible to add further concepts later. This is necessary to express new ideas supported
by the documented styles.

The basic concepts for the knowledge base are architectural styles, component, con-
nector, role and port types, as explained in [Pahl et al. 2007]. Relationships between
these concepts are expressed through properties. In the following two subsections the
elementary concepts are introduced, followed by the object and datatype properties. As
a definition language OWL DL is used in abstract syntax notation.

3.3.1 Basic Concepts

The basic concepts are derived from [Pahl et al. 2007] enriched with the concepts pat-
tern and technology. The central concept is architectural style, however the knowledge
base does not store style descriptions itself, its is merely an addition to a style database.
Therefore the term architecture family is used. Part of the family description are informa-
tion about the component, connector, port and role types. These parts are represented
by concepts as well. Outside the scope of [Pahl et al. 2007] two additional concepts are
introduced to the basic set of classes. The first are architecture-level design patterns,
like Separation of Concern [Dijkstra 1982] and the second is technology. In this case I
use technology to subsume software libraries and packages which are designed to address
a specialized technical problem, such as abstraction of database access or in implement-
ing certain design patterns. Technologies are relevant because the middleware-oriented
styles of the MidArch method are based on technology or at least closely related to
certain technologies.

The five classes based on concepts from [Pahl et al. 2007] have all the capability to
inherit properties from other individuals. Therefore the class Inheritable in listing 3.3
models this capability. The inheritance is expressed by the hasParent property.

An architecture family describes a set of architectures having certain similar charac-
teristics. Based on the concepts from [Pahl et al. 2007], architecture families comprises
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Class(Inheritable partial
restriction(hasParent)
)

Listing 3.3: Primary class for inheritable individuals

SubClass0f (Class ( ArchitectureFamily partial
restriction(hasComponentType someValuesFrom( ComponentType))
restriction(hasConnectorType someValuesFrom( ConnectorType))
restriction(hasParent someValuesFrom( ArchitectureFamily)))

Inheritable

)

SubClass0f (Class( MiddlewareOrientedArchitectureFamily partial)

intersection0f ( ArchitectureFamily Technology)

)

Listing 3.4: Definition of the architecture family concept

of component and connector types. The definition in listing 3.4 expresses the descrip-
tion of ArchitectureFamily through two restrictions, which demand that individuals, this
means concrete architecture families, have component and connector types from the class
ComponentType and ConnectorType respectively. Also ArchitectureFamily inherits the
restrictions on the hasParent property from Inheritable. However Inheritable does not
restrict the use of parent concepts to architecture families, therefor this is done with an
additional restriction, which limits the values to ArchitectureFamily individuals.

The second class defined in listing 3.4 is a specialization of architecture family. The
specialization is called MiddlewareOrientedArchitectureFamily and represents techno-
logy-based and therefore middleware-oriented architecture families. Therefore a middle-
ware-oriented architecture family has two parent concepts, which are expressed through
the intersectionOf statement.

SubClass0f (Class ( ComponentType partial
restriction(hasPortType someValuesFrom(PortType))
restriction(hasPortType minCardinality (1))
restriction(hasParent someValuesFrom(ComponentType)))

Inheritable

Listing 3.5: Definition of the component type concept

The building blocks of architectures are components. Components follow a common
structure. They are normally described by ports and names. Like architectures, compo-
nents can be grouped by common properties. These groups form component types. The
class ComponentType defined in listing 3.5 describes the concept of component types.
These types have common port types, which are assigned with the property hasPort Type.
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3 Model of the Knowledge Base

In addition components need at least one port and therefore component types need at
least one port type, which expressed by the second restriction in listing 3.5. Component
types can be specializations of other component types, just like architecture families
could be specializations of other families. Therefor the definition of ComponentType is
based on Inheritable. Analogue to the definition of ArchitectureFamily, the hasParent is
restricted to ComponentType.

SubClass0f (Class( ConnectorType partial
restriction(hasRoleType someValuesFrom(RoleType))
restriction(hasRoleType minCardinality (2))
restriction(hasParent someValuesFrom( ConnectorType)))

Inheritable

Listing 3.6: Definition of the connector type concept

Beside components, connectors are the second description element to compose archi-
tectures. Like components, connectors can be grouped to connector types. The class
Connector Type (see listing 3.6) reflects these types. Where components have ports, con-
nectors have roles. These role types are referenced by the hasRoleType property. The
cardinality of role types are a minimum of two in order to express that a connector
connects at least two components. A connector with only one end would not make any
sense at all, since it would not connect anything.

SubClass0f (Class(PortType partial
restriction(acceptsRole someValuesFrom(RoleType))
restriction(acceptsRole minCardinality (1))
restriction(hasParent someValuesFrom(PortType)))

Inheritable

)

SubClass0f (Class(RoleType partial {
restriction(connectsTo someValuesFrom( PortType))
restriction(connectsTo minCardinality (1))
restriction(hasParent someValuesFrom(RoleType)))

Inheritable

Listing 3.7: Definition of the port and role type concepts

Ports describe the way how components can communicate with their environment.
On the abstract component type level, these ports are represented by port types defined
in listing 3.7. Port types can be specializations of more general port types, therefore
they need to inherit some properties from these parent types. The inheritance is realized
through sub-classing PortType from Inheritable. Similar to component and connector
types, the inheritance property has to be restricted to port types only.
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While components have ports, connectors have roles. And therefore there are role types
for connector types. In listing 3.7 both classes are defined. While PortType requires that
individuals have to accept at least one role type, RoleType individuals have to connect to
at least one port type. Like all other sub-classes of Inheritable they have an additional
restriction on the type of parent individuals.

Class(DesignPattern partial owl: Thing)

Listing 3.8: Definition of the architecture-level design pattern concept

The class DesignPattern represents architecture-level design patterns like Separation
of Concern or Model View Controller. They do not have any sub-structure in the basic
ontology, but they are required to describe certain characteristics of technologies and
middleware-oriented architecture families. Therefore the concept DesignPattern is rep-
resented by a class without any restrictions (see listing 3.8). However it can be necessary
to extend the definition in future to address properties and relationships of design pat-
tern. This can especially be useful when this ontology is connected to a design pattern
database.

Class( Technology partial
restriction(supportsPattern someValuesFrom( DesignPattern))
)

Listing 3.9: Definition of the technology concept

Associated with design pattern is the class Technology which represents certain tech-
nologies. This can be programming languages, frameworks which are not represented by
architecture families, software packages, or libraries. Additionally this Technology class
allows a more informal view to technologies than architecture families. Because Middle-
wareOriented ArchitectureFamily is an intersection of ArchitectureFamily and Technology,
a technology definition can be transformed in a more formal description without breaking
references.

3.3.2 Basic Properties

In the previous section the foundational classes have been introduced. Along with these
classes some properties have been used. In this section these properties are explained
and defined, along with a additional properties and rules in order to implement basic
relationship functionality into the ontology. Because this is not always possible using
OWL alone, SWRL rules are used as well.

The hasParent property, defined in listing 3.10 represents a relation between individ-
uals of the class Inheritable. Restrictions to this property are specified in the sub-classes
of Inheritable. The property hasRelative is completely coded in SWRL and allows a
broader view on relationships of individuals.
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ObjectProperty (hasParent domain( Inheritable) range(Inheritable))

Implies(
Antecedent (hasParent(?z,7y))
Consequent ( hasRelative(?z,7y))
)
Implies(
Antecedent (hasRelative(?z,7y))
Consequent ( hasRelative(?y,7z))
)
Implies(
Antecedent (hasRelative(?z,?7y) hasRelative(?y,?2))
Consequent ( hasRelative (?z,72))

Listing 3.10: Definition of the hasParent and hasRelative properties

Implies(
Antecedent (hasParent(?z,7y))
Consequent (hasAncestor(?z,7y))
)
Implies(
Antecedent (hasAncestor(?z,?7y) hasAncestor(?y,?z))
Consequent (hasAncestor(?z,?72))
)
Implies(
Antecedent (hasParent(?z,?7y) hasParent(?z,7y))
Consequent ( hasSibling (?z,72))
)
Implies(
Antecedent (hasParent(?z,7y))
Consequent (hasChild(?y,?x))
)
Implies(
Antecedent (hasChild(?z,7y))
Consequent (hasDescendant(?z,7y))
)
Implies(
Antecedent (hasDescendant(?z,?y) hasDescendant(?y,?z))
Consequent (hasDescendant(?z,? z))

Listing 3.11: Additional rules to complement basic properties

Additional rules (see listing 3.11) are defined to complement the basic set of relation-
ships between individuals and to ease later property development and ultimately the
definition of queries. First, a more general form of hasParent property, the hasAncestor
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property is defined. The hasAncestor property allows tracing the complete inheritance
path. The second rule allows finding siblings of an individual. These individual relation-
ships can be useful when searching for similar inheritables.

The rule hasChild implements the inverse of hasParent. This is a convenience rule,
because hasParent would suffice. The last rule hasDescendant make up these comple-
mentary rules. It allows finding all descendants of an individual, which can be helpful
when searching for more specialized version of an inheritable individual.

ObjectProperty (hasComponentType
domain( ArchitectureFamily) range(ComponentType))
Implies(
Antecedent (hasComponentType(?x,7y) hasParent(?z,7x))
Consequent (hasComponentType(?2,7y))

)

ObjectProperty (hasConnectorType
domain( ArchitectureFamily) range( ConnectorType))
Implies(
Antecedent (hasConnectorType(?xz,7y) hasParent(?z,7x))
Consequent (hasConnectorType(?z,7y))

Listing 3.12: Definition of the hasParent property

The properties hasComponentType and hasConnectorType build the relationships be-
tween architecture families and component or connector types. Since component and
connector types are inherited, both properties are complemented by SWRL rules to re-
alize their inheritance. The definition in listing 3.12 utilizes therefore the previously
defined property hasParent.

ObjectProperty (hasPortType domain(ComponentType) range(PortType))
ObjectProperty(hasRoleType domain( ConnectorType) range(RoleType))
ObjectProperty(isPortTypeOf inverseOf (hasPortType))
ObjectProperty(isRoleTypeOf inverseOf (hasRoleType))

Listing 3.13: Definition of the hasParent property

In listing 3.13 the properties hasPortType and hasRoleType are defined. They define
the relations between component types and port types and between connector types and
port types respectively. The two properties isPortTypeOf and isRole TypeOf are inverse
properties of hasPortType and hasRoleType. These definitions allow a rule engine or an
OWL reasoner to use the declaration of component and port type mappings as well as
connector and port types in both directions. It also allows the user to define the relation
from different points of views.

While ports belong to certain components and roles to certain connectors, there exists
also a relationship between ports and roles. Therefore, on an abstract level, between the
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ObjectProperty(acceptsRole domain(PortType) range(RoleType))
ObjectProperty(connectsTo inverseOf (acceptsRole))

Listing 3.14: Definition of the hasParent property

port and role types a relation has to exist. To express this relation, two properties are
defined. In listing 3.14 the property acceptsRole is defined as relation between PortType
and RoleType. The other property connectsTo is defined as the inverse of acceptsRole,
because every time a relationship between a port and a role type is defined the inverse
of it is also true.

ObjectProperty(supportsPattern
domain( Technology)
range ( DesignPattern)

Listing 3.15: Definition of the hasParent property

The last property of the basic ontology, defined in listing 3.15, addresses the reality
that certain technologies support diverse design patterns. Thus middleware-oriented ar-
chitecture families can also support certain design pattern, because they are technologies
and architecture families as defined in listing 3.4.

3.4 Modeling Issues and Solutions

Before populating the knowledge base with the first individuals, simple modeling guide-
lines have to be introduced to prevent a chaotic approach. This has to be done in two
steps. In a first step typical problems are characterized and in a second step guidelines
are expressed to avoid the introduced problems.

3.4.1 Common Knowledge Base Modeling Problems

The definition of knowledge can be cumbersome, because it is often not clear how to
express a certain aspect of knowledge. It can be difficult to decide when to use classes,
properties, rules, or combinations of them.

The first common problem is using enumerated and general classes. An enumeration
allows to define a fixed set of individuals for a class. The class is then completely defined
through this enumeration. In some cases this is enough, but when these individuals have
to be extended with properties and these properties shall apply to restrictions then such
enumeration is impractical, because enumerated classes do not have property restrictions
on their own.

Similar to the class problem, the use of object or datatype properties presents us with
a second problem. While integer based datatype properties imply an ordering, which
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is normally not available for object properties, the meaning of the values can change in
various contexts.

For example grades are expressed in 1 (excellent) to 6 (unsatisfactory) in Germany.
However in other countries for instance the Netherlands, 10 means (excellent) and every
thing lower than 5 is inadequate. Furthermore in some countries numerical values are
not used to grades at all. Therefor it can be wise to use a named approach, which will
could lead to an individual based representation of grades.

The last common problem is about when and what to express in rules or proper-
ties. When building additional rules in OWL properties with symmetric, transitive, or
functional characteristic, then these rules might redefine some of those characteristics.
Therefor it could be concluded that it might be easier to define all characteristics of the
OWL property with rules. However the decision in using OWL or SWRL to describe
these characteristics is influenced by many circumstances. Some tools and software pack-
ages have problems to transfer the OWL characteristics to the rule reasoning domain.
Also it can be easies for a knowledge designer to keep all rules about classes and prop-
erties in one view. If some of the rules are implicitly defined through OWL statements
and others are defined in SWRL, it can be difficult to keep them all in mind during the
design process.

3.4.2 Knowledge Base Modeling Guidelines

The previous section described three typical problems while defining classes, properties,
and individuals for the knowledge base. In this section guidelines which help to solve
these problems are explained and remarks are made.

The general problem about the right usage of classes, properties, and individuals
can be solved by asking a set of questions. First, is the knowledge to be described a
relationship or at least includes a relationship or an entity? If it is a relationship then
this should be described with a property. If not it must be a class or an individual.

Second, is the entity a concept or is it supposed to appear in a query result? This
question is most difficult, because most entities are somehow a concept and an individual.
For example, a cat is an individual type of mammal, however it could also be seen as
a class, because there are sub-classes of cats and in the end there are also individual
lifeforms called i.e. Kitty. The solution to this problem lies in the answer to the second
part of the question: Is it supposed to appear in a query result? If the answer is yes
then the entity must be modeled as individual. Entities, which are possible results of
a query must be individuals, because rule engines, such as Jess (see section 2.6.4), can
only return individuals and not classes in a query result.

All individuals must belong to a class and it is best not to use owl:Thing as class,
because it is too generic. Rather a suitable class for the new individual must be found.
However, sometimes there is no suitable class, then a new class must be defined. When
defining a new class, the class should be on the one hand generic enough to hold more
than one single individual, and on the other hand it should not be too arbitrary. A good
class also applies one or more restrictions to individuals belonging to it. If it is possible

93



3 Model of the Knowledge Base

to inherit features from other classes then the new class should be a sub-class of these
classes.

Classes in OWL can be defined through restriction and with various set operators
from other classes. Another way to define them is by enumerating their individuals.
The question is: When to do use enumerated classes? This question can definitely be
answered, if a class has a definite list of individuals which most likely do not change in
the future and the properties of these individuals do not matter then a enumerated class
can be used. However in many cases it cannot be known if these requirements are met.
Therefore, if in doubt it is a good advice to use classes with restrictions and define the
individuals separately, yet enumeration must not be dismissed completely.

For example if grade values have to be defined then enumerations can be used. If
the property can be expressed by a datatype property, but the datatype property is
not verbose enough for the software engineer, then an enumerated class is a suitable for
defining the values for that property.

This leads directly to the problem of datatype or object properties. Datatype prop-
erties are useful when calculations have to be performed. For example most properties
induced by metrics are easily coded in datatype properties. If the values are more de-
scriptive, like in the above example about the grades (excellent to unsatisfactory), then
an enumerated list of values is a better solution. And therefore object properties are the
right property type.

The last method to describe knowledge are rules. Rules are very powerful and can be
used for many purposes. They are able to express transitive and symmetric relational
characteristics of OWL properties, as well as knowledge which can be described by a set of
relations. For example, the rule expressing the sibling relation of inheritable individuals,
is based on arranging the hasParent property in such a way as to express the definition
of siblings. This allows to define a sibling relationship between two individuals without
explicit definition. Rules are therefore very useful to express general knowledge. However
some relationships can also be defined with object properties, therefore the transitivity
and symmetry can be expressed also with OWL properties (see section 2.2.2).

3.5 Initial Application of the modeling Approach

In the previous sections basic concepts and relations were defined for the ontology as well
as guidelines for knowledge specification. These concepts and relations are the skeleton
of the knowledge base. In this section the knowledge base is populated with its first
individuals to implement a common set of basic knowledge so that other engineers can
use it as a basis of their definitions. The source for these individuals are the classification
in [Shaw and Clements 1997] and the analysis of middleware-oriented styles in [Bornhold
2006].

Further, subsections discuss the classification of styles in [Shaw and Clements 1997]
and the Avalon and Cocoon styles from [Bornhold 2006] with the goal to define individ-
uals and properties for the knowledge base. The last subsection addresses the problem
of finding suitable properties for architecture families, component and connector types.
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3.5.1 Knowledge based on a Field Guide of Boxology

Shaw and Clements [1997] introduced in their paper A Field Guide to Bozology a pre-
liminary classification of architectural styles. Their approach uses five distinct categories
or dimensions to classify architectural styles. These categories are: (1) the type of com-
ponents and connectors; the way (2) control and (3) data is shared, allocated, and (4)
communicated through the system; (5) the suitable reasoning type which is compatible
with the style. Below I explain these five categories and the resulting meta-properties
and utilized classes and individuals for this classification.

Component and Connector Types

The basic ontology already defines the concepts component and connector types. In
[Shaw and Clements 1997] component and connector types are classified by processes,
programs, objects, or transducers. These basic types symbolize component types in the
ontology. Corresponding to these elementary component types the paper from [Shaw and
Clements 1997] introduces connector types. They define character and data streams, as
well as message protocols. The model in [Shaw and Clements 1997] does not include port
or role types, therefore these have to be defined in respect to the associations between
the component and connector types. Listing 3.16 shows the component and connector
types introduced by [Shaw and Clements 1997] as well as the role and port types.

The component types Process, Program, and Object are too generic to assign them
port types. These component types are merely there to define basic vocabulary. Therefor
other component types, which specify more definite entities, can be distinguished by their
relationship to these basic component types. The same applies to the connector type
MessageProtocol.

Control Flow

A second classification topic in [Shaw and Clements 1997] is control, which has the three
aspects topology, synchronicity and binding time. The topology describes the direction
of the control flow and the connections between components. For instance a pipeline
has a linear topology and the control relationship between the main program and sub-
routines is hierarchical. Shaw and Clements [1997] define six distinct topologies for the
control flow (see listing 3.17).

The aspect of synchronicity describes how the state of dependent components is to
the control state of other components (see listing 3.18). In a synchronous system, the
components synchronize regularly and often. In asynchronous systems, components
do not interact or synchronize their operations very often. An opportunistic system
involves no control from one component to another. For example agents work completely
independent from each other.

