
�������� ��	
���
��

Composition and timing of carbonate vein precipitation within the igneous
basement of the Early Cretaceous Shatsky Rise, NW Pacific

Sanzhong Li, Jörg Geldmacher, Folkmar Hauff, Dieter Garbe-Schönberg,
Shan Yu, Shujuan Zhao, Svenja Rausch

PII: S0025-3227(14)00292-8
DOI: doi: 10.1016/j.margeo.2014.09.046
Reference: MARGO 5207

To appear in: Marine Geology

Received date: 23 August 2013
Revised date: 11 September 2014
Accepted date: 27 September 2014

Please cite this article as: Li, Sanzhong, Geldmacher, Jörg, Hauff, Folkmar, Garbe-
Schönberg, Dieter, Yu, Shan, Zhao, Shujuan, Rausch, Svenja, Composition and timing
of carbonate vein precipitation within the igneous basement of the Early Cretaceous
Shatsky Rise, NW Pacific, Marine Geology (2014), doi: 10.1016/j.margeo.2014.09.046

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.margeo.2014.09.046
http://dx.doi.org/10.1016/j.margeo.2014.09.046


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1 

 

Composition and timing of carbonate vein 

precipitation within the igneous basement of 

the Early Cretaceous Shatsky Rise, NW 

Pacific 

 

 

 

Sanzhong Li
1,2

, Jörg Geldmacher
3
, Folkmar Hauff

3
,  

 Dieter Garbe-Schönberg
4
, Shan Yu

1,2
, Shujuan Zhao

1,2 
, Svenja 

Rausch
5
 

 

1
College of Marine Geosciences, Ocean University of China, 266100 Qingdao, China 

2
Key Lab of Submarine Geosciences and Prospecting Technique, Ministry of Education, 

Qindao 266100, China 

3
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, D-24148 

Kiel, Germany 

4
Institute of Geosciences, Christian-Albrechts University Kiel, Ludewig-Meyn Str. 10, 

D-24118 Kiel, Germany 

5
Geoscience Department, University of Bremen, Klagenfurter Str., 28359 Bremen 

Germany 

 

Corresponding author: Jörg Geldmacher, GEOMAR Helmholtz Centre for Ocean 

Research Kiel, Wischhofstr. 1-3, D-24148 Kiel, Germany 

Phone: +49 431 600-2260, jgeldmacher@geomar.de 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 2 

 

Abstract 

Numerous calcium carbonate veins were recovered from the igneous basement of 

the Early Cretaceous Shatsky Rise during Integrated Ocean Drilling Program (IODP) 

Expedition 324. The chemical (Sr/Ca, Mg/Ca) and isotopic (
87

Sr/
86

Sr, 
143

Nd/
144

Nd, 


18

O, 
13

C) compositions of these veins were determined to constrain the timing of 

vein formation. A dominant control by seawater chemistry on calcite composition is 

evident for most vein samples with variable, contributions from the basaltic basement. 

Slightly elevated precipitation temperatures (as inferred from oxygen isotope ratios), 

indicative of hydrothermal vein formation, are only observed at Site U1350 in the 

central part of Shatsky Rise. The highest 
87

Sr/
86

Sr ratios (least basement influence) of 

vein samples at each drill site range from 0.70726 to 0.70755 and are believed to 

reflect the contemporaneous seawater composition during the time of calcite 

precipitation. In principle, age information can be deduced by correlating these ratios 

with the global seawater Sr isotope evolution. Since the Sr isotopic composition of 

seawater has fluctuated three times between the early and mid Cretaceous, no 

unambiguous precipitation ages can be constrained by this method and vein 

precipitation could have occurred at any time between 80 and 140 Ma. However, 

based on combined chemical and isotopic data and correlations of vein composition 

with formation depth and inferred temperature, we argue for a rather early 

precipitation of the veins shortly after basement formation at each respective drill site.  
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1. Introduction 

The circulation of seawater through igneous oceanic crust and both the 

dissolution of elements by, and precipitation from these fluids within the basement 

rocks, comprise major aspects of global element budgets including the long-term 

carbonate cycle (e.g. Brady and Gislason 1997; Alt and Teagle, 1999; Coggon et al., 

2010). The isotopic and chemical signature of seawater, e.g. ratios of dissolved 

cations or Sr isotopic composition, varies over geological time and reflects global 

changes in the Earth environment. The systematic changes of 
87

Sr/
86

Sr, as recorded in 

marine carbonates, have long been used for constraining the ages of marine 

limestones and fossil carbonate shells (e.g. Peterman et al., 1970, Burke et al., 1982). 

Carbonate minerals that were precipitated from fluids that circulate through cracks 

and cavities and form calcium carbonate veins in the igneous upper oceanic crust are 

seldom considered in this regard since they form in direct interaction with the 

basement rocks and can contain a significant lithospheric (often hydrothermal) 

contribution. Recently, however, it was shown that important seawater parameters (Sr 

isotopic composition, Mg/Ca, Sr/Ca ratios) are reliably recorded in calcium carbonate 

veins, if precipitated at near ambient seawater temperature (Coggon et al., 2004; 

Coggon et al., 2010, Rausch et al., 2013) or can be reconstructed if the precipitation 

temperature is known (Coggon and Teagle, 2011). In this paper we report Mg/Ca and 
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Sr/Ca ratios, trace element and isotopic compositions (
87

Sr/
86

Sr, 
143

Nd/
144

Nd, 
18

O, 


13

C) of carbonate veins drilled at four sites of different age on Shatsky Rise, a large 

oceanic plateau formed in the early Cretaceous in the NW Pacific. The global 

seawater Sr-isotope stratigraphy will be used to discuss possible vein precipitation 

ages, which in turn can be compared with measured or assumed basement formation 

ages. In addition, the data provide insights into fluid circulation and alteration history 

of one of the oldest in-situ oceanic plateaus on Earth. 

 

2. Regional geology and previous work 

Shatsky Rise is a Large Igneous Province located in the NW Pacific ca. 1500 km 

east of Japan (Fig. 1) and is the third-largest oceanic plateau (after Ontong Java and 

Kerguelen) in the present oceans. Based on paleomagnetic reversals combined with 

bathymetric data, the plateau's three main volcanic edifices Tamu, Ori and Shirshov 

massifs are proposed to have successively formed by massive volcanism along a 

southwest-northeast moving, rapidly spreading triple junction (Nakanishi et al., 1999). 

The enormous size of the plateau (~4.8×10
5
 km

2
 comprising ~4.3×106

 km
3 

basalt, 

Sager et al., 1999) and the apparent decrease in effusive activity with time, however, 

would be also consistent with a formation by a (starting) mantle plume head (e.g. 

Sager, 2005). The proposed NW-directed age progression across Shatsky Rise is 

solely based on the interpretation of magnetic reversals since only a single radiometric 

age determination of basement rock from the southern flank of Tamu Massif was 

published so far (144.6±0.8 Ma, Mahoney et al., 2005). During IODP Expedition 324, 
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volcanic basement was cored near the Tamu summit (Site U1347, 318 m penetration, 

thereof 160 m into igneous basement), Ori summit (U1349, 250 m, thereof 165 m 

basement), Ori's lower flank (U1350, 316 m, thereof 143 m basement) and Shirshov 

summit (U1346, 192 m, thereof 140 m into basement). Recent and/or preliminary 

40
Ar/

39
Ar age determinations yield ages of 143.1 (3.3) Ma and 144.4 (1.0) Ma for 

the bulk of lavas drilled at Tamu Site U1347 (Geldmacher et al., in press) and an age 

of 134.1(1.0) Ma for a lava recovered at U1350 from the upper flank of Ori (Heaton 

and Koppers, 2014). Ages inferred from the respective youngest magnetic seafloor 

anomalies imply similar or slightly older ages for these sites (M19=144 and M14=136 

Ma, respectively, Nakanishi et al. 1999). 

