Infrastructure-as-a-Service (IaaS) with
Amazon EC2/Eucalyptus

Florian Fittkau

Christian-Albrechts-University Kiel
Department of Computer Science
24098 Kiel, Germany

Abstract. Cloud computing, for instance provided by Eucalyptus, be-
comes more and more popular because it facilitates the construction of
scalable applications. However, the horizontal scaling is not solely ex-
hausted by web application in a cloud. Additional techniques for hori-
zontal scaling are required. This paper describes Eucalyptus and Amazon
EC2, and investigates the performance of the online-adaptation frame-
work SLAstic utilizing Eucalyptus for automatic scaling of an example
web application. The paper presents a performance evaluation of SLAs-
tic utilizing Eucalyptus incorporating a fixed number of nodes scenario
and a varying number of nodes scenario. It shows that web applications
running in Eucalyptus can automatically scale up and down with the
usage of SLAstic. The results are demonstrated on the basis of JPetstore
with a simulated typical day-night-cycle load for web applications.

1 Introduction

Nowadays, many software service providers have to buy server hardware to serve
the demand of their customers. This hardware has to be laid out for the peak
rates of the workload. At times where the peak rate is not reached, the server
hardware is idle, which is not economic. Cloud computing can help to solve
this problem. When the user demand for the service increases, the cloud can
provide more server instances and when it drops, some server instances can be
terminated for saving money. Thus, the cloud provides the possibility for appli-
cations to dynamically scale up and down.

In the cloud, this horizontal scaling becomes more important than the perfor-
mance of a single application instance. In a cloud with Infrastructe-as-a-Service,
the horizontal scaling is achieved by starting and stopping virtual machine in-
stances. For this purpose, Amazon [1] provides a feature named Auto Scaling.
Auto Scaling reacts to abnormal usage of resources and runs new server instances
if needed. If server instances are idle, Auto Scaling terminates those instances.
Like most open-source cloud software, Eucalyptus [8] lacks the feature of auto-
matic scaling. This paper shows how SLAstic [29] can be used to emulate Auto
Scaling for web applications in Eucalyptus.

The remainder of the paper is structured as follows. Section 2 outlines
cloud computing and its different characteristics, service models, and deployment



models. Then, Section 3 describes a selection of web services provided by Amazon
with focus on Elastic Compute Cloud (EC2). The following Section 4 shows an
open-source alternative to Amazon EC2, named Eucalyptus. The subsequent
Section 5 presents a performance evaluation of SLAstic utilizing Eucalyptus. For
the performance evaluation an example web application, namely JPetStore [10],
is used. Afterwards, Section 6 describes the related work. Finally, Section 7
concludes the results of the paper and presents future work.

2 Cloud Computing

Cloud computing is a relatively new term. Hence, many definitions for cloud
computing exist. Vaquero et al. [27] have surveyed different cloud definitions.
Here, we use the National Institute of Standards and Technology (NIST) defini-
tion by Mell and Grance [12] because this definition becomes a de-facto standard.
Subsection 2.1 describes cloud computing in general. Then, the NIST definition
that is divided into the three parts essential characteristics, service models, and
deployment models, is described in Subsections 2.2 to 2.4.

2.1 Overview

Cloud computing brings different advantages as described by Armbrust et al.
[3]. The first advantage is the illusion of infinite computing resources available
when ever needed. Thus, cloud computing users do not need to plan if there
will be peaks in the client demands which may be hard to forecast or even
be impossible if the user demand is unknown. The second advantage is the
elimination of an up-front commitment. Hence, cloud computing enables clients
to start a small business without a huge investment in hardware. The third
advantage is the ability to pay for the use of computing resources on a short-
term bases as needed, resulting in an elastic way of using the hardware.

Many commercial providers like Amazon provide a cloud service. Many open-
source solutions for cloud computing have been developed, too. Endo et al. [7]
present them in their survey. One of these is Eucalyptus which is described in
Section 4.

2.2 Essential Characteristics

The NIST definition for cloud computing defines five essential characteristics
that a service must fulfill in order to be a cloud service. These are listed and
described below.

1. On-demand self-service A user can rent computing capabilities like storage
and computing time. This can be done automatically without human interaction
of the service provider.