Beside these three synchronicity values, systems can be parallel or sequential. However
the sequential value makes only sense in lockstep systems. All other systems are parallel
[Shaw and Clements 1997].
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3 Model of the Knowledge Base

Individual( Process type(ComponentType))
Individual ( Transducer type( ComponentType)
value(hasParent Process)
value (hasPortType InputPort)
value (hasPortType OutputPort)
)
Individual ( Program type(ComponentType)
value(hasParent Process)
)

Individual ( Object type(ComponentType))

Individual (InputPort type(PortType)
value(acceptsRole( OutputStream))
)

Individual ( QutputPort type(PortType)
value(acceptsRole(InputStream))
)

Individual (Stream type( ConnectorType)
value(hasRoleType InputStream)
value (hasRoleType OutputStream)

)

Individual ( DataStream type( ConnectorType)
value(hasParent Stream)

)

Individual ( CharaterStream type( ConnectorType)
value(hasParent Stream)
)

Individual (MessageProtocol type( ConnectorType))

Individual (InputStream type( RoleType))
Individual ( QutputStream type(RoleType))

Listing 3.16: Component and connector types and their port and role types based on

[Shaw and Clements 1997]

The last aspect for control is the binding time, which is the time when the control flow
is determined. This can be the time when the program is written ( Write Time), compiled
(CompileTime), invoked (InvocationTime), or a run time (RunTime). The last option
also implies that the control flow may change during run time.

Data Flow

The third classification topic is data flow. Data flow can be described with the four

properties: binding time, topology, continuity, and mode.
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3 Model of the Knowledge Base

EnumeratedClass( Topology
acyclic
arbitrary
hierarchy
incompleteGraph
linear
star
)
ObjectProperty (hasControlTopology
domain( ArchitectureFamily) range( Topology))

Listing 3.17: Properties and related individuals modeling the control topology [Shaw and
Clements 1997]

EnumeratedClass (Synchronity
asynchronous
opportunistic
parallel
sequential
synchronous
)
ObjectProperty(hasSynchronity
domain( ArchitectureFamily) range(Synchronity))
EnumeratedClass ( BindingTime
CompileTime
InvocationTime
RunTime
WriteTime
)
ObjectProperty(controlBindingAt
domain( ArchitectureFamily) range(BindingTime))

Listing 3.18: Properties and related individuals modeling the aspects synchronity and
binding time of control [Shaw and Clements 1997]

The binding time corresponds to the control flow property named binding time. It is
the time when the data flow is determined. The definition of the property dataBindingAt
in listing 3.19 uses therefore the same range as controlBindingAt.

The topology of the data flow between components can have the same characteristics
as those of the control flow. Therefore the definition of data flow topology in listing
3.19 is based on the same range. The topology describes the graph of data flow in an
architecture style.

The next property is continuity. In [Shaw and Clements 1997] continuity has two as-
pects. The first aspect describes whether the data flow in continuous, like in a streaming
application, or sporadic, like in a chat program. The second aspect is the data intensity.
Data intensity can be high, which means the application relies more on data transmission
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3 Model of the Knowledge Base

ObjectProperty(dataBindingAt
domain( ArchitectureFamily) range(BindingTime))

ObjectProperty(hasDataTopology
domain( ArchitectureFamily) range( Topology))

Listing 3.19: Properties for binding time and topology of data flow

than on CPU power, or low, which indicates that the application is more compute inten-
sive. Because these two aspects can be modelled as two separate properties, I decided
to define them as separate properties (see listing 3.20).

EnumeratedClass( Continuity
continuous
sporadic
)
ObjectProperty (hasContinuity
domain( ArchitectureFamily) range( Continuity))
EnumeratedClass ( Datalntensity
low
high
)
ObjectProperty(hasDatalntensity
domain( ArchitectureFamily) range( Datalntensity))

Listing 3.20: Properties for data flow continuity and intensity

The mode is the last property of data flow to describe. The mode describes the way
how data is made available throughout the system. The broadcast mode describes styles
where data is transmitted to all components and only the receiving components decide
whether they do something with the data or ignore it. A more sophisticated variant
of broadcast is multicast, because the sender defines a set of receivers. This minimizes
traffic. In shared mode components make data available in a shared place, where every
component has access.

For example database systems or systems which support shared memory areas can
be seen as such systems. A close relative to shared mode is copy-in-copy-out mode,
where components take data from the public store, modify it, and re-insert it into the
public store. The last mode to describe is the passed mode. In an object style, data is
passed from component to component, which means a data object leaves one component
and is then only available to the other component. The definition of modes and the
corresponding property are shown in listing 3.21.
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EnumeratedClass (Mode
broadcast
copy—in—copy—out
multicast
passed
shared
)
ObjectProperty (hasMode
domain( ArchitectureFamily) range(Mode))

Listing 3.21: Different modes of data flow and sharing.

Control and Data Interaction

Data and control flow have similar properties, as already explained. While binding time
is defined in the same way, the user can define a specialized rule to find out if data
and control flow are the same or different. The topology however is more complex. For
instance if both topologies are arbitrary, then this does not mean that the topologies
have the same edges and nodes. Therefore this has to be specified in an additional
property. Also the flow direction of data and control could be in the same or opposite
direction. Two properties are defined (see listing 3.22) to cope with this aspect.

DataProperty(islsomorphic

domain( ArchitectureFamily) range(boolean))
DataProperty(hasSameFlowdirection

domain( ArchitectureFamily) range(boolean))

Listing 3.22: Control and data flow shape and direction

Type of Reasoning

The overall design of an architecture and its underlying style require different analy-
sis approaches [Shaw and Clements 1997], which imply different architecture modeling
concepts. For instance a system of parallel working components can be modeled by
non-deterministic state machines, while another system is a sequence of atomic steps
and therefore can be modeled as a composition of functions [Shaw and Clements 1997].
These different modeling concepts lead to different ways of reasoning about them. How-
ever these ways not represented by a property in the knowledge base, because the archi-
tectural styles represent this aspect by themselves.

3.5.2 Knowledge based on Middleware-oriented Styles

The middleware-oriented styles introduced in [Bornhold 2006] contain different meta-
properties which are not directly expressed through their ADL description. Previously
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in section 3.2 some properties of an Avalon-style have already been noted. In this
subsection they are discussed in more detail and formalized in OWL and SWRL.

The middleware-oriented styles used in [Bornhold 2006] do not necessarily lead to
properties which can be used in a wide variety of style descriptions. However they allow
to introduce different sources and classes of properties. Beside that, Spring and Avalon
are frameworks which belong to the set of Inversion of Control technologies. Other
frameworks with a similar target might share features and therefore properties with
Spring or Avalon.

The Inversion of Control styles Avalon and Spring, as specified in section 3.2, have
different ways for implementing the Inversion of Control pattern. One aspect of this dif-
ference is the use of a ServiceLocator component in Avalon while in Spring the container
is responsible for dependency control. Another aspect is way how dependency injection
is realized. The enumerated class DependencylnjectionTypes in listing 3.23 comprises
these different types.

EnumeratedClass( DependencylnjectionType
Interfacelnjection
ConstructorInjection
SetterInjection
)
ObjectProperty(hasDependencylnjectionType
domain( ArchitectureFamily) range(DependencylnjectionType))
Implies(
Antecedent (hasAncestor(?z, Dependencylnjection)
DependencylnjectionTypes(?z))
Consequent ( hasDependencylInjectionType (72,7 2))

Listing 3.23: Different implementation types of the Inversion of Control pattern

The rule included in listing 3.23 requires that individuals, which are descendants of
Dependencylnjection, have also an DependencylnjectionType. The type property is an
important property for Inversion of Control based architecture families, because the type
has significant bearing on cost of implementation and migration. While Constructorin-
jection and SetterInjection allow the use of normal Java objects, called POJO (plain old
Java objects), the Interfacelnjection styles require components to use certain interfaces
defined by the framework.

Another common property of frameworks is testing. Testing allows a developer to
check if certain parts of the implementation are working. In listing 3.24 the testing
property is described. The class of possible test concepts is declared with two restrictions.
These restrictions help to reference a certain test concept with a concrete test technology
and a programming language. The restrictions are not defined as required, because not
all test concepts are technology or language related.

In listing 3.24 the properties hasTechnology and supportsProgrammingLanguage are
used before explaining them in detail. The definition of both properties is shown in list-
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3 Model of the Knowledge Base

Class( TestConcept partial
restriction(hasTechnology someValuesFrom( Technology))
restriction(supportsProgrammingLanguage

someValuesFrom( ProgrammingLanguage))

)

Individual ( Stubs type( TestConcept)
value ( supportsProgrammingLanguage Java)

)

Individual ( UnitTest type( TestConcept)
value (hasTechnology JUnit)
)

ObjectProperty (supportsTestMethod
domain( ArchitectureFamily) range( TestConcept))

Listing 3.24: modeling testing abilites in middleware-oriented styles

ObjectProperty(hasTechnology domain(unionOf (
TestConcept))
range ( Technology)

)

ObjectProperty (supportsProgrammingLanguage domain(unionOf (
TestConcept
Technology))
range ( ProgrammingLanguage)

Class ( ProgrammingLanguage partial owl: Thing)
Individual (Java type(ProgrammingLanguage))
Individual (C type(ProgrammingLanguage))
Individual (CPP type( ProgrammingLanguage))

Listing 3.25: Supplemental properties and classes used by test ability modeling

ing 3.25. The use of these properties is not limited to the class TestConcept, therefore
a more open definition is required. Furthermore it is not possible to make a complete
definition, because future classes might also use the properties hasTechnology and sup-
portsProgrammingLanguage and might need to add new technologies and languages.
The property hasTechnology is defined as relation between TestContept and Technol-
ogy. However unionOf is used to express later extensions of the domain. The property
supportsProgrammingLanguage is defined similar to hasTechnology, but with two classes
mentioned in the domain. The used class ProgrammingLanguage is a stub, as the indi-
viduals do not need to have any properties for my purposes. Therefore these definitions
are only a declarations of names. A more complex definition of programming languages
and their implication on middleware-oriented style selection is not required. However
a complete ontology about programming language can be added later even when the
names do not match. This is one of the strength of OWL as explained in section 2.2.2.
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DatatypeProperty(documentationQuality Functional
domain( ArchitectureFamily) range(oneOf (
"excellent”
7good”
"satisfactory”
"adequate”
"inadequate”
"missing”

Listing 3.26: Quality of technology documentation

The aspects about supported patterns and technology are already cared for in the
elementary domain model. One last property to be explained in the initial population of
knowledge base is for quality of documentation. The example used in section 3.2 is very
limited. A more ordinal definition would be more helpful. In listing 3.26 such definition
is given. The datatype property is defined as an enumeration of literals with an implicit
order where excellent is the best and inadequate the worst setting. The value missing
indicates the absence of documentation.

All previous properties focus on the architectural style as a whole. However component
and connector types can have properties as well. The example style InversionOfControl
is not only a named individual, but the style also implies a certain meaning. The most
basic information about this style is that components are embedded in other components
called containers. The container also controls the embedded components through a
connector. This can be expressed by rules and by a property representing that relation.

ObjectProperty(controls domain(ComponentType) range(ComponentType))
DatatypeProperty(isContainer

domain ( ComponentType) range(zsd:boolean))
DatatypeProperty(isEmbeddable

domain ( ComponentType) range(zsd:boolean))

Listing 3.27: Definition of the embedding and control aspects of the InversionOfControl
style

Listing 3.27 defines properties to directly express the embedding concept realized by
the InversionOfControl style. However a more elegant way would be to define the relation
of container and embeddable components on a more generic basis.

As long as there is only one container type and one type embeddable component types,
there have to be three values set in each architectural style which are descendants of In-
versionOfControl. It would be better, if such property induced by the relationship of
component types, can be defined once and the rest is done by the computer. The rule
based definition of the controls property in listing 3.28 formulates the controls relation-
ship based on other properties in one place. In derived styles it is enough to define that
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Implies(
Antecedent (

hasComponentType(? style ,? comp) isContainer(?comp, true)
hasComponentType(? style ,? embed) isEmbeddable(?embed, true)
hasConnectorType(? style ,? connector)
hasPortType(?comp,? portS) acceptsRole(?portS,?roles)
hasPortType(?embed,? portC) acceptsRole(?portC,?roleC)
hasRoleType(? connector ,? roleS)
hasRoleType(? connector ,?roleC)

)

Consequent ( controls(?comp,? embed))
)
DatatypeProperty(isContainer
domain ( ComponentType) range(zsd:boolean))
DatatypeProperty(isEmbeddable
domain ( ComponentType) range(zsd:boolean))
Implies(
Antecedent (hasAncestor(?z,?7y) isContainer(?y, true))
Consequent (isContainer(?z, true))
)
Implies (
Antecedent (hasAncestor(?z,?y) isEmbeddable(?y, true))
Consequent (isEmbeddable(?z, true))

)

Listing 3.28: Definition of the embedding and control aspects of the InversionOfControl
style in a generic approach

a component is a descendant of the container or an embeddable component. Their roles
in the style are defined.
The main rule building this connection could be described in English as:

IF a style has a component type defined as container

AND the style has another component type defined as component

AND the style has a connector which connects one port of the container type
with one port of the embedded component type

THEN the container type controls the component type

The conjunction hasPortType (?comp, ?portS) acceptsRole (?portS, ?roleS) hasPort-
Type (?embed, ?portC) acceptsRole (?portC, TroleC) hasRoleType (?connector, roleS)
hasRoleType (7 connector, TroleC') from the first rule in listing 3.28 describes the connec-
tion between two components with a specific connector. In theory the conjunction could
be used to define predicate which holds if the two given components can be connected
by the given connector. That would require the definition of a predicate with three
parameters. However SWRL does not allow the definition of predicates with more than
two parameters. Therefor the conjunction cannot be formulated as a predicate. However
it can be used as a template for other rules, which need this expression.
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3.5.3 A Classification for Meta-Properties

In the previous section, some properties have been introduced. As source [Shaw and
Clements 1997] and [Bornhold 2006] have been used. However the search for properties
is difficult and therefore a set of questions and lists with classification for properties can
be helpful aids in the property retrieving process. Therefore I am mentioning sources of
properties and what kind of questions these properties normally answer for the reader.
In a second step, I define a classification for properties on basis of these questions.

A typical source for properties are technical manuals and documentation about frame-
works and technologies, which are the basis of middleware-oriented styles. These doc-
umentations answer the question how to use a certain framework. Further the decom-
position into component and connector types can be made on the basis of such docu-
mentation, as already explained in section 2.4. Most manuals mention the application
domain for a framework, like workflow management or grid computing.

Another source is user experience from system engineers. Their knowledge is often
implicit, which means only they know what they know. However their knowledge is
valuable, because it reflects the real use of technologies. So problems and inconsistencies,
which are not mentioned in documentation can be extracted from them. Experience
answers questions about the usability of technologies in certain scenarios. Additional
experience is the source of information about best practice.

The last source for properties is knowledge collected through empirical studies. For
example evaluation with the Goal-Question-Metric (GQM) method [Basili et al. 1994]
produces knowledge about middleware-oriented styles. The GQM method is used to
generate goals, questions for these goals, and a set of metrics to answer the questions.
The answers to these question are also a source of knowledge.

These question lead to five areas of knowledge about middleware-oriented styles, which
can be seen as a classification scheme for properties. Table 3.2 shows exemplary the
previously defined properties in relation to the five areas of knowledge.

The first area comprises the composition of a style. This area is normally targeted
by ADLs. For the ontology only a subset of the composition relationships are necessary.
These comprise relationships between component, connector, port and role types of a
style and the style itself. Additional information about what a thing is, is also part of
this area. For example the definition of the term Container and its special relationship
to other components is of interest. However detailed constraints on these entities are
not required and are better formulated in an ADL.

The second area focuses on the purpose of architecture style and their underlying
technologies or software frameworks. This includes information about the application
domain. For example, small or large enterprises, or system which are mission critical or
only supplementary.

The third area is about features of software frameworks and architecture styles based
on these frameworks. A feature in this case is any particular property of a style or
related styles. For example, the InversionOfControl style has the feature of a container
and embedded component relationship. And concrete frameworks, like Avalon or Spring
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Area of Knowledge Property

Style composition hasParent
hasComponentType
hasConnectorType
hasPortType

hasRole Type

Purpose, application domain | x

Features hasControlTopology
hasSynchronity
controlBinding TimeAt
hasDataTopology
dataBinding TimeAt
hasContinuity
hasDatalntensity
hasMode

isIsomorphic
hasSameFlowdirection
hasInversionOfControl Type
supportsTestMethod
hasTechnology
supportsProgrammingLanguage
Quality documentationQuality
Documentation documentationQuality

Table 3.2: The object and datatype properties of the initial knowledge base in relation
to the five knowledge areas.
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implement different types of Inversion of Control, so the related architecture styles have
to reflect these types as properties.

Quality aspects of architecture styles, like complexity, stability, or performance — to
name a few — form the fourth area of properties. These quality aspects are often ad-
dressed in quality models created (see [Basili et al. 1994]).

The last area is about documentation and support for a framework. Outdated doc-
umentation or lack of support for a framework can affect the usability of a framework
and therefore influence the selection of an architecture style.

These areas represent a classification for properties. However there might be knowl-
edge which does not fit in these areas, but still is useful information for a software
engineer. Therefore the classification shall not be seen as a exclusive system where every
property have to fit in, but more as a basis for the search for properties. Furthermore
there can be properties, which fit in more than one classification category. This is not a
problem, because the purpose of classification is to guide but not to restrain the engineer.
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The previous chapter discussed a basic ontology for the knowledge base and guidelines
for the development of meta-information of styles. These guidelines are helpful to define
properties for styles based on existing information. However they neither integrate the
definition task into the corresponding MidArch task 3A (see section 2.4.1) nor explain
the full knowledge retrieval process. Therefore this chapter focuses on the complete
knowledge retrieval technique which augments the style creation process of the MidArch
method [Giesecke 2008].

Before a knowledge retrieval technique is described, the requirements for the technique
have to be defined in the context of the MidArch method. Based on these requirements a
technique can be created in a three step approach. Section 4.1 discusses the requirements
and their context. Section 4.2 motivates a conceptual design of the analysis technique
which is complemented by a detailed process description of the method in section 4.3.

4.1 Requirements

The first step towards a knowledge modeling technique is the definition of requirements.
These requirements are induced by the MidArch method [Giesecke 2008] which describes
processes for gaining information about middleware-oriented styles. This resulting in-
formation can be used as input for the modeling technique. The MidArch method is
the greater context in which this technique has to fit. This means, it has to follow the
process structure and procedures of the MidArch method.

The requirements can be grouped in three categories:

1. Requirements induced by the MidArch style modeling procedure
2. Requirements of different input sources for the knowledge base

3. Requirements related to the view of the software engineer

4.1.1 Style Modeling Procedure Requirements

The style modeling procedure [Giesecke 2008] is briefly explained in section 2.4.1. It is
a procedure with five steps. In each step, information is collected or deduced and can
be used as input for the knowledge modeling technique. As the information becomes
more formal by passing it through the style modeling procedure, the information for the
ontology gets more precise. Therefore I can deduct the following requirement:

Requirement 1 The knowledge modeling technique must follow the style modeling pro-
cedure and should define additional jobs for each step in the modeling procedure.
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4.1.2 Input Source Requirements

When looking at the different steps of the modeling procedure, information is gathered
from technical documentation and experts, and then compiled into new structured docu-
mentation. The structured documentation, the technical documentation and the experts
form three distinct input sources for the analysis technique which have to be treated ac-
cording to their specific properties. This leads to three requirements for information
input:

Requirement 2 The knowledge modeling technique must provide a procedure to convert
informal style descriptions from the MidArch style modeling procedure into information
for the knowledge base.

Requirement 3 The knowledge modeling technique must introduce a method to extract
relevant information from long documents for the knowledge base.

Requirement 4 The knowledge modeling technique must describe a method to record
and transcribe verbal input and transform it into information for the knowledge base.