 

The drilled igneous units comprise pillow lavas (0.2-1.0 m diameter), pillow-like 

inflation units (0.8-2.0 m thick), small massive flow units (2-4 m) and large massive 

flow units (5-23 m) (Sager et al., 2010). All basement rocks have tholeiitic 

composition, similar to mid ocean ridge basalts (MORB) with plagioclase and 

clinopyroxene being the main crystal phases. The rocks have undergone varying 

degrees of fluid-rock alteration with predominant changes resulting from interaction 

of basalt with seawater-derived fluids under anoxic-suboxic conditions at low 

temperature and low water-rock ratios. Certain primary phases (olivine, glassy 

mesostasis) are commonly replaced by clay minerals i.e. smectite and sapponite 

(Sager et al., 2010). Generally, the lavas show more extensive alteration at volcano 

summit sites (U1346, U1349) compared to flank sites (U1347, U1350), indicating that 
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summit structures (and sustained heat at the volcano center) promoted fluid flow. Site 

U1346 lavas from Shirshov Massif are particular altered with most primary phases 

being replaced by secondary minerals. Regular veins (extensional fractures filled with 

secondary minerals) are common at all sites but particularly in lavas with fine-grained 

groundmass and low vesicularity. Most veins are 0.1 to 3 mm thick (maximum width 

can reach 10 mm) and are generally filled with calcite, although the fill can vary from 

oxyhydroxide/phyllosilicate material at the edges to calcite in the vein center (Sager et 

al., 2010). Calcite-rich veins commonly show polycrystalline fabrics and often 

syntaxial or cross-fiber texture. Veins filled with pyrite are also observed (particular 

at Site U1350) but pyrite-filled veins are generally much thinner (0.1-1mm). Vein 

density ranges from 3 veins/m downhole (U1346, U1347) to 6.1 and 6.6 veins/m 

(U1350 and U1349). Veins are particular abundant at the Ori Sites (U1349, U1350), 

possibly indicating that Ori Massif experienced stronger contractional stress than the 

two other massifs (Sager et al., 2010). These numbers are comparable to other oceanic 

crust segments of Jurassic age (e.g., 170 Ma MORB at Site 801 off the Mariana 

Trench= 6.1 veins/m, Rausch et al., in prep.) but less than the reported 18-30 veins/m 

for the Cretaceous Ontong Java Plateau (Banerjee and Honnorez, 2004). 

 

3. Sampling, sample preparation and analytical methods 

Representative veins from all Exp. 324 sites (that reached the volcanic basement) 

were selected based on visual core description and microscopic thin section 

observation. The selected veins cover a variety of depth intervals within the basement 
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(from 3.9 m below the top of the igneous basement down to 147 m within the lava 

pile). The filling material of calcium carbonate veins (calcite) was obtained by 

handpicking from crushed core material. Mechanical sample preparation was carried 

out at the Institute of Geology and Mineral Survey, Hebei Province, China.  

 

Sr/Ca, Mg/Ca and trace element composition were measured at the Institute of 

Geosciences, University Kiel, Germany. Approximately 100 mg sample particles 

were digested in 5 ml hot (130°C) concentrated HNO3. Other acids (e.g. HCL, HF) 

were not used to ensure that only carbonate phases (and no possible basaltic wall rock 

contaminants) contribute to the data. The solution was centrifuged, dried up and 

collected with 1 ml 8N HNO3. An aliquot of this solution was 100-200fold diluted 

with 2% (v/v) subb. HNO3, and spiked with 2.5 ppb Be, In, Re for internal 

standardization. Trace elements (Li, Sc ,Mn, Rb, Sr, Ba, Pr, Pb, U, Y and all REEs) 

were measured by inductively coupled plasma-mass spectrometry (ICP-MS) on an 

Agilent 7500cs instrument. Additionally, international carbonate standards JCP-1 and 

JLs were digested and Sr concentration was found within 4% rel. of the preferred 

value. Replicate measurements show a precision of better than 1% RSD for most 

elements (including Sr) except Sc, Mn, Rb, Y, Ba, La, (1-6%) and Li (15% RSD). 

Measurements of duplicate digests differ by less then 5% for most elements except Li, 

Sc, Rb, Ba and Pb. Additionally, the element ratios Mg/Ca and Sr/Ca were measured 

in high-precision mode by inductively coupled plasma-optical emission spectroscopy 

(ICP-OES) on a SPECTRO Ciros
CCD

 SOP in the same laboratory combining 
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analytical procedures of Schrag (1999) and de Villiers et al. (2002). An in-house coral 

standard (Mayotte 5a, 8.9916 mmol/mol Sr/Ca) bracketing every batch of 6 samples 

was used for instrumental drift correction which was typically <2%rel. Average 

internal error of 5 replicate Sr/Ca determinations per sample is <0.08% RSD. External 

error of Sr/Ca ratios estimated from replicate measurements on the same day and on 

consecutive days is <0.09% RSD. Accuracy was monitored by analyzing the Porites 

coral standard JCp-1 as an unknown giving Sr/Ca 8.858 ± 0.011 mmol/mol (n=4), 

which compares to 8.838 ± 0.089 mmol/mol as average from an international 

inter-laboratory comparison (Hathorne et al., 2013). 

 

Isotopic ratios were determined both at the Institute of Geology and Geophysics, 

China Academy of Sciences IGGCAS (
87

Sr/
86

Sr) and at GEOMAR Helmholtz Centre 

for Ocean Research Kiel, Germany (
87

Sr/
86

Sr and 
143

Nd/
144

Nd) by thermal ionisation 

mass spectrometry (TIMS). At GEOMAR, chemical separation procedures followed 

the method outlined in Hoernle and Tilton (1991) and Sr and Nd isotopic ratios were 

measured on a Finnigan MAT 262 (Sr) and TRITON TI (Nd). All analyzes were 

fractionation-corrected within-run to 
86

Sr/
88

Sr of 0.1194 and 
146

Nd/
144

Nd of 0.7219. 

Repeated measurements of Sr isotope standard NBS987 (n=11) yielded 0.710250±8 

(2 sigma). The La Jolla Nd standard averaged 0.511850±6 (n=5). Results of replicate 

analyses are given in Table 1. The 
86

Sr/
88

Sr ratios of the carbonate standards JCp-1 

and JLs-1 that were run with the samples, averaged at 0.709160 and 0.707813 

respectively, in good agreement with literature data for JCP-1 (0.709150-0.709164, 
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Okai et al., 2002) and with slight deviation for JLs-1 (0.707850, Terashiwa et al., 

1990). At IGGCAS, approximately 100 mg of carbonate material was dissolved on a 

hotplate at 80°C using 2.0 mL of 0.2 M HCl for 2 hours. After centrifugation, the 

supernatant was picked up and dried on a hotplate. The samples were re-dissolved 

with 1.0 mL of 2.5 M HCl. Then, the sample solution was loaded onto the 

pre-conditioned column with 2 mL of AG50W×12 (200-400 mesh) and Sr was 

separated from the sample matrix following the procedure outlined in Li et al. (2012) 

and Yang et al. (2010). The whole procedure blank was lower than 300 pg for Sr. The 

Sr isotopic measurements were performed on a Finnigan MAT262 TIMS at IGGCAS. 

