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RV Sonne cruise SO234-2: Durban-Port Louis, July 08-20, 2014

Introduction

Within the frame work of the BMBF-project OASIS (“Organic very short lived substances and
their Air Sea Exchange from the Indian Ocean to the Stratosphere”) the research cruise
S0234-2 of the German research vessel SONNE was organized and conducted by the
University of Oslo, Norway (www.uio.no) together with the GEOMAR Helmholtz Centre for
Ocean Research Kiel, Germany (www.geomar.de) from 08 to 20 July, 2014 in the subtropical
West Indian Ocean (Figure 1). The SO234-2 cruise was primarily planned as a training and
capacity building cruise for students from southern Africa and Germany within the BMBF
SPACES (“Science Partnerships for the Assessment of Complex Earth System Processes”)
program. Fifteen students from South Africa, Namibia and Germany participated, along with
9 scientists and one observer from Madagascar. The training and research covered air-sea
gas exchange between the atmosphere and the ocean, and the transport of ocean trace
gases from the Indian Ocean to the stratosphere during the southwest Monsoon as well as
the determination of important biogeochemical parameters. This research project was
funded within the national BMBF program SPACES within the project SO235-0OASIS (Grant:
03G0235A).
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Figure 1: SO234-2 SPACES cruise track of RV Sonne: Durban — Port Louis (July 08-20, 2014).



Scientific background

Trace gases, containing halogens like chlorine and bromine are broken down by solar
radiation in the stratosphere, where the halogens are highly efficient at destroying ozone.
Increasing emissions from human activities have led to depletion of global stratospheric
ozone over the last three decades. Whereas the chlorine supply is dominated by
anthropogenic compounds, a major part of the bromine is supplied by natural, short-lived
species, with oceanic sources. The importance of sulphur compounds emitted from the
ocean for the middle atmosphere relates to their role as precursors to aerosols in the
stratospheric aerosol layer. Recently, an increase of the stratospheric aerosol background
level since 2000 has been observed. However, the origin of this elevated Junge layer, made
either anthropogenically or naturally, is still under investigation. The tropical oceans are a
known source of reactive halogen and sulfur compounds to the atmosphere in the form of
short-lived brominated and iodinated methanes, as e.g. bromoform (CHBr3), methyl iodide
(CHsl), dimethyl sulphide (DMS) and COS (carbonyl sulphide). Elevated atmospheric
concentrations above the oceans are related to oceanic super saturations of the compounds,
and to natural photochemical and biological production. Macro algae in coastal regions, as
well as regionally enhanced phytoplankton, coral reefs, photochemical reactions and local
anthropogenic sources all contribute to marine and atmospheric concentrations.

Trace gases enter the stratosphere principally in the tropics, where ascending warm air
carries them rapidly from the ocean surface to the tropical tropopause layer. The intense
vertical transport of the tropical atmosphere implies that the oceanic sources will supply
significant amounts of halogens and sulfur to the upper troposphere/ lower stratosphere
where they contribute to the observed halogen content and ozone changes. The subtropical
and tropical Indian Ocean is a largely uncharacterized region for oceanic compounds and a
projected hot spot, especially in coastal regions for their emissions and transport pathways
into the stratosphere during southwest monsoon.

Spatial and temporal variability in production and sea-to-air flux of short-lived halogenated
and sulfuric trace gases creates strongly varying oceanic distributions and thus also varying
atmospheric contributions. The current impact of the natural ozone depleting substances is
still uncertain and future changes in the mechanisms, that regulate their emissions to the
atmosphere, their transport, and their chemical processing are largely unknown. Therefore
the oceanic emissions have the potential to cause surprises in the evolution of the
stratospheric ozone and aerosol layer in a changing climate, unless they are better
understood. The measurements are thus needed to improve the understanding of future
stratospheric halogen and sulphur loading and therewith on the ozone depletion and the
radiative forcing of the future climate. The results of the SO0234-2 campaign will contribute
to new scientific insights of the United Nations Montreal Protocol on Substances that
Deplete the Ozone Layer, to the United Nations Framework Convention on Climate Change,
and to global climate change research.



Objectives and measurements

The SO234-2 cruise was primary planed as a training and capacity building cruise for
students from southern Africa and Germany within the BMBF SPACES (“Science Partnerships
for the Assessment of Complex Earth System Processes”) program. The study program
onboard the SPACES cruise SO234-2 was designed to teach the students mainly about “Air-
Sea Interactions in the western Indian Ocean”. The western tropical Indian Ocean
experiences the Somali current, which reverses with the different monsoon systems, the
Agulhas current, open ocean denitrification and high rates of nitrogen fixation in the Arabian
Sea, and a large area in the western equatorial region of high carbon dioxide drawdown. All
these phenomena make the tropical Indian Ocean an excellent laboratory and classroom,
allowing special focus on anthropogenic effects, global climate change and on ocean
biogeochemical and physical processes.

Of particular scientific relevance during S0234-2 were oceanic and atmospheric
measurements of a suite of short-lived trace gases containing bromine, iodine and sulfur in
various marine biogeochemical regimes like close to the coasts, in regions of high
chlorophyll, close to coral reefs (as the Toliara reef south of Madagascar) and sea banks and
in CO, sink regions, and open ocean conditions. From these measurements the climate-
sensitive oceanic emission strengths and their contribution to stratospheric halogen and
sulfur aerosol abundances will be deduced by high resolution transport modeling.

The atmospheric structure was determined by frequent radio and ozone soundings during
the cruise. Other marine trace gases as e.g. nitrous oxide (N,0), dimethyl sulphide (DMS),
oxygen (0,) and carbon dioxide (CO,) were investigated as well. In situ and satellite
measurements of phytoplankton groups, obtained by special retrieval methods from the
SCIAMACHY and GOME-2 instruments gave further information about biogeochemical
conditions during the cruise. Atmospheric concentrations of a variety of long-lived
anthropogenic and natural trace gases were also determined. These measurements will help
to identify transport pathways of the tropospheric trace gases to and away from the ship.

Quasi-continuous measurements of a set of halocarbons, DMS, COS and CO, in both
seawater and air were carried out in order to determine actual sea to air fluxes. Additionally,
we conducted direct flux measurements of CO,, DMS, isoprene and acetone with the eddy
covariance technique. Together with the main scientific objective of the cruise to
characterize the oceanic emissions of natural halogenated and sulphuric gases in the
subtropical West Indian Ocean, the participating groups followed additional research
guestions, which are further outlined below by the individual working groups themes (see
also Table 1).



Working Groups

1.) HALOCARBONS: Atmospheric and oceanic concentrations of bromine, iodine and
chlorine containing halocarbons, in order to calculate their air-sea fluxes.

2.) OCEANIC TRACE GASES: Oceanic concentrations of DMS, COS, CO,, isoprene, CO, nitrous
oxide and methane, in order to understand their distribution in the different biogeochemical
regimes of the western Indian Ocean and to gain new insights into halocarbon sources.

3.) EDDY COVARIANCE FLUX: Direct measurements of DMS, CO,, isoprene, and acetone air-
sea exchange. When combined with bulk concentration measurements, the in-situ gas
transfer coefficient is derived, which can be used for other gases measured onboard.

4.) OCEAN SENSORS: Identification of carbon dioxide and oxygen sources and sinks,
separation of physical and biological factors for observed sources and sinks by CTD data
temperature and salinity, joint evaluation with halocarbons, in order to understand more
about their sources and sinks.

5.) RADIOSOUNDING: Identification of meteorological vertical profiles, ozone and water
vapor in order to evaluate the mixing layer and tropopause height and calculate air mass
back trajectories to identify origin of sampled air masses and to validate transport model
results and the distribution of ozone above the tropical Indian Ocean atmosphere.

6.) AIR-SAMPLING: Determination of anthropogenic and natural trace gas concentrations by
flask sampling, to identify regional and diurnal gradients of some compounds and for
intercalibration of different instruments

7.) MAX-DOAS: Identification of reactive trace gases BrO and I0 with Multi-Axis Differential
Optical Absorption Spectroscopy in a three dimensional field and Cavity Ring Down
Spectroscopy as possible decomposition products of organic trace gases and for validation of
satellite-data.

8.) GHG: Continuous measurements of the atmospheric mixing ratios of a suite of pollution
indicators and greenhouse gases (e.g. CO, CH4, O3, CO,) in order to investigate their spatial
and temporal variability in the lower tropical marine boundary layer.

9.) AEROSOL: Major ions and halogens in aerosol samples, in order to identify their sources
and quantify the halogen budget in the western Pacific atmosphere.



Participants

Nr. | First / Sure Name Institute/ Country Position Working Group
1. Kirstin Kriiger UiO, Oslo, Norway Chief Scientist / 5.),6.)
Teacher
2. Birgit Quack GEOMAR, Kiel, Germany | Project PI/ Teacher | 1.),6.),9.)
3. Christa Marandino GEOMAR, Kiel, Germany | Co-Chief/ Teacher 3.),7)
4, Tobias Steinhoff GEOMAR, Kiel, Germany | Scientist/ Teacher 2.),3.),7)
5. Matthew Toohey GEOMAR, Kiel, Germany | Scientist/ Teacher 5.),6.),9.)
6. Matthias Kriiger GEOMAR, Kiel, Germany | Scientist/ Teacher 4))
7. Folkard Wittrock IUP, Bremen, Germany Scientist / Teacher | 7.), 8.)
8. Helmke Hepach GEOMAR, Kiel, Germany | Scientist 1.)
9. Gert Petrick GEOMAR, Kiel, Germany | Technician 1.)
10. | Serge Kenny Madagascar Observer
RAKOTONJANAHARY
11. | Tobias Endjambi University of Namibia, Student
Namibia
12. | Eric Nchindo Kamwi University of Namibia, Student
Namibia
13. | Blessing Kamwi University of Cape Student
Kamwi Town, Namibia
14. | Michael Hemming University Hamburg, Student
Germany
15. | Kosmas Benjamin University of Oldenburg, | Student
Hench Germany
16. | Jessica Holterhof WMO, Geneva, Student
Switzerland
17. | Iris Thurnherr ETH Zurich, Switzerland | Student
18. | Kelley Verentina Government of South Student
Brown Africa, South Africa
19. | Zoleka Filander University of Cape Student
Town, South Africa
20. | Robyn Granger University of Cape Student
Town, South Africa
21. | Gesa Eirund GEOMAR, Kiel, Germany | Student
22. | Alina Fiehn GEOMAR, Kiel, Germany | PhD Student
23. | Alex Zavarsky GEOMAR, Kiel, Germany | PhD Student
24. | Dennis Booge GEOMAR, Kiel, Germany | PhD Student
25. | Steffen Fuhlbrigge GEOMAR, Kiel, Germany | PhD Student

Table 1 Participants, institutions and working groups.




Teaching program during the SO234-2 cruise

The teaching program of SO234-2 included daily lectures in the morning, practical sessions
using the > instruments on board, taking part in the day and night measurements shift of the
> 40 hr station and ended in the preparation and presentation of the student work (Table 2).
The studies onboard were carried out by pairs of students, one from a southern African
country and one from Germany. The pairs rotated through different measurement stations:
1) meteorology, involving radiosonde launches, 2) atmospheric physics, including
spectrophotometric determination of reactive trace gases in the atmosphere 3) physical
oceanography, involving deep ocean profiles (CTD casts), 4) biological production including
oxygen and nutrient sea water analyses, 5) biogeochemical cycling, involving gas
chromatographic and mass spectrometric analysis of seawater samples, 6) atmospheric
chemistry, involving air sampling of more than 50 trace gases, and 7) direct trace gas air-sea
flux measurements. The student reports are given below.

Day/ Date in 2014 [2/08.07. [3/09.07. [4/10.07. |(5/11.07. |6/12.07. |7/13.07. |8/14.07. |9/15.07. |10/16.07. |11/17.07. |12/18.07. |13/19.07.
Notes Departure Bergfest
08:30-10:00 Ship infos |Lecture 2-3|Station Lecture 6-7|Lecture 8-9|Lect. 10-11 |Lect. 12-13 |Station 40 hr 40 hr Present. |Present.
10:15-11:30 work 2 work 7 station station prep. prep.
13:30-15:00 Station Lecture 4-5|Station Station Station Station Station Present.
15:30-17:00 Lecture 1 [work 1 work 3 work 4 work 5 work 6 work 8 prep.

Party
Station work: 1 2| 3] 4 5 6 7|
Note Station rotation Choose station!
Birgit Gl G8 G7 G6 G5 G4 G3 All
B2 G2 G1 G8 G7 G6 G5 G4
Matt G3 G2 G1 G8 G7 G6 G5
M2 G4 G3 G2 G1 G8 G7 G6
Folkard G5 G4 G3 G2 G1 G8 G7
Matthias G6 G5 G4 G3 G2 G1 G8
Christa G7 G6 G5 G4 G3 G2 Gl
Cc2 G8 G7 G6 G5 G4 G3 G2

Station: 8

Groups: Stations: Birgit G2 Lectures:
Gl: Birgit: GC-MS-halocarbons B2 G3 1. Intro S0234-2 cruise KK (1 1/2 hours)
G2: B2: Nutrients, 02 and biological parameters Matt G4 2. Intro Atmosphere MT (1 1/2 hours)
G3: Matt: Radio-/ Ozonesondes M2 G5 3. Intro Ocean MK (1 1/2 hours)
G4: M2: Air sampling/ Aerosols Folkard G6 4. Intro Atmo Chemistry CM+TS (1 1/2 hours)
G5: Folkard: MAX-DOAS Matthias [G7 5. Intro Ocean Chemistry BQ (1 1/2 hours)
G6: Matthias: CTD Christa G8 6. Intro Remote Sensing FW (1 1/2 hours)
G7: Christa: Eddy-Covariance Cc2 Gl 7. Ocean Measurements MK (1 1/2 hours)
G8: C2: Underway measurements 8. Reporting from students KK (1 hour, all?)

