
Selection of Middleware-oriented Styles with
Ontology-based Metadata

Reiner Jung1 and Simon Giesecke2

1 Carl von Ossietzky University, 26111 Oldenburg, Germany
2 OFFIS Institute for Information Technology, Escherweg 2, 26121 Oldenburg,

Germany

Abstract. The selection of an appropriate architectural style is an im-
portant task in the development of a complex software system. In prac-
tice, the decision for an architectural style is often made ad-hoc and
not in a systematic way. We present an approach for modelling architec-
tural style metadata. It is based on extracting properties of middleware-
oriented architectural styles from the documentation. The metadata is
represented using a OWL/SWRL ontology. In addition, we present an
approach for using this metadata to support the selection of an architec-
tural style. A case study for a Web-based information system evaluates
the proposed approach.

1 Introduction

Software systems and especially middleware-based enterprise application sys-
tems have grown in size and complexity. To control and manage these complex
projects, new methods, techniques and processes have been developed. One im-
provement for software development was the use of architectures and architec-
tural patterns and formally specified styles.

While there are only a few generic styles known today, platform induced styles
[1] for middleware-based systems are connected to a vast number of technolo-
gies and combinations of technologies, and therefore the number of middleware-
oriented styles could be enormous.

Many of these middleware-oriented styles have similar properties, restric-
tions, and target domains. To find the appropriate style in a collection of similar
styles for a given project is a complex and costly effort, because each style has
to be evaluated in respect to the requirements for the specific project.

To reduce the effort, the styles could be arranged in a style taxonomy, where
the most generic style is the root of a branch of styles and with each level down,
the styles get more specialized. To select a style in such taxonomy, a hierarchical
approach for the selection of candidate architectural styles can be applied.

However, such an approach has three potential shortcomings. First, the se-
lection has to be done by an engineer, because for each node in the taxonomy the
engineer has to make a value judgement or decision. This is a time consuming
process. Second, the use of a taxonomy reduces the style relations into a tree-
like structure, so multiple inheritance in styles are not possible. Thirdly, while

hierarchically examining styles, style candidates might be ignored. For example
a suitable sub-style in one branch is left out because the root style of the branch
is considered less valuable than one of its siblings.

The herein introduced ontology-based approach addresses these three short-
comings. First, the hierarchical approach is replaced by a computer based search,
where the project requirements form the search criteria. Second, the informa-
tion storage is ontology- and rule-based, which allows more complex relationship
structures. Furthermore ontology- and rule-based systems allow the use of rea-
soners to infer new knowledge and solvers to find solutions on a logical rather
than a sub-string basis. And three, a solver for a description logic based ontology
can find all solutions to a given query, because it checks all styles.

As basis for this article, semantic web technologies are used. This allows
different people at different places to input data. Also these technologies are
supported by a large variety of software systems, which can be used to build and
search the knowledge base, as well as do reasoning with the knowledge base.

In section 2 we discuss the basic concepts which ensure a common founda-
tion for the knowledge base. On this foundation, knowledge of middleware-based
styles can be collected and stored in the knowledge base with the technique ex-
plained in section 3. Section 4 introduces a querying technique which allows
to find styles in the knowledge base. In section 5 the two techniques are illus-
trated with a case study based on Bornhold’s thesis [2]. And section 6 discusses
the benefits and shortcomings of this approach and addresses potential future
improvements and uses for the two techniques.

2 Knowledge Base Model

The Knowledge Base Model (KBM) introduces a basic set of concepts and prop-
erties to describe the founding element of architectural styles as well as a set
of concepts and properties for the domain model of middleware styles. These
concepts and properties ensure cohesion in the knowledge base, because they
connect different styles with the common vocabulary they represent.

Fig. 1 shows the two levels of the ontology-based knowledge base. The upper
level illustrates individuals, like the Spring style, and the lower level represents
the concepts of the knowledge base. The gray circles show how the individuals
and concepts are related to each other.