4.1.3 User Dependant Requirements

The last group of requirements are induced by the software engineer and the working
environment. The techniques have to reflect language and point of view of the software
engineer. Otherwise one struggles with the technique’s way of expressing terms and
cannot focus on the primary work. The MidArch method is also used to make knowledge
explicit (see 2.1) so that engineers can learn from the experience of others. This implies
that different persons in different projects and domains contribute descriptions for the
knowledge base. This input could result in information which is contradictory or at
least different in terminology which lead to disjoint isles of knowledge. To avoid such
incompatibility the technique should support the interconnection of these isles. Therefore
four additional requirements can be derived:

Requirement 5 The language and view of the software engineer must be the basis of
the vocabulary used to codify information.

Requirement 6 The knowledge modeling technique must follow the style modeling pro-
cedure to avoid context switches during style development.

Requirement 7 The knowledge modeling technique should avoid the forming of isles of
knowledge.

Requirement 8 The knowledge modeling technique must interconnecting of isles of
knowledge.
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4.2 Basic Modeling Concept

In this section, the basic concept of the knowledge modeling technique is developed. The
framework for this technique is the MidArch style modeling procedure and therefore the
technique follows the five steps of the procedure. The requirements 1 and 6 (see above)
are fulfilled by using the MidArch style modeling procedure as a framework.

Based on the steps of the modeling procedure, the associated additional tasks for the
analysis technique are sketched. In the following, these tasks are briefly introduced.

Informal Modeling In this first step information is gathered from technical documen-
tation, like: middleware platform documentation, system documentation, or application
documentation, and experts of these areas. For the documentation a questionnaire and
a paraphrasing method can be used to extract meta-information. These experts are best
interviewed by predefined question catalogs. Experts can also serve as early reviewers.
The resulting meta-information forms the informal knowledge description and becomes
part of to the informal style description.

Relating In the second step, the new informal style is related to existing styles and
technologies. For example: If a middleware-framework is Java-based, then this relation-
ship must now be recorded. Therefore the knowledge base is interrogated for existing
technology definition (see also section 3.3) and if necessary new definitions are created
for later addition.

Codification Out of previously defined informal style meta-information, more struc-
tured sentences are derived. The syntax of these sentences should be close to OWL and
SWRL formalisms. Used objects in the informal style description should be categorized
by existing, or if necessary, additional concepts, which have to be expressed explicitly.

Formalization In this modeling step, the structured sentences from the codification step
are transformed in OWL classes, individuals, and properties and in additional SWRL
rules. The formal style descriptions are used to define the corresponding structures in
the knowledge base. This means each style is represented by an ArchitectureFamily or
MiddlewareOriented ArchitectureFamily individual and all component, connector, port,
and role types are represented by individuals of the their classes respectively.

Reviewing The last step is dedicated to a review process. In the MidArch style model-
ing procedure the formal style is checked for consistency. Analog, the meta-information
is checked for completeness. Additionally relationships of the newly formed knowledge
with other, stored previously meta-information have to be evaluated. The review process
is governed by requirement 8.
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4.3 Detailed Modeling Concept

The previous section gave an overview of the knowledge modeling technique and ex-
plained the relation to the MidArch style modeling procedure. Section 4.3 focuses on
the detailed design of each task. In figure 4.1 the technique is shown as a diagram. The
names on the left represent the five steps of the MidArch style modeling procedure as a
reference for the proposed knowledge modeling technique.

Informal Modeling Informal Style Technical
Description Documentation
Analyze Informal Analyze Perform Expert
Style Description Documentaton Interviews
\ 4 Description-level

MidArch Style
Taxonomy

Generic Style Informal Knowledge
------ Description Description
—

Style and Tech.
Relationships

Y List of Relation- Codified Informal
""""""""""""""""""""""""""""""""" ship Information |[*777777TTTTTTTTTT[TTTTTTTTTTTTTTTTT - Style Description
Codification
\

Cadification of
Style Information

Codified Knowledge Formal Style

......................................................................................... Description Description
Formalize Style
OWL/SWRL

Structures

Review Style

Figure 4.1: The knowledge modeling procedure, its tasks, and artifacts based on the
steps of the MidArch style modeling procedure (see figure 2.5).

To illustrate the knowledge modeling technique a simplified example of the Spring
Framework is used, which has already been used in section 3.2 to introduce different
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ontology modeling approaches. As an example input text the following sentences are
used.

Spring supports the Model-View-Controller design pattern through JSF [Sun
Microsystems 2008b]. The Spring Framework implements the Inversion of
Control pattern.

The subsections below describe the tasks of the knowledge modeling technique, their
input and output documents, their relationship to the style modeling procedure, and
the methods to collect and assemble knowledge. Subsection 4.3.1 describes the informal
modeling where new information is introduced into the knowledge building process.
Subsection 4.3.2 explains how new information is related to existing information. In
subsection 4.3.3 the informal information is transformed into a standardized description.
The formalization of the new information is explained in subsection 4.3.4. And finally,
subsection 4.3.5 sketches the review for the knowledge modeling technique.

4.3.1 Informal Modeling

This first step in the knowledge modeling procedure is used to introduce new information
to the knowledge process. This is done by examining three different input sources as
shown in figure 4.1. In the absence of a platform expert, the interview task can be
skipped. However the analysis of the platform documentation and the informal style
description are required.

To explain the analysis of these input sources, the knowledge to be retrieved must be
characterized. This subsection is therefore subdivided in four parts. Three knowledge
aspects are defined first, which describe characterization of the knowledge. Second, the
analysis of the informal style description is explained. Third, the analysis of technical
documentation with a paraphrasing technique is discussed. And finally the optional and
supplemental interview task is introduced.

Knowledge Aspects

The style composition, its component and connector types are provided by the style
modeling procedure and are therefore already acquired and present in the informal style
description. Therefore the analysis of the input documents can focus on three knowl-
edge aspects which represent three different views on a middleware-oriented style. The
first aspect relates to the target domain and the domain vocabulary of the middleware-
oriented style. The second aspect focuses on technical aspects of the style. And the third
aspect deals with the quality aspects of the technology and its documentation.

1. The software engineer or style developer examines the target domain of the ana-
lyzed platform technology and identifies the problems the platform developers had
in mind when creating the platform. Additionally documentation of the application
domain have to be analyzed and the resulting information has to be captured.
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2. The technical aspect focuses on information of supported design pattern, used
technologies, or related frameworks. For example the previously mentioned Spring
style supports various design patterns (see section 3.2). The related technology
is known to work with other frameworks to implement these patterns. It is also
important to know what dependencies Spring has. For example: Spring is Java-
based and therefore works good with other Java-based frameworks, however to use
it with Python or C introduces additional cost and complexity.

3. The suitability of a platform is affected by quality aspects like interoperability and
stability. Additionally the support for the platform by a vendor or a community
is also an important quality aspect, because unsupported software can potentially
result in higher cost.

Analyze Informal Style Description

The informal style description from the Informal Modeling step of the MidArch style pro-
cedure contains structural information about the resulting styles and meta-information
about the style and its building blocks. The description is normally composed of a sec-
tion for the style overview as well as sections for the styles component, connector, port,
and role types.

Initially this structural information is extracted and used to define categories in the
resulting informal knowledge description of the style meta-information. After that, the
informal style description is evaluated with the three, above defined knowledge aspects
in mind.

Firstly, the target domain of the technology and its vocabulary is determined by
reading the description. Secondly, information about supported technologies and design
pattern is retrieved, if any have been mentioned in the description at all. And thirdly,
the description is scanned for quality aspects. However the informal style description,
as present in [Bornhold 2006], is focusing only on structural information and domain
knowledge. Therefore not all informal style descriptions contain information for all three
knowledge aspects.

Analyze Technical Documentation

The platform or technology documentation can be one or more documentation artefacts
such as: specifications, tutorials, examples, or lists of frequently asked questions (FAQ).
These documents normally provide answers to all three knowledge aspects, however the
information is scattered across such documents. Therefore the first step is to identify
and obtain all such documentation. Then the documentation is analyzed and categorized
into the three knowledge aspects.

A possible working analysis method is reading the documents in a structured way
by paraphrasing paragraphs. This means, each paragraph is subsumed in one sentence.
Transitional and introductory paragraphs are skipped. However, this would lead to many
meaningless sentences. A preselection of relevant sections and subsections for analysis is
recommended.
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To speed up the process, the use of categories is useful. Categories help focusing on
important information. However categories have to be created. In the content analysis
literature [Gerbner et al. 1969, Mayring 2000] two category generation approaches are
described. The first approach is called inductive category development and the second
is deductive category application. The main difference is that the inductive approach
starts with a criterion for selecting categories. This means, it describes when to form a
new category and what level the category should be. The deductive approach defines
categories on the basis of an underlying theory for the research [Mayring 2000]. Used to
analyze technical documentation, this theory would be a description of meta-information
of an architectural style.

In case of technical document analysis for meta-information, a theory-based approach
is less useful, because predefined categories do not exist. Furthermore the deductive
approach for finding knowledge is more applicable in order to test a theory, than to
collect new knowledge for building a new theory. Theory building is better done with
the inductive approach, because it is designed to gather new knowledge.

The inductive category development [Mayring 2000] is a step based approach (see
figure 4.2). Step 1 is the definition of an initial research questions. For my thesis, the
three knowledge aspects provide these research questions.

In step 2 (see figure 4.2), the selection criteria for categories are defined on the basis
of the research questions. The development of a good criteria is a complex task. As a
start, a rough criterion is defined, which can be refined through later feedback. While
using this modeling technique, a better understanding of the problem develops, which
in return is used as feedback for the criteria development [Mayring 2000]

As primary selection criteria, I propose the three knowledge aspects. Additionally
existing concepts in the knowledge base can also be used as initial categories and serve
therefore as second level selection criteria. In general, everything which is represented
by a concept can be labeled as a category. This leads to three alternative criteria which
can be used in the selection:

1. Select or create categories by knowledge aspect
2. Every definition in the document, which is a concept should be used as a category

3. All existing concepts from the knowledge base shall be used as categories

The third step (see figure 4.2) of the inductive approach is used to formulate categories.
In this process the technical documentation is partially read. The literature [Gerbner
et al. 1969, Mayring 2000, Krippendorff 1980, Rosengren 1981] does not specify a method
for selecting the relevant parts for the analysis. This must be done by the software
engineer.

For example, most documentations have some sort of introduction chapter or section
which discusses the motivation and use of the technology. Therefore such a chapter can
provide material for categories for the target domain. FAQs are also a good source for
category information, because information, engineers often need to know, are frequently
asked and therefore collected in FAQs.
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Figure 4.2: Chart showing the inductive category development [Mayring 2000].

The method described by Mayring [2000] works in an incremental way. Therefore
only 10% of the selected documentation are analyzed. Then the first revision of the
categories is undertaken (step 4 and 7). If the categorization up to this point proves
unsatisfactory, then the selection criteria have to be revised, and the selected texts have
to be re-examined. After this first revision more text is analyzed for categories and if
necessary the categories are revised again.

This category building and revising loop is repeated until a satisfactory set of categories
emerges. Mayring [2000] states that not more than 50% of the text should be analyzed in
this way. For long documentation even less text might be sufficient. The categorization
can be reused for similar documents for the same or other technologies.

After building the categorization the text is paraphrased. In the step 5 (see figure 4.2)
all selected text parts are processed by paraphrasing. Paraphrasing is a technique where
sentences from the original document are reformulated in shorter sentences, clauses, or
even phrases with more standardized expressions by the reader [Strobl 1996].

Alternatively, a technical way to formulate sentences is a statistical identification tech-
nique for key sentences [Coenen et al. 2007]. Such algorithms are used in text classifica-
tion and preprocessing, which are used in machine learning. However, these algorithms
need keywords and therefore training documents. Therefore in a bootstrapping phase
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textual analysis is required.

All sentences collected in the documentation analysis task are assigned to the already
established structured list in the informal knowledge description. While examining dif-
ferent documents similar sentences might come up. These similar sentences must be
merged and duplicates have to be eliminated. The resulting sentences are stored in the
structured list while the obsolete sentences are removed.

The interpretation of the result step (step 6) in figure 4.2 is, in my method, not part
of the content analysis. It is done in the Relating and Codification task explained in
section 4.3.2 and 4.3.3

Expert Interview

The last task in the Informal Modeling step is interviewing platform experts. In this task
the gathered knowledge from the previous tasks is presented to the platform expert. The
three knowledge aspects have to be addressed in the interview with the platform expert.
The expert can then verify the collected information, correct mistakes, and add missing
facts. As result of the interview the final informal knowledge description is created,
which is later used in the codification of the style’s meta-information.

4.3.2 Relating

The Relating step is used in the style modeling procedure to find relationships of existing
styles in the style repository. The knowledge modeling technique extends this step by
finding relating properties, technologies, and design pattern. All these relationships are
compiled as a list of relationships.

Considering the example: The Spring Framework implements the Inversion of Control
pattern. The sentence indicates a relationship between the Spring Framework and the
Inversion of Control pattern. From the knowledge base the information can be retrieved
that Inversion of Control is defined as an ArchitectureFamily (see section 3.5.2). There-
fore the relationship list contains the entry Spring is a specialization of Inversion of
Control.

Beside the MidArch relationships of variation and specialization, the knowledge base
can also express exclusions or complements. Exclusion means here, that a certain plat-
form or framework does not work together with another framework. And complement
means, a technology or framework complements another framework to make a whole.
Because the knowledge base is defined as an open system, other relationships can be
introduced as well and therefore they should be added to the list of relationships.

4.3.3 Codification

The two initial tasks focus on collecting information and meta-information for a style.
In the Codification task, the information is mapped to the MidArch style meta-model.
The information collected for the knowledge modeling technique (meta-information of
the style) has to be mapped to the ontology constructs as well.
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The sentences stored in the informal style description and the relationship information
are analyzed to determine noun phrases (see section 2.1.3). From the example: Spring
supports the Model-View-Controller pattern through Java Server Faces [Sun Microsys-
tems 2008b].

The terms Spring, Model- View-Controller pattern and Java Server Faces are subjects
or objects. The difference between the subject and object is that the subject is the
acting substantive and the objects are passive (see also section 2.1.3). However for the
analysis the subject is the origin in the relation while the object is the recipient.

In the example sentence, there are different relationships. First, Spring supports
Model-View-Controller. Second, the Model-View-Controller pattern can be implemented
with Java Server Faces. And third, Spring works with Java Server Faces. To identify
these relationships, the sentences have to be broken down in simple subject predicate
object sentences. All subjects and objects found by this analysis task can be considered
individuals.

The next task is to find suitable classes for the determined individuals. Therefore
existing classes have to be examined. For styles, technologies, and design patterns, the
classes defined in chapter 3 have to be used. However, sentences might introduce new
concepts and therefore also new classes have to be defined. Especially the target domain
of the platform or the application domain of the MidArch instance are sources of new
concepts.

Similar to the class finding task, the retrieved relationships have to be mapped to
newly created properties, but preferably to existing ones. Therefore the relationships
have to be compared with existing property definition. In some cases relationships are
expressed as the inverse of an existing property. In that case the relationship must be
inverted.

In the above example the relationship, can be implemented with, relates design patterns
with technologies. However the knowledge-base already has a property relating technolo-
gies and design patterns called supportsPattern. Therefore the can be implemented with
relationship can be expressed with this existing property.

Beside classes, individuals, and properties, general rules can be extracted from the
informal description. The rule modeling is however a more complicated task. This is so,
because the engineer cannot just look for syntactical elements in the sentences, but has
to understand the sentences and check if they express a general rule. Also it might be
necessary to look at more than one sentence to see such rules.

However, after identifying one or more sentences, which describe a rule, linguistic
objects in the sentences are mapped to individuals or classes from the knowledge base.
As explained in section 2.2.3, classes are represented by unary predicates in SWRL. The
linguistic predicates are mapped on binary SWRL predicates, which are OWL object or
datatype properties.

If the sentences include conjunctions, like and, but, and or, they must be translated
into logical operators. The conjunction and is very simple to transform, because it
can directly be mapped to A (logical and) in a rule. The conjunction or however is
more complicated. The general idea is, that a new rule is specified for each alternative
predicate or sequence of predicates. In the simplest situation, if there are only two logic
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predicates and they are connected with or then two rules have to be formed. One for
the left predicate and one for the right predicate. The last conjunction mentioned here
is but. It can be interpreted as a negation of all predicates in the sentence following the
conjunction. Therefore the but is removed and all predicates are negated.

Beside the already explained linguistic elements, there are more constructs. However,
a detailed analysis of natural language clauses and their transformation in horn clauses
is not subject of my thesis, but can be found in [Dale 2000, Jackson and Moulinier 2002].

As result of the Codification task, an informal codified knowledge description list of
classes, properties, individuals, and rules exists. This list must be checked for consis-
tency. The criteria for the consistency check are that the model of architecture families
introduced by the knowledge-base have to be honored.

4.3.4 Formalization

The Formalization task is the last creation task and comprises the formalization of the
informal description of classes, properties, and individuals from the Codification task.
The formalization can be performed in a four step approach. First, the structure of the
style is formalized. Second, new classes and individuals are implemented. Third, the
new properties are declared and the relationships to the style are defined. And fourth,
general rules are formulated and defined.

Style Structure Formalization

In the initial step, the style structure is described by one instance of MiddlewareOri-
entedArchitecture, with sets of CompontentType, ConntectorType, PortType, and Role-
Type instances assigned to it in respect to the definition of styles explained in section
3.3.1. The listing 4.1 shows a template for the description of the structure.

Individual (STYLE type( MiddlewareOrientedArchitectureFamily)
value (hasComponentType COMPONENF-TYPE)
value (hasConnectorType CONNECTOR-TYPE)

)

Individual (COMPONENF-TYPE type( ComponentType)
value (hasPortType PORT-TYPE)
)

Individual (CONNECTOR-TYPE type ( ConnectorType)
value (hasRoleType ROLFE-TYPE)

)

Individual (PORT-TYPE type( PortType)

value (acceptsRole ROLE-TYPE)
)

Individual (ROLE-TYPE type( RoleType))

Listing 4.1: Template of a complete initial style definition for the knowledge base. Names
in uppercase are placeholders.
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Classes and Individual’s Formalization

The next step is to formalize new classes and their individuals. This can be done by
enumerating individuals in the class definition or by defining classes and individuals
separately. Which method to choose depends on the concept to express. If their is
potential that class extension (see subsection 2.2.2) might change in the future or the
individuals have properties, then it is easier to implement and maintain the concept
and its individuals when they are declared separately. Therefore enumerations are only
suitable for concepts, where it is enough to have the individuals declared rather then
defined.

Besides identifying new individuals for new classes, their might be individuals to be
assigned to existing classes. These individuals must be added in a suitable way. If the
class is enumerated, a new individual must be added to the enumeration, and if the class
is defined as a partial class, then the individual is added by explicit definition.

Property Formalization

When all individuals and classes are formalized, new object and datatype properties
can be declared. It is important to define properties as exact as possible in order to
be able to obtain accurate information. Therefore the features of each property have
to be investigated. As explained in section 2.2.2, properties can be functional, inverse
functional, transitive, and symmetric. These characteristics can have important effects
on reasoning.

For example, if a property is not transitive then the added relationships just exist.
But when it is transitive, the reasoner can create new relationships based on the explicit
information in the property. Additionally, properties can be sub-properties of existing
properties. This aspect has also to be investigated in the formalization task, as it can
lead to new knowledge.

After the definition of datatype and object properties, the individuals can be completed
by assigning values to properties belonging to the respective individuals. In listing 4.2
a template for an object property definition and the assignment of a property to an
individual is given.

