Symposium on Software Performance

“_Z~_ Joint Descartes/Kieker/Palladio Days

SOSP ’14

Symposium on Software Performance:
Joint Descartes/Kieker/Palladio Days 2014

Stuttgart, Germany, November 26-28, 2014
Proceedings

Editors:
Steffen Becker, Wilhelm Hasselbring, André van Hoorn,
Samuel Kounev, and Ralf Reussner

Published as:

University of Stuttgart, Faculty of Computer Science, Electrical En-
gineering, and Information Technology, Technical Report Computer
Science No. 2014/05

Editors’ addresses:

Steffen Becker

Chemnitz University of Technology
Faculty of Computer Science
Strafle der Nationen 62

09111 Chemnitz, Germany

Wilhelm Hasselbring

Kiel University

Department of Computer Science
Christian-Albrechts-Platz 4
24118 Kiel, Germany

André van Hoorn

University of Stuttgart

Institute of Software Technology
UniversititsstrafSe 38

70569 Stuttgart, Germany

Samuel Kounev

University of Wiirzburg
Department of Computer Science
Am Hubland

97074 Wiirzburg, Germany

Ralf Reussner

Karlsruhe Institute of Technology (KIT)

Institute for Program Structures and Data Organization
Am Fasanengarten 5

76131 Karlsruhe, Germany

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright © 2014 for the individual papers by the papers’ authors. Copying permitted

only for private and academic purposes. This volume is published and copyrighted by its
editors.

Preface

Performance is one of the most relevant quality attributes of any IT system. While good
performance leads to high user satisfaction, poor performance lead to loss of users, per-
ceivable unavailability of the system, or unnecessarily high costs of network or compute re-
sources. Therefore, various techniques to evaluate, control, and improve the performance
of IT systems have been developed, ranging from online monitoring and benchmarking to
modeling and prediction. Experience shows, that for system design or later optimization,
such techniques need to be applied in smart combination.

Therefore, the Symposium on Software Performance brings together researchers and prac-
titioners interested in all facets of software performance, ranging from modeling and pre-
diction to monitoring and runtime management. The symposium is organized by three
already established research groups, namely Descartes, Kieker, and Palladio, who use this
symposium also as a joint developer and community meeting. Descartes’ focus are tech-
niques and tools for engineering self-aware computing systems designed for maximum
dependability and efficiency. Kieker is a well-established tool and approach for moni-
toring software performance of complex, large, and distributed IT systems. Palladio is a
likewise-established tool and approach for modeling software architectures of IT systems
and for simulating their performance.

The two-and-a-half day program features developer meetings, 19 talks (including two
invited industrial talks), seven tutorials, and a dedicated poster session with almost ten
posters. In the first industrial talk, Heiko Koziolek (ABB Corporate Research) reports
about six years of Performance Modeling at ABB Corporate Research. In the second
industrial talk, Stefan Fiitterling and Michael Gromann (Capgemini) report about perfor-
mance challenges in a large mainframe system.

In addition to invited contributions from practitioners and researchers, we welcomed con-
tributions from academic, scientific, or industrial contexts in the field of software per-
formance, including but not limited to approaches employing Descartes, Kieker, and/or
Palladio. We solicited the following types of contributions: presentation, tool demon-
stration/tutorial, poster. Submitted proposals were evaluated based on a submission form,
asking for the proposed contribution’s list of authors, title, type, summary, relation to
Descartes/Kieker/Palladio, as well as a list of previous events/publications where the work
has bes been presented before. Authors of accepted contributions have had the opportunity
to submit a paper to be published in this symposium proceedings. This proceedings vol-
ume includes the abstracts of all accepted contributions as well as 13 papers, describing a
subset of the contributions in more detail.

We would like to thank all participants that contribute to the event, including the authors
and presenters, as well as the NovaTec GmbH who sponsors this event by hosting and
catering.

November 2014 Steffen Becker, Wilhelm Hasselbring
André van Hoorn, Samuel Kounev, Ralf Reussner

v

Organization Committee

Steffen Becker, University of Technology Chemnitz
Wilhelm Hasselbring, Kiel University

André van Hoorn, University of Stuttgart

Samuel Kounev, University of Wiirzburg

Ralf Reussner, KIT/FZI

Local Organizers

André van Hoorn, University of Stuttgart
Stefan Siegl, NovaTec GmbH

vi

Contents

1 Abstracts of all SOSP 2014 Contributions

The Descartes Modeling Language: Status Quo
Samuel Kounev, Fabian Brosig, and Nikolaus Huber

Evaluating the Prediction Accuracy of Generated Performance Models in Up-
and Downscaling Scenarios
Andreas Brunnert, Stefan Neubig, and Helmut Krcmar