2.1 Basic Style Concepts, Properties and Rules

In [3] an ontology-based architectural style modeling approach is introduced
which is our source for the basic style concepts of the KBM. However, the avail-
able solver package [4] for OWL DL [5] and SWRL [6] cannot handle the OWL
property subclassOf as rule predicate and classes as objects (the later is a limita-
tion of OWL DL and SWRL). Therefore our approach remodels the inheritance
property with a new property hasParent. This has the disadvantage, that styles
cannot be modeled as concepts but as individuals. And therefore the inheritance

Fig. 1. Illustration of the individual and conceptual levels in a knowledge base and
their relation to each other.

of properties has to be modeled with SWRL rules. However, the benefit of using
individuals to model styles is, that SWRL-based queries can be used, which is
required by the query technique (see section 4).

The primary concept for architectural styles in our work is Architecture-
Family. The most important subclass of ArchitectureFamily is MiddlewareOri-
entedArchitecutureFamily which represents the subset of middleware oriented
architectural styles. Furthermore it is a subclass of Technology, and therefore it
inherits the properties of the technology concept.

The further concepts for styles are component, connector, port and role type
[3] which are the composing elements or a style. The association between the
style and its component and connector types is realized through the hasCompo-
nentType and hasConnectorType property. The connection between components
and connectors is modeled with ports and roles. Therefore component and con-
nector types have port and role types, respectively. The association of these
types is realized with hasPortType and hasRoleType. Beside these associations,
the port and role types are related to each other with acceptsRole and connect-
sTo properties. The connectsTo property is defined as the inverse of acceptsRole,
so relational information has only to be defined for one property and it becomes
available to the other.

Beside these properties used to model architecture families, relationships of
these families and their founding elements is also necessary to improve search
capablities. All relationship properties are based on the existing hasParent prop-
erty. The relationship properties are hasRelative which describes the broader re-
lationship of elements and families, hasAncestor which describes the relationship
of an element to all its ancestors, hasDescendant is expresses the other direc-
tion, which means all children and children of children are in this relation, and
hasSibling implements the sibling relationship.

2.2 Basic Domain Model

The basic domain of middleware-oriented architectures comprises technology,
features, pattern, licenses, programming languages and common elements of the
target domains. For example a technology for web-applications has properties
unique to the domain of web-applications.

On the basis of [7] and the case study in [2] we developed a set of common
concepts for the knowledge base. Below a sub-set of these concepts is introduced:

Technology represents the concept of a concrete technology implementation
like Spring, Avalon, Orbit, or GStreamer.

Package is a part or subset of functions and components of a technology. For
example the Spring Framework comprises of several parts for data handling,
for component embedding, etc.

Feature is the ability of a technology, a package, a component, or a connector to
perform or act in a certain way. For example XML-processing or streaming.

ProgrammingLanguage represents the concept of a concrete programming
language, like fortran77 or c92.

Standard is the concept representing specifications for technologies, program-
ming languages, document formats etc. For example CORBA is a standard
and Orbit is an implementation of it.

License is the concept to represent the various licenses used in the software
domain.

DesignPattern represents the concept of a general reusable solution to a com-
mon problem without a formal specification.

Topology represents concept describing the different ways the components and
connectors are combined in an architecture. In [7], the distinguished topolo-
gies are: acyclic, arbitrary, hierarchy, incomplete graph, linear, and star.

3 Knowledge Modeling Technique

The knowledge modeling technique (KMT) is used to add meta-information to
the knowledge base in a structured way. The technique can easily be supported
and even automated by tools. As the KMT is a knowledge retrieval technique
in the context of the MidArch method [8], it is modeled closely to the MidArch
style modeling process. The KMT introduces five steps: informal, relating, cod-
ification, formalization and review (see Fig. 2).

3.1 Informal Modeling

The informal modeling task is used to introduce new information to the knowl-
edge base. The import sources for the knowledge retrieving process are the infor-
mal style descriptions, the technical documentation of the involved technologies,
and the results of expert interviews on the technology and architectural style.

The informal style description provide basic component, connector, port, and
role type description, some general information on the style, and reference to

Fig. 2. The knowledge modeling procedure, its tasks, and artifacts

technologies. The technical documentation contains in most cases information
on the target domain of the technology, the parts, packages, components and
connectors of the technology, and all features of the technology. And the optional
interview depends on the availability of a platform expert. The platform expert
can provide further insights to the technology and act as an early reviewer of the
informal information, gathered in the analysis of the informal style description
and the technical documentation.

In the following we explain the knowledge aspects which are used as major
selection criteria for document phrases, and analysis methods used for the input
sources.