2. Broad network access The capabilities can be accessed over the network by
standard mechanisms that are available on heterogeneous platforms like mobile
phones and laptops.

3. Resource pooling The provider’s computing resources are pooled to serve
multiple clients. The clients have no exact knowledge where the physical or
virtual resources are allocated.

4. Rapid elasticity Resources can be rapidly and elastically allocated to en-
able quick scale up and down. The client can purchase the virtually unlimited
resources in any quantity at any time.

5. Measured Service The cloud system automatically controls and optimizes
the used resources by monitoring the usage. For the provider and clients, trans-
parency is provided by monitoring, controlling and reporting the resource usage
data.

2.3 Service Models

The cloud providers can offer their service at different levels of abstraction with
regard to configuration and programming options. These are described by others
as the architecture of the cloud [4, 11, 17, 18]. The different kinds of service
models are described below.

Infrastructure-as-a-Service (IaaS) Infrastructure-as-a-Service provides the
lowest level of abstraction with a maximum of configuration options compared
to the other service models. In this service model the client setups and runs
instances of virtual machine images. Hence, the client can create the full software
stack by himself. The virtual machine images can be provided by the cloud
provider or can be created by the client himself, for instance. Most TaaS provider
offer additional services for common client demands like storage. A popular cloud
provider with TaaS is, for instance, Amazon with EC2, which is described in
Section 3.

Platform-as-a-Service (PaaS) In PaaS, the provider defines and maintains
the programming environment for the client. In most cases only specific program-
ming languages with even more constraints to meet the environment specifica-
tions are supported. The client can access the computational resources through
language-specific APIs and libraries. Popular examples for this type of service
model are Google App Engine [9] and Microsoft Azure [13].



Software-as-a-Service (SaaS) SaaS brings the highest level of abstraction
with no configuration options apart from the rented software. In this service
model the client rents access to the software in the cloud. The software can
then be used over the Internet. The client advantages from no installation, no
maintenance of the program, and guarantee of the latest available software patch.
Google Docs or Microsoft Office Live are examples for SaaS.

2.4 Deployment Models

Clouds can be deployed with four different deployment models. These are public
clouds, private clouds, hybrid clouds, and community clouds.

Public Clouds The cloud infrastructure can be accessed by the general public,
such that everyone can rent and use the computing resources. For example,
Amazon provides a public cloud described further in Section 3.

Private Clouds For a company public clouds can have disadvantages. First of
all, the sensitive business data must be transfered into and kept in the public
cloud resulting in possible security issues. Secondly, the public cloud provider
can go bankrupt or the service can be down for a long period. To avoid those
situations a company can build its own private cloud operated by itself or a third
party. An open-source cloud software for this purpose is, for example, Eucalyptus
described in more detail in Section 4.

Hybrid Clouds Considering this type of deployment model both private and
public providers are used by a client. This is often used by companies to exploit
the advantages of public and private clouds. The privacy-critical applications are
kept in a private cloud and the resource-intensive and uncritical applications are
run in a public cloud.

Community Clouds The last deployment model is a community cloud. This
kind of cloud can be built by many different providers to give a special community
access to the computing resources.

3 Amazon Web Services

Amazon’s Elastic Compute Cloud (EC2) is a popular public IaaS cloud. Sub-
section 3.1 describes EC2 and Subsection 3.2 outlines a selection of other web
services provided by Amazon.



3.1 Amazon Elastic Compute Cloud (EC2)

The service enables running EC2 instances. Those instances can be started by
several ways. The client can directly use the web service API, or he can utilize
console tools developed by Amazon, or he can start EC2 instances through a
web GUI, named AWS Management Console. For running an EC2 instance the
user chooses an Amazon Machine Image (AMI) to start. Amazon provides dif-
ferent pre-assembled images. However, the user can create his own images by
configuring a pre-assembled image, for example. The started instances are non
persistent by default. Thus, the user has to care for saving his data by using
EBS, for instance.