9. Atmo Measurements MT/ SF (1 hour)

10. Atmo Chemistry Measurements CM (1 hour)
11. Ocean CH Measurements BQ (1 hour)

12. RS Measurements FW (1 hour)

13. Reporting from Students KK (1 hour all)

Table 2: Teaching program of SO0234-2.
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Work program during the SO234-2 cruise

During the SO234-2 cruise of ‘RV Sonne’ from 08 to 20 July 2014 in the subtropical West
Indian Ocean from Durban, South Africa to Port Louis, Mauritius a variety of chemical,
biological and physical parameters within the surface waters as well as between the
atmospheric boundary layer and the stratosphere have been examined with different
frequencies. Data and samples were obtained using a variety of analytical instruments and
sampling devices (Tables 3 and 4). Regular water samples were collected from pumps
submersed in the hydrographic shaft of the ship (Appendix A). Depth profiles (Appendix B)
were undertaken at selected locations to investigate the vertical hydrographic structure of
the water column and to obtain trace gas profiles as well as a Lagrangian drifter following
the water masses at the surface was employed. Several trace gases from sea water and
surface air were analyzed directly on board the ship.

The working schedule during transit included continuous sampling of seawater, a collection
of discrete air samples, the installation of optical measuring techniques and the launch of
weather balloons. During the cruise samples have been obtained with 44 instruments and
sampling devices (Table 3). Routinely three hourly water and air samples were taken from
pump supplies submersed in the hydrographic shaft, respectively installed on the monkey
deck (Working Groups 1, 2, 6). Meteorologists sent weather balloons with trace gas
instruments to the stratosphere (up to 30 km height) every six hours (Working Group 5).

The optical sensors and continuous instruments have been installed in the beginning of the
cruise on the monkey deck, the bow and in a research container (Working Groups 3, 7, 9).
Halogenated hydrocarbons have been analyzed directly on board using three different gas
chromatography/ mass spectrometry systems (Working Group 1). Oxygenated trace gases
and dimethyl sulfide were also analyzed directly with a gas chromatograph/mass
spectrometric system from sea water (Working Group 3), while carbon dioxide and oxygen
were measured immediately with sensors within the upper oceanic layer (Working group 4).
More trace gases in sea water (N,O, CH,) will be analyzed by gas chromatography post-cruise
in the laboratory. Oxygen was measured on board directly by the Winkler method and
nutrient samples were frozen until analysis during SO235. Biological sampling included
parameters of organic carbon and nitrogen as well as DNA, pigments, cell sizes, the amount
of small cells and the composition and activity of the phytoplankton and zooplankton
(Working Group 3).

Discrete air samples were taken for partners of the “Rosenstiel School of Marine and
Atmospheric Sciences” in Miami and University of East Anglia (Working Groups 6 and 9). In
the respective home laboratories more than 70 anthropogenic and natural trace gases, and
elements in aerosols within the marine boundary layer shall be analyzed following the
cruise. Atmospheric profiles of temperature, humidity and different kinds of trace gases (e.g.
ozone, nitrous oxide, bromine oxide) were examined on the basis of optical measurements,
and by rises of research balloons( Working Groups 5, 6, 7, 8).

Some samples taken during the cruise have been sent by air freight and are currently
analyzed in the respective home laboratories, while the containers with equipment reach
Kiel by beginning of October 2014. The analysis of the extensive dataset from the ocean and
the atmosphere collected during SO234-2 will bring first results in summer 2015. The new
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insights into the interaction of ocean and atmosphere from the subtropical West Indian
Ocean will be published in peer reviewed scientific journals.

Instruments
Nr. Group Instrument/ Method Parameter
1 Halocarbons GC/MS1 Halocarbons
2 GC/ED1 Halocarbons
3 GC/ED2 Halocarbons
4 Oceanic Trace Gases [GC/MS2 DMS
5 Mini-CIMS DMS/ Isoprene / Acetone
6 GC/ED N20
7 Oceansensors Drifter with sensors 02/CO2/fluorometer
9 ADCP Currents
10 CTD Salinity, Temperature, Depth
11 Auto-analyzer nmolar-nutrients (uw)
12 Cell counter Flow-Cytometrie
13 HPLC Pigments
14 Sequencing RNS
15 Auto-analyzer (Seal Quattro) |pmolar-nutrients ( CTD)
16 TOC-Analyzer DOC/TDN
20 lon chromatograph I-/103-
24 LWCC CDOM
25 Winkler Titration Oxygen
26 Eddy Covariance Flux | APCIMS DMS, acetone, isoprene
27 Licor CO2/ Water vapor
28 Campbell Sonic Anemometer |3D-wind speed and dir (2x)/ T-flux
29 IMU Motion sensor (pitch and roll)
30 Radiosounding GPS/ Kompass Lat /long/ speed over ground
31 Radiosondes T, Td, w
32 Ozonesondes Ozone
33 Disdrometer Precipitation/ Raindrop size
34 RAMSES Radiation
35 Air sampling weather-station T, Td, rain, radiation
36 MAX-DOAS canisters long- and short lived trace gases
37 DOAS/ Cavity BrO/ Nox/ Aldehyde
38 GHG CES-DOAS (@]
39 Horiba 0zone monitor ozone
40 OA-ICOS N20/CO2/CO
41 Aerosols GC CH4
42 aeronet/ microtop Aerosol
43 cascade impactor Aerosol lons
44 DSHIP DSHIP uv, T, P, U

Table 3: Installed and operating instruments on board S0234-2 (Durban-Port Louis July, 08-20, 2014).
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Measurement schedule

Group Time of day in UTC
o 1 2| 3] 4 5 6] 7| 8 9| 10| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23

1 w w W W w w w w
2 W W W w w w w w
3 c |c c c |[c |c c |[c |c c |[c Jc c c |c c c |[c |c c
4
5 Jr (r) (r) (r) r/o (r) (r) (r)
6 a a a a a a a a
7 c |c Jc Jc Jc Jc Jc |c Jc Jc |c e |c |c
8 [c [c [c [c |c [ fc | fe¢ fc | Je fc |c Je |c e e |c c
9 [c [c [c [c |c [ fc | fc fc |c Je fc |c Jc |c e |c |c c

C: continuous

w: water sample
r: radiosonde
a:airsample

0: ozonesonde

Table 4: Underway measurement plan and sampling strategy on board FS Sonne.
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Student reports

1) Oceanic trace gases - GC-MS measurements

2) Eddy Covariance measurements

3) CTD/rosette bottle sampling

4) DOC and DIC measurements

5) Dissolved oxygen profiles from titrated samples

6) Dissolved oxygen in surface waters — underway sampling

7) CDOM

8) Meteorological measurements

15
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1) Oceanic trace gases - GC-MS measurements

Gesa Eirund and Dennis Booge

In order to study gas producing material in the upper ocean, the contribution of
phytoplankton and bacteria as well as eventually biogenic produced gases were investigated.

To identify certain groups of phytoplankton and bacteria, pigment filtration and flow
cytometry analysis were performed (Figure 1). Results will be gained from lab analysis later
on.

Figure 1 Filtration and flow cytometry.

We also improved a purge and trap technique coupled with a GC-MS (Figure 2) to measure
different non-methane hydrocarbons (NMHCs) in seawater. In addition we developed a
method to quantify different NMHCs (e.g. isoprene, dimethylsulfide (DMS)) in one
measurement. With this analysis of volatile trace gases it is possible to study the surface
ocean cycling and air-sea exchange in order to understand their impact on the chemistry of
the atmosphere.

Figure 2 GC-MS coupled with a purge and trap technique.
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During a 48h-station we performed 8 CTD-Stations. Samples were taken from 5 m to about
100 m depth in order to get information about a potential diurnal cycle in isoprene and DMS
concentrations during 2 days in the euphotic zone.

The results show a slight correlation of isoprene-concentrations with chl-a (Figure 3). Even
we were following with a drifter the same water mass in the upper 20 meters, the water
mass below 30 m changed during the 48h-stations after noon of the first day, which could be
seen in a different profile of DMS concentrations (Figure 4).

depth [m]
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Diurnal cycle of isoprene in CTD profile (July 16”‘)
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Figure 3 Ocean profiles from isoprene (pmol L™!) and chl-a (x120) concentrations.
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Figure 4 Ocean profiles from DMS (nmol L™*) concentrations on two different days.
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2) Eddy Covariance measurements
Alexander Zavarsky
Motivation

In order to investigate the ocean’s role in the atmospheric budget of climate active trace
gases, we deployed an eddy covariance (EC) direct flux measurement system onboard RV
Sonne. EC can be used to perform biogeochemical cycling measurements without typical
pitfalls associated with bulk flux calculations, as well as to constrain the main forcings on air-
sea gas exchange. Using the direct flux (F), F = p<w'c’>, from EC, we can attempt to improve
the gas transfer parameterization (k) used in bulk formulas, F= (HCw-Ca), where p is
density, w' are the fast fluctuations in vertical wind speed, ¢’ are the fast fluctuations in
atmospheric gas concentrations (brackets denote time average), C,, and C, are water and air
concentrations, respectively, and H is the Henry’s law solubility constant. My goal was to
measure dimethylsulfide (DMS), isoprene and acetone flux. Measurements started at DOY
196 12:00 UTC (-29.62444288 LAT 58.58830401 LON) and continued until Port Louis.

Instrumentation

Atmospheric levels of DMS, isoprene and acetone were measured using an atmospheric
pressure chemical ionization mass spectrometer (AP-CIMS). Air was sampled through a %"
tube from a mast welded to the bow (approximately 10 m above the sea surface) at a flow
rate of 70 | min™.To obtain turbulent wind speed measurements and sensible heat flux, a
sonic anemometer was placed at the bow mast. A GPS and inertial navigation system (INS)
was used for motion correction (Figure 1).

and gps

container with
mass spec

sampling line

Figure 1 Set-up of instruments onboard of SO234-2, Durban South Africa.
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Preliminary results:
Bulk air concentrations

All three trace gases, isoprene, DMS and acetone, show relatively low bulk concentrations
(Figure 2). This is in accordance to findings of the report by Gesa Eirund and Dennis Booge,
which report very low water concentrations of respective gases. A daily cycle, due to
photolysis (sunlight creates OH which oxidizes isoprene), of isoprene can be seen.

iso dms acetone conc

100 T . . : —
——isoprene
——dms
90r ——acetone
80
S 70
R
e
Q 60r
o
50
40+
?86.5 197 197.5 198 198.5 199 199.5

DOY

Figure 2 Bulk air concentrations of isoprene, DMS and acetone (in ppt).

Wind spectrum

Figure 3 shows a sample power spectrum of vertical wind speed. It reveals good agreement
with the Kaimal turbulent wind spectrum. Still the motion peak at around 0.1 Hz has to be
removed using data from the IMU.

wind power spectrum

-4 L 1 L
10 10 107" 10
frequency [Hz]

0 1 2

Figure 3 Power spectrum of vertical wind speed.

20



Trace gas spectrum

Figure 4 shows a sample spectrum of the fluctuations of acetone. However, this spectrum is
promising; still an improvement of sensitivity of the mass spectrometer is needed to get
good data to perform the correlation with wind data for flux calculations.

. acetone power spectrum
10; T T T T rrrro L L L | L

f*power

10" 3

106 - 1 I-2 I_.I |
10 10 10 10
frequency [Hz]

10

Figure 4 Power spectrum of acetone measurements.
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3) CTD/rosette bottle sampling

Kelley Brown and Eric Kamwi Nchindo
Introduction

During the 48 hour station, the two of us took part in profiling the ocean using the
CTD/Rosette sampler. We took turns through shift work, in which we were both able to be
part of four deployments each.

The CTD instrument is an acronym for Conductivity, Temperature and Depth instrument. It
measures these parameters throughout the water column, during casts. The CTD is situated
below the Rosette bottles, which is triggered to close, using the software, to collect water
samples at given depths. From the first CTD’s conducted at the beginning of the cruise,
graphs were drawn, using Microsoft Excel, to view what was being observed throughout the
water column.

Preliminary results

Below is the graph (Figure 1) for temperature and the 4 casts displayed the same profile. An
observation is made that surface temperature moderate for the Indian Ocean. The lowest
and highest temperatures are approximately at 21 and 24 °C, respectively. The possible
reason for Cast 1 having a slightly warmer temperature above 500m could be because of the
Mozambican current.

Temperature VS Depth

CAST 1 CAST2 —CAST3 —CAST 4

Temperature (°C)
10 15

Figure 1 Water temperature (°C) versus ocean depth (m).

Figure 2 depicts temperature vs. salinity. It was observed that on the surface salinity was
relatively high and this was due to high temperature. High temperature results in high
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evaporation on the surface of course precipitation also played a role since we experienced
just showers for some seconds, hence this did not alter the salt concentration on the
surface. In addition to this, salinity decreased (observed) with increase in depth.

Temperature VS Salinity
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Figure 2 Water temperature (°C) versus salinity (psu).

Figure 3 is the graph that shows oxygen vs. depth (all the 4 casts displayed the same profile).
We observed that oxygen concentration was high on the surface, why? This was due to
primary production occurring tin the photic zone. So oxygen level decreased with increase in
depth, hence a non-linear relationship was observed. However, oxygen concentration level
was high again in deeper water because the deep layer is rich in oxygen due to water that is
derived from the cold surface waters which sank (convection) to the bottom. Consumption is
low because there are fewer organisms and less decay consuming oxygen.
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Oxygen VS Depth
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Figure 3 Oxygen (umol/Kg) versus ocean depth (m).

Figure 4 shows fluorescence versus ocean depth. High Fluorescence concentration was
observed on the surface due to primary production in the photic zone. Cast 2 and 4
displayed a high concentration level because we were close to the coast of Madagascar

otherwise the other two displayed almost the same profile.