Knowledge Aspects. The first aspect covers the target domain of the analyzed
platform and technology, as well as the goals the platform developers wanted to

achieve. The second aspect focuses on technical information, information like
supported design pattern, used technologies, features, and related frameworks.
This aspect is the technical aspect. The third aspect relates to quality attributes,
like interoperability, stability, and documentation quality. It is therefore called
quality aspect.

Documentation Analysis Methods. The informal style description and the
technical documentation are text documents. The information in these docu-
ments must be extracted in a structured way, so that the information can be
further processed and finally stored in the knowledge base.

The informal style description contains mainly statements describing the ar-
chitecture family in an already structured way. These statements can be ex-
tracted and categorized by the three knowledge aspects without any additional
steps.

The technical documentation is much more complex, as it used to describe
all aspects of the technology. Before information can be extracted a selection of
text passages must be performed to reduce the amount of text to be analyzed.

Passages with relevant information are overview and introductory sections.
Other passages, such as API documentations and implementation details can be
skipped. However, technical documentation is written in different styles, so no
overall matching selection process can be layed out here.

The selected passages are then analyzed with a text analysis method. The
literature [9, 10] motivates two knowledge extraction concepts called inductive
category development and deductive category application. The main difference is
that the inductive approach is used to develop categories, where the deductive
approach uses existing categories. Therefore the first approach is more suitable
for the KMT, because categories (which are closely related to concepts for the
knowledge base) have to be determined.

The inductive category development [10] is a step based approach. Step one is
the definition of an initial research questions. For the KMT, the three knowledge
aspects provide these research questions.

In step two, selection criteria for categories are defined on the basis of the
three knowledge aspects, which are used as initial selection criteria. While read-
ing the selected passages, a better understanding of the problem develops, which
is used to refine the selection criteria [10].

The third step is for category development. To speed up this process, existing
concepts from the knowledge base can be used as initial set of categories. In this
step the selected passages are partially read. The parts to read have to be selected
by the engineer [9–12].

The method [10] works in an incremental way. Therefore only 10% or less of
the selected documentation is analyzed in a first run. Then (step four) a first
revision of the categories is undertaken. If the categorization proves unsatisfac-
tory, the steps two and three are repeated and more of the selected texts are
examined until a satisfactory set of categories emerges.

In step five all selected text passages are paraphrased and categorized [13]. All
collected phrases in the text analysis task are added to the informal knowledge
description.

Alternatively to paraphrasing, a statistical identification technique for key
sentences [14] can be used. Such algorithms are used in text classification and
preprocessing for machine learning. However, these algorithms need keywords
and training documents. Therefore, in a bootstrapping phase textual analysis is
required.

3.2 Relating

The relating task is used in the style modeling procedure to find relationships of
existing styles in the style repository. The knowledge modeling technique extends
this step by finding relating properties, technologies, and design pattern. All
these relationships are compiled as a list of relationships.

For example: The Spring Framework implements the Inversion of Control
pattern. The sentence indicates a relationship between the Spring Framework
and the Inversion of Control pattern. From the knowledge base the information
can be retrieved that Inversion of Control is defined as an ArchitectureFamily.
Therefore the relationship list contains the entry ”Spring is a specialization of
Inversion of Control”.

Beside the relationships of variation and specialization, the knowledge base
can also express exclusions or complements. Exclusion here means, that a certain
platform or framework does not work together with another framework. And
complement means, a technology or framework complements another framework
to make a whole. Because the knowledge base is defined as an open system, other
relationships can be introduced as well and therefore they should be added to
the list of relationships.

3.3 Codification

The codification task is used to transform the informal knowledge description
and the list of relationship information into a list of codified phrases which are
collected in the codified knowledge description.

The sentences stored in the informal style description and the relationship in-
formation are analyzed to determine noun phrases. For example: Spring supports
the Model-View-Controller pattern through Java Server Faces [15].

The terms Spring, Model-View-Controller pattern and Java Server Faces are
noun phrases in terms of the English grammar. In the example sentence, there
are different relationships. First, Spring supports Model-View-Controller. Sec-
ond, the Model-View-Controller pattern can be implemented with Java Server
Faces. And third, Spring works with Java Server Faces. To identify these re-
lationships, the sentences have to be broken down in simple subject predicate
object sentences. All subjects and objects found by this analysis task can be
considered individuals or classes.