Due to the trade secret the architecture of EC2 is not published by Amazon.
Thus, only a few things are known about the architecture of EC2 [28]. Xen is
the hypervisor for the images. Amazon’s payment model is a pay per use model.
Everyone with a credit card can rent storage and virtual machines with different
types that are made of different configurations of CPU cores and main memory.
These types are named small to extra large. The more resources a type offers
the more it costs per hour. The small type has currently 1,7 GB RAM, 1 EC2
Compute Unit (1 virtual Core), 160 GB local instance space and is a 32-Bit
platform. 1 EC2 Compute Unit maps to 1.0 - 1.2 GHz of a 2007 Opteron or 2007
Xeon Prozessor. A small instance with Linux spawned on a server in Ireland
costs currently 0.095 USD per hour. Amazon provides the possibility to specify
the region of the real hardware that is running the virtual machines. This can
be an advantage when a client has to fulfill a regulatory framework. One region
is, for example, Europe. A region has at least one availability zone. Availability
zones are isolated against failures that occur at other availability zones.

3.2 Further Services

Amazon provides different additional web services [2]. Although Amazon pro-
vides more services, we only focus on the services for persistence and the service
Auto Scaling, which SLAstic should emulate, here.

Auto Scaling Amazon provides Auto Scaling as a feature for automatic hor-
izontal scaling. In combination with CloudWatch, which monitors the resource
utilization on the different EC2 instances, Auto Scaling provides dynamic start-
ing of new EC2 instances and termination of unused EC2 instances. The user
can configure Auto Scaling for his needs, e.g. a maximum number of running
instances.

Elastic Block Store (EBS) The Elastic Block Store can be used for persistent
data storage for EC2 instances. A raw, unformatted block device can be assigned
to any EC2 instance to save data beyond shutting down of the instance.



Relational Database Service (RDS) RDS provides a relational database
that is automatically installed and started on an extra EC2 instance, such that
the user does not need to install, maintain, and backup the database. A small
database instance currently costs 0.11 USD per hour.

SimpleDB SimpleDB is a simplified database management system, which lacks
different kind of features like joins. The service is suited for highly available
persistence with large amount of data.

Simple Storage Service (S3) Simple storage service stores files on a key-
value basis. Amazon introduced a bucket concept for this service. Every bucket
must be globally uniquely named, so that the user can access the bucket over
a domain provided by Amazon. A bucket can take files with a size up to 5 TB
each. It is possible to choose the location of the servers that should store the
files. US, Europe, and Asia are possible locations. The files can be downloaded
with HTTP, SOAP, REST, and BitTorrent.

4 FEucalyptus

Eucalyptus was designed at the University of California, Santa Barbara, by
Nurmi et al. [14, 16] and is an open-source IaaS cloud software. Eucalyptus
stands for “Elastic Utility Computing Architecture for Linking Your Programs
To Useful Systems” [20]. Eucalyptus was written for research purposes because
it is not easily possible to experiment with a specific cloud infrastructure with
services like Amazon’s EC2 not under own control. Subsection 4.1 describes the
architecture of Eucalyptus.

4.1 Architecture

Eucalyptus focuses on the IaaS level for two reasons [15]. First, the developers
wanted it to be interface-compatible to Amazon’s EC2 for testing and exchange-
ability purposes. Second, the developers claim that other layers like PaaS and
SaaS can be layered upon IaaS, which can be beneficial for other research.

Eucalyptus utilizes Xen and KVM virtualization technologies [6]. The de-
velopers provide Linux tools, named euca2oo0ls, for accessing the cloud from
command line. However, it is possible to directly call the web service API.

Eucalyptus was designed to meet the environment found at most universities.
For the most part, these are compute clusters that are not directly connected to
each other. Figure 1 illustrates this fact and shows the three-level hierarchical
architecture of Eucalyptus. The Cloud Controller and Walrus provide access from
a global point. The Cloud Controller has connection through a public network
to the different Cluster Controllers. The Cluster Controllers then have access to
the machines in their private network. That way, only the Cluster Controllers
need access to the public network.



CLC and Walrus

Public
network

Private Private
network network

AN

Cluster A Cluster B

/

Fig. 1. Eucalyptus architecture taken from Nurmi et al. [16]

Cloud Controller (CLC) Every Eucalyptus deployment has only one Cloud
Controller (CLC). The CLC polls the Cluster Controllers for meta data about
the running instances and resources. In addition, the CLC receives the requests
from the user and distributes the commands issued by the user to the Cluster
Controllers based on the received meta data.