A double Re filament configuration was used and Sr isotope data were acquired in the 

static collection mode. The mass fractionation of Sr was corrected using exponential 

law with
86

Sr/
88

Sr=0.1194. International standard sample NBS-987 was employed to 

evaluate instrument stability during the period of data collection. During the data 

collection period, the measured average value of the NBS987 was 
87

Sr/
86

Sr =0.710234 

± 0.000013, in good agreement with the reported values (Li et al., 2012, Yang et al., 

2010) and well within error of the NBS987 measurements at GEOMAR. As shown in 

Table 1 duplicate samples digested and measured at the Institute of Geology and 

Geophysics, China and at GEOMAR generally overlap within analytical error of each 

other. 

 

Stable oxygen and carbon isotope ratios of calcites were measured on a Finnigan 

MAT 253 mass spectrometer system equipped with a Kiel IV Carbonate Preparation 
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Device at the GEOMAR Stable Isotope Lab. The carbonate was treated with 

orthophosphoric acid at ca 70°C. For each sample three to five measurements were 

carried out using about 5 individual calcite grains (150-250 m) per measurement. 

Average isotope values of individual runs are given in Table 1. The analytical 

accuracy was <0.03‰ for 
13

C and <0.06‰ for 
18

O. All measurements were 

calibrated to Pee Dee Belemnite standard using NBS 19.  

 

4. Results  

4.1 Elemental composition 

All vein samples show relatively low Sr concentrations averaging 190 ppm (range 

57-629 ppm, n=18) resulting in low Sr/Ca ratios (0.06 to 0.81 mmom/mol) being 

characteristic for calcite. In contrast, aragonite has high Sr (4000 ppm) with 

considerably lower Mg concentration (Coggon et al. 2004). The Sr/Ca ratio of the 

vein calcite is positively correlated with Mg/Ca (Fig. 2) as observed in previous 

studies of relatively young (few million years) carbonate veins. This relationship has 

been explained by the enhanced incorporation of the slightly larger Sr
2+

 ion into the 

calcite crystal lattice (substituting for Ca) after incorporation of the slightly smaller 

Mg
2+

 ion has increased the available size of the neighboring sites (Mucci and Morse, 

1983; Rausch et al., in prep.). On a Post-Archean Australian Shale 

(PAAS)-normalized plot of rare earth elements (REE) and Y, the samples show 

relatively similar-shaped patterns although concentrations of individual elements can 

vary by almost two magnitudes (Fig. 3). Light REE are relatively depleted compared 
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to the heavy REE which display less fractionated, almost horizontal patterns. Several 

samples show characteristic anomalies for the multivalent elements Ce and Eu, which 

can be segregated from other REE's by oxidation-reduction processes involving 

seawater (see below). The investigated calcite vein samples show variable Ce 

depletion (defined as Ce/Ce* =2xCe/(La+Pr)). Although only one sample from Ori 

summit (U1349A-11R-5) shows a strong Ce trough with (Ce/Ce*)n=0.22 (Fig. 3),  

most samples yield weak negative anomalies having (Ce/Ce*)n <1 (Fig. 4c). Only one 

sample from Ori flank (U1350A-23R-3) shows a slight Y enrichment but has a less 

pronounced Ce depletion compared to the Ori summit sample U1349A-11R-5. In 

PAAS normalized diagrams, all of our calcite samples display a positive Eu anomaly 

(Eu*=Eu/√(Sm*Gd)) with only one exception. This is, however, a result of 

normalization to PAAS which itself has a negative Eu-anomaly when normalized to 

chondrite. Basalts from the Shatsky Rise usually do not have a Eu anomaly in 

chondrite-normalized patterns but, consequently, display a positive Eu anomaly when 

normalized to PAAS. This effect is mirrored by the calcites being precipitated from 

fluids that equilibrated during basalt-seawater interaction: almost all samples have a 

negative Eu anomaly after chondrite normalization (not shown). There is, however, 

one sample U1349A-7R-4 from Ori summit that has a positive Eu anomaly even in a 

chondrite-normalized plot suggesting some influence from ancient high-temperature 

hydrothermal activity at this site.  

 

4.2 Isotopic composition 
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Measured 
87

Sr/
86

Sr and 
143

Nd/
144

Nd isotopic ratios of the calcite veins range from 

0.706518 to 0.707550 and 0.513016 to 0.513290 respectively (Figs. 4a, d). Whereas 

the range of Nd isotopic ratios of the calcite veins partly overlaps with the range of 

lavas at Shatsky (0.512969 to 0.513237), their Sr isotope ratios are all considerably 

higher than those of the lavas (0.702650 to 0.703345, excluding strongly altered lavas, 

Heydolph at al., 2014). In fact, the Sr isotope ratios of most samples overlap or are 

very close to Early Cretaceous seawater composition (Fig. 4d).  No clear correlations 

of calcite vein 
87

Sr/
86

Sr isotopic ratios with most geochemical parameters such as 

Ce/Ce*, Eu*, Mg/Ca e.g. are observed. Sr/Ca (Fig. 4b) and Mg/Ca and Y/Y* 

(=Y/√(Dy*Ho)), however, are weakly negative correlated with 
87

Sr/
86

Sr, displaying 

concavely-shaped trends (not shown).  

 

The 
18

O/
16

O and 
13

C/
12

C isotope data are reported relative to PDB by using the delta 

notation (
18

O, 
13

C) and are presented in Table 1. The 
18

O values range from 1.44 

(Tamu sample U1347A-27R-6) to -3.30 (Ori flank sample U1350A-22R-2). When 

considering the sites individually, veins from Tamu and Ori summit show a relative 

narrow range of 
18

O values (1 ‰) whereas veins from the Shirshov and Ori flank 

sites show a wider spread (3-4‰). The 
18

O values are positively correlated with 

Mg/Ca and Sr/Ca as also seen in Fig. 2. No correlation with other trace element 

parameters is observed, pointing to a rather complex origin of the oxygen isotope 

record in the vein samples (see section 5.3). The 
13

C values from the individual drill 

sites show a narrow spread (except for U1350) averaging at 0.46 (U1346), -0.74 
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(U1347), and 0.91 (U1349). In contrast, 
13

C values from U1350 range from -0.78 to 

-5.8. 

 

5. Discussion 

5.1 Controls on vein composition 

The REE and Y concentrations can be used to evaluate seawater involvement in 

carbonate vein formation. Seawater is typically depleted in Ce (negative anomaly 

relative to neighboring LaN and PrN), whereas Eu can get enriched in hydrothermal 

fluids showing a positive Eu anomaly (e.g. Nozaki, 2001). Yttrium, often included 

with the REEs because of its similar chemical behavior, is slightly enriched in 

seawater compared to DyN and HoN (Zhang and Nozaki, 1996). Calcites precipitating 

from fluids influenced by extensive seawater-basalt exchange are therefore often 

characterized by the absence of negative Ce and absence of positive Y anomalies (e.g., 

Rausch et al., submitted). In this regard, the investigated vein samples display 

indicators for both seawater derivation (Ce/Ce*<1) and interaction with the basaltic 

host rock (relative Eu enrichment, chondritic Y/Ho), suggesting that the fluids from 

which the calcite was precipitated were formed by variable degrees of seawater-basalt 

interaction and with variable involvement of individual elements even in the same 

vein sample. Considering the radiogenic isotope systems Nd and Sr, a quantitative 

approach was applied: As shown by the simple, binary mixing model in Fig. 4d, the 

igneous basement contribution is 1% for the less influenced veins from Sites U1349 

and U1346, and only slightly higher for most other investigated veins. Instead a 
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dominant control of seawater Sr (>98%) on the vein composition is indicated. 