The next step is to find suitable classes for the determined individuals. There-
fore existing classes have to be examined first. If no suitable classes exists in the
knowledge base, new classes must be formulated.

Similar to the class finding step, the retrieved relationships have to be mapped
preferably to existing properties, otherwise to newly created ones. Therefore the
relationships have to be compared with existing property definition. In some
cases relationships are expressed as the inverse of an existing property. In that
case the relationship must be inverted and the existing property must be used.

Beside classes, individuals, and properties, rules can be extracted from the
informal description. The rule modeling is more complicated, because rules can-
not be determined on basis of syntactical elements. The phrases have to be
checked on the pragmatic level. However, if a set of phrases conclude a rule in
natural language, the linguistic objects in this rule can be mapped to individu-
als or classes, and linguistic predicates to properties from the knowledge base.
Classes in SWRL are represented by unary predicates. The linguistic predicates
are mapped on binary SWRL predicates, which are OWL object or datatype
properties.

Conjunctions, like and, but, and or, must be translated into logical operators.
The conjunction and is mapped to ∧ (logical and) in a rule. The conjunction or
results in alternative rules, where the or can be seen as separator. The conjunc-
tion but can be interpreted as a negation of all predicates in the phrase following
the conjunction.

Beside the already explained linguistic elements, there are more constructs.
However, a detailed analysis of natural language clauses and their transformation
in horn clauses is not subject of this paper, but can be found in [16, 17].

All classes, properties, individuals, and rules determined in this task are
compiled in the codified knowledge description.

3.4 Formalization

The formalization task is a straightforward process. All classes found in the cod-
ified knowledge description are formalized to OWL DL classes, all properties are
formalized as OWL DL properties. At this point the engineer must be certain
about the properties (functional, inverse, transitive) of these OWL DL proper-
ties. After formalizing the properties, the properties can be added to the newly
formed classes. The last OWL DL formalization step is the formalization of the
individuals.

To complete the formalization task, the codified rules are transformed into
SWRL rules. In the codification task the sentences have been broken down into
predicates and individuals. Conjunctions have been identified and their logic
counterparts have been associated with them. All linguistic objects and pred-
icates have been mapped to their corresponding OWL and SWRL constructs.
Now the codified rules are transformed into horn clauses [18] and finally in SWRL
and auxiliary OWL expressions.

Rules with negated predicates must be marked, because SWRL cannot handle
negated predicates. For negated class predicates, a workaround can be applied

using the ability of OWL to define complement classes. A complement class is
the inverse of a class and therefore it represents the negation of a class predi-
cate. However, negated properties cannot be modeled with OWL and therefore
such rules must be skipped until RIF-BLD, a more powerful rule language cur-
rently developed by the w3c, becomes available and is supported by solver and
reasoning programs.

3.5 Review

This final review task checks if the new concepts, individuals, properties, and
rules are really appropriate for the described style. Also other styles might benefit
from newly introduced concepts and properties. Therefore these styles have to
be reviewed with these new concepts and properties in mind. This review process
also minimizes possible fragmentation in the knowledge base.

4 Knowledge Querying Technique

The knowledge querying technique (KQT) is the counterpart to the KMT. While
the KMT is used to extract information from various sources and store them
in a knowledge base, the querying technique is used to get information from
the knowledge base. As input source the target requirements are used. In some
migration projects GQM models are used to evaluate styles. The questions from
these models can also be a source for queries.

The KQT is divided in five steps (see Fig. 3). First, relevant information is
extracted from the list of requirements and optionally from the questions for-
mulated for the quality model. Second, the information is analyzed for linguis-
tic objects and predicates. Third, based on these objects and predicates, horn
clauses are formulated and augmented with SQWRL predicates to get useful
results. Fourth, query clauses are send to the Jess [4] solver. And fifth, the result
is checked using the query sentences from the first step. If the results are satis-
factory to select a style, then the process ends. Otherwise the queries are refined
and the codification, formalization, and querying steps have to be repeated.

4.1 Question Retrieval

The term question is, in this context, not limited to its linguistic definition, but
sentences which represent queries or requirements, like we need a Java-based
style, are also considered questions.