Storage Controller (Walrus) When an instance is terminated, all modifica-
tions and data of the terminated instance are lost. For persistent storage, Walrus
can be used. Walrus is the emulation of Amazon’s S3.

Cluster Controller (CC) This is the controller for a subnetwork of computa-
tion nodes. By this concept only the Cluster Controller needs public access and
the other machines in their private network can be shielded against access from
outside the cluster. However, in this concept everything must be passed through

the CC.

Node Controller (NC) The Node Controller runs on every physical compu-
tation node to start, configure, and terminate virtual machine image instances.
Furthermore, the node sends descriptive data to the CLC through the CC.



5 Performance Evaluation of SLAstic Utilizing
Eucalyptus

In this section the performance of SLAstic for automatic scaling of web app-
lications in an Eucalyptus deployment is evaluated. Subsection 5.1 describes
SLAstic and the made Eucalyptus adaptation. Then, Subsection 5.2 points out
the goals of the performance evaluation. Afterwards, Subsection 5.3 illustrates
the experimental setting. Subsection 5.4 presents the two scenarios for the evalu-
ation, namely one experiment with a fixed number of nodes without SLAstic and
one experiment with a varying number of nodes incorporating SLAstic. Then,
Subsection 5.5 presents the results of the evaluation and Subsection 5.6 discusses
the results.

5.1 SLAstic and Eucalyptus Adaptation

The online-adaptation framework SLAstic provides architectural runtime recon-
figuration. It employs changing component deployments and server allocations
at runtime. With the dynamic changing of component deployments, the per-
formance and resource efficiency of component-based software systems can be
controlled and changed in an elastic manner, while the software is running.

We extended SLAstic to function with Eucalyptus by implementing an in-
terface provided by SLAstic. SLAstic calls the interface methods when a recon-
figuration should take place. This can be, for instance, the allocation of a new
node. In those methods, we implemented calls to the euca2o0ls. Additionally, we
adapted a pre-assembled Ubuntu image with the software for a web server with
JPetStore and uploaded the image into our Eucalyptus deployment. SLAstic is
configured with the ID of the image such that new instances are started from
this image.

5.2 Goals

The experiment should verify that SLAstic can be used to enable automatic hor-
izontal scaling of web applications in Eucalyptus. In spite of automatic scaling,
the average response times of the web application should be below an accept-
able threshold of 100 ms in 95 percent of the time, which is typical for most
web applications. Furthermore, the average CPU utilization of allocated nodes
should be higher with a varying number of nodes than with a fixed number of
nodes.

5.3 Experimental Setting

Figure 2 shows the deployment of the used components. Our test environment
incorporates three nodes, namely the Eucalyptus cloud, the SLAstic node, and
the workload generator node. In the Eucalyptus cloud, instances of the worker
image can be spawned. The worker image is the adapted image mentioned in



SLAstic node
Eucalyptus cloud

<<component>> g]
OpenJMs

<<component>> g]