Listing 4.2: Template of an object property definition and its use in an individual.
ObjectProperty (PROPERTY-NAME domain (DOMAIN-CLASS) range (RANGE-CLASS))

Individual (INDIVIDUAL-NAME type (DOMAIN-CLASS)
value (PROPERTY-NAME VALUE)
)

Rule Formalization

To complete the formalization task, the codified rules are transformed into SWRL rules.
In the codification task the sentences have already been broken down into predicates
and individuals. Conjunctions have been identified and their logic counterparts have
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been associated with them. All linguistic objects and predicates have been mapped to
their corresponding OWL and SWRL constructs. Now in this rule formalizing step, the
sentences are transformed into horn clauses and finally in SWRL and auxiliary OWL
expressions.

First, each sentence is transformed into a horn clause [Horn 1951] (see also 2.2.3).
This means, the predicates forming the antecedent are being located to the left side of
the implication (—) and a the single consequent predicate is placed on the right side.
If the sentence contained alternative conjunctions, such as or, then the antecedent must
be broken down in several different antecedents which lead to several different rules.

For example, an antecedent contains the expression supportsTechnology(?z, Hibernate)
V supportsTechnology(?x,JPA) N supportsPattern(?z, MVC'). Then this must be broken
down into two separate rules, such as:

supports Technology(?z, Hibernate) A supportsPattern(?x, MVC) — WebService(?x)
supportsTechnology(?x, JPA) A supportsPattern(?x, MVC) — WebService(?x)

As already mentioned in section 2.2.3, SWRL is not able to handle negations. So rules
requiring negations should be noted in a comment to the architecture style description, so
they can be processed when more powerful rule languages are available. However some
negations can be implemented with a workaround. If the negation is on individuals,
stating that a rule applies when a individual does not belong to specific class, then this
can be done with the help of OWL. Therefore the engineer defines a complement class
for a class where the individual must not belong to. The listing 4.3 shows an example
template for modeling negations.

Class(Interpreter partial)

Implies(
Antecedent (! Interpreter(?z))
Consequent ( hasPrototypingQuality (?z,low))

)

Class(NotInterpreter complete complementOf(Interpreter))

Implies(
Antecedent ( NotInterpreter(?z))
Consequent ( hasPrototypingQuality (?z,low))

Listing 4.3: A possible workaround for SWRL’s limitations in handling negation.

The first rule expresses that a language which cannot be interpreted but only compiled
is not adequate for prototyping. However the rule includes a negations, so the second
definition works around this problem. The class NotInterpreter is defined as identical
(complete) to the complement of Interpreter.
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4.3.5 Reviewing

The final step of the MidArch style modeling procedure is the review process. Analog to
this modeling procedure, the knowledge modeling technique has also a review task at the
end. While some reviewing of the initial information is already done in the first task and
some consistency checks are performed in the formalization task, this final task allows
to check if the new concepts, individuals, properties, and rules are really appropriate for
the described style.

Other styles might benfit from newly introduced concepts and properties. Therefore
the styles have to be reviewed with these new concepts and properties in mind. This
review process minimizes possible fragmentation tendencies in the knowledge base.
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The knowledge querying technique is the counterpart to the modeling technique from
the previous chapter. While the modeling technique is used to extract information from
various sources and store them in a knowledge base, the querying technique is used to
get information from the knowledge base.

This chapter discusses the knowledge querying technique. First, the context for the
technique and the requirements are explained. Second, a process for the technique is
sketched. And finally, the tasks for the process are specified.

5.1 Context and Requirements

The context of the knowledge querying technique is the style selection process of the
MidArch method (task 3B) [Giesecke 2008, sec 9.4]. This process works hierarchically
on the MidArch style taxonomy (see section 2.4.2) with evaluation data from previous
MidArch instances. The querying technique can augment this process in two possible
ways.

First, it allows preselection of styles without analyzing their evaluation data. This
selection is helpful with styles, which have insufficient evaluation data. Second, require-
ments which are represented by nominal or binary values, as well as requirements which
cannot be represented by any quality model, can be expressed as queries for a knowledge
base as long as they refer to known concepts and individuals.

In the MidArch method, the style selection process, and the knowledge base induce
a set of requirements for the querying technique. The requirement documentation of a
given MidArch instance, as specified in task 1B of the MidArch method, is one input for
the query forumulation. The other input is the quality model, because the quality model
includes a set of questions, which can at least partially be answered with the knowledge
base. Therefore the following requirement for the querying technique can be formulated:

Requirement 1 The technique must be able to transform requirements and quality
model questions into queries.

Because the querying technique is used for the preselection of MidArch styles, it must
support the language of the project. This means, the engineer should be able to use the
vocabulary of the project for the queries or at least it should be easy to convert the lan-
guage of the project into the language understood by the knowledge base. Furthermore
the query formulation process should be simple in order to handle so that many queries
can be formulated in short time. This leads to two additional requirements:

Requirement 2 The querying technique must utilize the language of the project.
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Requirement 3 The query formulation process must be simple.

5.2 Basic Process Design

The knowledge querying technique is used in the MidArch task 3B [Giesecke 2008, sec.
9.4] as an additional method to select style candidates. While the primary method
in task 3B implies a hierarchical search approach through the taxonomy of existing
styles, the knowledge querying technique works differently. Based on requirements and
questions from the quality model, the technique queries the knowledge base for suitable
style candidates.

The querying technique can be divided in five steps. First, relevant information is
extracted from the list of requirements and optionally from the questions already formu-
lated for the quality model. Second, the information is analyzed for present linguistic
objects and predicates. Third, based on the objects and predicates found in the previous
step, horn clauses are formulated and augmented with SQWRL predicates to get useful
results. Fourth, query clauses are send to the system. And fifth, the result is checked
using the question and query sentences from the first step. If the results are good enough
to select a style, then the process ends. Otherwise the queries have to be refined and
the codification, formalization, and querying steps have to be repeated.

Question Retrieval The term question is, in this context, not limited to its linguistic
definition. Additionally sentences or sentences which represent queries or requirements,
like we need a Java-based style, are also considered questions, because they ask for some
specific property of the system.

Codification The codification step is used to determine objects and predicates from
the previously selected sentences and to find corresponding individuals and properties in
the knowledge base. These individuals, and properties are the basis of the codification
result. To make the codification process complete the relation between individuals and
properties have to be saved.

Formalization With the codified sentences from the previous step a set of horn clauses
can be defined. Because horn clauses are disjunctions of literals, they can be combined
to make a query more specific. Additionally SQWRL predicates can be added to further
retrieve, sort, or manipulate the result (see section 2.2.3).

Querying In the querying step the query clauses are send to the query interface of the
knowledge base and the results are logged for later analysis.

Selection and Refinement The results from the querying step are analyzed using the
question sentences from the first step. If the results are sufficient one or more styles are
selected as style candidates. If not, the queries are refined and the steps starting with
codification are repeated.
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5.3 Detailed Process Design

The previous section gave an overview of the knowledge base querying technique. This
section focuses on the detailed design of each step. Figure 5.1 shows the steps and
the involved artifacts. The dotted lines represent data flow and the solid lines indicate
process flow.

Requirements

: Question Question and
M Questions f---- > R >
GQM Questions Retrieval Query Phrases

y

Knowledge Base |---- > Codification ~ }---- > Codified Queries

Y

Formalized
Queries

> Formalization  |---- >

Querying  f---- > Query Results

Selection and
Refining

Figure 5.1: The knowledge query technique, its tasks, and artifacts.

The following sections describe the steps of the knowledge querying technique shown
in figure 5.1, and the corresponding input and output documents.

5.3.1 Question Retrieval

The question retrieval step has similarities to the informal modeling step of the modeling
technique. Its purpose is to collect information. However in the context of the query
technique, the information queried for are requirements from MidArch task 1B, and
questions, especially questions from the GQM method [Basili et al. 1994]. Therefore the
requirement document and the GQM questions are the two input sources for this step.

The engineer collects these requirements and questions and reformulates them into
question and query sentences. These sentences are then processed by a paraphrasing
technique [Strobl 1996] to remove redundant sentences. This paraphrasing is important
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because requirements and questions may address the same issue and would therefore
only bloat the later codification.

The result of this step is a document containing only only valid and unique query and
question sentences.

5.3.2 Codification

The query and questions sentences from the retrieval step are processed in the codification
step to obtain structures which are close to horn clause like query rules. Therefore the
engineer transforms the natural language sentences to predicates and individuals. To do
so the engineer analyzes the sentences for linguistic objects and predicates.

The linguistic objects are then mapped to individuals or classes from the knowledge
base. As explained in section 2.2.3, classes are represented by unary predicates in SWRL.
The linguistic predicates are mapped to binary SWRL predicates, which are OWL object
or datatype properties.

Similar to the knowledge modeling technique (see section 4.3.3), conjuntions like and,
but, and or must be translated into logical operators. The conjunction and can directly
be mapped on A in a rule. The conjunction or is more complicated to process, because
it has to be resolved. However the resolving is done in the formalization task. Therefore
the conjunctions are just marked. The last mentioned conjunction is but. It can be
interpreted as a negation of all predicates in the sentence following the conjunction.
Therefore the but is removed and all predicates are negated.

5.3.3 Formalization

In the previous step, the sentences have been broken down into predicates and indi-
viduals. Based on conjunctions, sentences have further been split into several separate
codified sentences. All linguistic objects and predicates have been mapped to their cor-
responding OWL and SWRL constructs. In the formalization step these sentences are
now further processed.

First, each sentence is transformed into a horn clause with an empty consequent.
Clauses based on alternative sentences (or conjunction) are still marked as alternatives,
because this information is relevant for the last formalization step. Second, negations
have to be resolved. And third, the clauses have to be combined.

As mentioned in section 2.2.3, SWRL is not able to handle negation. Therefore the
workaround mentioned in section 4.3.4 must also be applied. Therefore unary predicates,
which symbolize classes, can be negated by the definition of a complementary class in
OWL. For binary predicates however, there is no workaround. As long as RIF-BLD
[Boley and Kifer 2007] is not available there is no solution. Consequently negated binary
predicates have to be dropped in the formalization. However their meaning should be
recorded for the selection and refinement step.

The last step in formalization is the combination of clauses. All clauses, which have
to be satisfied together, are concatenated into one larger clause. For example, if the
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resulting style should be Java-based and Spring-based, then these two clauses are con-
catenated.

For alternative clauses, there must be one resulting clause per every alternative clause.
For example, if there are two sets of alternative clauses A = {4, Ay, A3} B = {B1, B2}
and one additional clause C then this results in six clauses.

AiANBIANC —
AsANB1 ANC —
AsANB1 ANC —
A ANBa ANC —
Aoy AN By ANC —
A3 ANBy AN C —

These resulting clauses are written in SQWRL rules. Depending on the initial intention
of the query, different SQWRL predicates can be used. In most cases squwrl:select is the
right choice, because the engineer wants all matching individuals. In some rare cases an
ordering with squrl:orderby might be helpful or the selection of the maximum, especially
when measurement values are part of the query.

5.3.4 Perform Querying

In the querying step, previously defined queries based on formalized SWRL rules are send
to a reasoning and rule engine. The results are collected and stored for later analysis.

5.3.5 Selection and Refinement

This last step is used to interpret the query results. Therefore the results from the
previous step are inspected and assessed. If the results are satisfactory a style candidate is
selected. In the case that more then one candidate is found, all candidates can be selected
as result for the method. However, if the results are inconclusive or not satisfactory, the
queries are refined and the technique is repeated starting with the codification step.
To check if the results are satisfactory, the results are compared against the relating
questions and requirements from the first step of the querying technique.
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Chapter 4 and 5 introduced and defined techniques for ontology-based knowledge mod-
eling and querying of middleware-oriented architectural styles. To show that these tech-
niques can be a useful asset in style exploration and selection for the MidArch method
[Giesecke 2008], they have to be evaluated. The evaluation is performed on basis of a
case study utilizing the MidArch method [Bornhold 2006].

First, the knowledge base is populated with meta-information on the styles described
in the case study. Therefore the modeling technique is used on all styles described in
[Bornhold 2006]. Second, the knowledge base is interrogated with queries derived from
the architecture selection process and the requirements of the case study.

6.1 Evaluation of the Knowledge Modeling Technique

The case study [Bornhold 2006] was conducted to evaluate the activities and processes
of the MidArch method [Giesecke 2008] on basis of an exemplary integration scenario.
The case study focuses on the style development (see section 2.4.1) because no previous
style descriptions from other case studies of the MidArch method were available.

The integration scenario of the case study is the regional trade information system
RegIS Online [GmbH 2008] which is used to provide information on the economic po-
tential to support sustainable regional development in north-west of Germany. ReglS
Online consists of three independently developed subsystems. The subject of the case
study was to create and evaluate different architectures for the integration of these three
subsystems.

In my thesis the style modeling procedure is augmented with the knowledge model-
ing technique from chapter 4 which results in additional information, so called meta-
information, of the modeled styles. This information is used in the knowledge querying
technique for style selection process of the MidArch task 3B (see section 2.4).

To test the knowledge modeling technique the styles from the case study and their
corresponding documentation are analyzed and processed with this technique (see ap-
pendix A). And the resulting meta-information is stored in the knowledge base. The
evaluation results of this test are documented in the following subsections.

6.1.1 Inversion of Control Style

The Inversion of Control style is not a middleware-oriented style. However, it is de-
scribed in the case study a an abstract basis style, because it is the basis for the Spring
and Awvalon styles. Furthermore, [Fowler 2004] states that many frameworks implement
the Inversion of Control pattern, which is the basis for the Inversion of Control style.
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As input documents for the knowledge modeling technique, the informal description of
the Inversion of Control style from [Bornhold 2006] and the discussion of the Inversion
of Control pattern from [Fowler 2004] were used.

The analysis for the Inversion of Control style produced only a few phrases and there-
fore only a minimal set of formal descriptions (see section A.1.4) were produced. How-
ever, these descriptions are of great importance, because they introduced basic knowledge
on Inversion of Control styles, especially different properties of these styles.

6.1.2 Spring Style

The analyzed second style is the Spring style induced by the Spring Framework. This
framework is a Java-based framework for enterprise application. It aims to be easier to
use as J2EE or other Inversion of Control frameworks.

As input source for the knowledge modeling, the informal description of the Spring
Style in [Bornhold 2006], the Spring website [Spring 2008] and the reference documen-
tation of the Spring framework [Johnson et al. 2008] were used.

The documentation for Spring is comprehensive and structured in a way which allows
the reader to find information quickly. Each part and chapter has an overview section
which describes the technology and its purpose briefly and precise. Therefore, it was
easy to obtain knowledge from this documentation with respect to the three knowledge
aspects (see section 4.3.1).

Through the analysis several new concepts were introduced. These are the concepts
Package, License, Feature, ApplicationType, and Standard. Additionally, the concept
Technology has become the root of a technology taxonomy.

The Spring Framework is subdivided in packages which bundle functionalities and
introduce component types. Functionality can be added to a system by including a
package. Hence, the use of packages can lead to additional middleware-oriented styles.
Therefore, packages and their abilities are important information for style development
and description.

The License concept was added because it is a quality aspect for technologies and the
middleware-oriented styles using technology. Some licenses restrict the use of software
in certain areas or restrict the combination of technologies which would otherwise work
perfectly together. Therefore it is important to know if license issues exist for a selected
combination of technologies.

Many properties of styles or technologies can be described by a boolean value. For
example: Does a technology support Separation of Concern? The answer is either "yes”
or "no”. This boolean property approach would lead to a vast set of datatype properties.
To avoid this the property providesFeature was introduced and a corresponding concept,
which comprises all features. This property also allows to resolve connections between
technologies and styles.

The last two concepts are ApplicationType and Standard. ApplicationType is used
to describe the target and the application domain of a style. The concept Standard
comprises terms describing various standards. Both concepts are used to introduce vo-
cabulary. However, ApplicationType is currently more a stub than structured knowledge,
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because the input documentation does not elaborate the topic of different application
types.

The properties derived from [Shaw and Clements 1997] did not play a great role in
modeling the knowledge of the Spring style, because Spring does not imply restrictions in
the area of topology, data intensity and flow. The properties introduced by the Inversion
of Control style, however, were greatly used to model knowledge on the Spring style.

6.1.3 Avalon Style

The Apache Avalon Project [Avalon 2004] is the source of the Inversion of Control
framework Awalon. Since 2004 the project is closed and the Awvalon Framework is now
part of the Apache Excalibur Project.

The input source for the knowledge modeling are: the informal style description from
[Bornhold 2006], the sections Fortess and Framework which where sourced from the
web-page of Apache Ezxcalibur [Excalibur 2007].

The documentation of the Awvalon Framework is far less detailed and complete com-
pared to the Spring Framework documentation, which made it much more difficult to
gather information on the Awvalon style in respect to the three knowledge aspects.

The Awalon style was the second Inversion of Control based style to be analyzed.
Therefore properties and individuals from the previous analysis of the Spring Frame-
work have been reused in the knowledge modeling for Avalon. Especially in the relating
task several relationships to previously defined individuals where found which were not
introduced by the documentation of Avalon directly.

The codification task, revealed that Awvalon uses a different vocabulary to introduce
its own concepts than Spring. Therefore a mapping of this vocabulary to the vocabulary
used by Spring and the underlying knowledge base was added. For example: The con-
cept PortType from the knowledge base expresses the same concept as Interface in the
Awalon documentation. Therefore the term Interface was introduced and declared to be
a synonym. Such synonyms help the engineer to find knowledge, because the engineer
search for interface or port type.

The final reviewing task consisted of checking the new definitions for consistency, and
the existing individuals were compared to new concepts and individuals introduced by
the analysis of Avalon. This reviewing task resulted in an update of previously defined
individuals such as Hibernate (see section A.3.5).

Additionally to new relationships, between newly formed individuals and existing ones,
new rules were introduced to support the inheritance of properties throughout a style.
For example: If a package provides a feature, than it is obvious that the whole style pro-
vides the same feature. However, the inheritance of features was not defined previously,
but the reviewing task revealed this problem.

6.1.4 Cocoon Styles

The Cocoon styles are Pipes-and-Filter-based styles. The corresponding abstract style
is introduced in section 3.5. The two styles described in [Bornhold 2006] are very simi-
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lar. The difference between the styles is that the first style, called Cocoon Basic Style,
does not use FlowScript, where the second style, called Cocoon with FlowScript, does.
Therefore the second style is an extension of the basic style.

Because of the close relationship of these two styles, the analysis and formalization
were done together. The input documents were the Cocoon web-site [Cocoon 2008] and
the style description from [Bornhold 2006].

Unlike the Spring and Awvalon frameworks, Cocoon is not an Inversion of Control
style. Technically Cocoon uses the previously mentioned frameworks and the Inversion
of Control properties to realize a Pipes-and-Filter style.

The analysis of Cocoon resulted in many new terms, because Cocoon uses a different
basic style and has a different purpose. Due to its underlying style Pipes-and-Filter, the
Cocoon styles use properties introduced by [Shaw and Clements 1997].

The reviewing of the resulting individuals and concepts did not reveal new relationships
for the Inversion of Control styles. However existing technologies got new property
values. For example the feature ObjectRelationalMapping was added to the individual
representing Hibernate.

6.1.5 Conclusion

The knowledge modeling technique worked as expected and produced many different
concepts, properties, and individuals. However, certain difficulties were encountered.
First, the documentation of analyzed styles and the underlying technologies vary in
quality and completeness. The lack of documentation results directly in an incomplete
knowledge model for the analyzed technology and style. Also the interviews with the
platform experts were not performed, which had the effect that the collected sentences
were not checked by an external expert. Therefore erroneous definitions might exist in
the knowledge base.

Second, the different frameworks use different vocabulary to describe similar concepts.
For example, Avalon uses the term Interface to describe PortType. In this case a direct
mapping was possible. However, Avalon also uses the term Concern which describes
a subset of Interface, but also an aspect of the pattern Separation of Concern. When
using the technique is a strict way, this would result in a concept Concern which is
a sub-concept of Interface. But this would not reflect the true meaning of Concern.
Therefore it had to be skipped. Such decisions to evaluate terms have to be made by
the software engineer using the modeling technique.