Although a simple mixing model is not fully appropriate to describe the extent of 

exchange between differently fluid-mobile elements/isotopes, it does provide 

minimum estimates.    

 

5.2 Timing of vein formation based on Sr isotope data 

In principle, the Sr isotopic composition of seawater derived carbonate phases can be 

used to constrain their formation age (e.g. McArthur et al., 2001). Strontium is easily 

mobilized and leached from the basaltic basement but is also abundant in seawater 

(modern value: 7.8 ppm but there is evidence that the seawater Sr content may have 

been ≥38 ppm in the Cretaceous, Coogan, 2009). Seawater Sr is readily incorporated 

into precipitating calcite (substituting for Ca) and since the 
87

Sr/
86

Sr isotopic 

composition of seawater has varied over geological time (e.g. Peterman et al., 1970; 

Hart and Staudigel, 1978; Veizer et al., 1999; McArthur et al., 2001), the Sr isotopic 

ratio of the veins can potentially determine the time of carbonate precipation. 

However, any contribution of Sr leached from the basaltic basement will lower the Sr 

isotopic composition of the vein calcite since oceanic basalts have a much less 

radiogenic 
87

Sr/
86

Sr ratio (Fig. 4d). As shown in Fig. 4a, calcite veins that precipitated 

deeper in the basement yield systematically lower 
87

Sr/
86

Sr ratios. If the veins 

precipitated long after the eruption within a cold basement, such correlation could 

reflect an increase of basaltic influence with increasing distance that the seawater had 

to travel through the basaltic matrix. Alternatively, if the veins were formed shortly 
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after lava emplacement from seawater-derived hydrothermal fluids interacting with 

the hot basalt in deeper levels of the lava pile, this correlation could reflect either 

increasing intensity of basalt-seawater interaction under increasing (magmatic) 

temperatures with depth and/or the diluting effect of seawater to hydrothermal fluids 

that migrate upwards in the basement pile and approach pristine seawater at the top of 

the basement. The only sample group that does not seem to follow this correlation are 

veins from Site U1350, located on the lower flank of the Ori edifice.  

 

Additional complexity for constraining the formation age of the veins by correlating 

their Sr isotope ratios with the seawater evolution curve arises from the fact that the 

87
Sr/

86
Sr composition of seawater has fluctuated three times between the Early and 

Mid Cretaceous (Fig. 5). If the most radiogenic (highest) 
87

Sr/
86

Sr calcite ratios at 

each respective volcanic edifice (also equivalent to the shallowest veins measured 

from the top of the basement at each drill site - compare Fig. 4a) are considered to 

reflect the most pristine seawater signal, veins from the three edifices could have 

formed at different times between 80 and 140 Ma respectively (intersection of 

stippled lines with the seawater Sr curve in Fig. 5). Interestingly, the respective 

highest Sr isotope ratios of the calcite veins at each edifice increase with the presumed 

decreasing age of the respective edifice. If samples are arranged according to 

preliminary age determinations and assumed ages of their host lavas (with a highest 

possible age of 143 Ma for Tamu, and 134 Ma for Ori (see chapter 2: Regional 

geology and previous work), the increase of the highest Sr isotope ratios at each 
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respective site seems to mimic the Sr isotopic increase of the respective 

contemporaneous seawater. No radiometric ages for lavas from Shirshov Site U1346 

are available yet, but a minimum (youngest) age of 128 Ma is inferred from 

calcereous nannofossil assamblages within the sediment pile immediately overlying 

the volcanic basement (Sager et al., 2010). The observed systematic increase of the 

highest calcite 
87

Sr/
86

Sr ratios at each edifice  corresponding to a similar increase in 

87
Sr/

86
Sr seawater composition, could therefore reflect the assumed decreasing age of 

the three Shatsky edifices. This would point towards a rather early formation of the 

veins, contemporaneous to, or within a few million years after lava emplacement (see 

below). In contrast, if the veins would have formed much later (e.g. in the Mid- or 

Late Cretaceous) such a systematic correlation of 
87

Sr/
86

Sr with decreasing basement 

age would not be expected and difficult to explain.  

 

In addition, if the vein network formed in an open system with fresh seawater 

percolating over an extended period of time, a typical seawater signature with 

pronounced negative Ce anomaly (Ce/Ce* <0.8) and positive Y and Gd anomalies 

would be expected in the vein's calcite composition. In contrast, the lack of these 

characteristic anomalies is expected for veins with low 
87

Sr/
86

Sr ratios indicative of 

increased interaction with basaltic basement under suboxic/anoxic conditions and 

limited exchange with seawater (Rausch et al. in prep.). As shown in Fig. 4c, the 

composition of most samples, showing no pronounced Ce anomalies (Ce/Ce* of our 

samples = >0.8 to 1), suggests more closed formation conditions with restricted fresh 
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supply of fully oxidized circulating seawater.  

 

The highest 
87

Sr/
86

Sr ratio of all veins from Tamu massif is 0.70726413 

(U1347A-16R-5, 119-123 cm), a value that was reached for the first time by seawater 

at 141.2 Ma, well within the analytical error of the radiometric age determination of 

the host lava (143.13.3) for this site.  The highest 
87

Sr/
86

Sr ratio of all veins from 

Ori edifice is 0.7074557 (U1349A- 7R-4, 7.2-16 cm), a value that was reached for 

the first time by seawater at 132.1 Ma, which is just about 2 million years younger 

than the only available preliminary age from Ori (from the flank of this seamount) of 

1341 Ma. This value was then exceeded by seawater during the first Cretaceous Sr 

isotope seawater fluctuation until 125 Ma. Similarly high Sr isotope seawater values 

were not reached again before 105 Ma (McArthur et al. 2001, Fig. 5). The highest 

87
Sr/

86
Sr ratio from a Shirshov vein is 0.707550 (U1346A-10R-2, 50-57 cm, average 

value of two measurements) plotting slightly above the statistically best-fit seawater 

Sr curve (at 95% confidence bound) at 128 Ma. This high value was analytically 

re-confirmed by processing and measuring calcite fillings from this vein at both 

GEOMAR and OUC (see Table 1). Comparable high 
87

Sr/
86

Sr values are not reached 

again before 78 Ma, at times when the basement at this drill site is already covered 

by >>60 meters of pelagic sediment (Sager et al., 2010) inhibiting seawater 

circulation.  However, assigning this value to the peak of the first Cretaceous Sr 

seawater fluctuation at around 128 Ma, which corresponds well with the 

palaeontologically constrained minimum basement age of around 128 Ma (see above), 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 18 

needs to be regarded with caution. Some influence of younger (<78 Ma) seawater 

cannot be ruled out for this sample.  

