

Metabarcoding approach in biodiversity and biosecurity surveys:

a pilot study from the Baltic Sea

Anastasija Zaiko, Aurelija Samuiloviene, Alba Ardura, Eva Garcia-Vazquez

Email: anastasija@corpi.ku.lt

Challenges of marine surveys

Challenges of marine surveys

Increasing human pressures, declining taxonomic expertise

- Morphological identification methods are laborious
- Require considerable taxonomic expertise
- Often fail to identify cryptic species
- Or species at the larval stage

Risk to overlook or misidentify non-indigenous, pathogen or indicator species

Photo credits:
www.musselfree.org
www.cefas.defra.gov.uk
www.fao.org

Principle of the metabarcoding

Sampling in the field (soil, water, etc.)

DNA extraction

DNA amplification with universal primers

High throughput parallel pyrosequencing

Reference database Specie via D

Species identification via DNA barcoding

Source: Valentini et al. 2009

Zooplankton study in the Baltic Sea

- 6 samples collected from ca.
 2 m³ water each
- bulk DNA amplified with universal COI primers
- sequenced with a Genome Sequencer FLX (Roche)
- aligned against NCBI database
- compared to the morphologically analyzed samples

Sequencing results

- Approx. 100 000 good-quality sequences retrieved
- About 75% of those resulted in positive alignment hits
- 40 291 assigned (≥97% homology and >90% coverage) to 18 zooplankton taxa (species or genus level)

Species detected by metabarcoding

(in red - those, detected exclusively by meabarcoding)

Annelida	Polychaeta	Marenzelleria viridis
		Marenzelleria neglecta
Crustacea	Cladocera	Bosmina coregoni
		Bosmina spp.
		Cercopagis pengoi
		Daphnia galeata
		Daphnia cucullata
		Evadne nordmanni
		Leptodora kindtii
		Pleopis polyphemoides
		Podon leukartii
	Copepoda	Acartia tonsa
		Mesocyclops leukarti
Mollusca	Bivalva	Dreissena polymorpha
		Macoma balthica
		Mytilus sp.
	Gastropoda	Hydrobia ulvae
Rotifera	Eurotatoria	Keratella quadrata

Invasive species in the Baltic

Annelida	Polychaeta	Marenzelleria viridis
		Marenzelleria neglecta
Crustacea	Cladocera	Bosmina coregoni
		Bosmina spp.
		Cercopagis pengoi
		Daphnia galeata
		Daphnia cucullata
		Evadne nordmanni
		Leptodora kindtii
		Pleopis polyphemoides
		Podon leukartii
	Copepoda	Acartia tonsa
		Mesocyclops leukarti
Mollusca	Bivalva	Dreissena polymorpha
		Macoma balthica
		Mytilus sp.
	Gastropoda	Hydrobia ulvae
Rotifera	Eurotatoria	Keratella quadrata

Considered to be absent from the study area

Annelida	Polychaeta	Marenzelleria viridis
		Marenzelleria neglecta
Crustacea	Cladocera	Bosmina coregoni
		Bosmina spp.
		Cercopagis pengoi

>800 sequences found in all samples, aligned with high confidence (>97% identity, >95% coverage)

		Mesocyclops leukarti
Mollusca		
Rotifera	Eurotatoria	Keratella quadrata

Traditional monitoring vs metabarcoding

Transform: Presence/absence Resemblance: S7 Jaccard

Species detected by both techniques

- Species detected only from morphological analysis
- Species detected only from sequencing
- Species shared between two approaches

Species detected by both techniques

BUT:

from species not identified with metabarcoding approach

- 5 have no reference sequences in the public databases
- others have reference sequences from specimens sampled elsewhere, not the Baltic Sea

Species detected only from morphological analysis

- Species detected only from sequencing
- Species shared between two approaches

Biotic metrics and ecosystem health

- Index calculated based on biomasses from morphological analysis
- Index calculated based on reads nr. from metabarcoding

Biotic metrics and ecosystem health

No statistically significant difference between 2 methods

(Mann-Whitney test, p=0,07)

Potential application for other metrics:

- % of copepod biomass
- % of microphagous biomass
- trend in nr. of non-indigenous species
- Index calculated based on biomasses from morphological analysis
- Index calculated based on reads nr. from metabarcoding

Summing up...

- Metabarcoding is a prospective tool for marine surveillance
- It does not require particular taxonomic expertise
- It allows identification of cryptic life stages (eggs or larvae), detection of rare and sparsely distributed organisms
- It is applicable for early detection of environmental pests or indicator species
- Suitable for general biodiversity assessment and development of environmental quality metrics

BUT

- Comprehensive reference databases needed
 - Quantification should be elaborated
- Marker validation / application of multiple markers

Thank you!

We thank Yaisel Borell for help with samples, Xavier Pochon and Susie Wood for critical comments on the abstract.