The third issue revealed during the evaluation, was that there is no clear definition of
the meaning of technology and standard. For example: The programming language Java
is a standardized language, therefore it is a standard. However, it is also classified as a
technology according to [Sun Microsystems 2008c]. Another example is the concept of a
servlet engine. The concept itself is a technology and the various implementation of this
technology are instances of that concept. However, these instances are called technologies
as well, according to their respective documentation [RedHat 2008, Sun Microsystems
2008a]. This results in a logical inadequacy. On one hand, servlet container must be
addressable as an individual, and on the other hand it must serve as a concept for several
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implementations of this technology. As already explained, in OWL DL, a concept cannot
be used as individual at the same time and vice versa. This issue could be resolved with
a property allowing a technology to implement another. However, this still puts generic
technology descriptions and implementations of these technologies on the same level,
which is from a structural point of view unsatisfactory.

The last issue, is the missing separation of middleware-oriented style descriptions
and the description of technologies. While it seamed appropriate to define the concept
MiddlewareOriented ArchitectureFamily during the development of the initial knowledge
base, in chapter 3, as an intersection of Technology and ArchitectureFamily, the pro-
cessing of styles and technologies showed that such declaration results in style definition
problems of the Cocoon styles.

While the Cocoon technology works with the Spring Framework in version 2.2 and
with the Avalon Framework in version 2.1, this aspect cannot be described in the style
itself. The two versions of Cocoon should result in two different styles. However, the
mixing of technology and style resulted in vague knowledge for this aspect. Further-
more, the Spring Framework is divided into several packages, which introduce different
functionality. These functionalities could result in different middleware-oriented styles.
The two Cocoon styles are a good example for that, because one is using Flowscript and
the other is not.

Therefore a separation of the concepts MiddlewareOrientedArchitectureFamily and
Technology in the further knowledge base development would be beneficial. A style
in such a refactored knowledge base would reference certain aspects, components or
features of a technology and categorize these features by component, connector, port or
role types.

The consequence of this evaluation is that the knowledge modeling technique, as such,
works and returns processable phrases. However, the basis knowledge base needs im-
provements and the decision between concept and individual needs additional guide-
lines. Also concepts could be poorly differentiated form another in a first definition
cycle. Therefore a later refinement and refactoring step for these concepts should be
introduced.

6.2 Evaluation of the Knowledge Querying Technique

The previous section discussed the execution and the results of the modeling technique.
In this section the knowledge querying technique is evaluated. The evaluation is based on
the scenario of the ReglS Online system integration. In [Bornhold 2006] the architectural
style candidates could not be retrieved from a large taxonomy of predefined middleware-
oriented styles (compare MidARch task 3B [Giesecke 2008, ch. 9]), because the case
study was the first use of the MidArch method. However the case study introduced four
middleware-oriented styles and used two of them for candidate architectures.

In the evaluation of my knowledge querying technique requirements for the candidate
architectures are used to develop queries. These queries are then executed and the results
are compared to the results in [Bornhold 2006].
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The development of the queries is documented in appendix B and the results are
discussed in subsection 6.2.1. Finally, in subsection 6.2.2 the results of the knowledge
querying technique are compared to the results from [Bornhold 2006] and some conclu-
sions are drawn.

6.2.1 Querying

The querying process described in chapter 5 is based on five distinct steps: question
retrieval, codification, formalization, querying, and selection and refinement.

In the question retrieval step, based on the target requirements (MidArch task 1B)
and supplementary the goals from the quality model are collected and transformed into
statements. The codification step is used to transform these statements in codified
sentences, which are then transformed in SQWRL expressions in the formalization step.
These expressions are executed in the querying step and the results are reviewed in the
selection and refinement step.

However, the source material for this evaluation is the case study in [Bornhold 2006].
The case study does not contain a list of target requirements. Therefore, a detailed
analysis of different parts of the case study was necessary to extract properties of the
subject system. The process is documented in appendix B.

The compiled requirements contained, beside already defined terms, new terms for
present architectural styles and technologies. Therefore these new terms had to be
defined and associated with the corresponding styles and technologies. This knowledge
base refinement step is not part of the knowledge querying technique as defined in chapter
5. However, it was necessary to construct more precise queries.

The rest of the of the codification step was then executed as defined in chapter 5 and
resulted in the following list of antecedents:

1. MiddlewareOrientedArchitectureFamily supportsTechnology CocoonForms and
XSP or MiddlewareOrientedArchitectureFamily supportsTechnology Technol-
ogy providesFeature SeparationOfViewAndLogic and Technology providesFeature
FormHandling

2. MiddlewareOrientedArchitectureFamily supportsTechnology MySQL

MiddlewareOriented Architecture Family supportsTechnology Hibernate

- W

MiddlewareOriented Architecture Family providesFeature FlowControl
5. MiddlewareOriented Architecture Family supportsProgrammingLanguage Java

6. MiddlewareOrientedArchitectureFamily providesFeature Modularization

In the formalization step, these antecedents were compiled into two final queries,
because the first antecedent in the above enumeration contains an or conjunction which
resulted in two separate alternative antecedent fragments. All other antecedents were
concatenated into one antecedent, because they must be all satisfied. The compilation
process in detail is documented in section B.3.
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/x alternative rule fragments x/
Implies(

Antecedent (
MiddlewareOrientedArchitectureFamily (7 family)
supportsTechnology(? family ,XSP)
supportsTechnology (? family , CocoonForms)
supportsTechnology (? family , MySQL)
supportsTechnology (? family , Hibernate)
providesFeature (? family , FlowControl)
supportsProgrammingLanguage (? family , Java)
providesFeature (? family , Modularization)

)

Consequent (
squwrl: select (? family)

)

)

Implies(

Antecedent (
MiddlewareOrientedArchitectureFamily (7 family)
supportsTechnology (? family ,? techA)
supportsTechnology (? family ,? techB)
providesFeature(?techA , SeparationOfViewAndLogic)
providesFeature(?techB , FormHandling)
supportsTechnology (? family , MySQL)
supportsTechnology (? family , Hibernate)
providesFeature (? family , FlowControl)
supportsProgrammingLanguage (? family , Java)
providesFeature (? family , Modularization)

)

Consequent (
squwrl: select (? family)

)

Listing 6.1: The two resulting queries for querying step

The querying step produced initially unsatisfactory results due to a few missing ref-
erences in the knowledge base. However, after supplying these references, the querying
process worked as expected.

The first query (marked as alternativeA query rule) is closer to the old system de-
scribed in the case study, because the technologies XSP and CocoonForms are directly
linked to the Cocoon framework. Therefore the first alternative returned only results
which contain a Cocoon style. The only returned solution was Cocoon WithFlowscript,
because FlowControl as a feature was also requested and CocoonBasicStyle does not
have this feature.

The second query (marked as alternativeB query rule) represents a wider view. It re-
turned Cocoon WithFlowscript and Spring. The return of Cocoon WithFlowscript was an
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obvious result, because XSP is a technology providing the feature Separation Of ViewAnd-
Logic and CocoonForms is a FormHandling technology. In addition Spring was also a
valid result, because Spring supports various FormHandling technologies, including one
in SpringM VCPackage. The SeparationOfViewAndLogic feature is supported through
JSP which is used in SpringM VCPackage.

The two results Spring and Cocoon WithFlowscript represent the chosen candidate
architectures for the MidArch task 3B.

6.2.2 Conclusion

In [Bornhold 2006] two middleware-oriented styles were used for candidate architectures
in the case study. My method returned the same two candidates. Because of the few
different style definitions in the knowledge base, this result is not surprising. Especially
considering that Bornhold [2006] defined these styles directly for the purpose of style
candidates for the development of candidate architectures.

However the interesting aspect of this result is, that the knowledge base returned these
two styles only on the basis of a set of feature and technology requirements. Therefore
the style taxonomy has not to be browsed manually which reduces the time required to
find styles in the taxonomy.
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The goal of my thesis is to model meta-information of middleware-oriented styles in
a way that allows software engineers query this information with only the system re-
quirements (MidArch task 1B). As a result they get a selection of middleware-oriented
style candidates (MidArch task 3B) which can be used to model candidate architectures
(MidArch task 3C).

Below I describe the approach used, discuss the results of the evaluation and give
an persepctive on future prospects. In 7.1 the meta-information modeling approach
is summarized. Section 7.2 discusses the outcome of the evaluation of the introduced
modeling approach, and section 7.3 sketches future development and use of the developed
knowledge base and the modeling approach.

7.1 Summary

The modeling of meta-information on architectural styles faces several difficulties. First,
because the different kinds of meta-information properties of a style cannot be deter-
mined in advance, therefore these different properties have to be determined while styles
are introduced to the MidArch style repository. Second, each middleware-oriented style
introduces its own vocabulary based on the underlying technologies. In addition, differ-
ent application domains introduce there own vocabulary.

Therefore an open and extendable meta-information modeling approach had to be
introduced. The approach discussed in my thesis uses ontologies to cope with these two
difficulties. Ontologies on the one hand allow the definition of terms and on the other
hand ontologies allow to relate terms to another. Terms are represented by individu-
als (objects) and relationships are presented by predicates. In addition ontologies use
concepts to classify and group individuals. This is an additional way to define properties.

As language for the formalization of the meta-information, I choose the description
logic version of the Web Ontology Language (OWL DL). The use of OWL DL (see
section 2.2.2) allows reasoning with the knowledge represented by the formalized meta-
information, because reasoners, like Pellet (see section 2.6.2), can process OWL ontolo-
gies which conform to description logic constraints. Reasoners for OWL Full, however,
do not exist. If the would, due to the undecidability of OWL Full, it could never be
guaranteed that such reasoners produce any results.

One advantage of OWL DL over other description logic languages is, that it was
designed with the World- Wide-Web (WWW) in mind. To work in this environment, the
language is designed to handle contradictory definitions of terms and integrate them. It
also allows to work with distributed documents, which is helpful when different engineers
are using the knowledge base at different places at the same time.

94



7 Conclusions

To create the knowledge base, the basic concepts of middleware-oriented styles and the
surrounding concepts, like technologies and design pattern were determined (see chapter
3) and transformed into classes, properties, and individuals.

With this initial knowledge base, the first styles could be analyzed and the gathered
meta-information stored in the knowledge base. To do this in a structured approach,
a knowledge modeling technique (see chapter 4) was developed. This modeling tech-
nique introduces a stepwise approach, first, to retrieve information from informal style
descriptions and technical documentation, and second transform them into concepts,
individuals, properties, and additional general rules.

While storing information alone does not serve any purpose, a query method was
developed. This knowledge querying technique (see chapter 5) works similar to the
modeling technique. However, it uses systems requirements from the MidArch task 1B
(see section 2.4) as input and it produces query rules.

7.2 Discussion

The exemplary use of the proposed knowledge modeling and querying techniques doc-
umented in appendix A and B were evaluated in chapter 6. The evaluation revealed
that the knowledge modeling technique produced the desired concepts, individuals, and
properties in a straightforward way. This means, the process, layed out by the technique,
worked as expected and a software engineer, who follows the process would be able to
produce results in the same quality.

However, the evaluation of the modeling technique showed, that the quality of the
resulting meta-information and therefore the benefit for the knowledge base is closely
related to the quality of the technical documentation of the involved technologies. This
quality comprises the aspects: completeness, accuracy, and accessibility.

For example, the Avalon documentation is very fragmented, therefore it was hard to
determine were to find the information according to the three knowledge aspects (see
section 4.3.1) of the modeling technique. Also the information was contradictory, because
old and new documentations were mixed and it was therefore hard to determine which
parts of the information is still valid.

The accessibility aspect refers here to the accessibility of information regarding the
three knowledge aspects. The Spring documentation is therefore a good example of
an accessible document in respect to the modeling technique. Every part, package, or
concept explained in the documentation has its own overview section, which discusses
the purpose of the part, package, or concept without going into too much detail of the
implementation or configuration of these elements.

Another problem revealed by the evaluation was the definition of the concept Mid-
dlewareOriented ArchitectureFamily. The concept is defined as an intersection of the
concepts Technology and ArchitectureFamily. While defining the initial knowledge base
this seemed to be a good approach, because an middleware-oriented architectural style
is related to the concept of architectural styles as well as to the concept of technologies.
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However, it was an erroneous assumption that these two relationships could be best
expressed by defining the concept MiddlewareOrientedArchitectureFamily as an inter-
section of the other two concepts. The problem with this definition showed up when
dealing with the two Cocoon styles. While there is only one Cocoon technology, which
has different versions with different properties, there are two Cocoon styles referring to
this one Cocoon technology.

Therefore a better definition of MiddlewareOrientedArchitectureFamily has to be based
only on ArchitectureFamily with the extension that, middleware-oriented architecture
styles, can reference a technology or parts of a technology. This allows to see a style as
a distinct configuration of a technology.

The knowledge querying technique is closely related to the modeling technique not
only as complementary technique itself, but also in its structure. However, the input
document is a list of requirements and the result is a set of query rules.

The evaluation of this technique showed that the technique provides a well functioning
stepwise approach for the query development, but it showed also that in future this
technique should be improved in two areas.

First, not all projects, utilizing the MidArch method, produce separate and complete
documentation of the target systems requirements (MidArch task 1B). Especially tech-
nical requirements, such as the use of certain technologies or products, are not specified
explicitly in the requirements section. Therefore these requirements have to be retrieved
by reviewing more documentation of the project using the MidArch method.

Second, during the query build process properties of technologies were requested, which
have not been defined in the knowledge modeling task. Hence, the query development
had to be interrupted and the additional information had to be added after examining the
documentation of the involved technologies and styles. Only then the query development
was continued. Therefore the query development’s codification task should be extended
by a knowledge modeling step. This step has to include: an information retrieval, a
codification, and a formalization step, which could be designed similar to the knowledge
modeling technique. However, the complex paraphrasing and content analysis task of
the modeling technique is not required for such an extension by a knowledge modeling
step of the query technique.

Beside the already mentioned improvements of the proposed techniques, the use of
upcoming technologies and new techniques can be beneficial. In chapter 4 an automatic
ontology learning method [Lehmann 2007] was mentioned. Such new techniques are in
an early state of development, because past knowledge modeling approaches focused on
rule based knowledge models. With the recent rise of ontologies due to OWL, this has
become a new area of research.

Automatic learning would allow to shorten the required time for the codification and
formalization tasks of the knowledge modeling technique. The paraphrasing step could
also be performed by such automatic learning methods, which would allow analysing
technology documentation more rapidly and therefore produce more valuable input for
knowledge base in a shorter time.

Another technical improvement for knowledge modeling and querying is related to the
rule language RIF-BLD [Boley and Kifer 2007]. RIF-BLD is developed for becoming the
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standard of Semantic Web rule languages in the near future. It has several advantages
over the rule language SWRL and its supplement SQWRL.

The most important advantage for the modeling and querying technique is, that RIF-
BLD is able to handle negation in the parameters of predicates, which allow the droping
the workaround for negations, which were introduced in the modeling and querying
technique. Another benefit can come from the use of formulas in RIF-BLD rules, which
allows calculations and even some functional programming. However, the use for these
formulas for the proposed techniques in my thesis have to evaluated in the future.

7.3 Future Work

Beside the support in finding suitable styles, the development of a knowledge base on
middleware-oriented architectural styles, technologies, design patterns, and other con-
cepts can have additional benefits to the area of architecture and style development.

The knowledge base can be used during requirement engineering to search for technolo-
gies and suitable implementations of these technologies. In a feature driven approach
these features could be used to formulate queries and the knowledge base can show
suitable technologies implementing the requested features.

In conjunction with projects, like [WOP], the knowledge base can be used to support
developers and software engineers in the prototyping and implementation phase of a
project. The knowledge base allows comparisons of technologies in respect to certain
criteria, which is a common use case in the early stages of a software project where the
software stack has to be determined.

Another possible future use can come from such knowledge bases, when best practice
knowledge on requirements and goals are stored in a knowledge base as well. When such
knowledge would be available in a set of OWL knowledge bases, these knowledge bases
could be combined, and in combination they could point to solutions for a given software
problem by presenting suitable technology combinations. The software engineer would
then evaluate the results and modify the problem description until the presented solution
can become the basis of the desired software architecture.
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Bornhold did a case study on a regional trade information system [Bornhold 2006] with
the MidArch method [Giesecke 2008]. In his work, he modeled middleware-oriented
and generic architecture styles and used them for candidate architectures in his Mi-
dArch instance. Based on Bornholds work, in my chapter A, I analyze and model
meta-information for these five styles based on the technique introduced chapter 4.

Section A.1 documents the modeling of the generic architectural style Inversion of
Control. The middleware-oriented styles are documented in four sections. Section A.2
documents the Spring Framework and section A.3 documents the modeling for Awvalon
Framework. The Cocoon technology are represented by the more generic style Cocoon
Basic Style and the specialized style Cocoon with Flowscript. The modeling of these two
styles is documented in section A.4.

A.1 Inversion of Control

The architectural style Inversion of Control has already been discussed briefly in subsec-
tion 3.5.2. It is a generic architectural style and therefore not a MidArch style, however it
plays the central role in [Bornhold 2006], because both framework induced styles (Spring
and Avalon) are descendants of Inversion of Control. Furthermore [Fowler 2004] states
that many frameworks implement the Inversion of Control pattern, which is the basis
for the Inversion of Control style.

The Inversion of Control style is a generic and therefore not be technology induced
style. It is documented and discussed in [Fowler 2004] and briefly described and formu-
lated in ADL in [Bornhold 2006].

A.1.1 Analyze Documentation

The informal description in [Bornhold 2006] is in German therefore the determined
clauses have been translated into English. The documentation of the style has no tech-
nical aspects, also it has no specified target domain or quality attributes. Therefore the
knowledge aspects defined in section 4.3.1 cannot be used here. However the description
of the Inversion of Control pattern [Fowler 2004] and style [Bornhold 2006] are very brief
therefore only a view clauses are collected. The following list contains all clauses found
in the documentation:

1. Architectures with this style have containers and components

2. Components are controlled by a container
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3. Each component can only be controlled by one container
4. Each component is connected to a container by a lifecycle connector
5. There has to be at least one container in an architecture with inversion of control

6. Service Locator or dependency injection are different ways to realize inversion of
control

A.1.2 Relating

The Inversion of Control style is a basis style therefore it is not related to other basis
styles.