 

Considering the veins with Sr isotope ratios lower then seawater value at 143, 134 and 

128 Ma at the respective sites, indicating various contributions of unradiogenic Sr 

from the basaltic host rocks, a co-genic formation with the veins reflecting 

contemporaneous seawater Sr can only be assumed. This assumption is supported by 

the positive correlation of Sr isotopic ratio and formation depth within the basement 

(Fig. 4a) for veins from Sites U 1347 (Tamu) and U1349 (Ori summit). For Shirshov 

Site U1346, however, this relationship is less clear with two samples (U1346A-10R-2 

and U1346A-16R-1) having elevated Sr isotope ratios in respect to their formation 

depth. Since sample U1346A-10R-2 yields the aforementioned Sr isotope ratio higher 

than seawater at any time before 78 Ma, a younger compositional overprint for this 

vein is substantiated. 

 

5.3 Further constraints on vein formation from oxygen isotope data 

The oxygen isotopic composition, expressed in 
18

O, of authigenic carbonate minerals 

depends on precipitation temperature (and the 
18

O of the oxygen source) and is an 

established proxy for seawater temperature (see Grossman, 2012 for overview). Based 

on recent (<4 Ma) carbonate veins at Juan de Fuca Ridge, Coggon et al. (2004) have 

shown that carbonates precipitating from hotter fluids with enhanced basaltic 
87

Sr/
86

Sr 

contribution have lower Sr/Ca and Mg/Ca concentrations. This proposed relationship 
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is generally confirmed by the Cretaceous Shatsky vein data (Fig. 2), having lower 

(warmer) 
18

O values with decreasing Sr/Ca and Mg/Ca ratios and vice versa. In 

addition, vein samples with the highest 
87

Sr/
86

Sr ratios at each respective site yield 


18

O values that overlap or are most similar to Early Cretaceous seawater oxygen 

isotopic composition (Grossmann, 2012) at the assumed ages of 143, 134 and 128 Ma 

for the respective edifices (Fig. 6a). The lesser the veins Sr isotopic composition 

deviates from the seawater curve, the more similar are their oxygen isotope ratios to 

contemporaneous seawater, which is believed to have 
18

O values around zero 

between 128 to 143 Ma (based on fossil belemnite data, see compilation in Grossman, 

2012). Such values would correspond to precipitation (water) temperatures of about 

10°C (assuming equilibrium precipitation) or 17 °C (non-equilibrium, equations of 

Kim and O'Neil, 1997) (see Fig. 6 caption for details). Both estimates are well 

reasonable considering that Shatsky Rise was formed at the equator (Tominaga et al., 

2012) with the basement tops reaching up to intermediate or relative shallow (neritic) 

water depths (Sager et al., 2010).  

 

Veins that possess higher 
18

O values than Early Cretaceous seawater (indicating that 

they were formed at 1° to 5° C lower temperatures) also show slightly lower 
87

Sr/
86

Sr 

ratios (two samples from U1347 and one sample from U1346 and U1349 

respectively). There seems to be a relationship of higher 
18

O values (slightly colder) 

and lower 
87

Sr/
86

Sr ratios with increasing sample depth (below the basement top) at 

all sites except U1350 (Fig. 6b). This relationship is consistent with vein formation 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 20 

within an already cooled basement after cessation of hydrothermal activity and might 

reflect an increasing lithologic influence on fluid composition with increasing 

distance that the seawater had to travel through the basaltic host rock (increasing 

"leaching" time). It seems that the igneous rocks between 40 and 140 m below 

basement top had slightly colder temperatures than the overlying tropical ocean water. 

This could be explained by basement cooling from the deeper parts of the respective 

(cone-shaped) edifices, extending into much greater (colder) water depth. A similar 

temperature decrease with depth was also observed in Hole 735B at Atlantis Bank, a 

gabbroic ridge bordering the eastern flank of the Atlantis-II Fracture Zone in the 

Indian Ocean, with slopes reaching down to deeper water depths (Von Herzen and 

Scott, 1991). Although the oxygen isotopic composition for Early Cretaceous deep 

water is not known, various proxy records indicate that the Earth experienced a 

cooling phase during the Late Jurassic/Early Cretaceous transition with evidence for 

subfreezing temperatures in the pole regions (Price, 1999) and proposed formation of 

cold deep water at higher latitudes that migrated to lower latitudes at the bottom of the 

ocean similar as it happens today (e.g., Wagreich, 2009). The alternative possibility 

that these high 
18

O veins formed much later when the ocean has cooled in the 

Cenozoic seems unlikely since benthic 
18

O ratios 1 are not reached before 35 Ma 

when the seawater 
87

Sr/
86

Sr composition has reached 0.7078. The respective samples, 

however, show increasing 
18

O values (colder temperatures) with decreasing Sr 

isotope ratios.  
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The oxygen isotope composition of those veins from Shirshov Massif (U1346) that 

describe a trend towards lower 
18

O values but at constant 
87

Sr/
86

Sr ratios could 

theoretically be explained if this edifice was initially exposed above the sea level and 

has experienced subaerial tropical weathering (calcite formed from meteoric water at 

equatorial latitudes during the Cretaceous records 
18

O values of c. -5‰, Hays and 

Grossman, 1991). However, no evidence for oxidative subaerial weathering or 

emplacement above sea level is found in the rocks from U1346 (Sager et al., 2010). It 

is therefore more likely that these veins reflect the severe alteration of their basaltic 

host rocks at Shirshov (being most extensive of all Shatsky sites). Intruded seawater 

in poor communication with the open ocean (see Fig. 4c) can become isotopically 

depleted in 
18

O (which fractionates into secondary minerals) resulting in low 
18

O 

values of the calcite that precipitates from them (Anderson and Lawrence, 1976).      

 

Since the least basement-influenced veins (highest 
87

Sr/
86

Sr ratios) from the Tamu 

(U1347), Ori summit (U1349), and Shirshov (U1346) sites formed at upper ocean (but 

not necessary surface) seawater temperatures (belemnite oxygen isotope values 

around zero are supposed to indicate a neritic habitat, Grossman, 2012) and still 

approach the global Sr isotope seawater composition at the assumed ages of 143, 134 

and 128 Ma (Fig. 6a), these veins cannot be formed much later than their enclosing 

igneous rocks (probably within a few million years, see Fig. 5). Further evidence 

comes from calcite oxygen isotope composition from veins formed at Ori flank Site 

U1350 showing clear indication for hydrothermal influence (strongly decreasing 
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87
Sr/

86
Sr ratios with increasing precipitation temperature peaking at 25-30°C as seen 

in Fig. 6 a). Since hydrothermal activity is inherently linked to magmatic heat sources, 

these U1350 vein carbonates testify for an early precipitation age shortly after 

basement formation when it was still relatively warm. Although similar high 

temperatures could be reached at later times by conductive reheating after the 

basement is sealed from circulating ocean water by insulating sediments, the narrow 

trend of the U1350 veins in Fig. 6a projecting back to Early Cretaceous (130-135 

Ma) seawater Sr isotope composition (and also early Cretaceous seawater O isotope 

ratios), strongly supports an Early Cretaceous age.  

 

5.4 Carbon isotope composition: does the vein composition record the first Oceanic 

Anoxic Event? 

Although the stratigraphic record of 
13

C/
12

C is influenced by a number of factors 

linked directly to biological processes and the global carbon cycle (see Saltzman and 

Thomas, 2012 for overview), the 
13

C values of marine carbonates remained 

relatively constant over the Phanerozoic with values close to zero (relative to PDB). 