<<JMS>> and <<SOAP>>
Worker image

<<component>>
’ SLAstic g]‘

<<component>> g]
Tomcat

’ <<component>> g] ‘

<<HTTP>> Kieker

Workload generator node <<component>> g]
JPetStore

<<component>> %:]
Tomcat

<<HTTP>> ’ <<component>> g] ‘

’ <<component>> g]‘ HSQLDB

Load Balancer Servlet

<<component>> g]
JMeter

Fig. 2. Deployment of the used components

Subsection 5.1 and includes a Tomcat servlet container 6.0.18 [22] with JPet-
Store 5.0, its own database (HSQLDB 1.8 [23]), and Kieker 1.3 snapshot [26].
Our JPetStore is adapted with an additional computation in every request such
that each request takes around one ms computation time. Kieker is included for
monitoring the CPU usage and executions of the annotated methods in JPet-
Store. It is configured to send the monitored data every 15 seconds to the Open-
JMS 0.7.7 beta [24] queue on the SLAstic node. SLAstic 0.01a is deployed on
the SLAstic node, analyzing the data from the OpenJMS queue and calculat-
ing if a new instance of the worker image has to be allocated or an instance
can be released. The probabilistic and intensity-varying workload is generated
by JMeter 2.4 [21] with Markov4JMeter [25] on the workload generator node.
The JMeter profile is configured to fetch the destination IPs from the load bal-
ancer servlet, running on the same node, on the start of a new use session. The
servlet manages a list with running instances of the worker image and passes
a random IP to JMeter. The server list is updated by SLAstic. We do not use
the Tomcat load balancer because we want a more flexible way of adding and
removing instances of the worker image through web service calls.

Table 1 presents the hardware configuration for the used ml.small image
type. SLAstic starts instances of the worker image with this type. The two
AMD Opteron 2384 processors provide 8 CPU cores in sum. Thus, the maximum
number of instances is limited to 8. To show the horizontal scaling effect by
having the maximum number of instances possible the CPU cores per instance
are set to 1. Each instance gets 1024 MB of DDR2-667 RAM allocated. The
server has a 1 Gigabit network connection.



Maximum number of instances 8

CPU cores per instance 1

RAM per instance 1024 MB

CPU type 2x AMD Opteron 2384 with 2.7 GHz
RAM type DDR2-667

Network 1 Gigabit

Table 1. Our Eucalyptus configuration

5.4 Scenarios

The experiment will include two scenarios. The first scenario with a fixed num-
ber of nodes without SLAstic is the control scenario. In the second scenario,
SLAstic will be used for automatic scaling of JPetStore. After describing the
used workload intensity, the two former mentioned scenarios are described in
detail.

Workload Intensity

—— Avrival rate with a fixed number of nodes -
—— Arrival rate with a varying number of nodes

30000 35000
1 1
T

30000 35000

25000
1
T
25000

20000
1
T
20000

Arrival rate
Avrrival rate

10000 15000
1 1
T T
10000 15000

5000
1
T
5000

0
1
T

0

00 02 04 06 08 10 12 14 16 18 20 22 24 26
Experiment time [minutes]

Fig. 3. The used day-night-cycle workload intensity where minutes map to hours
of a day

Figure 3 presents the generated workload for both scenarios as derived from
the measurement data. The workload intensity function origins from the Thursday-
workload of a CeWe-Color-system [19]. It conforms to a typical day-night-cycle
workload intensity for most websites. The minutes map to hours of a day. In the



morning the workload intensity increases until there is a first peak at noon and a
second higher peak in the evening. Then, the workload intensity decreases until
there are only few requests at night.

In spite of using the same workload intensity function in both scenarios, the
two curves differ from minute eight to twelve. In the varying number of nodes
scenario, JMeter seems to be waiting for the answers from the node and thus
the curve shifts by one minute in the described interval.

Scenario I: Fixed Number of Nodes In this scenario six nodes are started
at the beginning and are manually registered in the load balancer servlet. Fur-
thermore, the SLAstic node is dismissed from the deployment shown in Figure 2.

Scenario II: Varying Number of Nodes Initially, one instance is running.
SLAstic is configured to automatically spawn or terminate nodes based on char-
acteristic lines with a variance interval for smoothing. The first characteristic
lines, where the configuration changes from one node to two nodes, is set at an
arrival rate of 5,000 requests per minute. After this line, every 5,000 requests per
minute a new characteristic line is set. Every characteristic line posses a variance
interval of 1,000 requests per minute for smoothing.

5.5 Results

Figure 4 and 5 show the results of the experiment. This section describes the
results for the two scenarios.

Scenario I: Fixed Number of Nodes In Figure 4(a) the average CPU uti-
lization of allocated nodes in the scenario without SLAstic are presented. In
minute one, there is a peak of 30 percent average CPU utilization of allocated
nodes. Then, the average CPU utilization drops to seven percent and after that
it increases until minute nine, where the second peak of 15 percent is reached.
Until minute 20, the average CPU utilization increases to 24 percent. Thereafter,
it drops to nearly 0 percent until minute 27.