Fluorence VS Depth
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Figure 4 Fluorescence (chl-a indicator) versus ocean depth (m).
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1 Introduction

It 1s no secret that the climate 1s dramatically changing globally due to anthropogenic ac-
tivities. With atmospheric carbon dioxide increasing at an exponential rate it is prominent to
understand the distribution and pathways taken by such an influential gas. Sea-Air interactions
of most oceans have been examined and datasets analyzed. However, the Indian Ocean has
received little attention over the years; and paucity on how this mass is responding to climate
change still exists; especially in the Southern Indian Ocean (SIBER, 2009).

This cruise thereby aimed to evaluate the biogeochemical and atmospheric statuses of various
gases in the Southern Indian Ocean, and this report will emphasize on the carbon.

Carbon is transported through different mediums (land, oceans and atmosphere) by a phe-
nomenon referred to as the carbon cycle. In marine environments carbon is extracted from
the atmosphere in an inorganic form (Dissolved Inorganic Carbon - DIC) where photosynthesis
converts 1t to a carbohydrate with assistance of sunlight and other gases, 1.e. oxygen. There are
various sources that affect the concentrations DIC in the ocean such as temperature or ocean
circulation. This inorganic form is thereafter found in bilomass as an organic form that can
be classified as either dissolved Organic Carbon (DOC) or particulate organic carbon (POC).
These classes are based on size 1.e. POC >= 0.45um and DOC <= 0.45pum (Dafner et al.,
2002). As in DIC, there are some sources that influence DOC. They include freshwater input,

rainfall input, sedimentation etc. Both phases find their way to greater depths of the ocean.

2 Data and Methods
2.1 DOC Analysis

. DOC samples were collected from a CTD that was casted at a 6-hour interval. All samples
were from shallow depths (<100 m) due to the high abundance of species found. Samples were
then taken to the lab where 20 ml was filtered into a glass bottle. Thereafter, 8 pl of phosphoric
acid was added to stabilize the gas. Bottles were then flamed sealed, and refrigerated. Analyses
to be undertaken in Germany (Kiel) using a high-temperature catalytic oxidative technique

(HTC). Thus, no data was available to present on the cruise.
2.2 DIC (Dissolved Inorganic Carbon)

pCOqy 1s a form of DIC | and this gas was measured from the under way system which ran at
3 hour intervals from the 10-18th July and a drifter that was operated for the 48-hrs station.
The gas was measure using a '3 sensor which pumps the air till its dry and then passes the
dry air through an infrared detector. No laboratory analysis was needed. No calibration of the

data was done. Therefore preliminary results were presented on the cruise.

3 Preliminary Results

The partial pressure of C'OQy in the surface water (pC'05) from the underway and drifter
measurement, the equilibration temperature of the underway surface water (SST)and the par-
tial pressure of C'Oy in the atmosphere (pC'O§) are shown in this section.
Figure 1 shows the time series from the 10.to 18.7.14 for the pC' O3, pC'OF and 5ST. pC'OF was
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more or less constant during these days at a value of 386 ppm. pC'O§ shows values from 350
to 378 ppm (the very high and low peaks show calibration measurements). From the 15.7. 17
pm to the end of the time series pC'OJ is measured on the drifter. Around the 12.7.14, when
the cruise was near the southern tip of Madagascar, the pC'Oj highest. During the drifter
measurement pC'Oj is relatively constant. The atmospheric values of pCOy are higher the the
oceanic values of pC' (s during the whole time window. The SST decreased from around 25°C
in the beginning to around 19°C" at the end. The temperature seems to follow the decrease in

oceanic pC'Oy from 12. -15.7.14 but shows more variability than pC'Oj from the 14.to 18. of July.

Measurement of pCO_2 and temperature from 09/07 to 17/07/2014

Atmospheric pCO2
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Figure 1: Time series of partial pressure of C'O; of the surface water (pC'03, dark blue) and atmosphere (pC O3,
bright blue) and sea surface temperature (SST, green). SST measured from underway water, pCO3 data from

underway measurement apart from the section marked with Drifter: The drifter data was measured on the
drifter during the 48-hrs station.

As a rough estimate, the temperature dependence of pCO§ was calculated using the well
known physical relationship between temperature and pC'Oy (see Appendix). Figure 2 and
three show the analysis of this relationship. The cruise was divided mto two part for this anal-
ysis. The part west of 45°E where the water masses are within the Mozambique channel and
the part east of 45°FE where the water masses are influenced by the circulation east of Mada-
gascar. The “temperature dependent” pC' Oy corresponds to the partial pressure of C'O4 1n the
water if pC'Of was only dependent on temperature. This means that the measured pC'Oj5 and

the temperature dependent pC'Og overlay in cause measure pC'O§ depends only on temperature.

Figure 2 shows the analysis for the first part of the cruise. The temperature dependent pC'O3
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shows a different time line than the measured pC'O3. The temperature independent part which
1s the counterpart to the temperature dependent part should be the same as the temperature
dependent part after it is mirrored on the measured pC'O3. This is not the case in figure 2.

Figure 3 shows the second part of cruise. The temperature dependent pCOJ and measured
pCO3 do not overlay. Contrary to figure 2 the temperature independent and dependent pC'O3

are mirrored along measured pC'Oj3.
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Figure 2: Time series of measured (red), temperature dependent(blue) and temperature independent(green)
pCO3 west of 45°F.
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Figure 3: Time series of measured (red), temperature dependent(blue) and temperature independent(green)
pC O3 east of 45°F.
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4 Discussion
Atmospheric pC'Oy versus oceanic pCOsy:

The pCOj is larger than pC'O§ over the whole time series. This indicates that the Indian
Ocean on the cruise track is a C'O4 sink. Especially during the drifter measurement, the C'O4
sink is strong. The decrease of SST simultancously with the decrease of pC'O5 could indicate
a temperature dependence of pCO§ . But the fluctuations of the SST from 14. - 15.7.14. do
not agree support this hypothesis. The analysis of the temperature dependence in figure 2
and 3 show that temperature is not the only factor influencing pC'O§ because the measured
and temperature dependent pC'O3 do not overlay each other. The mismatch of the temperature
dependent and independent pC'Og during the first part of the cruise might be due to calculation

errors or a mismatch of the time axis.

5 Further Studies

Temperature is not the only factor influencing pC'O35. Thus the investigation of other pa-
rameters might give some more insights into the processes behind the measured pC'O§. Possible
parameters are biology (e.g. phytoplankton blooms), Circulation, DOC, pH of the seawater,
Oxygen and Salinity.
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7 Appendix
Formula to calculate oceanic pC' (s depending on temperature
pCOL” =pC0; - exp(0.0423 - (Tpeas — Tmean))
and the oceanic pC' Qs if temperature had no influence
pCOY*? = pCO; - exp(0.0423 - (Thean — Tmeas))

. Where pC'Os is the mean pC'O3z over the caleulation time, Tneq. the measured temperature and Thean the mean

temperature over the calculation time.
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5) Dissolved oxygen profiles from titrated samples

Tobias Endjambi and Blessing K. Kamwi
Introduction

The southern Indian Ocean is characterized by different water masses/current that
influences the vertical mixing of water. However there little is published on the phenomena
that are happening in this area. To understand this, more extensive studies need to be done.

This exertion of the project was aimed at determining the oxygen profile at predetermined
sampling stations in the Southern Indian Ocean, between Durban — South Madagascar -
Mauritius (Figure 1). Furthermore this work compared the CTD profile undertaken during the
cruise to the titrated samples for calibration purpose. In addition to that, we compared the
oxygen concentration during the day to the concentration of oxygen during the night

e ) [ [ Tromelin-Insel |
/ / )‘ fAntananarnvo
Bassas'da India Madagaskar. /

“ Europainsel
| /
| /
{

© §50234_1

~._ 250234 _4

\§S0234_5/6/7

Figure 1 Proposed SO234-2 cruise track.

Materials and methods

Samples for oxygen where taken at predetermined CTD sampling stations along the cruise
track. The oxygen samples were drawn into clear bottles (labelled with different “Bedford-
No”) from the niskin bottles and treated immediately with sodium hydroxide and
magnesium chloride then mixed by shaking for about 30 seconds before they were taken to
the laboratory for analysis. Samples were covered with a cloth to prevent further
photosynthesis process by phytoplankton while allowing the solution to precipitate and
settle at the bottom at least for 30 minutes.

Figure2 A TITRONIC® universal Piston Burette used for titration.
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A TITRONIC™ universal Piston Burette set was used for sample analysis (titration) and the
following procedures were followed as shown in Table 1 below.

Table 1 sample analysis procedures:

Standardization Sample (bottles) titration
* 50 ml deionized H,0 into a glass * Open the sample bottle and add a
beaker magnet (make sure the stirrer is off)
* Add 1 ml of 50%-H,504 *  Add 1ml of 50%-H,504
* Switch on the stirrer * Turn the magnetic stirrer on
* Add NaOH * Titrate with Na-thiosulphate until the

color turn pale yellow
 Add MnCL,

¢ Add starch and titrate until the solution

* Add 10 ml iodate KH(I03), become clear

* Titrate with Na-thiosulphate until it

* NB: note down the reading on the
turn pale yellow

piston burette
* Add 1ml of starch

¢ Titrate until it become clear

* NB: note down the reading on the
piston burette

Determination of oxygen concentration

Calculation of oxygen concentration was done following Winkler (1988)

0, (umol/L) = a - f - 500/ (b-2)
5

f= v (mL)
f-is the ...factor

a- is the volume of the titrated Na-thiosulphate (bottle sample)
b- is the volume of the bottle sample
v- is the volume of the titrated Na-thiosulphate (standard)

The units (umol/ L) of oxygen concentration were changed to (umol/ Kg) as follow:

(umol/ L)
Density (Kg/L)

umol/ Kg =
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Results and Discussion

The dissolved oxygen concentration from the six stations along the SO0234-2 cruise track was
determined. The CTD oxygen data from the sensor was compared to the oxygen titrated
using the Winkler method. The dissolved oxygen determined from the Winkler method was
converted to umol/kg for better comparison with the CDT data. The dissolved oxygen from
both the CDT and the Winkler method show similar oxygen profile patterns (Figure 3 and 4).

Station one was in the Mozambique Channel and shows an oxygen maximum of CDT (192.05
umol/kg) and Winkler (217.09 pumol/kg) between the depth of 10-500 m (Figure 3). This
oxygen maximum is also depicted in stations 2 at the depth of approximately 500 m. It is also
important to note that station 2 was close to the continental shelf of Madagascar where
there is primary productivity. This oxygen maximum was also evident at station 3 at the
same depth of 500 m. Station 4 is along the southwest Indian ridge, at this station the
oxygen maxima was deeper (600 m) compared to the other stations (Figure 4). This oxygen
maximum along these four stations may be due to the Antarctic Intermediate Water which is
reach in oxygen travelling northwards (Tomczak and Godfrey, 1994). The oxygen maxima are
also observed to be sinking to deeper depth as you follow the cruise track eastward.

All four stations depict an oxygen minima zone at the depth between 1000-1300m
conversely as you move south east along the cruise track, the oxygen minima zone get
deeper (Figure 3 and 4). These oxygen minima may be due to aged water mass which is
isolated and becomes warmer. According to Rogers (2000), the Indian Ocean has an intense
intermediate-depth oxygen minima zone. The oxygen concentration tend to be higher at the
bottom, this may be due to the influence of Antarctic Bottom Water (AABW) water mass
which flows from the Weddell Bay into the Indian Ocean at through the gap of the
southwest Indian ridge and the Madagascar basin (Thomas et al., 1998).

Station 1 Oxygen Profile of the South west indian Ocean Station 2, Oxygen Profile of the South west indian Ocean
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Figure 3 Oxygen profiles from station 1 and 2 along the SO234-2.
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Station 3, Oxygen Profile of the South west indian Ocean Station 4, Oxygen Profile of the South west indian Ocean
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Figure 4 Oxygen profiles from station 3 and 4 along the S0234-2.

The 48 hours station

Along the 48 hours station eight different casts were taken with the CDT following the drifter
deployed on the 16™ of July 2014. Two casts were made at midnight and two were made at
mid-noon. The oxygen levels were measured at all the casts. Figure 5 shows the midnight
and mid-noon oxygen profile from the Winkler method. This depicts higher oxygen levels
during midnight then during mid-noon. This may be due to errors during the titration of
oxygen as the levels were expected to be higher during noon due to photosynthesis.
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Figure 5 Day and night oxygen profile along two stations 5 and 7.

The CTD and Winkler offset

The offset between the CTD and Winkler were determined by subtracting the CTD data from
the Winkler data and then expressed in percentage as shown in figure 6. The offset
increased with increasing depth. The offset is approximately 15%, this is due to the
calibration of the CTD or due to pressure.
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Figure 6 Offset between Oxygen —sensor on CTD and direct oxygen-determination by Winkler.

Conclusion

There appear to be a low oxygen minima zone along the cruise tracks whereas the oxygen
maximum is between the depths of 100-1000m. This is influenced by different water masses.
The oxygen levels tend to be deeper from station to station and follows a water mass.
Therefore further studies should investigate the spatial and temporal variation. Comparison

with other parameters such chlorophyll a and salinity and the physical dynamics of the South
West Indian Ocean.
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6) Dissolved oxygen in surface waters — underway sampling

Robyn Granger and Jessica Holterhof

0, is pivotal in the biogeochemical cycling of carbon, nitrogen, and others (P, Fe, Mn, etc.),
and fundamental for all aerobic life. Oxygen concentrations in seawater are mainly
controlled by fluxes through the air-sea interface, by biological assimilation and
dissimilation, and the dynamical motion and mixing of water (Hansen, 2007).

At present, dynamics of the Indian Ocean are sparsely documented. The SO234-2 cruise
therefore presents new dissolved O, data in this seasonally variable region.

SETTING

The Southwest Indian Ocean circulation is affected by multiple water masses, including the
Southeast Madagascar Current (SEMC) and the Antarctic Circumpolar Current (ACC) waters,
the former of which plays a large role in the region explored during the cruise. The wind-
driven, anticyclonic circulation of the Southern Indian Ocean shows two persistent features —
a large basin-wide circulation and a well-developed subgyre west of the Madagascar Ridge.