The engineer collects requirements and questions and reformulates them into
question and query sentences, which are then processed by a paraphrasing tech-
nique [13] to remove redundant sentences. Paraphrasing is important, because
requirements and questions may address the same issue and would therefore only
bloat the later codification. The result of this step is a document containing only
valid and unique query and question sentences.

Fig. 3. The knowledge query technique, its tasks, and artifacts.

4.2 Codification

The query and questions sentences from the retrieval step are processed in the
codification step to obtain structures which are close to horn clause like query
rules. Therefore the engineer transforms the natural language sentences into
predicates and individuals.

The linguistic objects are mapped to individuals or classes from the knowl-
edge base. Classes are represented by unary predicates in SWRL (see KMT).
And linguistic predicates are mapped to binary SWRL predicates, which are
OWL object or datatype properties.

Similar to the KMT, conjuntions like and, but, and or must be translated
into logical operators. However the resolving is done in the formalization task.
Therefore the conjunctions are just marked.

4.3 Formalization

With the codified sentences from the previous step a set of horn clauses can be
defined. Because horn clauses are disjunctions of literals, they can be combined
to make a query more specific. Additionally SQWRL predicates can be added
to further retrieve, sort, or manipulate the result.

First, each sentence is transformed into a horn clause with an empty conse-
quent. Clauses based on alternative sentences (or conjunction) are still marked
as alternatives, because this information is relevant for the last formalization

step. Second, negations have to be resolved. And third, the clauses have to be
combined. SWRL is not able to handle negation. Therefore the workaround from
the KMT must also be applied here.

The last step is the combination of clauses. All clauses, which have to be
satisfied together, are concatenated into one larger clause.

4.4 Querying

In the querying step the query clauses are send to the query interface of the
knowledge base and the results are logged for later analysis.

4.5 Selection and Refinement

The results from the querying step are analyzed using the question sentences
from the first step. If the results are sufficient one or more styles are selected
as style candidates. If not, the queries are refined and the steps starting with
codification are repeated.

5 Case Study

To evaluate and test the two introduced techniques, we used a case study [2] for
the MidArch method [8] which developed architecture candidates for an existing
regional trade information system RegIS Online [19].

We used the modeled architectural styles and collected meta-information for
them with the KMT and we used the requirements mentioned in [2] as input
for the KQT. As expected results the new method should return the similar
conclusions as case study.

The styles modeled in [2] are Inversion of Control, Sping, Avalon, Cocoon,
and Cocoon with Flowscript. First, we collected the informal style description
from [2] and technical documentation [20–23]. Second, we selected sections and
paragraphs from the documentation for further processing. Third, the selected
passages were analyzed and processed according to the KMT. To illustrate the
process we describe the analysis and knowledge modeling for a sub-set of the
Spring style. A complete documentation can be found in [24].

5.1 Informal Knowledge Description

As input sources for the Spring Framework, we used the informal style descrip-
tion from [2], web documentation, and the technical documentation [21]. The
enumeration below is an extract of the full list of phrases in [24]. We printed the
objects (individuals) in italics to indicate the identification of individuals and
categories (which is part of the relating and codification tasks).

1. The Core package provides the Inversion of Control and Dependency Injec-
tion features.

2. The Context package allows to access objects in a framework-style manner
in a fashion somewhat reminiscent of a JNDI-registry

3. The MVC package provides a MVC implementation for web-applications
4. The MVC package allows the use of different view technologies, like JSP,

Velocity, Tiles, FreeMaker, XSLT, JasperReports or diverse document views

5.2 Relating

The relating task revealed that Spring is a sub-class of Inversion of Control.

5.3 Codification

In the codification step, the phrases were transformed into codified expressions.
The numbers in front of the expressions below indicate the relating phrases.

1–4 Spring hasPackage Package with values SpringCorePackage, SpringCon-
textPackage, and SpringMVCPackage

1–4 Package (class) has restrictions: supportsPattern, supportsTechnology, pro-
videsTechnology

1 SpringCorePackage providesTechnology Spring
2 SpringContextPackage supportsTechnology JNDI
4 SpringMVCPackage supportsTechnology JasperReports, JSP, Velocity, Tiles,

FreeMaker, and XSLT

The codification step revealed that different frameworks such as Spring and
Avalon use different vocabulary to describe the same concepts and individuals.
This resulted in definitions of classes and individuals as synonyms for existing
ones. Also this step revealed that the quality of the technical documentation
directly affects the quality of the result of the KMT.