Occasionally occurring excursions of the marine 
13

C values to higher or lower levels 

are therefore of great palaeoceanographic interest and can be also used for 

stratigraphic correlation. A positive excursion of 
13

C in marine calcite through the 

upper Valanginian in the Early Cretaceous has been recognized at several sites 

worldwide including the central Pacific Ocean (e.g., Line et al., 1992). A period of 

relatively constant 
13

C values in the Berriasian and Lower Valanginian (expressed as 
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negative 
13

C in belemnite calcite) is followed by a rapid excursion to positive values 

in the Upper Valanginian, which is then followed by a gradual decline to values 

around zero in the Hauterivian and Barremian. Except for the hydrothermally 

influenced Site U1350 samples (see above), Shatsky's vein calcite 
13

C values reflect 

a similar pattern if plotted according to the proposed age relationship of their host 

lavas (Fig. 7). Whereas all Tamu U1347 vein samples have consistently negative 
13

C 

values, veins from Ori summit reach the most positive 
13

C values (with one 

exception), and Shirshov vein calcite shows intermediate values close to zero. The 

three U1349 vein samples from Ori summit with markedly positive 
13

C ranging from 

0.9 to 1.9 could therefore record the Upper Valanginian excursion, also known as 

Weissert Event, which is linked to the first global Oceanic Anoxic Event (e.g., 

Weissert et al., 1998; Weissert and Erba, 2004). Taken together, the C isotope values 

of the Shatsky vein calcite cannot unambiguously constrain the age of calcite 

precipitation but are consistent with an Early Cretaceous formation and with the 

proposed age relationship of the drill sites. 

 

6. Conclusions 

Based on their elemental and isotopic composition, a dominant control of seawater 

chemistry on calcite composition is evident for the Shatsky Rise vein samples. 

Assuming that the highest (seawater-like) 
87

Sr/
86

Sr ratios at each drill site reflect 

contemporaneous seawater composition, vein precipitation between 80 and 140 Ma 

is possible according to the Sr isotope seawater evolution curve (Fig. 5). This would 
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indicate a total crack-sealing duration over more than 60 myr. Even precipitation at 

much younger times (younger than 70 Ma), when seawater 
87

Sr/
86

Sr was 

considerably higher, is theoretically possible but would require unrealistically strong 

bulk contributions (>3 to 10%) from basaltic, low Sr isotopic sources to keep the vein 

87
Sr/

86
Sr values in the observed range. The following lines of evidence, however, 

point to rather early carbonate precipitation for the majority of the investigated veins, 

shortly after basement formation: 

 

1) The apparent increase of the highest 
87

Sr/
86

Sr ratios in vein calcite from each drill 

site mimics the increase of the global seawater 
87

Sr/
86

Sr signature in the early 

Cretaceous (Fig. 5) and is consistent with the proposed formation age relationship of 

the respective Shatsky Rise edifices. 

2) The trends of increasing 
87

Sr/
86

Sr ratios with decreasing precipitation depth within 

basement observed in veins from all sites except U1350 (Fig. 4a) and with decreasing 

precipitation temperatures (Fig. 6a) extrapolate back to Early Cretaceous seawater 

87
Sr/

86
Sr and 

18
O ratios at the top of the basement. 

3) The trend of decreasing 
87

Sr/
86

Sr ratios with increasing precipitation temperatures 

for Site U1350 veins (Fig. 6a) clearly indicates a hydrothermal contribution to vein 

precipitation within a still warm basement. For comparison: cooling models for 

normal oceanic crust predict a duration of 10 myr for the main phase of cooling 

(Wei and Sandwell, 2006). 

4) Variation in C isotope composition of vein calcite between the three edifices is 
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consistent with vein formation during the Early Cretaceous by reflecting the 

prominent shift from negative to positive 
13

C values in the Valanginian epoch and 

subsequent return to pre-excursion values ("Weissert Oceanic Anoxic Event") (Fig. 

7). 

 

Taken together, we conclude that the investigated calcite veins most likely 

precipitated shortly or within a few millions years after the formation of the Shatsky 

Rise volcanic edifices. Such interpretation is consistent with previous suggestions that 

secondary carbonate formation largely occurs within ≤10 Myr (Staudigel et al., 1981; 

Coggon and Teagle, 2011) or <20 Myr (Gillis and Coogan, 2011) after oceanic crust 

formation.  

 

As shown in several recent studies (Coggon et al., 2010; Rausch et al., 2013; Rausch 

et al., in prep.), the elemental and isotopic composition of calcite veins can be used to 

reconstruct past seawater compositions, providing that the veins have formed at 

ambient seawater temperatures or if the geochemical evolution of the fluid can be 

reconstructed (Coggon et al., 2010; Coggon and Teagle, 2011). For Shatsky, these 

conditions are best achieved at the Ori edifice summit (all veins from Site U1349) and, 

with some limitations, for Shirshow (some veins from Site U1346) and for at least one 

vein sample from Tamu (U1347A, 16R-5, 119-123 cm). The comprehensive Mg/Ca, 

Sr/Ca, trace element and isotopic composition reported for these samples can 

therefore be used for further palaeoceanographic studies at times shortly before, 
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during and after the first global oceanic anoxic event in the upper Valanginian 

(Weissert et al., 1998). On the other hand, the data also illustrate a complex formation 

history for carbonate veins in oceanic plateau basement with hydrothermal fluid 

circulation at one site (Ori flank) and possible evidence for exchange with colder 

(deeper?) water at other sites.  
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Figure captions: 

Fig. 1: Location of IODP drill sites on Shatsky Rise from which veins were studied. 

Bathymetry after Sager et al.  (2010) and magnetic anomalies after Nakanishi et al. 

(1999). Preliminary ages for Tamu and Ori Massifs from Geldmacher et al. (in press) 

and Heaton and Koppers (2014) respectively. Only contours above 5 km depth are 

shown for clarity (contour lines at 500 m intervals).  

 

Fig. 2: Mg/Ca versus Sr/Ca for Shatsky calcite vein samples color-coded according to 

their oxygen isotope ratio (if available). Arrows indicating temperature dependence of 

concentration data are based on Coggon et al. (2004). 

 

Fig.3: Rare Earth Elements and Y concentration of calcite veins from Shatsky Rise. 

Sample symbols are squares: Site U1347 (Tamu), circles: U1350 (Ori flank), 

diamonds: U1349 (Ori summit), triangles: U1346 (Shirshov). Seawater composition 

(x 1000 for better comparability) from Jeandel et al. (2013) (SE Pacific, Station GYR 

at 700 m depth) with Y value from Zhang and Nozaki (1996) (SE Pacific at 1000 m) 

and hydrothermal fluid (x 10) from Bao et al. (2008) (Juan de Fuca Ridge, Salut vent, 

endmember composition). All data normalized to Post-Archean Australien Shale 

(PAAS, Taylor and McLennan, 1985). Calcite sample U1349A 11R-5, which shows 

distinct negative Ce anomalie is indicated. 