Figure 5 illustrates the average response times at the entry-level methods
for scenario I and II. Until minute one, the average response times are above
15 ms. From minute two to 27 the average response times range between two
and five ms, but are constantly below five ms.

Scenario II: Varying Number of Nodes In Figure 4(b) the results of the
scenario utilizing SLAstic are shown. There is a 50 percent peak in the average
CPU utilization of the one allocated node at the beginning. Then, the average
CPU utilization drops to seven percent until minute four. Until minute nine, the
utilization increases. At minute nine, there is a peak with 64 percent of average
CPU utilization. At this point, the second node is allocated. In minute eleven and
13, the average CPU utilization has lower peaks and the third respectively fourth



Average CPU Utilization with a Fixed Number of Nodes

§ = —— Average CPU utilization of allocated nodes |- o
—— Number of allocated nodes
o _
(=}
= o~
o
@
= ©
o |
~ 0
= @
£ k]
@ - v o
So | <
o © °
& 2
T
-é% ~ F<s
8 g
= IS
2o | ]
< o
2 Feot
© P4
o
™
= o~
o
Q
S
o
=
o |
LS L L LL L L A |
00 02 04 06 08 10 12 14 16 18 20 22 24 26
Experiment time [minutes]
(a) Scenario I: Fixed number of nodes
Average CPU Utilization with a Varying Number of Nodes
§ = —— Average CPU utilization of allocated nodes |-
—— Number of allocated nodes
o
> F o~
o _|
©
- ©
o
~ 0
= @
1= o
@ v o
oo | <
o © °
= 2
©
'§S - L <2
8 s
£ S]
2o | T
5 2
5 s
o | z
@
= o~
o
~N
S
o
=
o |

rrrrrrrrrrrrrrrrrrrrrrr T T TrTT

00 02 04 06 08 10 12 14 16 18 20 22 24 26
Experiment time [minutes]

(b) Scenario II: Varying number of nodes

Fig. 4. Average CPU utilization of allocated node

node are allocated. Then, the average CPU utilization increases until minute 19,
where the fifth node is allocated. In minute 20 is another peak and the sixth
node is started. Afterwards, the average CPU utilization decreases until minute



Average Operation Response Times

30
1

—— Average operation response time with a fixed number of nodes
—— Average operation response time with a varying number of nodes

30

25
1

20
1

Response time [milliseconds]
15
I
Response time [milliseconds]

10
1

rrrrrrrrrrrrrrrrrrrrrrr T T TrTT

00 02 04 06 08 10 12 14 16 18 20 22 24 26
Experiment time [minutes]

Fig. 5. Average response times

27. With the decrease, the allocated nodes, except the first node, are terminated
in minute 23, 24, and 25.

Figure 5 presents the average response times at the entry-level methods. At
the beginning the average response times are above 15 ms. Until minute ten,
the average response times are below three ms. In minute ten, they increase to
20 ms. Then, the average response times drop and are constantly below four
ms until minute 20. In minute 20, there is a small rise to seven ms. Then, the
average response times drop again and stay around three ms until minute 27.

5.6 Discussion of the Results

In this section the described results for the two scenarios are discussed and
compared to each other.

Scenario I: Fixed Number of Nodes The first peak in the average CPU
utilization is caused by the first calls to JPetStore. These calls consume some
initialization time. The other increases and decreases in the average CPU uti-
lization accompany with the increases and decreases in the workload intensity.

For the average response times, there is a high peak at the beginning. This is
again caused by the first calls to JPetStore, which take some initialization time.
After minute two, the average response times are constantly below five ms, which
is an acceptable value for average response times.



Scenario II: Varying Number of Nodes The first peak in the average CPU
utilization is caused by the first calls to JPetStore like in scenario I. The peaks
in minutes nine, eleven, twelve, 19, and 20 result from a new allocation of a
node at each point in time. At those points the first calls to the new running
JPetStore take again initialization time. The intervals from minute two to nine
and minute 14 to 19 show increases, which accompany with the increases in the
workload intensity. The interval from minute 23 to 27 shows a decrease in the
average CPU utilization, which is caused by the falling workload intensity.