The ACC transports cold O,-rich bottom water in the thermohaline circulation northwards
into the northern Indian Ocean. The water circulates in the Northern Hemisphere, and
returns as intermediate/surface water to the southern Indian Ocean. The South Indian gyre
then recirculates the water masses in the western and central parts of the basin (Stramma
and Lutjeharms, 1997).

10

-]

200

30°

20

Figure 1 Schematic overview of the flow field in the South Indian Ocean (Stramma and Lutjeharms,
1997).

METHODOLOGY

Measurements were mainly taken with an O, optode that was installed on board of the ship.
During the 40h station, the optode was deployed onto the drifter. For the in situ detection of
oxygen, the optode provides a good method for measurement, as it is based on the ability of
oxygen to act as a luminescence quencher (Tengberg et al., 2006). The higher the
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concentration of oxygen in the water, the lower the luminescence reaction detected within
the optode.

Additionally, underway samples and the uppermost 5-10 m samples of the CTD from the first
four stations of cruise SO234-2 were taken into account. O, concentrations for those
samples were measured with the Winkler Titration method. The Winkler Titration is a multi-
step oxidation-reduction process that enables the calculation of actual oxygen concentration
values within the water samples (Hansen, 2007). Through the use of multiple detectors such
as the Winkler Titration of underway and CTD samples and the O, optode, higher accuracy
could be established of the dissolved oxygen using the following formula: y=0.615*x+76.498.
The calibration enabled the correction of the O, optode data.

RESULTS/MEASUREMENTS

The data taken represent the dissolved oxygen values in surface waters of the southern
Indian Ocean, and a focus was set on the sampling of underway measurements in the top
few meters of the ocean. In general, surface layers may often become saturated and
sometimes slightly over-saturated due to air-sea exchange of oxygen, photosynthesis,
respiration and oxidation of organic matters (Miyake and Saruhashi, 1966).

20°8
25
24°S
26°S

28°8

0 | | i ]
30°S 36°E 42°E 48°E 54°F

Figure 2 Dissolved O, measurements using the Optode from 9-15 July 2014. The scale on the right
side shows amounts of O, concentrations in umol/L.

Figure 2 displays the calibrated dissolved O, concentration, which is shown to be increasing
towards the southeast of the research area. Lower values can be detected in the coastal
regions surrounding the southernmost tip of Madagascar. This is consistent with the
underway titration O, measurements taken within the region of the 40 hr station (at
approximately 30° S and 60° E), as they show amounts well above 230 umol/L as well. The O,
values were then used to calculate the oxygen saturation (see Figure 3), where results
indicate a similar trend. The data suggest a slight over-saturation in the overall sampling
area.

Variations in surface temperature, taken from approximately 6 m water depth using the
equilibrator on board, seem to correlate with the O, saturation data. As one moves further
southeast into the gyre, temperatures decrease with a sharp gradient occurring at about 48°
E.
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Figure 3 The uppermost figure displays the O, saturation in %, and the lower image shows the
surface temperatures in °C.

REMARKS

The complex current circulation within the region gives rise to interesting physical surface
properties. Changes in absolute dissolved O, and O, saturation could be due to the influence
of the SEMC, which is in turn effected by the bathymetric profile to the south of Madagascar.
Biological activity is generally considered to be an important forcing mechanism with regard
to changes in dissolved O,. Whether this is the case in the southwest Indian Ocean remains
to be seen, and would make for further studies.
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absorbtion coefficient

7) CDOM

Alina Fiehn and Kosmas Hench

What is CDOM?

Chromophoric dissolved organic matter (CDOM) is the fraction of DOM that interacts with
solar radiation (280-700 nm). A fraction of it is fluorescent.

Sources of oceanic CDOM include Terrestrial humic materials from rivers and runoff as well
as autochthonous production from microbial Metabolism in the open ocean. The CDOM
from terrestrial sources is mostly removed in the coastal zone. CDOM production in the
open ocean is a byproduct of the metabolism of zooplankton, dinoflaggelates, and
macroalgae. The main sink of CDOM is in the ocean is solar bleaching. CDOM is degraded by
photolysis and therefore influences the underwater radiation budget. This also means that
the ocean color is greatly influenced by its CDOM content.

The absorption of light by CDOM also has implications for photochemistry and —biology in
the ocean. On the one hand it limits the amount of accessible light in the visible spectral
range; on the other hand it functions as a protection against UV radiation for plankton.

Why do we measure CDOM?

Ocean color based satellite remote sensing of chlorophyll and primary productivity is biased
by the CDOM fingerprint of the water color. For calibration reference measurements are
necessary.

The degradation of CDOM by UV light results in the formation of trace gases. These include
COS, CS,, OVOCs, formaldehyde, acetone, acetaldehyde, alkanes and alkenes (e.g. isoprene).
Therefore CDOM plays a vital role in the air-sea exchange of trace gases.

Measurement

CDOM can be optically quantified by spectrometry. A mass quantification is not possible yet,
but the absorption coefficient correlates with the quantity. Still, the absorption is relative to
exact composition of CDOM.

Figure 1 shows two measured
absorption spectra of CDOM of this
cruise. A typical spectrum has a
maximum between 230 and 250 nm
and then falls exponentially to a base
value. In order to compare the
different spectra this base value at
about 700 nm and the absorption
coefficient close to the maximum value

— - - = are determined. The abundance of
wave length [nml CDOM is then relative to the difference

Figure 1 Absorption spectra of CDOM. between those two values.
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The abundance of CDOM in terms of
s absorption has been determined for

all underway samples from S0234-2
4 so far. The results are depicted in
Figure 2. Normally the amount of
CDOM in the surface waters is high
close to the coast and decreases
' towards the open ocean. Figure 2
3 shows the lowest values close to the
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CDOM abundances have also been determined for the CTD casts during SO234-2. Figure 3
shows the profiles of CDOM and isoprene from the 7 CTD casts of the 48h station. The
abundance of CDOM declined slightly with depth in the first 500m. In greater depths the
abundance remained constant. This goes in accordance with the expectations as major
depletion of CDOM by photolysis can only take place in surface water masses. As CDOM
presents a precursor to isoprene, a relationship of the abundance of CDOM and isoprene

would be plausible — yet after preliminary analysis of the CTD casts no such relation could be
detected.

CTD cast 6.1 CTD cast6.2 CTD cast6.3 CTD cast64 CTD cast65 CTD cast6.6 CTD cast6.7
. i _ _ I _ B 1 . ] B [
20 h 20 I 20 20 \ 20 ] )y
N 1 \ 1 N
— 40 — -40 — 40}y — 40 — 40 v — 40| 3 — -4 \
E \ £ £ 3 E E 1 £ 1 £
£ 60 [ I <Rt I8 80l £ 60 £ 60 1 g 60 1 £ 60l A
& rFo| 3 1 3 1 38 2 i 2 1 ] II
R I _ | _ | . R 1 R | -
80 h 20 ! 80 80 80 1 20 \ a0 :
-100 ! -100 -100 -100 -100 ! -100 ! -100

Figure 3 CTD profiles of CDOM (red) and isoprene (dashed) for the seven casts from the 48h station.

Classification of CDOM

A classification of the type of CDOM and its source is possible by analyzing the spectra as
well. The absorption spectra can be approximated using the following formula, where

acpomis the absorption coefficient, S is the exponential slope parameter and A, is a
reference wavelength:

acpom(@) = acpom(g)e SA20)

The slope parameter can be calculated by a linear fit through the logarithmic spectrum and
is used to classify the CDOM. Figure 4 shows CDOM absorption spectra from different
regions. Lower slope values correspond to coastal waters with high amounts of terrestrial

sourced CDOM and open ocean waters show higher slope parameter values (Nelson &
Siegel, 2013).
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Figure 4 CDOM spectra from different locations on the globe with normal (left) and logarithmic (right)
y-axes. The slope of the spectrum helps classifying the type of CDOM (Nelson & Siegel, 2013).

This method of classification has been applied to some of the CDOM spectra obtained during
S0234-2. Figure 5 shows two spectra from underway measurements (black and grey) and
two spectra from CTD casts (blue and red). The underway probes have been taken close to
the coast of Madagascar, the CTD probes are from the 48h station in the open ocean. The
slope parameters for all spectra have been determined and are noted in the legend of the
right figure. We find that the coastal spectra have higher slope values than the underway
spectra from coastal waters. This corresponds to the results from Nelson and Siegel (2013).
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Figure 5 Absorption spectra of CDOM from four SO0234-2 CDOM measurements in linear (left) and
logarithmic (right) scale. The values of the slope parameter have been determined with a linear fit.
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8) Meteorological measurements

Steffen Fuhlbriigge, and Michael Hemming

Introduction

34 radiosondes have been launched to date (19.07.2014, 15:00 UTC). Launch locations and
horizontal flight tracks are shown in Figure 1.
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Figure 1 (left) Radiosonde launch locations (circles) and horizontal trajectories for
launches from 8-18 July. (right) Zonal wind speed (m/s) derived from the radiosonde
launches as a function of height. Cold-point tropopause heights (km) shown by markers.

Data from the radiosondes shows a high tropical cold-point tropopause at around 17km
(stars in Figure 1, right). Maximum zonal wind speeds are found a few km below the
tropopause, and show a strong gradient with respect to the latitude of launch. At
southernmost launch latitude, south of ~28°S, we find strong zonal winds of ~80m/s.
Northward of this threshold, we find weaker maximum zonal wind speeds of 30-50 m/s.

During the portion of the cruise track closest to the Madagascarian coast, radiosondes were
launched at a 3-hourly frequency. Winds measured by these sondes show a strong wind
shear in the lower troposphere, with north-easterly winds at the surface and south-westerly
winds beginning at 2-5 km height. Figure 1 (right), which shows the zonal wind as a function
of height, shows this feature for sonde launches 7-18.

A sharp gradient in the relative humidity profiles is found between 2-4 km height (not
shown). Here the relative humidity decreases from > 80% to 15 - 30%. However this gradient
does not mark the upper limit of the atmospheric boundary layer per se. The moist layers up
to 4 km are air masses that have been advected and do not interact with the surface by
turbulent mixing processes. The mean atmospheric boundary layer height determined from
the radiosonde profiles of temperature, humidity and wind is ~ 0.8 km during the cruise.
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Two ozonesonde launches have been performed. Due to a failure of the GPS on the first
launch, altitude and position (therefore winds) are missing from the data of the first flight.
Approximate heights have been estimated by comparing the measured temperature profile
to the profile measured via radiosonde 6 hours earlier.

Preliminary profiles of ozone vs. height for the two ozonesonde launches are shown in

Figure 2.
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Figure 2 Preliminary ozone profiles (ppbv) from ozonesonde launches on 16.07.2014 and
18.07.2014. Ozone values shown in (right) linear and (left) log scales to highlight
stratospheric and tropospheric values, respectively.

Surface meteorological fields measured by the ship’s instruments are being collected and
archived. Surface pressure, temperature, humidity and wind speed for a portion of the cruise
are shown in Figure 3.

1030

| [ T |
| [ [ | 5y |
| [ | | o4
= I I I I I I3
L | I [ | ] 1
E 105 | A [ Y
o | 1 [ | o 1
E | I [ | S
g | Lo o | B —
L [ A [ |
o 1020 . o I g f
o | I N A [ 1 £
[ N [ | o |
[ I [ | —
1015 [ [ |
507 16.07 17.07 1807
Time [Days] Time [Days]
=0 T T I 1 T T T
[ N [ | [ [ I
[ N [ | = [ [ I
— B0 [ A [ | P o [ I
*® AT [ I E ol [ I o I il
10
= Vv [ | = I I [ I
2 0 0T 1y 1 Iy 1k I ) [
] [ AR IR ] ) I I [
= [ (| (WY | o [T I [T
S [ [ | o 5h [ 1 | |
T [ POV R [ | 2 [ | |
e [ A [ | £ [ |
[ N [ | [ I
[ I [ | [ | I
0 [ [ | a [ [ |
15.07 16.07 17.07 1807 15.07 16.07 17.07 18.07
Time [Days] Time [Days]

Figure 3 Surface meteorological fields as measured and archived by the Sonne systems.
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9.) AEROSOL

49



50



1) Halocarbons in surface and deep water

Helmke Hepach, Gert Petrick, Birgit Quack (Pl) (GEOMAR, Kiel, Germany)

Background

Halocarbons are hydrocarbons in which one or more hydrogen atoms are replaced by one or
more halogens. Some halocarbons are produced naturally in the oceans. Although it is
commonly acknowledged that many of these compounds have a biological origin with
distinct maxima in the chlorophyll a (Chl a) maximum, their cycling within the water column
is still poorly understood. Other production pathways such as photochemical formation
might play a significant role. Once the halocarbons are transported into the troposphere
from the sea surface by air-sea gas exchange, they have very short lifetimes of less than 120
days. Bromoform (CHBr3) and dibromomethane (CH,Br,) are together the biggest carriers of
organic bromine into the atmosphere, while CHsl is the most abundant organoiodine. The
tropical ocean is a key region with respect to atmospheric transport processes: tropical deep
convection can carry these compounds despite their short lifetimes into the stratosphere
where they can deplete ozone much more effectively than chlorine. Additionally,
diiodomethane (CH,l,) and chloroiodomethane (CH,CIl) have recently been suggested to be
similarly important for the organic iodine loading of the troposphere as CH3l. These
compounds are involved in numerous chemical cycles within the atmosphere with iodinated
compounds even participating in aerosol formation.

So far, large data gaps with respect to halocarbons exist in the Indian Ocean. Very few
studies have focused on this region, although it might be of large importance for convective
transport processes. The measurements of halocarbons during the SO0234-2 cruise are the
first measurements of these compounds in this region. They will help to characterize this
area with respect to the global oceanic distribution of these compounds, and the
contribution of the Indian Ocean to the stratospheric organic halogen loading.