 

Fig. 4: 
87

Sr/
86

Sr ratios of calcite veins versus a) depths within igneous basement 
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(mbbc= meters below basement contact, calculated as distance to the top of igneous 

basement contact, i.e. the former volcano-seawater interface), b) Sr/Ca ratio, c) 

Ce/Ce* (=2xCe/(La+Pr) all normalized to PAAS), d) 
143

Nd/
144

Nd. Binary mixing 

calculation (with tick marks indicating basement contribution in %) assuming igneous 

basement composition of 
87

Sr/
86

Sr= 0.7030, 
143

Nd/
144

Nd=0.5132, Nd= 10.54 ppm, Sr= 

170 ppm (based on Heydolph et al.2014) and Cretaceous (135 Ma) seawater 

composition of 
87

Sr/
86

Sr= 0.7074 (McArthur et al, 2001), 
143

Nd/
144

Nd=0.5124 

(Robinson and Vance, 2009 for the Pacific basin), Nd= 0.0000028 ppm, Sr= 38 ppm 

(Coogan, 2009). The strongly rectangular shape of the mixing curve reflects the low 

concentrations of Nd in seawater, being several orders of magnitude less than Sr 

(Frank, 2002). 

 

Fig. 5: Seawater Sr isotope evolution curve after McArthur et al. (2001) (LOWESS 

vers. 4:08/04). If the highest 
87

Sr/
86

Sr calcite ratios at each edifice reflect the purest 

seawater signal (and lower values at each respective site interaction with less 

radiogenic Sr from the volcanic basement), veins could have formed between 80 and 

141 Ma (intersection of stippled lines with seawater Sr curve). If samples are 

arranged according to preliminary 
40

Ar/
39

Ar age determinations or assumed ages of 

host lavas (see text for details), the highest ratios at each site show a systematic 

increase with time that mimics the Sr isotopic increase of contemporaneous seawater 

between 143 and 128 Ma. 
87

Sr/
86

Srin of Shatsky lavas ≈ 0.7029, Heydolph et al. 

(2014). Analytical errors (2) are smaller than symbol size. 
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Fig. 6: Oxygen isotope composition of vein samples versus a) 
87

Sr/
86

Sr ratio and b) 

mbbc (meters below basement contact), defined as depth of individual carbonate vein 

sample within the formation measured in meter below basement top (basalt-ocean 

interface). Oxygen isotopic composition of Early Cretaceous (128, 134 and 143 Ma) 

low latitude seawater (surface to medium depth) from Grossman (2012) based on 

fossil belemnite data from Prokoph et al. (2008). Calcite precipitation temperatures 

are inferred based the equations of Kim and O'Neil (1997) for equilibrium 

precipitation (low concentration of Ca
2+

 and HCO
-
3) and nonequilibrium precipitation 

(high concentration of Ca
2+

 and HCO
-
3) using a 

18
O/

16
O ratio of V-SMOW (Vienna 

standard mean ocean water) of 2005.2 (Baertschi, 1976) and assuming a 
18

O value 

for Cretaceous seawater (in an non-glacial world) of -1‰ (e.g. Grossman, 2012). 

Applied conversion between V-PDB and V-SMOW according to Coplen et al. (1983). 

Since the precipitation rate of abiogenic carbonate is relatively low (Rausch et al., in 

prep.), it can be assumed that the pore fluids have approached isotopic equilibrium 

and therefore the slightly colder temperatures inferred from equilibrium precipitation 

appear more appropriate. 

 

Fig. 7: 
13

C values of vein calcite versus stratigraphy based on MacArthur et al. (2007) 

using the same age relationship for the Shatsky drill sites as in Fig. 5. Grey field 

encircles belemnite calcite samples (grey dots) and 3-point mean average (black curve) 

from MacArthur et al. (2007) (for the Berriasian to Hauterivian) and belemnite 
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average from Price et al. (2011) (for the Barremian). Because of their neritic habitat, 

belemnite calcite is considered to best reflect average upper ocean (but not 

exclusively surface) water composition at approximately the same depth level as the 

young volcanic edifice tops (see text). WOAE= Weissert Oceanic Anoxic Event (e.g., 

Weissert and Erba, 2004). 
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Site,Hole U1346A- U1346A- U1346A- U1346A- U1346A- U1346A- U1347A- U1347A- U1347A- U1347A- 

Core-Section 9R-2, 9R-2,  10R-2, 15R-1, 15R-1, 16R-1, 16R-5, 21R-2, 27R-6, 28R-4, 

Interval (cm) 98-102 cm 136-144 cm 50-57 cm 10-16 cm 10-16cm Dupl 5.5-11 cm 119-123 cm 93-105 cm 82-89 cm 76-86 cm 

mbbc 16 17 21 43 - 48 43 86 142 147 

ICP-MS  
          Li  0.39 0.98 0.73 2.15 2.44 n.d. 1.11 2.45 2.45 0.67 

Sc  15.8 11.4 11.8 2.25 2.51 n.d. 0.42 0.82 1.03 0.60 
Mn 7233 4757 1127 893 878 n.d. 5682 12272 7193 12155 
Rb 0.82 1.13 0.16 0.60 0.70 n.d. 0.10 0.11 0.12 0.03 
Sr  153 189 99.3 231 228 n.d. 143 620 358 304 
Y  41.4 17.0 23.6 4.53 4.40 n.d. 1.79 18.7 11.6 24.8 
Ba  0.60 1.07 0.87 3.01 3.46 n.d. 0.41 465 3.80 4.12 
La  3.52 1.69 1.68 1.23 1.21 n.d. 0.11 5.62 1.51 2.99 
Ce  7.74 3.29 3.66 2.38 2.38 n.d. 0.27 11.2 2.53 5.69 
Pr  1.22 0.51 0.61 0.31 0.31 n.d. 0.04 1.41 0.36 0.78 
Nd  6.76 2.73 3.40 1.44 1.44 n.d. 0.23 6.18 1.77 3.82 
Sm  2.22 0.88 1.22 0.36 0.37 n.d. 0.08 1.58 0.51 1.14 
Eu  0.81 0.31 0.44 0.11 0.11 n.d. 0.04 0.47 0.24 0.23 
Gd 3.65 1.38 2.14 0.48 0.47 n.d. 0.13 1.98 0.74 1.84 
Tb 0.67 0.26 0.42 0.08 0.08 n.d. 0.02 0.35 0.13 0.34 
Dy  4.89 1.91 3.17 0.55 0.55 n.d. 0.18 2.40 1.03 2.59 
Ho 1.15 0.46 0.75 0.13 0.12 n.d. 0.04 0.54 0.26 0.64 
Er 3.38 1.37 2.21 0.38 0.37 n.d. 0.14 1.66 0.86 2.01 
Tm 0.51 0.22 0.34 0.06 0.06 n.d. 0.02 0.27 0.14 0.32 
Yb  3.38 1.48 2.26 0.41 0.40 n.d. 0.15 1.93 1.04 2.22 
Lu 0.54 0.24 0.37 0.06 0.06 n.d. 0.02 0.30 0.18 0.37 
Pb 0.99 0.57 2.20 0.23 0.32 n.d. 1.80 1.18 5.65 2.86 
U  0.12 0.82 1.53 2.26 2.24 n.d. 0.04 0.00 2.14 0.22 
Ce/Ce* 0.85 0.81 0.82 0.88 0.89 n.d. 0.89 0.91 0.79 0.86 
           
ICP-OES 

((mmol/mol)           Mg/Ca 26.5 26.0 16.1 30.5 30.9 n.d. 22.9 35.0 54.2 38.4 
Sr/Ca  0.18 0.23 0.11 0.28 0.28 n.d. 0.17 0.81 0.49 0.40 

           87Sr/86Sr (OU) 
  

0.707540 

(11)   
0.707463(11

) 