A.1.3 Codification

In this section the clauses get codified. Therefore the grammatical structure is analyzed.
The noun phrases have already been marked in the enumeration above. Therefore the
mapping of noun phrases on classes and individuals as well as the mapping of predicates
and relationsships on properties is the next step.

e This style refers to InversionOfControl which is an instance of ArchitectureFamily
(class)

o InversionOfControl hasComponentType Container and Component
e Component isControlledBy max one Container (rule)
o LiwveCycleConnector connects Component and Container

e InversionOfControl has at least one Container (this is a constrain best expressed
in an ADL)

o InversionOfControl hasInversionOfControlType ServiceLocator or Dependencyln-
jection

e ServiceLocator or Dependencylnjection form the concept InversionOfControlType

A.1.4 Formalization

Individual (InversionOfControl type( ArchitectureFamily)
value ( hasComponentType IoCComponent)
value ( hasComponentType ToCContainer)
value (hasConnectorType IoCLifecycleConnector))

Individual (IoCComponent type( ComponentType)

value (isEmbeddable true)
value (hasPortType ToCLifecycleControlPort))
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Individual (IoCContainer type( ComponentType)
value(isContainer true)
value(hasPortType IoCLifecycleControllerPort))

Individual (loCLifecycleConnector type(ConnectorType)
value(hasRoleType IoCLifecycleControllerRole)
value (hasRoleType IoCLifecycleControlRole))

Individual(IoCLifecycleControllerPort type(PortType)
value (acceptsRole ToCLifecycleControllerRole))

Individual (IoCLifecycleControlPort type(PortType)
value(acceptsRole ToCLifecycleControlRole))

Individual ([oCLifecycleControllerRole type(RoleType))
Individual (IoCLifecycleControlRole type(RoleType))

EnumeratedClass(InversionOfControlType
Dependencylnjection
ServiceLocator

)

ObjectProperty(haslnversionOfControlType
domain( ArchitectureFamily) range(InversionOfControlType))

/x these definition have been introduced in chapter Model of the
Knowledge Base and are shown here only for the sake of
completeness x/

Implies(

Antecedent (
hasComponentType(? style ,? comp) isContainer(?comp, true)
hasComponentType(? style ,7 embed) isEmbeddable(?embed, true)
hasConnectorType(? style ,? connector)
hasPortType(?comp,? portS) acceptsRole(?portS,?roleS)
hasPortType(?embed,? portC) acceptsRole(?portC,?roleC)
hasRoleType(? connector ,? roleS)
hasRoleType(? connector ,? roleC)

)

Consequent ( controls(?comp,? embed))
)
DatatypeProperty(isContainer
domain ( ComponentType) range(zsd:boolean))
DatatypeProperty(isEmbeddable
domain ( ComponentType) range(xzsd:boolean))
Implies(
Antecedent (hasAncestor(?z,?7y) isContainer(?y, true))
Consequent (isContainer(?z, true))
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Implies (
Antecedent (hasAncestor(?z,?y) isEmbeddable(?y, true))
Consequent (isEmbeddable(?z, true))

Listing A.1: Complete definition of the Inversion of Control style

A.2 Spring Framework

The Spring Framework is a Java framework for enterprise application. It is based on work
from Johnson [2002]. It aims to be easier to use as J2EE or other Inversion of Control
frameworks. As input source for the knowledge modeling, the following documents are
used: Informal description of the Spring Style in [Bornhold 2006], the Spring website
[Spring 2008] and the reference documentation of the Spring framework [Johnson et al.
2008].

A.2.1 Analyze Documentation

The modeling technique described in chapter 4 states that the first documentation to be
analyzed is the informal description of an middleware-oriented style. Therefore the first
document to be analyzed is [Bornhold 2006] followed by information from the website
and finally the reference documentation.

Informal Description

The informal description in [Bornhold 2006] is written in German. However I translated
the paraphrases into English. The result of the paraphrasing process is shown in the enu-
meration below. Style related noun phrases or objects (see section 2.1.3) are highlighted
with talics.

1. Spring is an Inversion of Control based framework

2. Spring uses the Dependency Injection method to realize the Inversion of Control
pattern

3. Spring is used with simpler components than Avalon
4. Spring components are Plain old Java objects (POJO)
5. Spring components have a lifecycle

6. Container in Spring is called BeanFactory

7. Components are called Beans

8. Container can automatically inject dependencies
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9. The container uses configuration files to create and configure components
10. An extended container type of BeanFactoy is ApplicationContext

11. ApplicationContext supports Internationalization, platform independent access to
resources, and event handling with an Observer pattern

12. ApplicationContext automatically instantiates Singleton objects
13. Spring supports configuration through Setter Injection and Constructor Injection

14. Spring supports the creation of components with constructors or through a Factory
Method

15. Beans can receive information of their lifecycle through Marker Interfaces

16. Spring uses one BeanFactory or compatible container as central element, which
contains all other components

17. A container is also a component

Web-Documents

The web-page of Spring [Spring 2008] contains, beside the reference documentation, a
wiki, and an about-page. The reference documentation is analyzed below. The wiki
contains many best practice information on implementation level which are not in the
scope of this thesis. The about-page, however, contains a list of meta-information focusing
on the basic idea behind Spring and main features of the framework. In the following
a list of paraphrased sentences from the web-page is given categorized by the three
knowledge areas.

Target Domain Aspect

18. Spring is the basis of enterprise and business applications

Technical Knowledge Aspect
19. Spring is a Java-based technology
20. Spring supports testing
21. Spring should work as an integration platform
22. Spring is a lightweight container which can work with loosely-coupled components
23. Spring is a common abstraction layer for transaction management

24. Spring has o JDBC abstraction layer
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25. Spring supports Data Access Objects (DAO) with the technologies Toplink, Hiber-
nate, JDO, and iBATIS SQL Maps.

26. Spring supports Aspect Oriented Programming (AOP)

27. Spring supports the Model- View-Controller pattern (MVC) through the technolo-
gies JSP, Velocity, Tiles, iText, and POL.

28. The Spring middle tier can be combined with a web tier based on other web MVC
frameworks, like Struts, WebWork, or Tapestry.

29. Spring works with any J2EE server and most of it also in non-managed environ-
ments.

Quality Aspect

30. Spring is licensed under the terms of the Apache License.

Reference Documentation

The reference documentation [Johnson et al. 2008] is available in HTML and as a separate
PDF. The documentation is for Spring version 2.5 and has an overview section which
explains most features of the Spring Framework and the usage scenarios which are the
basis for these features. The second chapter of this documentation discusses the changes
since the previous version 2.0 of the Spring framework. The rest of the document is split
in four parts which focus on the core technology, middle tier data access, the web, and
the integration topic.

A detailed reading and analysis of the whole document would take too long, because
the document comprises 587 pages. Therefore a selection of more important parts for
the retrieval of meta-information is required. Because only general information on the
parts and packages is required, it is enough to analyze the introductory sections of the
documentation. Additionally these sections are read with the three knowledge aspects
in mind. Below a list of paraphrased sentences from these introductory sections is given,
subdivided by the three knowledge aspects.

Target Domain Aspect

31. Spring can be used for web applications

Technical Knowledge Aspect

32. The Core package provides the Inversion of Control and Dependency Injection
features.

33. The Context package allows to access objects in a framework-style manner in a
fashion somewhat reminiscent of a JNDI-registry
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34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.
45.

46.
47.
48.
49.
50.
51.

52.

53.
54.
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The Context package supports interantionalization, event-propagation, resource-
loading, and the transparent creation of contexts

The DAO package provides a JDBC-abstraction layer and a declarative transaction
management

The ORM package integrates object-rational mapping APIs, like JPA, JDO, Hiber-
nate, Oracle TopLink, and iBATIS SQL Maps.

The AOP package provides an AOP Alliance-compliant aspect programming im-
plementation

The AOP package provides source-level metadata functionality for behavioral in-
formation similar to .NET attributes.

The AOP package supports method-interceptors and pointcuts to decouple code
implementing functionality

The Web package provides basic web-oriented integration features: multipart file-
upload, initialization of the IoC container, and a web-oriented application context.

The Web package allows the integration of Struts and WebWork
The MVC package provides a MVC implementation for web-applications

The MVC package allows the use of different view technologies, like JSP, JSTL,
Tiles, Velocity, FreeMaker, XSLT, JasperReports or diverse document views

Spring can be used for web applications running in a servlet container

AOP is used to provide declarative enterprise services, as a replacement for EJB
declarative services

Spring’s AOP can use a Schema-based AOP support or AspectJ
Schema-based AOP does not depend on Java 5

AspectJ is an AOP technology

Spring fosters the use of unit testing with packages like JUnit or TestNG
Spring provides mock objects

Spring supports integration testing

Spring provides a consistent programming model across different transaction APIs
such as JTA, JDBC, Hibernate, JPA, and JDO

Spring supports delarative transaction management

Spring is a multi-tier platform
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56.
57.
58.
59.

60.
61.

62.

63.

64.
65.
66.
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The Spring Framework can run in servlet and portlet environments

Spring Web Flow integrates with Spring MVC, Struts, and JSF

Spring integrates web frameworks such as JSF, Struts, WebWork, and Tapestry.
Spring supports the portlet standard JSR-168

Spring supports remoting technologies Remote Method Invocation (RMI), Spring’s
HTTP invoker, Hessian, Burlap, JAX-RPC, JAX-WS, and Java Message Service
(JMS).

Spring works with EJB
Spring helps with stateless session beans

Spring supports Common Client Interface of the Java Connector Architecture

(JCA)

The Java Connector Architecture is a J2EE standard for the access to enterprise
information systems

JCA defines a service provider interface (SPI) and a common client interface
Spring integrates with email services

Spring supports scheduling and thread pooling with JDK 1.3 Timer and Quartz

Quality Aspect

67.

68.
69.

Spring supports a simpler API for programmatic transaction management com-
pared to JTA

Spring is an integration platform

Spring is widely used and has support by a large community and several software
companies

A.2.2 Relating

The informal modeling task has produced a long list of paraphrased sentences. They
contain a large number of terms and expressions, which have or express relationships.
The center of the analysis is the Spring Framework which is associated with the Spring
Style from [Bornhold 2006]. The style is a specialization of the Inversion of Control

style.

The list of sentences mentions many different technologies and pattern, but the knowl-
edge base does not contain any defined technologies. However Spring is a Java-based

105



A Analyze MidArch Styles

technology and programming languages are already present in the knowledge base. Fur-
thermore the knowledge base has information about test technologies, like JUnit which
are also used in Spring.

Based on this analysis the following list of relationships can be formulated:

1. Spring is a sub-class of Inversion of Control
2. Spring is a Java-based technology

3. Spring supports the test method JUnit (it also supports TestNG which is not
known by the knowledge base at this point)

A.2.3 Codification

The sentences and clauses collected in the document analysis task define many differ-
ent properties of the Spring style. To keep track of the mapping of properties to the
codification description, I prefix the codification with the corresponding enumeration.

1 Spring hasParent InversionOfControl

2,13 Spring hasDependencylnjectionType SetterInjection and ConstructorInjection
2 Spring hasInversionOfControlType Dependencylnjection

3 Spring hasComponentComplexity low

4,7 Bean are POJO

5,7 Bean hasParent IoCComponent

6 BeanFactory is class ComponentType and hasParent loCContainer

8 BeanFactory performsDependencylnjection yes

9 BeanFactory createsComponents yes configuresComponents yes

10 ApplicationContext hasParent BeanFactory

11 ApplicationContext supportsTechnology Internationalization

11 ApplicationContext supportsPattern ObserverPattern

11 ApplicationContext supportsTechnology PlatformIndependentResourceAccess

12 ApplicationContext supportsPattern Singleton

14 Spring supportsComponentConstructionMethod ComponentConstructionMethod
14 Constructor and FactoryMethod instance of ComponentConstructionMethod

15 Bean hasPortType MarkerInterface
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15 MarkeriInterface hasParent IoCLifecycleControlPort

18,31 Spring supportsApplicationType ApplicationType (class) with values Enterprise-
Application, BusinessApplication, and WebApplication

19 Spring supportsProgrammingLanguage Java and Csharp
21 Spring providesFeature Integration

22 BeanFactory hasContainerType Light WeightContainer
25 DAO sameAs DirectAccessObject

26 AspectOrientedProgramming sameAs AOP

28,41,57 Spring hasPackage SpringM VCPackage

28,41,57 SpringMVCPackage supportsTechnology Struts, WebWork, JSF, and Tapestry
28 Struts, WebWork, and Tapestry supportPattern MVC
29 Spring supportsTechnology J2EEServer

30 Spring hasLicense ApacheLicense

30 ApacheLicense instance of License

30 ApacheLicense isType OpenSourceLicense

3243 Spring hasPackage Package with values SpringCorePackage, SpringContextPack-
age, SpringDAOPackage, SpringORMPackage, SpringAOPPackage, and Spring-
MVCPackage

32-43 Package (class) has restrictions: supportsPattern, supportsTechnology, provides-
Technology

32 SpringCorePackage providesTechnology Spring
33 SpringContextPackage supportsTechnology JNDI
34 SpringContextPackage supportsTechnology Internationalization

34 SpringContextPackage providesFeature FventPropagation, ResourceLoading, Trans-
parentContextCreation

23,24,35,53 SpringDAOPackage supportsTechnology JDBC and TransactionManage-
ment (class)

35 TransactionManagement (class) has individuals Declarative TransactionManagement
and Programmatic TransactionManagement
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25,36 SpringORMPackage supportsTechnology Toplink, Hibernate, iBATIS SQL Maps,
JDO, and JPA

25,36,52 Toplink, Hibernate, JDO, JPA, and iBATIS SQL Maps supportsPattern Di-
rectAccessObject is instance of DesignPattern

26,37 SpringAOPPackage supportsPattern AspectOrientedProgramming
37 SpringAOPPackage conformsTo AOPAllianceStandard

38 SpringAOPPackage providesFeature Behaviorallnformation

39 SpringAOPPackage providesFeature MethodInterceptors and Pointcuts

39 AOPFeature (class) has parent Feature has instances MethodInterceptors and Point-
cuts

40 SpringM VCPackage providesComponent WebApplicationContext

40 WebApplicationContext hasParent ApplicationContext

40 SpringM VCPackage providesFeature MultipartFile Upload

27,42,43 SpringM VCPackage supportsTechnology JSP, Velocity, Tiles, iText, and POI
27,43 JSP, Velocity, Tiles, iText, and POI supportsPattern ModelViewController

27 ModelViewController sameAs MVC

44,55 Spring supportsTechnology ServletContainer

45 SpringAOPPackage providesFeature SpringDeclarative EnterpriseService

45 SpringDeclerativeEnterpriseService and EJBDeclarativeService are instance of De-
clerativeService (class)

46 SpringAOPPackage supportsTechnology SchemaBasedAOP and AspectJ
47 AspectJ requires Javad

47 Javab hasParent Java instance of ProgrammingLanguage (class)

48 AspectJ and SchemaBasedAOP instance of AOPTechnology

20,49 Spring supportsTestMethod UnitTest and Stubs

49 UnitTest hasTechnology JUnit and TestNG

50 Stubs hasTechnology MockObject

51 Spring supportsTestMethod Integration Testing
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54 Spring instance of MultiTierPlatform
55,58 Spring supportsTechnology JSR168Container instance of Portlet
56 SpringWebFlow integratesWith SpringM VCPackage, Struts, JSF

59 Spring supportsTechnology RMI, SpringHTTPinvoker, Hessian, Burlap, JAX-RPC,
JAX-WS, and JMS

59 RMI, SpringHTTPinvoker, Hessian, Burlap, JAX-RPC, JAX-WS, and JMS are in-
stance of RemotingTechnologies

60 Spring worksWith EJB

61 Spring providesFeature StatelessSessionBean

62 Spring supportsTechnology CCI

62 CCI isPartOf JCA

62 CCI, SPI, JCA instance of Technology

64 SPI isPartOf JCA

65 Spring supportsTechnology EMailService

66 Spring supportsTechnology JDK Timer and Quartz

66 JDKTimer and Quartz providesFeature Scheduling, ThreadPooling
68 Spring instance of IntegrationPlatform

69 Spring isSupported excellent

A.2.4 Formalization

ObjectProperty (works With Symmetric
domain (union0f ( Technology ProgrammingLanguage))
range (unionO0f ( Technology ProgrammingLanguage)))

DatatypeProperty(hasComponentComplexity Functional
domain( ArchitectureFamily) range(oneOf (
» high”
77l0w7’

)))

DatatypeProperty(isSupported Functional
domain( MiddlewarOrientedArchitectureFamily) range(oneOf (
“excellent”
77good77
"satisfactory”

109



A Analyze MidArch Styles

"adequate”
"inadequate”
"missing”

)))

EnumeratedClass ( ApplicationType
EnterpriseApplication
BusinessApplication
WebApplication

)

ObjectProperty(providesFeature

domain (unionOf (
ArchitectureFamily
ComponentType
ConnectorType
Package
Technology)))

range ( Feature)

)

ObjectProperty (supportsApplicationType
domain( ArchitectureFamily) range( ApplicationType))

Individual (ModelViewController type(DesignPattern))
Individual (MVC sameAs(ModelViewController))

Class( Feature partial owl: Thing)

Individual (Integraion type( Feature))
Individual ( EventPropagation type(Feature))
Individual (ResourceLoading type( Feature))
Individual ( TransparentContextCreation type( Feature))
Individual ( Behvariorallnformation type(Feature))
Individual ( MultipartFileUpload type( Feature))
Individual ( StatelessSessionBean type(Feature))

Class(DeclarativeService partial Feature)
Individual(SpringDeclarativeEnterpriseService

type( DeclerativeService))
Individual (EJBDeclarativeService type( DeclerativeService))
Class (AOPFeature partial Feature)
Individual ( MethodInterceptors type(AOPFeature))
Individual ( Pointcuts type( AOPFeature))

Individual (JDKTimer type( Technology)
value(providesFeature Scheduling)
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value(providesFeature ThreadPooling)
)
Individual ( Quartz type( Technology)
value (providesFeature Scheduling)
value(providesFeature ThreadPooling)

)

Individual ( EMailService type( Technology))
Individual (EJB type( Technology))

ObjectProperty(isPartOf domain( Technology) range( Technology))

Individual (JCA type( Technology))

Individual (CCI type( Technology)
value (isPartOf JCA)

)

Individual (SPI type( Technology)
value (isPartOf JCA)
)

Class(RemotingTechnology partial Technology)
Individual (RMI type(RemotingTechnology))

Individual (SpringHTTPinvoker type(RemotingTechnology))
Individual ( Hessian type(RemotingTechnology))

Burlap type(RemotingTechnology))

JAX-RPC type(RemotingTechnology))

JAX-WS type(RemotingTechnology))

JMS type (RemotingTechnology))

Individual
Individual
Individual
Individual

e e N N e N N

Individual(IntegrationTesting type( TestConcept))

Individual ( Stubs type( TestConcept)
isImplementedBy( MockObject)

)

Individual ( UnitTest type( TestConcept)
isImplementedBy ( JUnit)
isImplementedBy( TestNG)

)

Class(License partial owl: Thing)
Class(OpenSourceLicense partial License)
Individual (GPL type( OpenSourceLicense))

Individual (ApacheLicense type( OpenSourceLicense))
Individual (BSD type( OpenSourceLicense))

Individual (LGPL type( OpenSourceLicense))
Individual ( MozillaLicense type( OpenSourceLicense))

ObjectProperty(hasLicense domain( Technology) range( License))

Individual ( Csharp type(ProgrammingLanguage))
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Individual (SpringBean type(ComponentType)
value (hasParent IoCComponent)
value (hasPortType MarkerInterface)

)

Individual ( MarkerInterface type(PortType)
value(hasParent IoCLifecycleControlPort)
)

DatatypeProperty(hasContainer Type Functional
domain ( ComponentType) range (oneOf (
"Light WeightContainer”
" BulkContainer”

)))

DatatypeProperty(performsDependencylnjection Functional
domain ( ComponentType) range(xzsd:boolean))

DatatypeProperty(createComponents Functional
domain ( ComponentType) range(zsd:boolean))

DatatypeProperty(configuresComponents Functional
domain ( ComponentType) range(zsd:boolean))

Individual ( SpringBeanFactory type(ComponentType)
value (hasParent IoCContainer)
value (performsDependencylnjection yes)
value(createComponents yes)
value( configuresComponents yes)
hasContainerType Light WeightContainer)

A~ S

value

)

ObjectProperty(supportsTechnology
domain (unionOf (
ComponentType
ArchitectureFamily
ConnectorType
Package))
range ( Technology))

Individual(Internationalization type( Technology))
Individual ( PlatformIndependenResourceAccess type( Technology))

Individual ( ObserverPattern type(DesignPattern))
Individual ( Singleton type(DesignPattern))