Material and methods

Halocarbons onboard the RV Sonne were measured directly after sampling. Discrete samples
were collected both from the continuously working pump located in the ship’s moon pool
(underway) every three hours, and from the Niskin bottles attached to the CTD. Each CTD
was sampled for five to eight different depths. The water was analyzed for ten brominated,
chlorinated and iodinated compounds including CHsl, dichloromethane (CH,Cl,), chloroform
(CHCIl3), tetrachloromethane (CCls), CH,Br,, CH,CIl, bromoiodomethane (CH,Brl),
dibromochloromethane (CHBr,Cl), CHBr3;, and CH,l,. 50 mL of the sampled water was
introduced into a purge chamber. The water was purged with a stream of helium of 30 mL
min-1 while it was concurrently heated up to 70 °C. The purged gas was trapped in stainless
steel tubing hanging in liquid nitrogen for 50 min. The trap was desorbed at 100 °C and the
sample was injected into a gas chromatograph attached with a detector. CTD samples were
measured using combined gas chromatography and mass spectrometry (GC-MS), while
underway samples were analyzed using a gas chromatograph equipped with an electron
capture detector (ECD). Calibration was conducted using volumetrically prepared standards
in methanol. In total, 13 CTD casts were measured, rounding up to a total of 76 samples that
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were measured from the CTD, while 70 samples were taken from the underway pump
system, making a total of 146 halocarbon water samples during SO234-2. Additionally, 30 air
samples were measured. For these measurements, 500 mL of air was sucked from a
sampling line located at the ship’s main deck into a cooled trap, and then injected into a
third GC-ECD for quantification.

Preliminary results

First evaluation of the underway and CTD data reveal low concentrations of the
bromocarbons CHBr; and CH,Br,. Concentrations were in the range of typical open ocean
concentrations during the greater part of the cruise. Higher concentrations of both
compounds were measured close to the Banc de |’Etoile, a coral reef with also rich
microalgal abundances close to Southern Madagascar. This was also the only region where
atmospheric measurements showed elevated CHBr; mixing ratios. Mean CHBr3 in all CTD
profiles of 3.2 pmol L-1 ranging only between 0 and 7.4 pmol L-1 were measured with the
higher values in the deeper water close to the chlorophyll a (Chl a) maximum, which is in
agreement to biogenic formation of this compound. In contrast, CH,Br, showed higher
values with a slightly higher mean of 3.8 pmol L-1 and up to 19.5 pmol L-1 in the deeper
water. An example for a depth profile measured during the cruise is given in Figure 1 for the
first day of the 48-h-station. CHBr3; displays low variability within the water column, but
shows generally higher values in the deeper water. The variability within the CH,Br, profiles
is larger, showing more distinct maxima. Both show similar distributions during all day times,
which is in agreement to previous studies hypothesizing similar sources for both compounds.

Raw Chl a CHBr, [pmol L] CH,Br, [pmol L]
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Figure 1 Raw Chlorophyll a (a), CHBr; (b) and CH,Br; (c) depth profiles during the 48-h-station (day 1).
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Surprisingly, highest concentrations of both compounds were measured in the evening
where the lowest Chl a signal was detected. CHBr; is generally assumed to be emitted in
higher concentrations than CH,Br,. However, the higher CH,Br,in comparison to CHBr; has
previously been observed in the open ocean, further away from fresh sources. The ratio of
CHBr3 and CH,Br; leaning towards CH,Br», as is here the case, has been hypothesized to be
caused by different lifetimes of these compounds (Carpenter et al., 2009), assuming that
CH,Br, has a longer lifetime in water than CHBr3 similarly to the atmosphere. However,
Quack et al. (2007), supported by Hughes et al. (2013), suggested an additional explanation
for the elevated CH,Br, in the open ocean: biologically mediated conversion from CHBr3 to
CH,Br,, possibly through heterotrophic processes. The depth profiles with largely elevated
CH,Br; in comparison to CHBr3 observed during 234-2 could therefore be an indicator for the
latter hypothesis, which will be investigated more thoroughly during the second leg.

Outlook

Further analysis of the data will be performed in Kiel. Once the data is fully analyzed, it will
be compared to biological and physical parameters. Emissions will be calculated using
discrete atmospheric samples that were taken at the same time as the water samples, and
using several parameters from the DSHIP data and the continuously measuring
thermosalinograph (e.g. wind speed, air pressure, water temperature, density).
Furthermore, the data will be compared to pigment data, nutrients, CDOM, and iodide and
iodate, which were all sampled in parallel to evaluate sources of halocarbons in the Indian
Ocean and learn more about their biogeochemical cycling. The final evaluation of the 48h-
station will reveal possible diurnal variability of these compounds within the water column.
Sea-to-air fluxes from the Indian Ocean will be used to calculate the entrainment of
halocarbons into the stratosphere.

References

Carpenter, L. J,, Jones, C. E., Dunk, R. M., Hornsby, K. E., and Woeltjen, J.: Air-sea fluxes of
biogenic bromine from the tropical and North Atlantic Ocean, Atmos. Chem. Phys., 9, 1805-
1816, 2009.

Hughes, C., Johnson, M., Utting, R., Turner, S., Malin, G., Clarke, A., and Liss, P. S.: Microbial
control of bromocarbon concentrations in coastal waters of the western Antarctic peninsula,
Mar. Chem., 151, 35-46, http://dx.doi.org/10.1016/j.marchem.2013.01.007, 2013.

Quack, B., Peeken, I., Petrick, G., and Nachtigall, K.: Oceanic distribution and sources of
bromoform and dibromomethane in the Mauritanian upwelling, J. Geophys. Res.-Oceans,
112, C1000610.1029/2006jc003803, 2007b.

53



54



2) OCEANIC TRACE GASES - Underway measurements of CO,, O,, CO, and N,O

Tobias Steinhoff, Gesa Eirund and Damian Arevalo-Martinez (GEOMAR, Kiel, Germany)

Oceanic and atmospheric measurements of CO,, CO and N20 were carried out by means of a
continuous system based upon the off-axis integrated cavity output spectroscopy technique
(RMT-200 N20/CO Analyzer, Los Gatos research Inc.) coupled to a CO, detector based upon
non-dispersive infrared detection (LICOR, USA; LI-6252). Water was drawn on board by using
a submersible pump installed in the ship’s moonpool at 6 m depth and was subsequently
conducted at a rate of about 5 L min™ through the equilibrator. Sample air from the
headspace of the equilibrator was continuously pumped through the instruments and then
back to the equilibration chamber forming a closed loop. The air stream was dried before
being injected into the analyzers in order to diminish interferences due to the water vapor
content of the sample. In order to correct for potential warming of the seawater between
intake and equilibrator the water temperature at the equilibrator was constantly monitored
by means of a digital thermometer and at the intake by a Seabird SBE37 termosalinograph.
Ambient air measurements were accomplished by drawing air into the system from a suction
point located at the ships mast at about 30 m high. Control measurements and calibration
procedures were performed every ~6 and 24 h respectively, by means of 3 standard gas
mixtures. Fig. 1 shows the over- or undersaturation of N,O and CO, with respect to the
atmosphere. During most of the cruise both gases were near the equilibrium, while strong
supersaturation was observed when entering the coastal upwelling region along the African
coast.

Underway measurements of surface water O, and gas tension were carried out in a flow-
through box. Gas tension data are only available until 15. July due to a broken connector at
the instrument. The box was connected to the same water supply and the water flow was
adjusted to approximately 20 L min. The following instruments were implemented:
Aanderaa Oxygen Optode (model 4330), Pro Oceanus Gas tension device. The gas tension
device physically measures the total pressure of all dissolved gases, i.e, pN,, pO,, pH,0, and
pAr as well as minor trace gases below the instrument’s accuracy. As water vapour pH,0 is a
function of temperature and salinity, Argon pAr is constant, and Oxygen pO, is measured by
the oxygen optode, it effectively gives the pN2, which is a prime indicator of physical
processes of gas exchange, like e.g., bubble processes, and unaffected by biology. It thus
helps to separate biological and physical contributions to air-sea gas exchange of O,. This is
complemented by the biology-dominated pCO, measurements in water and air. In
combination with information about the mixed layer from the CTD, the continuous
underway measurement thus yield insight into major physical and biological processes at
play in the surface ocean. Occasionally, discrete oxygen and salinity samples were taken
from the bypass to compare these underway measurements.

Discrete comparison samples for N,O and CO, were carried out in 8-12 h intervals by
sampling from the same water stream that fed the underway setup. N,O and DIC/TA
samples were collected and stored to be measured at the Chemical Oceanography
Department of the GEOMAR in Kiel.
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Preliminary results
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Figure 1 Surface water distribution of pCO,, N,0, oxygen saturation and sea surface temperature
(SST) during SO234-2.

Figure 1 shows preliminary data of surface distributions of pCO,, N,O, oxygen and SST along
the cruise track. Under the influence of the Mozambique Channel higher SST up to 25°C was
observed. East of 48°W SST dropped and lowest temperature around 19°C was observed in
the most easterly part of the cruise track. This differentiation between the part west and
east of Madagascar can be also found in the different gases. CO, was undersaturated with
respect to the atmosphere during the whole cruise with lowest values in the eastern part.
N,O surface water concentrations were around equilibrium with the atmosphere during
most of the time. Only in the Mozambique Channel slight supersaturation was observed. The
oxygen data are not calibrated yet and the shown saturation values seem to be too low. But
the observed pattern in the oxygen saturation can also be found in the SST data. Warmer
waters have a slightly higher saturation than colder waters.
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3) EDDY COVARIANCE - trace gases

Christa Marandino (PI), Alex Zavarsky, Dennis Booge, Alina Fiehn (GEOMAR, Kiel,
Germany), and Kosmas Hench (University of Oldenburg, Germany)

Motivation

Despite their low abundances, short-lived trace gases produced in the oceans play an
important role in biogeochemical cycling and atmospheric processes. Some examples of such
climate active gases that are measured on board the SO234-2 cruise are dimethylsulfide
(DMS), isoprene, acetone, and carbonyl sulfide (OCS). These gases react rapidly when
emitted to the atmosphere, with lifetimes between 1 hour and 1 month. They participate in
ozone and hydroxyl radical cycles and in the formation of aerosols and cloud condensation
nuclei. The biogeochemical and physical factors influencing the production and destruction
of these compounds in the surface ocean are only marginally constrained for gases such as
DMS, OCS, and acetone, while very little information about isoprene cycling is known. In
addition, quantifying the air-sea exchange of these compounds is further hindered by the
lack of direct flux measurements and poor constraints on the factors controlling their fluxes
(e.g. the gas transfer coefficients, presence of vertical gradients, etc.). The goal of this cruise
is to understand what controls the biogeochemical cycling of these gases in the surface
ocean, in depth profiles, and their exchange with the atmosphere.

In order to investigate the ocean’s role in the atmospheric budget of these trace gases, bulk
atmospheric and oceanic concentration measurements and ancillary data (such as colored
dissolved organic matter, cell counts, and DNA), as well as direct air-sea exchange, have
been measured. We deployed three different instruments to measure underway and CTD
seawater samples for trace gas concentrations and three instruments to measure air
concentrations. An eddy covariance (EC) direct flux measurement system has also been
deployed, which can be used to perform biogeochemical cycling measurements without
typical pitfalls associated with bulk flux calculations, as well as to constrain the main forcings
on air-sea gas exchange. Measurements of the precursors and sinks of these trace gases
were measured in order to better understand and quantify surface ocean cycling. The main
factor thought to influence these gases is biological activity. Therefore, samples for DNA and
cell counts (i.e. flow cytometry) were taken for later analysis. Because the degradation of
CDOM by UV light results in the formation of trace gases, such as OCS, acetone, and
isoprene, CDOM quantities were also measured.

Methods
This working group is responsible for the following measurements:

1. Continuous eddy covariance fluxes of DMS, isoprene, acetone using atmospheric
pressure chemical ionization mass spectrometry (AP-CIMS)

2. Continuous eddy covariance fluxes of CO, using infrared absorption (LICOR 7200)

3. Three hourly underway and CTD water concentrations of DMS (and related compounds
such as DMSP, DMSO), and isoprene with purge and trap gas chromatography-mass
spectrometry (GC-MS)

4. Continuous underway water concentrations of DMS, isoprene, and acetone using an
equilibrator coupled to AP-CIMS
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5. Continuous underway water levels of OCS using an equilibrator coupled to a cavity ring
down spectrophotometer (MICA), with hourly valve switches to measure air mixing
ratios for 15 minutes

6. Quantification of CDOM (both underway and at depth with the CTD) using UV-visible
absorption (qualification may be attempted with a fluorescence spectrophotometer, but
this has not yet been accomplished)

7. Sampling and preparation of DNA and flow cytometry samples for identifying types and
amount of biological activity

Eddy covariance

The eddy covariance direct flux (F) is computing with the following equation,

F =p<w'c’>

where p is the density, w’ are the vertical wind fluctuations, and ¢’ are the concentration

fluctuations (brackets denote time average). Using this technique, we can attempt to
improve the gas transfer parameterization (k) used in the commonly employed bulk formula,

F=k(HCw—Ca),

where C, and C, are water and air concentrations, respectively, and H is the Henry’s law
solubility constant. The goal was to measure dimethylsulfide (DMS), isoprene and acetone
flux with the AP-CIMS and CO, flux with the LICOR 7200. Measurements started at DOY 196
12:00 UTC (-29.62444288 LAT 58.58830401 LON) and continued until Port Louis.