Investigating the Use of Bayesian Networks in the Hora Approach for Component-
based Online Failure Prediction
Teerat Pitakrat and André van Hoorn

Predicting Energy Consumption by Extending the Palladio Component Model
Felix Willnecker, Andreas Brunnert, and Helmut Krcmar

Towards Modeling and Analysis of Power Consumption of Self-Adaptive Soft-
ware Systems in Palladio
Christian Stier; Henning Groenda, and Anne Koziolek

Integrating Workload Specification and Extraction for Model-Based and Mea-
surement-Based Performance Evaluation: An Approach for Session-Based
Software Systems
André van Hoorn, Christian Viogele, Eike Schulz, Wilhelm Hasselbring, and Hel-
mut Kremar

6 years of Performance Modeling at ABB Corporate Research
Heiko Koziolek

Performance Challenges in a Mainframe System
Stefan Fiitterling and Michael Grofimann

Using the Free Application Performance Diagnosis Tool “inspectIT”
Stefan Siegl

LibReDE: A Library for Resource Demand Estimation
Simon Spinner and Jiirgen Walter

Approaching the Cloud: Using Palladio for Scalability, Elasticity, and Efficiency
Analyses
Sebastian Lehrig and Matthias Becker

vii

Static Spotter for Scalability Anti-Patterns Detection
Jinying Yu and Goran Piskachev

CactoSim — Optimisation-Aware Data Centre Prediction Toolkit
Sergej Svorobej, Henning Groenda, Christian Stier, James Byrne, and Pj Byrne

Benchmarking Workflow Management Systems
Marigianna Skouradaki, Vincenzo Ferme, Cesare Pautasso, Dieter Roller, and
Frank Leymann

Application Performance Monitoring: Trade-Off between Overhead Reduction
and Maintainability
Jan Waller, Florian Fittkau, and Wilhelm Hasselbring

The DIN/ISO Definition and a Measurement Procedure of Software Efficiency
Werner Dirlewanger

Enabling Assembly of Systems and its Implications within the Palladio Compo-
nent Model
Misha Strittmatter

Parallel Simulation of Queueing Petri Nets
Jiirgen Walter, Simon Spinner, and Samuel Kounev

Adaptive Instrumentation of Java Applications for Experiment-Based Perfor-
mance Analysis
Henning Schulz, Albert Flaig, Alexander Wert, and André van Hoorn

Using and Extending LIMBO for the Descriptive Modeling of Arrival Behaviors
Joakim v. Kistowski, Nikolas Roman Herbst, and Samuel Kounev

Using Java EE ProtoCom for SAP HANA Cloud
Christian Klaussner and Sebastian Lehrig

Experience with Continuous Integration for Kieker
Nils Christian Ehmke, Christian Wulf, and Wilhelm Hasselbring

Towards Performance Awareness in Java EE Development Environments
Alexandru Danciu, Andreas Brunnert, and Helmut Krcmar

Identifying Semantically Cohesive Modules within the Palladio Meta-Model
Misha Strittmatter and Michael Langhammer

viii

|

10

10

11

11

12

12

Evolution of the Palladio Component Model: Process and Modeling Methods
Reiner Jung, Misha Strittmatter, Philipp Merkle, and Robert Heinrich 13

Toward a Generic and Concurrency-Aware Pipes & Filters Framework
Christian Wulf, Nils Christian Ehmke, and Wilhelm Hasselbring 13

Evaluation of Alternative Instrumentation Frameworks
Dusan Okanovi¢ and Milan Vidakovi¢ 14

Cloud Application Design Support for Performance Optimization and Cloud Ser-
vice Selection
Santiago Gomez Sdez, Vasilios Andrikopoulos, and Frank Leymann 14

2 Papers 16

Using Java EE ProtoCom for SAP HANA Cloud
Christian Klaussner and Sebastian Lehrig 17

Towards Modeling and Analysis of Power Consumption of Self-Adaptive Soft-
ware Systems in Palladio
Christian Stier, Henning Groenda, and Anne Koziolek 28

Application Performance Monitoring: Trade-Off between Overhead Reduction
and Maintainability
Jan Waller, Florian Fittkau, and Wilhelm Hasselbring 46

Toward a Generic and Concurrency-Aware Pipes & Filters Framework
Christian Wulf, Nils Christian Ehmke, and Wilhelm Hasselbring 70

Evaluation of Alternative Instrumentation Frameworks
Dusan Okanovi¢ and Milan Vidakovié 83

The DIN/ISO Definition and a Measurement Procedure of SW-Efficiency
Werner Dirlewanger 91

Benchmarking Workflow Management Systems
Marigianna Skouradaki, Vincenzo Ferme, Cesare Pautasso, Dieter Roller, and
Frank Leymann 105