5.4 Formalization

The formalization of the above codified expressions results in OWL DL source
code in abstract syntax notation shown in Listing 1.1.

Class (Package partial owl : Thing
restriction (suppor t sPa t t e rn someValueFrom (Pattern))
restriction (supportsTechno logy someValuesFrom (Technology))
restriction (prov idesTechno logy someValuesFrom (Technology)))

Individual (SpringMVCPackage type (Package)
value (supportsTechno logy JasperReports)
value (supportsTechno logy JSP)
value (supportsTechno logy Ve l o c i t y)
value (supportsTechno logy T i l e s)
value (supportsTechno logy FreeMaker)
value (supportsTechno logy XLST))

Individual (SpringCorePackage type (Package)
value (prov idesTechno logy Spring))

Individual (SpringContextPackage type (Package)
value (supportsTechno logy JNDI))

Individual (Spring
type (intersectionOf (MiddleTierPlat form In t e g ra t i onP la t f o rm))
value (hasParent Invers ionOfContro l)
value (hasComponentType SpringBean)
value (hasComponentType Spr ingApp l i ca t ionContex t)
value (hasComponentType SpringBeanFactory)
value (hasPackage SpringMVCPackage)
value (hasPackage SpringCorePackage)
value (hasPackage SpringContextPackage))

Listing 1.1. Formalization of the Spring architecture family based on the above
extract.

One problem occurred in the formalization of the two Cocoon architectural
families. Both families use the same technology, however they do not use the
same set of component types from the technology. As middleware-oriented ar-
chitectural families are coded as intersection of technology and architectural
family, this resulted in a dilemma. To define the Cocoon technology correctly
all component types must be added, however to define the two families correct.
The basic Cocoon style does not have Flowscript as a supported technology. The
derived style Cocoon with Flowscript has this property.

Another issue is the definition and separation of Standard and Technology.
For our paper we used the following separation. A standard is the abstract defini-
tion of a technology. A technology is a concrete implementation of a standard or
a specification. However, this distinction is not used in all documents available.

The KQT worked as expected with one exception. The requirements used
vocabulary which was not present in the knowledge base. Therefore these terms
were added and associated with the existing knowledge. This revealed that insuf-
ficient technology documentation (in this case the Avalon documentation) can
lead to incomplete knowledge.

6 Conclusion and Future Work

The herein proposed techniques are designed for the MidArch method [8], which
defines processes to handle migration and integration projects for middleware-
based systems. However a detailed explanation of the method exceeds scope of
this paper and can be found [25, 26, 8].

The evaluation of the proposed techniques revealed that the defined processes
worked as intended. However, the idea of defining middleware-oriented architec-
ture families as intersection of architecture family and technology introduced

unnecessary limitations. This could be circumvented by defining middleware-
oriented architectural families as sub-set of architectural families, which can
handle sub-sets of technological properties in form of configurations. These con-
figurations could be represented by association of the family to a technology and
of component, connector, port and role types to components, connectors, ports,
and roles of the technology.

Another imported result from the evaluation is, that the KQT should be
extended by an optional knowledge retrieval step, which can be performed when
the codified queries contain vocabulary which is not available in the knowledge
base.

The two techniques are designed for the MidArch method, however the knowl-
edge base could also be used in other contexts. As the knowledge base stores in-
formation on different technologies, it can be used during requirement engineer-
ing to search for standards and suitable these technologies. In a feature driven
approach these features could be used to formulate queries and the knowledge
base can show suitable technologies implementing the requested features.

In conjunction with projects, like [27], the knowledge base can be used to
support developers and software engineers in the prototyping and implementa-
tion phase of a project. The knowledge base allows comparisons of technologies
in respect to certain criteria, which is a common use case in the early stages of
a software project where the software stack has to be determined.

Another possible future use can come from such knowledge bases, when best
practice knowledge on requirements and goals are stored in a knowledge base
as well. When such knowledge would be available in a set of OWL knowledge
bases, these knowledge bases could be combined, and in combination they could
point to solutions for a given software problem by presenting suitable technology
combinations. The software engineer would then evaluate the results and modify
the problem description until the presented solution can become the basis of the
desired software architecture.