Air was sampled through a %" tube from a mast welded to the bow (approximately 10 m
above the sea surface) at a flow rate of 70 | min™ to the AP-CIMS and approximately 25 | min’
! to the LICOR. To obtain turbulent wind speed measurements and sensible heat flux, a sonic
anemometer was placed at the bow mast, which measured three dimensional wind speed
and the speed of sound. A GPS and inertial navigation system (INS) was used for motion
correction (Figure 1). The AP-CIMS can discriminate gases using a single quadrupole mass
spectrometer. The gases are ionized at atmospheric pressure using H3O" as the reagent gas
and electrostatically steered to the quadrupole. The ions are detected using a counting
electron multiplier. The LICOR measures CO, and H,0 using infrared absorption.

el TS

Mast with sonic A, IV

and gps

| container with

sampling line
mass spec

Figure 1 Eddy covariance setup on the R/V Sonne.
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Purge and trap GC-MS

We improved a purge and trap technique coupled with a GC-MS (Figure 2) to measure
different non-methane hydrocarbons (NMHCs) in seawater. In addition, we developed a
method to quantify different NMHCs (e.g. isoprene, dimethylsulfide (DMS)) in one
measurement using isotopically labeled internal standards. A 40 ml discrete water sample
was taken, bubble free, and purged with approximately 30 ml min™ of helium for 15 minutes
and trapped with liquid nitrogen on an empty u-shaped trap. The frozen gas was then
injected with boiling water into the GC. Each analysis took approximately 13 minutes.

)

uuuumu

g

Figure 2 Purge and trap GC-MS aboard R/V Sonne.

Instruments coupled to equilibrators

A miniature AP-CIMS and a cavity ring down spectrophotometer (MICA) were each coupled
to a membrane equilibrator to measure trace gases. The AP-CIMS measured DMS and
isoprene, while the MICA measured OCS (there were also hourly valve switches to measure
air mixing ratios with the MICA). Each equilibrator had approximately 5 | min™ water flow
and a counterflow of purified air of ~300 ml min™*. The AP-CIMS air stream was dried with a
Nafion dryer and diluted with dry purified air with a flow of 1100 ml min™. All gas flows were
controlled with mass flow controllers and all liquid flows were measured and recorded.

Ancillary measurements

Samples for DNA, cell counts, and CDOM were also taken from both the underway system
and the CTD and preserved for later analysis. 2 | of water for DNA were filtered through 0.2
micron filters and mixed with 0.5 ml of RNA later before shock freezing and final storage in
the -80C freezer. The samples will be shipped to Hong Kong for analysis. 4.5 ml of water
were taken for phytoplankton and bacteria cell counts, each, and were preserved with GDA
(20 and 200 microliters, respectively) before final storage in the -80C freezer. The samples
will be shipped by to Kiel for flow cytometry analysis. 50 ml of water was filtered through 0.2
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micron filters for CDOM quantification. The samples were stored in the refrigerator until
shipboard analysis, between 1 and 48 hours. Measurements were made using a UV-visible
spectrophotometer. Millig water was used as a reference. The CDOM value was computed
by subtracting the absorbance at approximately 700 nm from that at 350 nm. All values are
reported in absorbance units and reflect relative amounts.

Preliminary results
Bulk air values — Eddy covariance system

Figure 3 shows the bulk air concentrations of isoprene, DMS, and acetone measured with
the AP-CIMS during the 48 hour station. All three trace gases show relatively low bulk
concentrations. This is in accordance with the results from the surface seawater
measurements of the same gases, which were also low. A daily cycle, due to photolysis
(sunlight creates OH which oxidizes isoprene), of isoprene can be clearly seen, especially
because the lifetime of isoprene in the atmosphere is on the order of 1 hour. The DMS
lifetime is on the order of 1 day, and a less clear diurnal pattern is evident.
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Figure 3 Trace gas measurements in the atmosphere during the 48 hour station using the AP-CIMS
and the inlet on the eddy covariance mast.

Eddy covariance wind measurements

Vertical wind speed power spectra are in good agreement with the empirically determined
Kaimal turbulent wind spectrum (Kaimal et al., 1972; Figure 4), which is used as the standard
for all turbulence measurements. The high frequency portion of the spectrum exhibits the
appropriate slope, but the peak at around 0.1 Hz is due to the motion of the ship. This must
be removed from the wind data in post processing, using the data from the IMU situated on
the mast.
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Figure 4 Sample power spectrum of vertical wind speed.

Eddy covariance trace gas measurements

It is clear that trace gas spectra show the same features as the wind spectrum, in accordance
with the Kaimal curve (Figure 5). Therefore, the trace gas measurements can be correlated
with the vertical wind speed measurements to obtain the eddy covariance flux. However,
this data must be post processed to correct for high and low frequency interferences and the
possibility of flow distortion.
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Figure 5 Sample power spectrum of the turbulent fluctuations of acetone.
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GC-MS measurements
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Figure 6 Diurnal isoprene cycle plotted with fluorescence values from the CTD.

During a 48h-station we sampled from 8 CTD-Stations. Samples were taken from 5m to
about 100m depth in order to get information about a potential diurnal cycle in isoprene and
DMS concentrations during 2 days in the euphotic zone (Figures 6, 7). The results show a
slight correlation of isoprene-concentrations with chl-a. It appears however, that despite
following the same water mass with a drifter in the upper 20 meters, the water mass below
30m changed during the 48h-stations after noon of the first day. This could also be detected
in the evening profile of DMS concentrations from the first day (Figure 7, left). Values for
both DMS and isoprene were below the global annual average.
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Figure 7 Diurnal DMS from CTDs during the 48 hour station, left) first day, right) second day.
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OCS measurements

Preliminary mixing ratios of OCS in air and water are shown in Figure 8. The values appear to
be below the expected levels by approximately 40%. We believe this is due to dirty mirrors
inside the cavity and can be corrected during post processing. The water values exhibit the
expected diurnal cycle, which is related to the CDOM photolysis source of OCS. It appears
that OCS was undersaturated in the water during most of the cruise, which is unusual and
may have to do with the low SSTs.
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Figure 8 OCS mixing ratios (ppt). Top constant value is the air mixing ratio, while the cycling lower
values are in the water.

CDOM measurements

Figure 9 shows two measured absorption spectra of CDOM from this cruise. A typical
spectrum has a maximum between 230 and 250 nm and then falls exponentially to a base
value. The abundance of CDOM in terms of absorption has been determined for most
underway samples from SO0234-2 (Figure 10). Normally the amount of CDOM in the surface

0.5F b

o
>

absorbtion coefficient

-0.51 1 ! ! 1 1
200 300 400 500 600 700 800

wave length [nm]

Figure 9 Absorption spectra of CDOM from two underway samples.
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Figure 10 CDOM underway samples.

waters is high close to the coast and decreases towards the open ocean. However, we
observed the lowest values close to the reef south of Madagascar and higher values in the
open ocean.

CDOM abundances have also been determined for the CTD casts during SO234-2. Figure 11
shows the profiles of CDOM and isoprene from the 7 CTD casts of the 48h station. The
abundance of CDOM declined slightly with depth in the first 500m. In greater depths the
abundance remained constant. This goes in accordance with the expectations as major
depletion of CDOM by photolysis can only take place in surface water masses. As CDOM
could be a precursor to isoprene, a relationship of the abundance of CDOM and isoprene
would be plausible — yet after preliminary analysis of the CTD casts no such relation could be
Figure 10. Relative abundances of surface seawater CDOM.

A classification of the type of CDOM and its source is possible by analyzing the spectra as
well. The absorption spectra can be approximated using the following formula, where
acpomis the absorption coefficient, S is the exponential slope parameter and Ajis a
reference wavelength:

acpom(@) = acpom(g)e SA20)

The slope parameter can be calculated by a linear fit through the logarithmic spectrum and
is used to classify the CDOM. Figure 12 shows CDOM absorption spectra from different
regions. Lower slope values correspond to coastal waters with high amounts of terrestrial
sourced CDOM and open ocean waters show higher slope parameter values (Nelson &

Siegel, 2013).
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Figure 11 CTD profiles of CDOM (red) and isoprene (dashed) for the seven casts from the 48h station.
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This method of classification has been applied to some of the CDOM spectra obtained during
S0234-2. Figure 13 shows two spectra from underway measurements (black and grey) and
two spectra from CTD casts (blue and red). The underway samples have been taken close to
the coast of Madagascar, the CTD samples are from the 48h station in the open ocean. The
slope parameters for all spectra have been determined and we find that the coastal spectra
have higher slope values than the underway spectra from coastal waters. This corresponds
to the results from Nelson and Siegel (2013).
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Figure 12 Examples of CDOM spectra from various source regions, where the right side is the log of
the left side. The slopes of the different curves is given in the legend of the right panel and can be
used to determine the source regions of CDOM (Nelson and Siegel, 2013).
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Figure 13 Analysis of SO234-2 CDOM samples in the method of Nelson and Siegel (2013). See Figure
12 above.
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4) OCEANSENSORS

4A) Conductivity Temperature Density (CTD)

Matthias Kriiger (GEOMAR, Kiel, Germany)

During SO0234-2, 13 profiles of pressure (P), temperature (T) and conductivity (C) were
recorded. These CTD profiles usually ranged to the bottom, on the 48 h station to the
bottom and some to 750m. We used a Seabird Electronics (SBE) 9plus system, attached to
the water sampler rosette, and the latest Seabird Seasave software. The system had the
following sensors: p #64860, T #2135, ¢ #1854, Oxygen (O) #1902 and a Dr. Haardt
Fluorometer. Conductivity will be calibrated using a linear relation in p, T and c. This relation
will be obtained by fitting the according CTD salinity to 37 water samples, which will be
analyzed with a salinometer later on. Oxygen will be calibrated using a linear relation inp, T
and O. Winkler titration of 312 bottle samples gives the accurate value of absolute oxygen in
the water.

A potential temperature — salinity diagram of the first four CTD stations is shown in Figure 1,
with such a diagram the water masses can be easily detected.
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Figure 1 Temperature - salinity diagram of the first four stations.

Preliminary results

A vessel mounted Acoustic Doppler Current Profiler (ADCP) continuously recorded current
velocities. We used a RD Instrument Ocean Surveyor 38kHz (0S38) mounted in the ship’s
hull. The instrument was run in two configurations: one configuration in broadband mode
(BB) and one configuration in narrowband mode (NB). Usually NB is for the deeper regions of
the ocean. The main reason to choose the less robust BB mode was the higher possible
resolution in space and time. The two configurations of 0OS38 were: a) NB mode, 55 bins of
32m, range 1000m; b) BB mode, 80 bins of 16m, range 800m.

Due to the extremely low abundance of acoustic scatters in parts of the cruise area, there
are sometimes lacks of interpretable acoustic backscatter signals, even when using the more
robust NB mode.
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A time series showing the velocity structure in the upper 1000 meters of the water column is

shown in Figure 2, where enhanced internal wave activity is evident.
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Figure 2 Velocity time series (m/s) at the beginning of the 48 h station, data from 38kHz ADCP.
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4B) Surface drifter

Tobias Steinhoff (GEOMAR, Kiel, Germany)

During one station a 48h (Lagrangian) drift experiment was conducted. In order to follow a
water parcel in a quasi-Lagrangian approach a surface drifter was used to mark a water
patch and follow it with the ship for 48 h (Figure 1). The drifter was further equipped with
autonomous instrumentation at approx. 15 m water depth for in situ measurements of
Salinity and Temperature (Seabird MicroCat), pCO2 (Contros HydroC), 02 (Aanderaa Oxygen
Optode, Model 4330), Chlorophyll (Trios Micro flu) and Nitrate (Trios Props). The
continuously recorded data need to be processed and will be available after the cruise.
During the drift experiment the ship approached the drifter every 6 hours in order to
conduct a CTD hydrocast (750 m max. depth) next to it. Samples were taken and analyzed
for various parameters. Most of sampling and measurement procedures are described in the

cruise report of other groups.
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Figure 1 Track of the surface drifter during the deployment of 48 h; photo of the drifter on

17.07.2014 @Folkard Wittrock).
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5) RADIOSOUNDING - meteorology measurements

Matthew Toohey, Steffen Fuhlbriigge (GEOMAR, Kiel, Germany), Michael Hemming
(University Hamburg, Germany), and Kirstin Kriiger (P! - UiO, Oslo, Norway)

Introduction

34 radiosondes were launched until 19.07.2014, 15:00 UTC. Launch locations and horizontal
flight tracks are shown in Figure 1.
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Figure 1 (left) Radiosonde launch locations (circles) and horizontal trajectories for
launches from 8-18 July. (right) Zonal wind speed derived from the radiosonde launches
as a function of height. Cold-point tropopause heights shown by markers.

Preliminary results

Data from the radiosondes shows a high tropical cold-point tropopause at around 17km
(stars in Figure 1, right). Maximum zonal wind speeds are found a few km below the
tropopause, and show a strong gradient with respect to the latitude of launch. At
southernmost launch latitude, south of ~28S, we find strong zonal winds of ~80m/s.
Northward of this threshold, we find weaker maximum zonal wind speeds of 30-50 m/s.

During the portion of the cruise track closest to the Madagascarian coast, radiosondes were
launched at a 3-hourly frequency. Winds measured by these sondes show a strong wind
shear in the lower troposphere, with north-easterly winds at the surface and south-westerly
winds beginning at 2-5 km height. Figure 1 (right), which shows the zonal wind as a function
of height, shows this feature for sonde launches 7-18.

A sharp gradient in the relative humidity profiles is found between 2-4 km height (not
shown). Here the relative humidity decreases from > 80% to 15 - 30%. However this gradient
does not mark the upper limit of the atmospheric boundary layer per se. The moist layers up
to 4 km are air masses that have been advected and do not interact with the surface by
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turbulent mixing processes. The mean atmospheric boundary layer height determined from
the radiosonde profiles of temperature, humidity and wind is ~ 0.8 km during the cruise.

Two ozonesonde launches have been performed. Due to a failure of the GPS on the first
launch, altitude and position (therefore winds) are missing from the data of the first flight.
Approximate heights have been estimated by comparing the measured temperature profile
to the profile measured via radiosonde 6 hours earlier.

Preliminary profiles of ozone vs. height for the two ozonesonde launches are shown in
Figure 2.
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Figure 2 Preliminary ozone profiles from ozonesonde launches on 16.07.2014 and
18.07.2014. Ozone values shown in (right) linear and (left) log scales to highlight
stratospheric and tropospheric values, respectively.