0.707264(13

)   
0.707147(11

) 
87Sr/86Sr (G) 0.707471 (5) 0.707423 (6) 0.707560 (6) 0.707351 (8) 0.707329 (5) 

  
0.707229 (6) 0.707154 (6) 0.707160 (5) 
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143Nd/144Nd 0.513057 (3) 0.513046 (4) 0.513162 (2) 0.513016 (5) 0.513016 (4) 
 

0.513130 (6) 0.513088 (2) 0.513092 (2) 0.513071 (2) 
 13C 0.24 0.81 0.81 0.55 - -0.12 -0.42 n.d. -0.57 -1.24 
 18O -2.34 -1.16 -0.77 1.22 - -2.97 0.36 n.d. 1.44 0.96 
T (°C) equ. 19.91 

 

14.43 

 

12.62 

 

3.89 

 

- 22.98 

 

7.58 

 

n.d. 2.97 

 

5.01 

 T (°C) non equ. 26.70 

 

21.89 

 

20.29 

 

12.56 

 

- 29.38 

 

15.84 

 

n.d. 11.75 

 

13.56 

  

Site,Hole U1349- U1349- U1349- U1349- U1349- U1350A- U1350A- U1350A- U1350A- U1350A- 

Core-Section 7R-4, 7R-4, 11R-5, 14R-1, 15R-2, 22R-2, 22R-4, 22R-6, 23R-1, 23R-3, 

Interval (cm) 7.2-16 cm 7.2-16 cm Dupl. 72-75 cm 114-118 cm 87-91 cm 10-22 cm 106-110 cm  23-25 cm 80-86 cm 10-16 cm 

mbbc 4 - 34 58 68 126 129 132 135 137 

ICP-MS  

          Li  0.42 0.25 1.65 2.96 0.22 0.26 0.30 n.d. 0.61 0.07 
Sc  7.31 8.50 34.7 10.3 0.28 4.46 0.41 n.d. 0.63 1.65 
Mn 78.5 76.2 211 990 5154 13298 7940 n.d. 9300 14623 
Rb 0.12 0.13 2.14 1.29 0.03 0.05 0.02 n.d. 0.04 0.01 
Sr  57.7 58.8 103 192 86.9 79.5 205 n.d. 306 57.0 
Y  8.60 8.80 19.6 23.1 84.8 36.2 5.39 n.d. 11.5 33.2 
Ba  0.17 0.21 6.78 0.57 0.07 0.31 1.25 n.d. 1.91 0.08 
La  0.40 0.41 1.92 0.91 1.82 4.74 1.18 n.d. 1.42 2.74 
Ce  0.80 0.83 0.94 2.75 5.29 7.01 1.99 n.d. 2.44 3.41 
Pr  0.22 0.23 0.52 0.58 0.99 0.89 0.25 n.d. 0.33 0.42 
Nd  1.33 1.37 2.93 3.49 6.35 4.22 1.09 n.d. 1.61 2.07 
Sm  0.51 0.52 1.09 1.39 2.62 1.24 0.28 n.d. 0.47 0.60 
Eu  0.28 0.28 0.39 0.53 1.15 0.45 0.09 n.d. 0.14 0.23 
Gd 0.81 0.83 1.86 2.28 5.95 2.08 0.41 n.d. 0.76 1.21 
Tb 0.15 0.16 0.37 0.44 1.07 0.45 0.08 n.d. 0.15 0.24 
Dy  1.14 1.17 2.79 3.18 7.82 3.81 0.58 n.d. 1.17 2.05 
Ho 0.27 0.27 0.65 0.73 1.98 1.03 0.14 n.d. 0.30 0.61 
Er 0.78 0.80 1.95 2.13 5.56 3.60 0.47 n.d. 0.99 2.17 
Tm 0.12 0.12 0.31 0.32 0.72 0.67 0.08 n.d. 0.17 0.38 
Yb  0.77 0.80 2.15 2.12 3.97 5.21 0.56 n.d. 1.20 2.79 
Lu 0.12 0.13 0.34 0.34 0.67 0.89 0.09 n.d. 0.20 0.53 
Pb 0.16 0.18 0.24 0.53 0.29 1.39 0.41 n.d. 1.85 0.07 
U  0.01 0.01 0.03 0.07 0.10 0.16 0.02 n.d. 0.02 0.01 
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Ce/Ce* 0.57 0.57 0.22 0.77 0.83 0.78 0.85 n.d. 0.83 0.72 

           
ICP-OES 

          Mg/Ca 14.4 14.6 18.6 31.6 13.2 12.5 22.0 n.d. 27.3 11.4 

Sr/Ca  0.06 0.06 0.12 0.23 0.10 0.08 0.32 n.d. 0.39 0.06 

 
          

87Sr/86Sr (OU) 

      

0.707214 

(11) 

0.706790 

(11) 

 

0.707167 

(11) 

87Sr/86Sr (G) 0.707455 (7) 

 

0.707399 (6) 0.707282 (6) 0.707261 (5) 0.706518 (7) 

  

0.707227 (6) 

 143Nd/144Nd 0.513195 (4) 0.513201 (4) 0.513078 (3) 0.513161 (5) 0.513181 (2) 0.513129 (2) 0.513097 (2) 

 

0.513142 (6) 0.513290 (2) 

 13C 1.91 - 1.84 0.87 -0.97 -0.78 -5.45 -1.30 -5.80 -2.41 

 18O -0.36 - -0.46 0.68 0.14 -3.30 -1.31 -2.90 -0.63 -1.87 

T (°C) equ. 10.79 - 11.21 6.22 8.57 24.59 15.09 22.64 12.01 17.74 

T (°C) non equ. 18.68 - 19.05 14.63 16.71 30.79 22.47 29.08 19.75 24.80 
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Table 1 (continued) 

Standard JLS-1 JCP-1 
 (n=2) (n=2) 
   
 

  ICP-MS  
  Li  0.049 0.484 

Sc  0.130 0.081 
Mn 20.09 0.778 
Rb 0.091 0.203 
Sr  283.1 6563 
Y  0.221 0.294 
Ba  421.0 9.092 
La  0.082 0.043 
Ce  0.146 0.044 
Pr  0.020 0.009 
Nd  0.084 0.037 
Sm  0.022 0.010 
Eu  0.003 0.002 
Gd 0.023 0.011 
Tb 0.003 0.002 
Dy  0.019 0.010 
Ho 0.004 0.002 
Er 0.013 0.007 
Tm 0.002 0.001 
Yb  0.013 0.009 
Lu 0.002 0.002 
Pb 0.149 0.180 
U  1.539 2.384 
   
 

  ICP-OES 
  Mg/Ca 15.5 4.1 

Sr/Ca  0.34 8.68 
   
   
   
   
   
   
   
   

Table 1: Values determined by ICP-MS are given in ppm. ICP-OES ratios are mmol/mol. OU= 

Ocean University, G= GEOMAR. 
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Highlights 

 

 Chemical and isotopic composition of calcium carbonate veins in Early 

Cretaceous igneous basement at Shatsky Rise are used to constrain 

precipitation age. 

 The Sr/Ca ratio of the vein calcite is positively correlated with Mg/Ca and 

both ratios generally decrease with increasing precipitation temperature. 

 The correlation of decreasing Sr isotope ratios with increasing precipitation 

temperatures for some veins clearly indicates a hydrothermal origin. 

 The combined trace element and isotopic data suggest a rather early 

carbonate precipitation for the majority of the veins, shortly after basement 

formation. 