References

1. Nitto, E.D., Rosenblum, D.: Exploiting ADLs to specify architectural styles in-
duced by middleware infrastructures. In: ICSE ’99: Proceedings of the 21st in-
ternational conference on Software engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press (1999) 13–22

2. Giesecke, S., Bornhold, J.: Style-based Architectural Analysis for Migrating a
Web-based Regional Trade Information System. In: CEUR Workshop Proceedings.
Number 193 (2006) 15 — 23

3. Pahl, C., Giesecke, S., Hasselbring, W.: An Ontology-based Approach for Modelling
Architectural Styles. Lecture Notes in Computer Science Volume 4758/2007
(2007) 60–75

4. Jess Project, Sandia University: Jess, the Rule Engine for the Java Platform
(Febuary 2008) http://herzberg.ca.sandia.gov/.

5. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language – Reference (February
2004)

6. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML (May 2004)

7. Shaw, M., Clements, P.: A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems. In: Proceedings of the 21st International
Computer Software and Applications Conference, IEEE Computer Society (1997)
6 – 13

8. Giesecke, S.: Architectural Styles for Early Goal-driven Middleware Platform Se-
lection. PhD thesis, Carl von Ossietzky University Oldenburg (2008) (submitted).

9. Gerbner, G., Holsti, O.R., Krippendorf, K., Paisley, W.J., Stone, P.J., eds.: The
Analysis of Communication Content: Developments in Scientific Theories and
Computer Techniques. John Wiley & Sons, New York (1969)

10. Mayring, P.: Qualitative Content Analysis. Forum Qualitative Social Research
Volume 1 (June 2000)

11. Krippendorff, K.: Content Analysis: An Introduction to Its Methodology. Sage
Publications (1980)

12. Rosengren, K.E., ed.: Advances in Content Analysis. Volume 9. Sage Publications,
Beverly Hills (1981)

13. Strobl, R., ed.: Wahre Geschichten? : zu Theorie und Praxis qualitativer Interviews.
Nomos-Verlagsgesellschaft (1996)

14. Coenen, F., Leng, P., Sanderson, R., Wang, Y.J.: Statisitical Identification of
Key Phrases for Text Classification. In Perner, P., ed.: Machine Learning and
Data Mining in Pattern Recognition. 5th International Conference, MLDM 2007,
Springer (July 2007) 838–853

15. Sun Microsystems: Java Server Faces Technology (2008)
http://java.sun.com/javaee/javaserverfaces/.

16. Dale, R., ed.: Handbook of natural language processing. Dekker, New York (2000)
17. Jackson, P., Moulinier, I.: Natural language processing for online applications : text

retrieval, extraction and categorization. Benjamins Publishing Company (2002)
18. Horn, A.: On sentences which are true of direct unions of algebras. Journal of

Symbolic Logic Volume 16 (March 1951) 14–21
19. REGIO GmbH: RegIS Online website (2008) http://www.regis-online.de.
20. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern

(January 2004) http://www.martinfowler.com/articles/injection.html.
21. Johnson, R., et al.: The Spring Framework - Reference Documentation. The Spring

Project (2008) http://www.springframework.org/documentation.
22. The Apache Foundation: Excalibur Project, Avalon Framework (2007)

http://excalibur.apache.org/.
23. The Apache Foundation: Apache Cocoon 2.2 (2008) http://cocoon.apache.org/.
24. Jung, R.: Ontology-based Metadata for MidArch-Styles. Master’s thesis, Carl von

Ossietzky Universität Oldenburg (2008) (submitted).
25. Giesecke, S.: Middleware-induced styles for enterprise application integration.

In: Proceedings of the 10th European Conference on Software Maintenance and
Reengineering (CSMR06), Los Alamitos, Calif., USA (2006) 334–340

26. Giesecke, S., Bornhold, J., Hasselbring, W.: Middleware-induced Architectural
Style Modelling for Architecture Exploration. In: Working IEEE/IFIP Conference
on Software Architecture (WICSA 2007), January 2007, Mumbai, India, IEEE
Computer Society Press (2007)

27. Institute of Information Sciences and Technology: The Web of Patterns Project
(February 2008)