Surface meteorological fields measured by the ship’s instruments are being collected and
archived. Surface pressure, temperature, humidity and wind speed for a portion of the cruise
are shown in Figure 3.
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Figure 3 Surface meteorological fields as measured and archived by the Sonne systems.

The pyrgeometer and pyranometer, measuring atmospheric emission longwave (LW) and
solar shortwave (SW) radiation, respectively, and precipitation measuring disdrometer were
working fine and collecting data continuously. Figure 4 shows a preliminary version of data
collected to date.
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Figure 4 Radiative and precipitation quantities measured by the radiometers and
disdrometer, respectively.
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6) AIR-SAMPLING - for atmospheric trace gases

Elliot Atlas (RSMAS, Miami, USA), and Birgit Quack (GEOMAR, Kiel, Germany)

94 canister samples of air have been collected in 2 L stainless steel tanks, being pressurized
to 2 bar for RSMAS with a metal bellows pump and will be analyzed for a variety of trace
gases as natural and anthropogenic hydrocarbons and halocarbons, DMS, N,0, alkyl nitrates,
CO and other long-lived anthropogenic and natural trace gases on different instruments at
the Rosenstiel School of Marine and Atmospheric Sciences in Miami.

Long lived anthropogenic gases producing halogen radicals can account for about 3400 ppt
of chlorine and about 15-16 ppt of bromine in the stratosphere, depleting ozone.

Other gases with shorter lifetimes, the so-called very short-lived substances (chemical
lifetimes shorter than 6 months) like bromoform (CHBr3) or dibromomethane (CH,Br;) as
well as iodinated methanes with the ocean as their main source also may have a significant
impact on the stratospheric bromine loading. Deep convection within the tropics could
provide a fast pathway for these substances to be transported in significant abundances into
the stratosphere. The quantification of this input to the budget of stratospheric bromine and
iodine from the Indian Ocean during southwest monsoon was a major objective of the
cruise. It will give information about natural background halogen loading of the stratosphere
and improve the projections of future stratospheric ozone concentrations.

With the help of the anthropogenic and terrestrial trace gases and calculated trajectories
oceanic, land-based and anthropogenic sources and possibly source strengths can be
determined.
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7) MAX-DOAS

Folkard Wittrock (IUP, University of Bremen, Germany)

During the SO234-2 cruise in the Indic from July 8 to July 20, 2014, measurements of
different reactive trace gases were carried out using the Multi-Axis Differential Optical
Absorption Spectroscopy (MAX-DOAS) technique (Wittrock et al., 2004 and Wittrock, 2006).
The Bremian MAX-DOAS setup was running almost continuously for the whole cruise
without having any serious problems (starting already early in the morning on July 7 in the
port of Durban). Since the MAX-DOAS technique is based on solar stray light, measurements
were only possible during daytime short before sunrise until sunset (96° SZA). In addition
some complementary parameters were obtained: surface ozone with an in situ ozone
monitor (Horiba), meteorological parameters (wind speed and direction, total solar
radiation, UV radiation, precipitation, humidity, pressure and temperature). Starting July 18
denuder tube sampling was carried out to quantify the amount of molecular iodine.
Furthermore the MAX-DOAS is also collecting AIS data from passing ships which might help
to explain measured pollution levels.

The MAX-DOAS setup used on the ship was covering a wavelength range of approximately
300 to 470 nm with a medium resolution (FWHM 0.8 nm). This enables us to retrieve the
following trace gases: 10, BrO, CHOCHO, HCHO, H,0, 03, NO,, and SO,. From 04
measurements the aerosol extinction profile and the AOD can be derived. The telescope was
installed on the starboard side of the ship and was collecting spectra toward three different
azimuth angles possibly identifying horizontal gradients of trace gases. In addition the water-
leaving radiance was measured once per measurement cycle (Peters et al., 2014).

During the cruise a first analysis was carried out. For the halogen oxides BrO and |0 no clear
indications of levels above the detection limit (~0.5 ppt) was found. For the tropospheric
pollutants NO, and SO, elevated levels up to several ppb were measured in Durban and
when passing the main shipping routes close to Madagascar. In case of HCHO similar values
(~ 0.6 to 0.8 ppb) as published in Peters et al. have been retrieved. AOD levels were in
general very low with values around 0.06. A detailed analysis of the whole data set taking
into account detailed radiative transfer calculations will be done at the IUP Bremen as soon
as possible. Preliminary and raw data have been uploaded to the cruise data base.
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Figure 1 MAX-DOAS telescope on RV Sonne heading to starboard. During SO234-2 the telescope was
scanning different azimuth angles to identify spatial inhomogeneities in trace gas distributions.
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8) GHG (see work group reports 2 and 3)
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9) AEROSOLS

9A) Alex Baker (UEA, Norwich, UK)

Aerosols play a key role in halogen cycling in the marine atmosphere, with Cl being
transferred to the gas phase by acid displacement reactions, Br release being induced by
reaction of ozone on sea salt particles and iodine chemistry promoting transfer of Cl, Br and |
to the gas phase via halogen activation reactions. Ultimately aerosols appear to be net
sources for Cl and supermicron Br and net sinks for | and submicron Br.

During the SO234-2 cruise two day aerosol samples were collected for determination of Cl-,
Br- and iodine speciation, as well as a number of other aerosol ionic components which will
provide us with useful information on aerosol background chemistry. 6 fourtyeight hour
aerosol samples of about 600 L of air have been collected with a multistage aerosol
impactor.

The data obtained will allow us to examine the potential strength of the aerosol Br source
along the transect and investigate the role of iodine chemistry in halogen activation, as well
as providing a unique opportunity to compare atmospheric iodine source (trace gas) and sink
(aerosol) strengths in the Indian Ocean for the first time.

9B) Matthew Toohey (GEOMAR, Kiel, Germany)