For the average response times, there is, like in the fixed number of nodes
scenario, a high peak at the beginning caused by the first calls to JPetStore. The
second peak in minute ten with 20 ms average response time results from the
allocation of the second node. The first calls to the second node result in higher
average response times. The relative high increase is caused by the fact that only
two nodes are running and thus the effect is higher in the average metric. The
same happens at every small peak. However, the rest of the time the average
response times are below five ms. In a real system, where a new node would be
started once an hour, the impact of the first calls would be even lower. Thus,
the scenario fulfills the requirement for acceptable average response times.

Comparison of the 2 Scenarios In scenario II, the average CPU utilization of
allocated nodes increased compared to scenario I. This can be seen, for instance,
at minute eight, where the average CPU utilization is 45 percent, while in the
fixed number of nodes scenario the average CPU utilization at minute eight is
eleven percent. The response times in scenario II are below five ms most of the
time, which is the same value as in the fixed number of nodes scenario.

6 Related Work

Wee and Liu [30] have tested the efficiency of different load balancing tech-
niques, which is essential for scaling of websites in the cloud. They measured
that hardware-based load balancers scale better than software-based load bal-
ancers. However, a hardware-based load balancer might not be available. Other
techniques like DNS load balancing and Layer 2 Optimization have shortcomings
and are not possible with Amazon EC2, for instance. Thus, Wee and Liu pro-
pose client-side load balancing for clouds. They wrote a JavaScript-based script
which automatically chooses a back-end web server based on the load from a re-
ceived server list. This technique scales better than the other techniques except
for hardware-based load balancers.

Baun and Kunze [5] evaluated the performance of Amazon EC2 versus Eu-
calyptus. They compared the storage performance, CPU performance, network
transfer rate, and network latency. They conclude that Eucalyptus can provide
the same functionality and possibly better performance compared to Amazon
Web Services dependent on the hardware on which Eucalyptus is installed.



7 Conclusions and Future Work

The paper described cloud computing using a de-facto standard definition by
the NIST. Then, Amazon EC2 and Eucalyptus were illustrated. The latter was
utilized for a performance evaluation of SLAstic.

The results of the evaluation show that SLAstic can emulate Auto Scaling
for web applications in Eucalyptus. The average CPU utilization of allocated
nodes is increased, while the average response times are the same as in a fixed
number of nodes case most of the time. Thus, SLAstic can be used for automatic
horizontal scaling of web applications in Eucalyptus.

However, in most cases a central database is desired. This can lead to a central
point, which can be the bottleneck. One strategy for solving this bottleneck can
be synchronizing the different databases. Another strategy can be allocating an
instance with an extra large virtual machine image type, so that the database
can benefit from multiple CPU cores.

References

[1] Amazon.com, Inc. Amazon EC2. http://aws.amazon.com/de/ec2/, last
visited 2010-10-29.

[2] Amazon.com, Inc. Amazon AWS. http://aws.amazon.com/de/
products/, last visited 2011-01-14.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the
clouds: A berkeley view of cloud computing. Technical Report UCB/EECS-
2009-28, EECS Department, University of California, Berkeley, Feb 2009.

[4] J. Barr, T. von Eicken, and E. Troan. Application Architec-
ture for Cloud Computing. http://www.rpath.com/corp/images/
stories/white_papers/WP_ArchitectureForCloudComputing.pdf, last
visited 2011-01-23.

[5] C. Baun and M. Kunze. Building a private cloud with Eucalyptus. In
Proceedings of the 5th 2009 IEEE International Conference on E-Science
Workshops, pages 33-38. IEEE Computer Society, 2009.

[6] E. Caron, F. Desprez, D. Loureiro, and A. Muresan. Cloud computing
resource management through a grid middleware: A case study with diet
and eucalyptus. In Proceedings of the 2009 IEEE International Conference
on Cloud Computing, pages 151-154. IEEE Computer Society, 2009.

[7] P. T. Endo, G. E. Goncalves, J. Kelner, and D. Saok. A Survey on Open-
source Cloud Computing Solutions. In VIII Workshop em Clouds, Grids e
Aplicacoes (WCGA 10). Sociedade Brasileira de Computacao, 2010.

[8] Eucalyptus Systems, Inc. Eucalyptus. http://www.eucalyptus.com/, last
visited 2010-10-29.