Individual (SpringApplicationContext type(ComponentType)
value(hasParent SpringBeanFactory)
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supportsTechnology Internationalization)
supportsPattern ObserverPattern)

supportsTechnology PlatformIndependenResourceAccess)
supportsPattern Singleton)

value
value
value

A~ S

value

)

Individual ( SpringWebApplicationContext type(ComponentType)
value(hasParent SpringApplicationContext)
)

Class( ComponentConstructionMethod partial DesignPattern)

Individual ( Constructor type(ComponentConstructionMethod))
Individual ( FactoryMethod type( ComponentConstructionMethod))

Individual ( DirectAccessObject type(DesignPattern))
Individual (DAO sameAs( DirectAccessObject))

Individual (AspectOrientedProgramming type(DesignPattern))
Individual (AOP sameAs( AspectOrientedProgramming))

Individual ( Struts type( Technology))
Individual (WebWork type( Technology))
Individual (JSF type( Technology))
Individual( Tapestry type( Technology))
Individual (J2EEServer type( Technology))
Individual (JDBC type( Technology))
Individual ( Toplink type( Technology)
value (supportsPattern DAO)
)

Individual ( Hibernate type( Technology)
value (supportsPattern DAO)
)

Individual (JDO type( Technology)
value (supportsPattern DAO)
)

Individual (JPA type( Technology)
value (supportsPattern DAO)
)

Individual (iBatisSQLMaps type( Technology)
value (supportsPattern DAO)
)

Individual (JSP type( Technology)
value (supportsPattern ModelViewController)
)

Individual ( Velocity type( Technology)
value(supportsPattern ModelViewController)
)

Individual( Tiles type( Technology)
value (supportsPattern ModelViewController)
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)

Individual (iText type( Technology)
value(supportsPattern ModelViewController)
)

Individual (POI type( Technology)
value(supportsPattern ModelViewController)
)

Individual ( SpringWebFlow type( Technology)
value (works With SpringMVCPackage)
value (works With Struts)
value (works With JSF)

)

Class( Servlet parital Technology)
Individual ( ServletContainer type( Serviet)

value (supportsProgrammingLanguage Java)
)

Class( Portlet partial Technology)
Individual (JSR168Container type( Portlet)

value ( supportsProgrammingLanguage Java)
)

Class( TransactionManagement partial Technology)

Individual ( DeclarativeTransactionManagement
type ( TransactionManagement))

Individual ( Programmatic TransactionManagement
type ( TransactionManagement))

ObjectProperty(providesTechnology domain(Package) range( Technology))

Class(Package partial owl: Thing
restriction(hasLicense someValueFrom( License))
restriction(supportsPattern someValueFrom( Pattern))
restriction(supportsTechnology someValuesFrom( Technology))
restriction(providesTechnology someValuesFrom( Technology))

)
Class(Standard partial owl: Thing)
Individual (AOPAllianceStandard type(Standard))
ObjectProperty (providesComponent

domain( Package) range(ComponentType))
ObjectProperty (conformsTo

domain( Technology Package) range(Standard))

Individual ( SpringMVCPackage type(Package)
value(supportsTechnology Struts)
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value
value
value

supportsTechnology WebWork)

supportsTechnology JSF)

supportsTechnology Tapestry)

providesComponent SpringWebApplicationContext)
providesFeature MultipartFileUpload)
supportsTechnology JSP)

supportsTechnology Velocity)
supportsTechnology Tiles)

supportsTechnology iText)

supportsTechnology POI)

value
value
value
value
value
value

e R N N T PN

value

)

Individual ( SpringCorePackage type(Package)
value(providesTechnology Spring)
)

Individual (SpringDAOPackage type( Package)
value (supportsTechnology JDBC)
value(supportsTechnology DeclarativeTransactionManagement)
value(supportsTechnology ProgrammaticTransactionManagement)

)

Individual ( SpringContextPackage type(Package)
value(supportsTechnology Internationalization)
value(providesFeature EventPropagation)
value (providesFeature ResourceLoading)
value (providesFeature TransparentContextCreation)

)

ObjectProperty(requires domain( Technology) range())

Individual (Javad type(ProgrammingLanguage)
value (hasParent Java))

Class (AOPTechnology partial Technology)

Individual (Aspect type( AOPTechnology)
value(requires Javad)
)

Individual (SchemaBasedAOP type(AOPTechnology))

Individual ( SpringAOPPackage type(Package)
value(supportsPattern AspectOrientedProgramming)
value (conformsTo AOPAllianceStandard)
value(providesFeature Behaviorallnformation)
value(providesFeature MethodInterceptors)

providesFeature Pointcuts)

providesFeature SpringDeclarativeEnterpriseService)

supportsTechnology SchemaBasedAOP)

value
value
value

NN N N N
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value(supportsTechnology Aspectd)

)

Individual (SpringORMPackage type(Package)
value(supportsTechnology Toplink)
value(supportsTechnology Hibernate)
value (supportsTechnology JDO)
value(supportsTechnology JPA)

supportsTechnology iBatisSQLMaps)

A~~~

value

)

Class( MultiTierPlatform partial
MiddlewareOrientedArchitecturePlatform)

Class(IntegrationPlatform partial
MiddlewareOrientedArchitecturePlatform)

Individual ( Spring

type(intersection0f ( MiddleTierPlatform IntegrationPlatform))

value(hasParent InversionOfControl)
value(hasDependencylnjectionType SetterInjection)
value(hasDependencylnjectionType ConstructorInjection)
value(hasInversionOfControlType Dependencylnjection)
value (hasComponentComplexity low)
value ( hasComponentType SpringBean)
value ( hasComponentType SpringApplicationContext)
value (hasComponentType SpringBeanFactory)
value(supportsComponentConstructionMethod Constructor)
value (supportsComponentConstructionMethod FactoryMethod)
value(supportsApplicationType EnterpriseApplication)
value(supportsApplicationType BusinessApplication)
value(supportsApplicationType WebApplication)
value( supportsProgrammingLanguage Java)
value (supportsProgrammingLanguage Csharp)
value(providesFeature Integration)
value(hasPackage SpringMVCPackage)
value(hasPackage SpringCorePackage)
value(hasPackage SpringContextPackage)
value (hasPackage SpringDAOPackage)
value (hasPackage SpringORMPackage)
value(hasPackage SpringAOPPackage)
value (supportsTechnology J2EEServer)
value(supportsTechnology ServletContainer)
value(supportsTechnology JSR168Container)
value (supportsTechnology RMI)
value(supportsTecdochnology SpringHTTPinvoker)
value(supportsTechnology Hessian)
value(supportsTechnology Burlap)
value(supportsTechnology JAX—RPC)
value(supportsTechnology JAX-WS)
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value (supportsTechnology JMS)

value (supportsTechnology CCI)
value(supportsTechnology EMailService)
value(supportsTechnology JDKTimer)
value(supportsTechnology Quartz)
value(supportsTestMethod UnitTest)

value (supportsTestMethod Stubs)
value(supportsTestMethod IntegrationTesting)
value (works With EJB)

value (providesFeature StatelessSessionBean)
value (isSupported excellent)

)

Listing A.2: Complete definition of the Spring Architecture Family and all relevant new
concepts, individuals, and properties required for it

A.3 Avalon Framework

The Apache Avalon Project [Avalon 2004] developed an Inversion of Control framework,
called Avalon Framework. Since 2004 the project is closed and the Avalon Framework is
now part of the Ezcalibur Project. In [Bornhold 2006] the framework and its correspond-
ing style is called Awvalon, therefore I use the name Awvalon for the knowledge modeling
as well.

Beside the style description from [Bornhold 2006], the sections Fortess and Framework
from the web-page of Apache Ezcalibur [Excalibur 2007] are processed.

A.3.1 Analyze Documentation

The first document to be analyzed is the informal description from [Bornhold 2006]. The
resulting phrases are cataloged in section A.3.1. The results from the paraphrasing of
Avalon web-page is cataloged in section A.3.1.

Informal Description

The informal description in [Bornhold 2006] is written in German. However I translated
the paraphrases into English. The result of the paraphrasing process is shown in the enu-
meration below. Style related noun phrases or objects (see section 2.1.3) are highlighted
with stalics.

1. Awalon has always one container to control the components
2. A container is a component which can be controlled by another container

3. Awalon allows to build a hierarchy of containers

W

. Components access each other over roles
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5. Each role has its own interface

6. The service manager controls the access to other components

7. The service manager is a component type

8. A component selector handles different implementations of a role
9. The Avalon container is the container component of Avalon

10. The component selector is a component

Technical Documentation

The technical documentation of the Awvalon Framework is compiled on the web-page of
the Excalibur project. Compared to the Spring Framework the documentation has not
reached the same level of quality. It is superficial and does not provide introductory
information. However the web-page has two sections named Fortess and Framework
which contain relevant information for the three knowledge aspects defined in section
4.3.1. Below a list of paraphrased sentences from these sections is given, subdivided by
the three knowledge aspects.

Target Domain Aspect

11. Awalon can be used for serviet and Swing application

Technical Knowledge Aspect
12. A Role is represented by an interface

13. The concerns supported are configuration, external, component use, management,
role, and execution.

14. The concerns are represented by interfaces

15. The component serviceable is a container

16. The service manager is used to get component instances.
17. The service manage does the service lookup

18. If a role has more than one implementation than a service selector can be used to
choose between these implementations

19. A service selector can work with hashtable or dynamic lookup
20. The lifecycle package contains classes supporting portable extensions

21. Datasource package handles pooled connections or uses J2EE server’s data source
management
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22. Monitor package supports active and passive resource monitoring
23. Pool package handles resource pooling

24. Sourceresolver is a component used to find the source by an URI
25. Store package supports storing named object in memory or on file system
26. XMLUtil package provides XML utility functions

27. Awalon supports Swing-based applications

28. Awalon supports Servlet-based applications

29. Awalon can bind to JNDI

30. JNDI provides resource management

31. Awalon provides a container component

32. Awalon supports pattern seperation of concern

33. Awalon supports pattern aspect oriented programming through interfaces or As-
pectJ

34. Awalon supports quality of service, authentication, authorization

Quality Aspect
35. Awalon project replaced by the Excalibur project

36. Documentation is out of date and incomplete

A.3.2 Relating

The informal modeling task has produced a list of paraphrased sentences which contain
numerous terms and expressions. These terms have or express relationships to other
terms in the knowledge base. In this relating task relationships to existing individu-
als in the knowledge base are determined. The following list catalogs all determined
relationships.

37. Awalon is a Inversion of Control style
38. Awalon supports technology JNDI
39. Awalon supports pattern AOP

40. Awalon supports pattern SOC

41. Awalon is a Java-based technology
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A.3.3 Codification

1,9,31 Awalon hasComponentType AvalonContainer and AvalonComponent
2,3 AwalonContainer isEmbeddable true
2,3 AwvalonContainer isContainer true

4,5,12 Role sameAs Interface sameAs PortType (The term Role is not defined to mini-
mize interpretation errors, because the term Role is close to RoleType, but describes
a complete different concept.)

6 AvalonServiceManager providesAccessControlTo AvalonComponent
7 AvalonServiceManager instance of ComponentType

8,18,19 AwalonServiceSelector provideFeature RoleSelection

10 Awalon hasComponentType AvalonServiceSelector

11 Awalon supportsTechnology ServietContainer, Swing

14 Concern sameAs Interface

14 Configuration, ExternalComponentUse, Management, Execution instance of Concern
15 Awalon hasComponentType Serviceable isContainer true

16,17 AvalonServiceManager providesFeature ComponentLookup

20 AwalonLifecyclePackage providesFeature Lifecycle

21 Awalon hasPackage AvalonDatasourcePackage

21 AwalonDatasourcePackage providesTechnology J2EEDatasourceManagement, Aval-
onDatasourceManagement

21 J2EEDatasourceManagement, AvalonDatasourceManagement providesFeature Data-
source Management

22 AwalonMonitorPackage providesTechnology ActiveResourceMonitoring, PassiveRe-
sourceMonitoring instance of ResourceMonitoring partial Technology

23 AwalonPoolPackage providesFeature ResourcePooling

24 Awalon hasComponentType AvalonSourceresolver

24 AwalonSourceresolver providesFeature SourceLookup

25 Awalon hasPackage AvalonStorePackage providesFeature DataStorage

26 Awvalon hasPackage XML UtilPackage providesFeature XML Processing
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27 Awalon supportsTechnology Swing

28 Awalon supportsTechnology ServletContainer

29,38 Awalon supportsTechnology JNDI

30 JNDI providesFeature ResourceManagement

32,40 Awalon supportsPattern SeparationOfConcern sameAs SOC
33,39 Awalon supportsTechnology AspectJ supportsPattern AOP
34 Awalon supportsTechnology Authentication, Authorization
35,36 Awalon documentationQuality low

37 Awalon hasParent InversionOfControl

41 Awalon supportsProgramminglLanguage Java

A.3.4 Formalization

Class(Interface sameAs PortType)
Individual (AvalonServiceManager type(ComponentType)

value (providesFeature ServiceLocator)
)

Individual (AvalonContainer type(ComponentType)
value (hasParent IToCContainer)
value(isEmbeddable true)

)

Individual (AwvalonServiceable sameAs AwvalonContainer)

)

Individual (AvalonComponent type( ComponentType)
value (hasParent IoCComponent)

)

Individual (RoleSelection type(Feature))

Individual (AwvalonServiceSelector type(ComponentType)
value(providesFeature RoleSelection)

)

Individual (Swing type( Technology))

Individual( Lifecycle type( Feature))

Individual ( AvalonLifecyclePackage type(Package)
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value (providesFeature Lifecycle)

)

Individual (AvalonDatasourceManagement type( Technology)
value(providesFeature DatasourceManagement)
)

Individual (J2EEDatasourceManagement type( Technology)
value(providesFeature DatasourceManagement)
)

Individual ( AvalonDatasourcePackage type(Package)
value (providesTechnology AvalonDatasourceManagement)
value (providesTechnology J2EEDatasourceManagement)

)

Class(ResourceMonitoring parital type( Technology))

Individual (ActiveResourceMonitoring type( ResourceMonitoring))
Individual ( PassiveResourceMonitoring type( ResourceMonitoring))

Individual (AvalonMonitorPackage type(Package)
value (providesTechnology ActiveResourceMonitoring)
value (providesTechnology PassiveResourceMonitoring)

)

Individual (ResourcePooling type( Feature))
Individual (AwvalonSourceResolver type(ComponentType)

value(providesFeature SourceLookup)
)

Individual (AvalonPoolPackage type(Package)
value (providesFeature ResourcePooling)
value (providesComponent type( AvalonSourceResolver))

)

Individual (DataStorage type( Feature))

Individual (AvalonStorePackage type(Package)
value(providesFeature DataStorage)

)

Individual ( XMIProcessing type( Feature))

Individual (AvalonXMLUtilPackage type(Package)

value(providesFeature XMLProcessing)
)

Individual (JNDI type( Technology)
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value (providesFeature( ResourceManagement))

)

Individual (SeparationOfConcern type(DesignPattern))
Individual (SOC sameAs SeparationOfConcern)

Individual (Awuthentication type( Technology))
Individual ( Authorization type( Technology))

Individual (AvalonLifecycleConnector type(ConnectorType)
value (hasParent IoCLifecycleConnector)
)

Individual (Awalon type( MiddlewareOrientedArchitectureFamily)
value (hasParent InversionOfControl)
value(hasConnectorType AwvalonLifecycleConnector)
value ( hasComponentType AvalonServiceSelector)
value ( hasComponentType AwvalonSourceResolver)
value ( hasComponentType AwvalonServiceManager)
value ( hasComponentType AwvalonContainer)
value ( hasComponentType AwvalonComponent)
value(supportsTechnology ServletContainer)
value (supportsTechnology Swing)
value(supportsTechnology JNDI)
value (hasPackage AvalonLifecyclePackage)
value(hasPackage AwvalonDatasourcePackage)
value(hasPackage AvalonMonitorPackage)
value (hasPackage AwalonStorePackage)
value(supportsPattern SOC)
value(supportsTechnology Aspectd)

value(supportsTechnology Authentication)

value(supportsTechnology Authorization)
value (documentationQuality low)

value (supportsProgrammingLanguage Java)

)

Implies(

Antecedent (hasAncestor(? ancestor ,? component)
ComponentType(? ancestor) ComponentType(? component)
isContainer(? ancestor , true))

Consequent (isContainer(? component, true))

)
Implies(

Antecedent (hasAncestor(? ancestor ,? component)
ComponentType(? ancestor) ComponentType(? component)
isEmbeddable(? ancestor , true))

Consequent (isEmbeddabe(? component , true))
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Listing A.3: Complete definition of the Avalon Architecture Family and all relevant new
concepts, individuals, and properties required for it

A.3.5 Reviewing

The new Avalon Architecture Family introduced new technologies, features, and pattern,
as well as other concepts, which may also be present in the Spring Framework. Therefore
I analyze in the reviewing task the Spring Framework to find matches with the new
concepts. Also I check for new rules which enrich the reasoning and ease the querying.

1. Hibernate, iBatisSQLMaps, JDO, JPA, Toplink providesFeature DatasourceMan-
agement

2. Spring supportsTechnology Swing

3. If a package supports a technology then the architectural family owning the package
also supports this technology

4. If a package supports a pattern then the architectural family owning the package
also supports this pattern

5. If a technology supports a pattern then the supporter of the technology also supports
the pattern

6. If a technology, a package, or a component provides a feature then the architectural
style for this technology, package, or component provides the same feature

7. Hibernate, iBatisSQLMaps, JDO, JPA, Toplink providesFeature DataStorage
8. SpringContextPackage providesFeature Lifecycle
9. Spring providesFeature ResourcePooling

10. Spring providesFeature XML Processing

A.4 Cocoon Styles

The two Cocoon styles described in [Bornhold 2006] are very similar. The difference is
that the first style called Cocoon Basic Style does not use FlowScript, but the second
style, called Cocoon with FlowScript does. Therefore it is an extension of the basic style.

Because of this close relationship of these two styles, I perform the analysis and for-
malization for them together. The input documents are the Cocoon web-site [Cocoon
2008] and the style description from [Bornhold 2006].

124



A Analyze MidArch Styles

A.4.1 Analyze Documentation
The analysis starts with the informal style description from [Bornhold 2006]. Then a
selection of pages from the web-site are analyzed to get more detailed information.
Informal Description

1. Apache Cocoon is a framework to create web application

2. Cocoon uses the Pipe-and-Filter desgin pattern

3. The processing of a request starts at the sitemap

4. The matcher selects a suitable pipeline for a given request

5. A selector is a more complex matcher

6. An action, a selector, and a matcher support the selection of a pipeline for a given
request

7. An action can manipulate runtime parameter of a pipeline
8. A pipline is a sequence of pipes and filters

9. a filter processes SAX-Fvents

10. a pipe relays SAX-FEvents

11. A generator creates SAX-FEvents

12. A transformator is a filter

13. A serializer only reads SAX-Fvents

14. A pipeline starts with a generator, an aggregator or a reader

Technical Documentation

The Cocoon web-site comprises of documentation for various versions of Cocoon. The
two more recent versions are 2.1 and 2.2 which are the basis for the analysis. The major
change in Cocoon from 2.1 to 2.2 is the shift from Awvalon to Spring as the underlying
technology. To ease the migration from Awalon to Spring, Cocoon provides a bridge
which allows the use of Avalon components in a Spring container.

The technical documentation for Cocoon is quite comprehensive, therefore a pre-
selection of pages and document parts has to be made. Unlike the Spring documen-
tation, the Cocoon documentation does not have an overview section to each subject.
Therefore some information can only be gathered by examining specification documents.