The microtops sun photometer (Figure 1 left) is being used to measure aerosol optical
thickness in cloud-free conditions. Based on satellite AOT retrievals, we expect weak aerosol
levels in this region at this time of year, with values below 0.2 and often below 0.1.
Microtops measurements are in line with this expectation (Figure 1 right). Larger AOT values
are expected in the later portion of the cruise as the ship gets in closer proximity to India.
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Figure 1 (Left) Microtops sun photometer; (right) aerosol optical thickness (AOT) as measured by
the Microtops handheld sun photometer during the cruise.
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Appendix A: Sample lists for underway samples
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SPACES (S0234-2) Samples taken from CTD casts (preliminary]
Oxygen | Fluores- N.O+ | DMS+ DOCT|  Flow TEP/ [ Compo- | measure- Nano- | picro- Pig-
Date and time ty | Density Lat Lon Pressure | Depth Temp | Pot.temp | Oxygen Sat cence | 0, | CH, |lsoprene| Hal | co, | DN |cytometry| CSP | sition | ments | DNA | CDOM |lodiloda| nuts | nuts 15N | PAB | DNA | ments | sait PFOs [Hal-DOC|
[Wink- [Hep- | [Stein- | [End- [End- [End- | [Maran- [Wieg- [Wieg-
[dbar] m] re] €] |[umolikg] |  [%] [mv] | ler] | [Xiao] | [Booge] | ach] | hoff] | res] | [Endres] | res] | [Endres] | [Endres] | res] | dino] | [Quack] | [Quack] |[Quack] | [Quack] | mann] |[Cheah]| mann] | [Krueger] | [Petrick] | [Quack]
C.
s gL Latitude | Longitude | PrDM | DepSM | T090C Po | temp090C | x0Mm/Kg | Sbeox0PS | HaardtC Stolle)
Bottle Device planned True
L Event label Station | Cast | No. | Bedford-Nr. Depth | Depth | | | | |
[S0234 2Tl 52571 252371 750 | 1607201 6630 | 10266744 [ 757344 | 750839 | 90568 | 89719 | 107507 | 7051456 | 00238 | x X
[ 250372 250372 700 [ 16.07.201 7457 [z [ 701631 | 695697 | 96157 | 95844 | 196,508 | 7063590 | 0.0263 | x
[ 250373 250375 600 [ 16.07.201 8966 [z [ 603,933 | 598965 | 10.7979 | 107230 | 204.99 | 75.67508 | 0.0245 | x
[ 252374 250374 500 [ 16.07.2014 0244 0382 [z [ 500896 | 496899 | 117496 | 116843 | 206,637 | 76.18198 | 0,058 | x
[ 250375 250375 400 [ 16.07.201 1523 20 [ 400178 | 1 [ 7973092 | 00256 | x X
[ 250376 252376 300 [ 16.07.201 2563 |29 66074 | ¢ 296.124 | 1 [ 8035389 | 00255 | x
[ 252377 250377 250 | 16.07.201 3327 [-2966078 | ¢ [245212 | 1 8068527 | 00286 | x
[ 252376 250378 150 | 16.07.201 4744 29 66086 | ¢ (148354 | 1 [ 82.65084 | 00451 | ouc X X
[ 252379 250379 100 | 16.07.201 5645 -2 66045 | ¢ [Tsg200 [ 1 [ 6780479 | 0.1078 | x
i 252380 252380 100 | 16.07.201 5775 |29 66044 | ¢ ["se837 | 1 [ 88.42040 | 01099 | x X
[s 252381 252381 201 6038 2966038 | ¢ ["s0.105 | 1 [ 8969515 | 0.1223 | x X X X X
i 250382 250387 201 6043 2966036 | ¢ 943 | 1 (8961476 | 0.1256 | x X X X
i 252383 252383 201 6310 [-2966018 | ¢ [ 75088 | 1 (9088279 | 01566 | x X X X X X
i 250384 250384 201 6311 [-29.66016 | ¢ [ 74.806 | 1 (105751 | 01538 | X X X
i 252385 252385 201 6393 2966006 | ¢ [e8.005 | 1 (6129436 | 01476 | x X X X X X
i 252386 252386 201 6421 -2 66004 | ¢ [ 66839 | 1 ["o1.42198 | 01408 | X X X
i 250387 250387 201 6463 2965988 | ¢ [Ts0772 | 1 [o1.66498 | 00827 | x X X X X X X
i 252388 252388 201 6493 2965988 | ¢ [ 50556 | 1 [ot56222 | 00731 | x X X X
i 252389 252389 201 7099 2965986 | ¢ [“s1522 | 1 [o1.18316 | 00439 | x X X X X X X
[s 252390 252390 201 7174 2965986 | ¢ [“s0s10 | 1 [ot.44500 | 00444 | x X X X
[s 252391 252391 201 7252 2965986 | ¢ 817 [1.49280 | 00413 | x X X X X X X
i 250397 252392 201 7256 2965986 | ¢ 10716 | 1 138566 | 00414 | x X X X
i 252393 252393 201 7274 2965980 | ¢ 9035 | 1 (132681 | 00417 | x X X X X X X
i 250394 252394 201 7279 2965980 | ¢ [ 0139 | 1 [o1.:34667 | 00418 | x X X X
[ 25239 252395 745 | 16.07.201 7318 [-296270 | ¢ 748999 | ¢ Y [ 7060740 | 00261 | x X
[ 252396 252396 700 _| 16.07.201 7863 | -29.62266 | 697.174 | 9.9541 | 9.8709 | 7246181 | 0.0264 | x x
[ 252397 252307 600 [ 16.07.201 9451 [-29.62261 | ¢ 508,660 | 11.1268 | 11.0605 [ 7687249 | 00247 | oo
[ 252398 252398 500 _| 16.07.201 0590 | -29.62254 | ¢ 496.267 | 11.8575 | 11.7918 | 7859208 | 0.0242 | x
[ 252399 252399 400 [ 16.07.201 1777 2962256 | ¢ 399045 | 126067 | 125519 [ 7986638 | 00260 | x
[ 252400 252400 300 | 16.07.201 2652 2962296 | ¢ 298066 | 13.4425 | 13.4000 [80.70233 | 00279 | x
[ 250401 252401 250 [ 16.07.201 3561 2962296 | ¢ 247,604 | 13,9301 | 138940 8128900 | 00281 | x X
[ 250402 250402 150 | 16.07.201 4717 [-29.60290 | ¢ 145,534 | 15,0455 | 153230 [ 8324978 | 00477 | x
[ 250403 250403 100 [ 16.07.201 5611 29,6288 | ¢ 100272 | 166528 | 168362 [ 8596150 | 00791 | x
i 250404 250404 100 | 16.07.201 5593 2962288 | ¢ 100,663 | 17.0066 | 16.9899 [ 8654297 | 00790 | x
[s 250405 250405 201 5057 [-2960278 | ¢ 77869 | 176234 | 178100 [ 8926050 | 0.1292 | x X X X X
i 250406 250406 201 5695 [-2960276 | ¢ [ 81869 | 176726 | 176586 [ 8868539 | 0.1180 | x X X X
i 250407 250407 201 6403 [-296270 | ¢ [ 65279 | 182511 | 18.2397 [o1.44354 | 0.1485 | x X X X X X
i 250408 250408 201 G421 [-2960270 | ¢ [ 64.439 | 182675 | 18,0762 [ot34apt | 01481 | x X X X
i 250409 252409 201 6501 2962266 | ¢ 248 | 185484 | 183381 [ 6160483 | 00069 | x X X X X X
i 2504 2504 201 6510 29 62266 | ¢ [ 57.342 | 183629 | 18.3528 0159286 | 00056 | x X X X
i 2504 2504 201 6533 29 60264 | ¢ [ 50679 | 164095 | 18.4006 [ 6109966 | 00787 | x X X X X X X
i 2504 2504 201 6531 29 62264 | ¢ [ 50691 | 184108 | 184015 [ot.71445 | 00763 | x X X X
i 2504 2504 201 7088 [-2960277 | ¢ [ 29807 | 190549 | 19,0095 [o1.66017 | 00431 | x X X X X X X
i 2504 2504 201 7054 [-2960278 | ¢ [ si6ar | 169494 | 18,0437 [ 154659 | 00434 | x X X X
i 2504 2504 201 7401 [-2960292 | ¢ [ 9999 | 193304 | 19,3085 [o1.32061 | 00334 | x X X X X X X
i 2504 2504 201 7402 [-29.60290 | ¢ [ 10857 | 193532 | 193313 (143118 | 00328 | x X X X
i 2504 2504 201 7404 [ -29 60267 | ¢ [ 10225 | 193531 | 1o312 [o1.43549 | 00325 | x X X X X X
i 250418 250418 201 7403 [ 2962298 | 5672184 | 11309 | 11030 | 103323 | 19.3302 [ot.72466 | 00332 | x X X X
[ 4 1 250419 250419 745 [ 16.07.201 6563 [ 2958624 | 56.70016 | 765020 | 746543 | 87881 | 67050 [ 6825160 | 00254 | x X
[ 42 250420 250420 697 [ 16.07.201 7104 2958589 | 56.70046 | 704627 | 698,666 | 92909 | 92110 [ 70.10817 | 00253 | x X X
[ 43 250421 252421 595 | 16.07.201 9123 | -29.58572 | 56.70058 | 597.223 | 592.324 | 10.9040 | 10.8295 | 76.03354 | 0.0243 | x
[ 4 4 5040 250422 500 [ 16.07.201 0567 2958568 | 56.70057 | 501.664 | 497663 | 118550 | 11.7892 [ 7839701 | 00247 | x
[ 4 5 50423 250423 400 [ 16.07.201 1884 2958578 | 56.70005 | 403872 | 400745 | 126769 | 126216 [ 7998111 | 00265 | x
[ 5 4 6 250424 250424 300 [ 16.07.201 2636 2958548 | 5669976 | 300.925 | 298,670 | 133426 | 13.3004 [ 80.78944 | 00265 | x X
[ 5 47 250425 250425 250 [ 16.07.201 3497 [ 2958534 | 5669078 | 048088 | 246458 | 138520 | 138162 [ 8154113 | 00285 | ouc
[ 5 4 6 250426 250426 150 | 16.07.201 4523 2958500 | 5669995 | 150.144 | 149073 | 149690 | 14.9663 [ 8229673 | 00367 | x X X X X X X X
[ 5 49 pbpap7 250427 101 [ 1607.201 5598 2958484 | 56.70002 | 102.694 | 101.673 | 166956 | 16,6789 [ 86.01045 | 00811 | x
i 250428 701 [ 1607.201 5650 [ 2958482 | 56.70002 | 103298 | 102572 | 168709 | 16,8539 [ 8581676 | 00835 | x
i 250429 201 5044 | [ 2958485 | 566999 | 86376 | 85778 | 175620 | 175474 [ 88,0740 | 0.1008 | x X X X X X
i 250430 201 5054 | [ 2958486 | 566999 | 86663 | 86.078 | 175619 | 176472 [67.78000 | 01010 | x X X
[s 250431 201 G4 [ 2958494 | 5669070 | 77.138 | 76,601 | 179599 | 17,6067 [69.16271 | 0.1069 | x X X X X X X
i 250432 201 6248 [ 2958494 | 5669976 | 76382 | 75850 | 179447 | 17,0315 (8929474 | 01072 | x X X
i 250433 201 647t [ 2958497 | 5669963 | 67.048 | 66563 | 163102 | 18.0986 (9089748 | 0.1255 | x X X X X X X X
i 250434 201 654 [ 2958498 | 5669962 | 65729 | 65.074 | 163977 | 18.3862 ["o0.75214 | 0.1208 | x X X
i 250435 201 6785 2958500 | 5669952 | 50340 | 49.963 | 186091 | 18,6003 [ot54761 | 00890 | x X X X X X X X
i 250436 201 6788 [ -2958500 | 5669952 | 51.405 | 51.050 | 1 [ 186011 (105040 | 00899 | x X X
i 250437 201 6944 [ 295849 | 5669048 | 30318 | 30.111 | 168004 | 18.7950 [ 9169298 | 00510 | x X X X X X X X X
i 250438 201 G944 [ 2958492 | 5669048 | 31343 | 51.120 | 16.79% | 18.7940 [o1.71036 | 00493 | X X
i 250439 201 7028 [ 2958486 | 5669048 | 10040 | 9080 | 188842 | 188824 180320 | 00452 | x X X X X X X X
i 2524 201 7027 [ 2958485 | 5669048 | 10050 | 9964 | 168846 | 18,8828 617636 | 00461 | x X X
i 2524 201 7055 [ 2958484 | 5669046 | 0893 | 0826 | 168994 | 186976 [ot.46272 | 00445 | x
[BE 2524, | 16.07.201: 7057 | -29.58484 | 56.69946 | 10.054 | 9.986 | 18.9024 | 18.9006 | 91.85328 | 0.0443 | x
[ 2524 750 | 16.07.201 7351 [ -29.54826 | 56.70720 | 766.730 | 752216 | 95079 | 94203 [ 7090133 | 00257 | x X X
[ 2524 700 [ 16.07.201 8064 [ 2954848 | 56.70748 | 702.789 | 696649 | 10.1236 | 10,0395 [ 7302819 | 00251 | x
[ 2524 600 [ 16.07.201 9332 2954850 | 56.7076 | 602.859 | 567.907 | 11.0473 o714 [ 76.71284 | 00234 | x
[ 2524 500 [ 16.07.201 0447 [ 2954850 | 56.70784 | 502.741 | 498731 | 117699 | 11.7043 [ 78.45505 | 00249 | x X X X X X
[ 2524 395 [ 16.07.201 1996 [ 2954830 | 56.70872 | 398879 | 395796 | 127473 | 126926 (8021118 | 00247 | x
[ 250448 300 [ 16.07.201 3008 [ 2954815 | 5670015 | 300.710 | 208457 | 134637 | 13.4211 [ 80.95130 | 00280 | x
[ 250449 250 [ 16.07.201 3640 [ 2954814 | 56.70026 | 049205 | 247.069 | 139674 | 13,0312 [81.44404 | 00283 | x X
[ 250450 150 [ 16.07.201 4790 [ 2954812 | 56.70952 | 161217 | 150138 | 153640 [ 8317612 | 00456 | x
[ 250451 100 | 16.07.201 5698 2954800 | 56.70975 | 100,856 | 100.149 | 1 [ 67.0809 | 00677 | x
i 250452 100 | 16.07.201 5775 2054799 | 66.70976 | 102.081 | 101.364 | 1 [ 67.15008 | 00989 | x X
i 250453 201 6176 794 | 6870984 | 0628 | 89.995 | 1 [ 89.12082 | 0.1100 | x X X X
i 250454 201 6204 [ 2954794 | 56.70084 | 92688 | 92040 [ 8933363 | 0.1119 | x X X X
i 250455 201 6422 768 | 6870994 | 81.159 | 80594 (9039429 | 01297 | x X X X X
i 250456 201 6415 [-2954788 | 56.70095 | 82046 | 81.475 | 1 [90.49841 | 01325 | x X X X
i 250457 201 6814 2054778 | 66.71008 | 71.731 | 71283 | 1 (9093311 | 01215 | x X X X X
i 250458 201 6645 [z 71007 6 [ (9099118 | 01119 | X X X
i 250459 201 6961 [z 4 [ (157073 | 00611 | x X X X X X
i 250460 201 6957 [z 5 [ [ot.77071 | 00608 | x X X X
i 250461 201 7007 E s [ (0181135 | 00517 | x X X X X X X
i 250462 201 7011 [z [ [ [o1.82547 | 00506 | x X X X
i 250463 201 7029 [z 1 [ [ot.77153 | 00453 | x X X X X X
i 250464 201 7032 [z [ 11387 | [ 153364 | 00475 | x X X X
i 250465 201 7032 E [ [ot.76602 | 00482 | x X
i 250466 [16.07.201 7029 [z [ [o1.73183 | 00464 | x X
[ 250467 750 | 17.07.201 6622 [z e [69.12064 | 00283 | x X
[ 250468 700 [ 17.07.201 746 [z [ [ 7164399 | 00271 | x
[ 250469 595 [ 17.07.201 8930 [z [ [ 7568004 | 00267 | x
[ 25047 500 [ 17.07.201 0638 [z [ [ 78.72813 | 00252 | x X X X X X
[ 25047 400 [ 17.07.201 1707 [z 1 [ 80.00670 | 00282 | x
[ 25047 300 [ 17.07.201 2623 [z [ [ 8082185 | 002568 | x
[ 25047 250 [ 17.07.201 3570 [z [ [81.59724 | 00092 | x
[ 25047 150 | 17.07.201 4721 [z [ [ 8326233 | 00459 | ouc
[ 25047 105 | 17.07.201 5708 [z [ [ 8611358 | 00823 | x
i 25047 105 [ 17.07.201 5719 [z [ 8626068 | 00811 | x X
i 25047 201 5609 [z [ 8814648 | 00020 | x X X X
i 25047 201 5601 [z [ [ 8823642 | 00028 | x X X X
i 25047 201 6049 [z [ [ 89.86746 | 0.1218 | x X X X X
i 250480 201 6039 [z [ [ 89.94410 | 01199 | x X X X
i 250481 201 6317 [z [ [o1.47163 | 01469 | x X X X X
i 250482 201 6312 [z [ [ot.05821 | 01417 | x X X X
i 250483 201 6503 [z 1 [ot.71276 | 00688 | x X X X X X
i 250484 201 6533 [z 96448 | 00646 | x X X X
i 250485 201 6939 [z 1 (184672 | 00456 | x X X X X X
i 250486 201 6984 [z [ [92.08617 | 00439 | x X X X
i 250487 201 7152 [z [ [ot.73254 | 00424 | x X X X X X
i 250488 201 7152 [z [ (183517 | 00418 | x X X X
i 250489 5 201 7156 [z [ (187742 | 00416 | x X
I 250490 250490 5 201 7163 [z [ 188781 8774 | 210361 | 9182904 [ 00419 | x X
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Title

FS POSEIDON Fahrtbericht / Cruise Report POS421, 08. - 18.11.2011,
Kiel - Las Palmas, Ed.: T.]J. Miller, 26 pp, DOI:
10.3289/GEOMAR_REP_NS_1_2012

Nitrous Oxide Time Series Measurements off Peru - A Collaboration
between SFB 754 and IMARPE -, Annual Report 2011, Eds.: Baustian, T.,
M. Graco, H.W. Bange, G. Flores, J. Ledesma, M. Sarmiento, V. Leon, C.
Robles, O. Moron, 20 pp, DOI: 10.3289/GEOMAR_REP_NS_2_2012

FS POSEIDON Fahrtbericht / Cruise Report POS427 - Fluid emissions from
mud volcanoes, cold seeps and fluid circulation at the Don-_Kuban deep
sea fan (Kerch peninsula, Crimea, Black Sea) - 23.02. - 19.03.2012,
Burgas, Bulgaria - Heraklion, Greece, Ed.: J. Bialas, 32 pp, DOI:
10.3289/GEOMAR_REP_NS_3_2012

RV CELTIC EXPLORER EUROFLEETS Cruise Report, CE12010 -
ECO2@NorthSea, 20.07. - 06.08.2012, Bremerhaven - Hamburg, Eds.: P.
Linke et al., 65 pp, DOI: 10.3289/GEOMAR_REP_NS_4_ 2012

RV PELAGIA Fahrtbericht / Cruise Report 64PE350/64PE351 - JEDDAH-
TRANSECT -, 08.03. - 05.04.2012, Jeddah - Jeddah, 06.04 - 22.04.2012,
Jeddah - Duba, Eds.: M. Schmidt, R. Al-Farawati, A. Al-Aidaroos, B.
Kurten and the shipboard scientific party, 154 pp, DOI:
10.3289/GEOMAR_REP_NS_5_2013

RV SONNE Fahrtbericht / Cruise Report SO225 - MANIHIKI II Leg 2 The
Manihiki Plateau - Origin, Structure and Effects of Oceanic Plateaus and
Pleistocene Dynamic of the West Pacific Warm Water Pool, 19.11.2012 -
06.01.2013 Suva / Fiji — Auckland / New Zealand, Eds.: R. Werner, D.
Nirnberg, and F. Hauff and the shipboard scientific party, 176 pp, DOI:
10.3289/GEOMAR_REP_NS_6_2013

RV SONNE Fahrtbericht / Cruise Report SO226 - CHRIMP CHatham RlIse
Methane Pockmarks, 07.01. - 06.02.2013 / Auckland - Lyttleton & 07.02.
- 01.03.2013 / Lyttleton - Wellington, Eds.: J6rg Bialas / Ingo Klaucke /
Jasmin Mdgeltdnder, 126 pp, DOI: 10.3289/GEOMAR_REP_NS_7_2013

The SUGAR Toolbox - A library of numerical algorithms and data for
modelling of gas hydrate systems and marine environments, Eds.: Elke
Kossel, Nikolaus Bigalke, Elena Pifiero, Matthias Haeckel, 168 pp, DOI:
10.3289/GEOMAR_REP_NS_8_2013

RV ALKOR Fahrtbericht / Cruise Report AL412, 22.03.-08.04.2013, Kiel -
Kiel. Eds: Peter Linke and the shipboard scientific party, 38 pp, DOI:
10.3289/GEOMAR_REP_NS_9 2013

Literaturrecherche, Aus- und Bewertung der Datenbasis zur Meerforelle
(Salmo trutta trutta L.) Grundlage fir ein Projekt zur Optimierung des
Meerforellenmanagements in Schleswig-Holstein. Eds.: Christoph Petereit,
Thorsten Reusch, Jan Dierking, Albrecht Hahn, 158 pp, DOI:
10.3289/GEOMAR_REP_NS_10_2013

RV SONNE Fahrtbericht / Cruise Report SO227 TAIFLUX, 02.04. -
02.05.2013, Kaohsiung - Kaohsiung (Taiwan), Christian Berndt, 105 pp,
DOI: 10.3289/GEOMAR_REP_NS_11 2013
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Title

RV SONNE Fahrtbericht / Cruise Report SO218 SHIVA (Stratospheric
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