[9] Google. Google App Engine. http://code.google.com/intl/de-DE/
appengine/, last visited 2011-01-09.

[10] iBATIS team. JPetstore. http://mirror.synyx.de/apache/ibatis/
binaries/ibatis. java/JPetStore-5.0.zip, last visited 2010-11-05.



[11]

[12]
[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]
[22]
23]
[24]

[25]

A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s inside
the Cloud? An architectural map of the Cloud landscape. In Proceedings
of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, pages 23-31. IEEE Computer Society, 2009.

P. Mell and T. Grance. The NIST Definition of Cloud Computing. http:
//www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf.

Microsoft Corporation. Windows Azure Platform. http://www.
microsoft.com/windowsazure/, last visited 2011-01-09.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov. Eucalyptus : A Technical Report on an Elastic Utility
Computing Architecture Linking Your Programs to Useful Systems. Tech-
nical Report UCSB 2008-10, Computer Science Department, University of
California, Santa Barbara, 2008.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. Eucalyptus: an open-source cloud-computing in-
frastructure. In Jornal of Physics: Conference Series 180, pages 124-131.
IOPscience, 2009.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. The Eucalyptus Open-Source Cloud-Computing
System. In CCGRID ’09: Proceedings of the 9th 2009 IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid, pages 124-131.
IEEE Computer Society, 2009.

B. P. Rimal, E. Choi, and I. Lumb. A Taxonomy and Survey of Cloud
Computing Systems. In Proceedings of the 2009 IEEE International Con-
ference on Networked Computing and Advanced Information Management,
pages 44-51. IEEE Computer Society, 2009.

J. W. Rittinghouse and J. F. Ransome. Cloud Computing: Implementation,
Management, and Security. CRC Press, 2009.

M. Rohr, A. van Hoorn, W. Hasselbring, M. Liibcke, and S. Alekseev.
Workload-intensity-sensitive timing behavior analysis for distributed multi-
user software systems. In Ist Joint WOSP/SIPEW International Con-
ference on Performance Engineering (WOSP/SIPEW 2010), pages 87-92.
ACM, Jan. 2010.

T. Tan and C. Kiddle. An Assessment of Eucalyptus Version 1.4. Technical
Report 2009-928-07, Grid Research Centre, University of Calgary, Canada,
2009.

The Apache Software Foundation. JMeter. http://jakarta.apache.org/
jmeter/, last visited 2011-01-04.

The Apache Software Foundation. Tomcat. http://tomcat.apache.org/,
last visited 2011-01-04.

The hsql Development Group. HSQLDB. http://www.hsqldb.org/, last
visited 2011-02-07.

The OpenJMS Group. OpenJMS. http://openjms.sourceforge.net/,
last visited 2011-01-04.

A. van Hoorn, M. Rohr, and W. Hasselbring. Generating probabilistic and
intensity-varying workload for Web-based software systems. In S. Kounev,



I. Gorton, and K. Sachs, editors, Performance Evaluation — Metrics, Mod-
els and Benchmarks: Proceedings of the SPEC International Performance
Evaluation Workshop 2008 (SIPEW °08), volume 5119 of Lecture Notes in
Computer Science, pages 124-143. Springer, June 2008.

[26] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and
D. Kieselhorst. Continuous Monitoring of Software Services: Design and
Application of the Kieker Framework. Technical Report 0921, 2009.

[27] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A Break in
the Clouds: Towards a Cloud Definition. In SIGCOMM Comput. Commun.
Rev., volume 39, pages 50-55. ACM, 2009.

[28] J. Varia. Cloud Architectures. http://jineshvaria.s3.amazonaws.com/
public/cloudarchitectures-varia.pdf, last visited 2011-01-23.

[29] R. von Massow, A. van Hoorn, and W. Hasselbring. Performance Simu-
lation of Runtime Reconfigurable Component-Base Software Architectures.
Technical report, Software Engineering Group, University of Kiel, Germany,
2010.

[30] S. Wee and H. Liu. Client-side load balancer using cloud. In SAC ’10:
Proceedings of the 2010 ACM Symposium on Applied Computing, pages
399-405. ACM, 2010.