All selected documents, parts, and sections have been analyzed with the three knowl-
edge aspects in mind. The results are described in the three corresponding sections
below.
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Target Domain Aspect
15. Cocoon can be used for web portals
16. Cocoon supports multi-channel web publishing

17. Cocoon supports static content generation

Technical Knowledge Aspect
18. Cocoon has a authentication framework

19. The authentication framework provides module management which allows comp-
onent-based configuration

20. The authentication framework provides application management which allows to
configure different applications on the same engine

21. The authentication framework provides user management

22. The user management supports a role and user based authentication model
23. Cocoon provides a session management

24. Cocoon requires Java

25. Cocoon requires a servlet engine such as Jetty or Apache Tomcat

26. Cocoon 2.2 is Spring-based

27. Cocoon 2.1 is Avalon-based

28. A cocoon block is a unit of modularization comparable to Eclipse plugins or OSGi
bundles (or Package in the knowledge base of this thesis)

29. Cocoon provides general servlet services

30. Cocoon provides special services in form of pipelines

31. Cocoon provides component services for Spring beans and Avalon services
32. Cocoon provides flow control

33. Cocoon provides internationalization

34. Cocoon supports portlet technology JSR-168 container

35. Cocoon can process XML input from files, services, and databases

36. Cocoon supports JDBC

37. Cocoon supports Velocity
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38. Cocoon supports extensible Server Pages (XSP)

39. Cocoon worksWith EJB, JMS which are J2EFE implementations

40. Cocoon allows to build portlets

41. Cocoon supports Lucene

42. Cocoon supports object-relational frameworks such as Hibernate, OJB
43. Cocoon supports Java data binding frameworks Castor, Betwixt

44. Cocoon provides output filter XML, HTML, XHTML, PDF, ODF, FExcel, RTF,
Postscript, Flash, SVG, MIDI, ZIP

45. Cocoon provides transformations with XSLT and STX
46. Cocoon requires Java 1.4.2

47. Cocoon requires a Java servlet container version 2.2 like Tomcat, Jetty, JBoss,
JRun, Websphere, or Weblogic

Quality Aspect

48. Cocoon doucmentation quality is good

A.4.2 Relating
49. Cocoon is a PipesAndFilter style

50. Cocoon data and control binding RunTime and InvocationTime

A.4.3 Codification

1 Cocoon instance of MiddlewareOrientedArchitectureFamily

1 Cocoon supportsApplicationType WebApplication

2,49 Cocoon hasParent PipesAndFilter

4,6 CocoonPipelineMatcher providesFeature PipelineSelection

5,6 CocoonPipelineSelector providesFeature PipelineSelection

7 CocoonPipelineAction providesFeature RuntimeConfiguration

9,12 CocoonTransformer providesFeature SAXFEventProcessing

9,12 Cocoon hasComponentType CocoonTransformer hasParent Transducer

10 Cocoon hasConnectorType CocoonSaxrConnector hasParent Stream
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Cocoon hasComponentType CocoonGenerator hasParent Transducer

Cocoon hasComponentType CocoonSerializer hasParent Transducer

15,34,40 Cocoon supportsTechnology JSR168Container

16
17
18

Cocoon providesFeature MultiChannelWebPublishing
Cocoon providesFeature StaticContentGeneration

Cocoon hasPackage CocoonAuthentication

19,20,21 CocoonAuthentication supportsTechnology Authentication

23

Cocoon providesFeature SessionManagement

24,46 Cocoon requires Java

24

Cocoon supportsProgrammingLanguage Java

25,29,30,47 Cocoon requires Tomcat, Jetty, JBoss, JRun, Websphere, or Weblogic

26,27,31 Cocoon supportsTechnology Spring, Avalon

32
33
35
35
35
36
37
38
39
41
42
42
43
44

Cocoon providesTechnology FlowControl

Cocoon providesTechnology Internationalization
Cocoon providesFeature XML Processing

XMLFiley, XMLService, XMLDatabase instance of XMLTechnology
XMLTechnology subclassof Technology

Cocoon supportsTechnology JDBC

Cocoon supportsTechnology Velocity

Cocoon supportsTechnology XSP

Cocoon supportsTechnology JMS, EJB

Cocoon supportsTechnology Lucene

Cocoon supportsTechnology Hibernate, OJB
Hibernate providesFeature ObjectRelationalMapping
Cocoon supportsTechnology Castor, Betwixt

CocoonSerializer supportsOutputFormat XML, ODF, Excel, RTF, HTML, XHTML,
Postscript, PDF, Flash, SVG, MIDI, and ZIP instance of FileFormat
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45 (Cocoon supportsTechnology XSLT

45 Cocoon supportsTechnology STX

48 Cocoon documentationQuality good

50 Cocoon dataBindingAt RunTime, InvocationTime

50 Cocoon controlBindingAt RunTime, Invocation Time

The phrases 3, 8, 14 and 28 are not codified because they are outside the scope of the
knowledge base. Phrase 3 describes a property of the Cocoon style itself and is therefore
already present through the ADL formalization. Phrase 8 describes the overall concept
of a pipeline and 14 the specific structure of pipelines in Cocoon architectures which are
both described in the ADL formalization. Phrase 28 defines the term block as a synonym
for package, however the term is never used in the rest of the description. Therefore it
is skipped.

A.4.4 Formalization

Individual ( PipelineSelection type( Feature))

Individual ( CocoonPipelineMatcher type( ComponentType)
value (providesFeature PipelineSelection)
)

Individual( CocoonPipelineSelector type(ComponentType)
value (providesFeature PipelineSelection)
)

Individual (RuntimeConfiguration type( Feature))

Individual (CocoonPipelineAction type(ComponentType)
value(providesFeature RuntimeConfiguration)

)

ObjectProperty(isRelatedTo Symmetric
domain( Feature) range( Feature))

Individual (SAXEventProcessing type( Feature)
value(isRelatedTo XMLProcessing)
)

Individual ( CocoonTransformer type(ComponentType)
value (hasParent Transducer)
value (providesFeature SAXEventProcessing)

)

Individual ( CocoonSazConnector type( ConnectorType)
value (hasParent Stream)

)

Individual ( CocoonGenerator type(ComponentType)
value (hasParent Transducer)
)
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Class( FileFormat partial Standard)
Individual (XML type( FileFormat))
Individual (ODF type( FileFormat))
Individual ( Ezcel type( FileFormat))
Individual (RTF type( FileFormat))
Individual ( Postscript type( FileFormat))
Individual (HIML type( FileFormat))
Individual (XHIML type( FileFormat))
Individual (PDF type( FileFormat))
Individual ( Flash type( FileFormat))
Individual (SVG type( FileFormat))
Individual (MIDI type( FileFormat))
Individual (ZIP type(FileFormat))

ObjectProperty (supportsOutputFormat
domain (union0f ( ComponentType Technology)
range ( FileFormat))

Individual ( CocoonSerializer type(ComponentType)

value (hasParent Transducer)

value (supportsOutputFormat XML)

value (supportsOutputFormat ODF)

value(supportsOutputFormat FEzcel)
supportsOutputFormat RTF)
supportsOutputFormat Postscript)
supportsOutputFormat HTML)
supportsOutputFormat XTHML)
supportsOutputFormat PDF)
supportsOutputFormat Flash)
supportsOutputFormat SVG)
supportsOutputFormat MIDI)
supportsOutputFormat ZIP)

value
value
value
value
value
value
value
value

e e N R N e N N N

value
)
Individual ( MultiChannelWebPublishing type( Feature))
Individual ( StaticContentGeneration type(Feature))
Individual (SessionManagement type( Feature))

Individual (CocoonAuthenticationPackage type(Package)
value(supportsTechnology Authentication)
)

Individual ( Tomcat type( Servlet))
Individual (Jetty type( Servlet))
Individual (JBoss type( Servlet))
Individual (JRun type( Servlet))
Individual ( Websphere type( Servlet))
Individual ( Weblogic type( Servlet))
Individual ( ServletContainer type( Serviet)
value (isImplementedBy Tomcat)
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Jetty)
JBoss)
JRun)
Websphere)
Weblogic)

value (isImplementedBy
value(isImplementedBy
value (isImplementedBy
value (isImplementedBy

(

value (isImplementedBy

)

Class (XMLTechnology partial Technology)
Individual (XMLFile type( XMLTechnology))
Individual (XMLService type(XMLTechnology))
Individual (XMLDatabase type (XML Technology))

Individual ( Hibernate type( Technology)
value(providesFeature ObjectRelationalMapping)
)

Individual (CocoonBasicStyle type( MiddlewareOrientedFamily)
value (hasParent PipesAndFilter)
value(supportsApplicationType WebApplication)
value ( hasComponentType CocoonPipelineMatcher)
value ( hasComponentType CocoonPipelineSelector)
value (hasComponentType CocoonTransformer)
value (hasComponentType CocoonGenerator)
value ( hasComponentType CocoonSerializer)
value (hasConnectorType CocoonSaxConnector)
value(supportsTechnology JSR168Container)
value(providesFeature MultiChannelWebPublishing)
value(providesFeature StaticContentGeneration)
value(hasPackage CocoonAuthenticationPackage)
value(providesFeature SessionManagement)
value (requires Java)
value ( supportsProgrammingLanguage Java)
value(supportsTechnology Tomcat)

value (supportsTechnology
supportsTechnology
supportsTechnology
supportsTechnology

value
value
value

Jetty)
JBoss)
JRun)
Wbesphere)
Weblogic)

value(requires ServietContainer)

value ( supportsTechnology
value ( supportsTechnology
value( providesTechnology

Awvalon)
Spring)
Internationalization)

value(providesFeature XMLProcessing)
value (supportsTechnology JDBC)

value( supportsTechnology

Velocity)

value(supportsTechnology XSP)
value(supportsTechnology JMS)
value(supportsTechnology EJB)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
value(supportsTechnology
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

value(supportsTechnology

Lucene)
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value(supportsTechnology Hibernate)
value (supportsTechnology OJB)
value(supportsTechnology Castor)
value(supportsTechnology Betwizt)
value(supportsTechnology XSLT)
value (supportsTechnology STX)
value (documentationQuality ”good”)
value (dataBindingAt RunTime)
value(dataBindingAt InvocationTime)
value (controlBindingAt RunTime)

(

value(controlBindingAt InvocationTime)

)

Individual ( CocoonFlowControl type( Technology))

Individual ( CocoonWithFlowscript type( MiddlewareOrientedFamily)
value(hasParent CocoonBasicStyle)
value(providesTechnology CocoonFlowControl)

)

Listing A.4: Complete definition of the Cocoon Architecture Families and all relevant
new concepts, individuals, and properties required for it

132



B Query Development and Use

This appendix discribes the development of queries for the evaluation of the knowledge
querying technique. The queries are derived from requirements of the ReglS Online
system which was analyzed in the case study form Bornhold [2006].

The knowledge querying technique (see chapter 5) introduces a five step approach,
namely: question retrieval, codification, formalization, querying, and refinement. The
execution of these five steps are documented in the sections below. The evaluation of
the query development and their execution is documented in section 6.2.

B.1 Question Retrieval

The function of question retrieval steps is to determine questions and queries of the
requirements (MidArch task 1B) of a MidArch instance. Supplementary the questions
from the quality model (MidArch task 2B) can be used as additional queries.

The case study [Bornhold 2006] does not include a list or table of target requirements.
However, some requirements could be constructed by analyzing different parts of his
document which are the sections: 1.2, 3.3, 3.5, 5.1.4, 5.3, 5.3.4, 5.3.5, 5.4.1.1, and 5.4.1.2.
As a result the following technical requirements could be determined:

1. The current architecture is Cocoon-based and uses pipelines to process requests.
The technology used to render the output is either XSP or CocoonForms. These
technologies shall either be used in the new architecture to minimize the migration
effort, or they have to be transferred to a similar technology.

2. The current systems accesses MySQL directly in XSP scripts and Hiberante to
perform persistence. The dependency on XSP and Hibernate together with the
migration and cost goals determine a continued use of Hibernate or a similar tech-
nology for persistence. The direct MySQL connection can be dissolved.

3. The data administration subsystem uses workflows based on the flow control of the
Cocoon technology. The resulting system must provide a flow control mechanism.
To increase use of current system modules the same flow control technology shall
be used.

4. The target system must use Java.

Beside these technical requirements, there are requirements which can determined
from the goals defined in the quality model.
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5. Dependability require stability of the components. Also the dependency between
the components and between the components and external services affect the de-
pendability.

6. Extendability and maintainability require that new functions can be added without
rewriting parts of the core system. Therefore, the system must support a way to
add components at a later time.

7. Migratability as used in [Bornhold 2006] require that old system components are
used preferably instead of being replaced by new components.

Based on these requirements and descriptions referring to the current system config-
uration a set of statements can be formulated:

1,2 The resulting system must support XSP and CocoonForms or XSP and Cocoon-
Forms based components must be transformed in components using similar tech-
nologies

2 The resulting system must support MySQL

2 The resulting system must support Hibernate or a technology which allows migration
from Hibernate

3 The resulting system must support workflow like CocoonFlowControl
4 The resulting system uses Java
6 The resulting system must support later component addition

7 The resulting system should use many old components to minimize the migration
effort

The requirement 5 is not listed, because it refers to a property, which can only be
determined on an architecture level. The last statement cannot directly expressed as
a query for architectural styles, because the therefore information of the components
dependencies must be available.

B.2 Codification

The previous retrieval process resulted in six usable statements, which can be used as
queries. However, some terms in these statements are not known to the system. There-
fore they have to be added before the queries are executed. The first new term is
CocoonForms which has not been defined in the analysis of the Cocoon styles. Cocoon-
Forms is an XMLTechnology and isPartOf the Cocoon based styles. The second term
is MySQL which represents a database system. MySQL is therefore a Technology. And
it is supported by various ObjectRelationalMapping technologies, such as Hibernate and
JPA.

The codification of the first five statements, after the addition of the new terms is
achievable as follows:
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1. MiddlewareOrientedArchitectureFamily supportsTechnology XSP and Cocoon-
Forms or MiddlewareOrientedArchitectureFamily supportsTechnology Technol-
ogy providesFeature SeparationOfViewAndLogic and Technology providesFeature
FormHandling

2. MiddlewareOriented Architecture Family supportsTechnology MySQL

3. MiddlewareOrientedArchitectureFamily supportsTechnology Hibernate

4. MiddlewareOriented ArchitectureFamily providesFeature FlowControl

5. MiddlewareOrientedArchitectureFamily supportsProgramminglLanguage Java

6. MiddlewareOrientedArchitectureFamily providesFeature Modularization

B.3 Formalization

In the formalization step, the previously defined antecedents must be expressed in SWRL.
Additionally to that, a suitable consequent with SQWRL must be specified. However,
the antecedent of the first rule contains an or conjunction. Therefore the rule has to
be split in two alternative fragments. All other antecedents can be transformed in a
straightforward way. This leads to the list of rule fragments shown in listing B.1.

/x alternative rule fragments x/

Antecedent (
MiddlewareOrientedArchitectureFamily (? family)
supportsTechnology (? family ,XSP)
supportsTechnology (? family , CocoonForms)

)

Antecedent (
MiddlewareOrientedArchitectureFamily (? family)
supportsTechnology (? family ,? techA)
supportsTechnology(? family ,? techB)
providesFeature(?techA , SeparationOfViewAndLogic)
providesFeature(?techB , FormHandling)

)

/x list of required rule fragments x/

Antecedent (
MiddlewareOrientedArchitectureFamily (7 family)
supportsTechnology (? family , MySQL)

)

Antecedent (
MiddlewareOrientedArchitectureFamily (? family)
supportsTechnology (? family , Hibernate)

)

Antecedent (
MiddlewareOrientedArchitecture Family (? family)
providesFeature (? family , FlowControl)
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Antecedent (
MiddlewareOrientedArchitectureFamily (? family)
supportsProgrammingLanguage (? family , Java)

)

Antecedent (
MiddlewareOrientedArchitecture Family (? family)
providesFeature(? family , Modularization)

Listing B.1: List of all antetedent fragments

Based on the fragments in listing B.1 two alternative rules can be formulated. The
first rule with all required rule fragments including the first alternative, and the second
rule with all required rule fragments including the second alternative. The consequents
for these two rules are simple, because the statements just require to find styles. No
restrictions are included in the consequent. In listing B.2 the two resulting rules are
shown.

/x alternative rule fragments x/
Implies(

Antecedent (
MiddlewareOrientedArchitecture Family (? family)
supportsTechnology (? family ,XSP)
supportsTechnology (? family , CocoonForms)
supportsTechnology (? family , MySQL)
supportsTechnology (? family , Hibernate)
providesFeature(? family , FlowControl)
supportsProgrammingLanguage (? family , Java)
providesFeature (? family , Modularization)

)

Consequent (
squrl: select(? family)

)

)

Implies(

Antecedent (
MiddlewareOrientedArchitectureFamily (? family)
supportsTechnology (? family ,? techA)
supportsTechnology (? family ,? techB)
providesFeature(?techA , SeparationOfViewAndLogic)
providesFeature (?techB, FormHandling)
supportsTechnology (? family , MySQL)
supportsTechnology (? family , Hibernate)
providesFeature (? family , FlowControl)
supportsProgrammingLanguage (? family , Java)
providesFeature (? family , Modularization)

)

Consequent (
squrl: select (? family)
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Listing B.2: The two resulting queries

B.4 Querying

The querying worked as expected and produced two results sets. The first contained
only the Cocoon WithFlowscript. The second contained the Spring and the Cocoon With-

Flowscript.

B.5 Refinement

The results from the querying step were sufficient and the two returned middleware-
oriented styles are the same as the style candidates returned by task 3B of the MidArch

method.
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The knowledge base developed for my thesis, consists of two files, which are provided
on the included CD. The files are named style-meta-data.pprj and style-meta-
data.owl. The first file is used by Protégé-OWL to configure the different views. The
second file contains the actual knowledge base.

To use the knowledge base Protégé-OWL 3.4 has to be used, therefore a copy is
available on the CD. Additionally, a jar-file containing the Jess rule engine [Jess 2008]
has to be installed. The jar-file is not part of the CD, because it has to be obtained from
the Jess web-page http://www. jessrules.com/jess/download.shtml, due to licensing
issues. A trial version of Jess is available, free of charge, and is sufficient to test the
knowledge base. A zero-cost license for academic use is available, but one needs to sign
a detailed license contract.

The two queries developed in the evaluation process can be run in Protégé-OWL in
the SWRL Rules view. They are named alternativeA and alternativeB. To view the
results of these two queries they must be executed in SQWRLQueryTab of the SWRL
Rules view.

To execute a rule, it must be selected in rule list of the SWRL Rules view. Then the
query tab must be opened by clicking on the small button in the upper right, labeled
SQ.

In the opened SQWRLQueryTab the button labeled Run has to be pressed which
produces the desired result in a separate tab, next to the SQWRLQueryTab.
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Glossary

Class
A class in description logic is a set defined by its properties or its individuals. A
class is therefore a synonym for concept.

Concept
A concept is a set of properties which are shared among a group of individual terms.
The individuals, however, may have different values for these common properties.

Individual
An individual is a element of a concept, which has a distinct set of property values
for properties induced by the concept.

Noun phrase
A noun phrase is a linguistic structure which is used in sentences. Depending on
its position, it is either a subject or an object.

Object
An object is an element of a sentence. In English an object can be used to describe
the possessor of the subject, the recipient of an action, or the object used in an
action

Predicate
A predicate is in logic programming a function which has none, one, or more
parameters and returns only true or false. Additionally a predicate is used in
linguistics to describe a part of a sentence which connects the subject to the object.

Subject
A subject is an element of a sentence. The subject is the element which is per-
forming an action. While the object is either the recipient or the used object in
the action.
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