Evaluating the Prediction Accuracy of Generated Performance Models in Up-
and Downscaling Scenarios
Andreas Brunnert, Stefan Neubig, and Helmut Krcmar 113

iX

Using and Extending LIMBO for the Descriptive Modeling of Arrival Behaviors
Joakim v. Kistowski, Nikolas Roman Herbst, and Samuel Kounev 131

Approaching the Cloud: Using Palladio for Scalability, Elasticity, and Efficiency
Analyses
Sebastian Lehrig and Matthias Becker 141

Towards Performance Awareness in Java EE Development Environments
Alexandru Danciu, Andreas Brunnert, and Helmut Krcmar 152

Identifying Semantically Cohesive Modules within the Palladio Meta-Model
Misha Strittmatter and Michael Langhammer 160

Predicting Energy Consumption by Extending the Palladio Component Model
Felix Willnecker, Andreas Brunnert, and Helmut Krcmar 177

X1

1 Abstracts of all SOSP 2014 Contributions

1.1 The Descartes Modeling Language: Status Quo
(Samuel Kounev, Fabian Brosig, and Nikolaus Huber)

This presentation will present a summary of the latest developments on the Descartes Mod-
eling Language and related tools. The Descartes Modeling Language (DML:
http://www.descartes.tools), also referred to as Descartes Meta-Model (DMM), is a new
architecture-level language for modeling performance and resource management related
aspects of modern dynamic software systems and IT infrastructures. DML provides ap-
propriate modeling abstractions to describe the resource landscape, the application ar-
chitecture, the adaptation space, and the adaptation processes of a software system and
its IT infrastructure. Technically, DML is comprised of several sub-languages, each of
them specified using OMGs Meta-Object Facility (MOF) and referred to as meta-model
in OMGs terminology. The various sub-languages can be used both in offline and online
settings for application scenarios like system sizing, capacity planning and trade-off anal-
ysis as well as for self-aware resource management during operation. The talk will first
introduce the various sub-languages and then present a summary of several case studies
showing how DML can be applied in real-life scenarios. Finally, an overview of related
tools in the Descartes Tool Chain (http://www.descartes.tools) will be presented.

1.2 Evaluating the Prediction Accuracy of Generated Performance Models in Up-
and Downscaling Scenarios
(Andreas Brunnert, Stefan Neubig, and Helmut Krcmar)

This paper evaluates an improved performance model generation approach for Java Enter-
prise Edition (EE) applications. Performance models are generated for a Java EE applica-
tion deployment and are used as input for a simulation engine to predict performance (i.e.
response time, throughput, resource utilization) in up- and downscaling scenarios. Perfor-
mance is predicted for increased and reduced numbers of CPU cores as well as for different
workload scenarios. Simulation results are compared with measurements for correspond-
ing scenarios using average values and measures of dispersion to evaluate the prediction
accuracy of the models. The results show that these models predict mean response time,
CPU utilization and throughput in all scenarios with a relative error of mostly below 20

1.3 Investigating the Use of Bayesian Networks in the Hora Approach for Component-
based Online Failure Prediction
(Teerat Pitakrat and André van Hoorn)

Online failure prediction is an approach that aims to predict potential failures that can
occur in the near future. There are a number of techniques that have been used, e.g., time

series forecasting, machine learning, and anomaly detection. These techniques are applied
to the data that can be collected from the system and that contain information regarding
the current state of the system, such as, response time, log files, and resource utilization.

The existing works which employ these prediction techniques to predict failures can be
grouped into two categories. The first category approaches the task by using the technique
to predict failures at specific locations in the system. For example, time series forecasting
may be used to predict the response time at the system boundary. Once it is predicted
that the response time tend to go beyond a certain value in the near future, a warning is
then issued. On the other hand, the second category applies the prediction technique to the
whole system, i.e., using the data collected from all locations and creating a model that can
analyze and conclude from these data whether a failure is expected on the system level.

In our work, we take another direction by combining techniques in the first category with
the architectural model of the system to predict not only the failures but also their conse-
quences. In other words, the existing prediction techniques provide prediction results of
each component while the architectural model allows the predicted failures to be extrapo-
lated and further predicts whether they will affect other components in the system.

We have developed the prediction framework based on Kieker’s pipe-and-filter architec-
ture and employed its monitoring capability to obtain the data at runtime. The architectural
model of the system is extracted from the monitoring data and used to create a Bayesian
network that can represent the failure dependency between components. The prediction
results obtained from each component failure predictors are forwarded to the Bayesian
network to predict the failure propagation.

1.4 Predicting Energy Consumption by Extending the Palladio Component Model
(Felix Willnecker, Andreas Brunnert, and Helmut Krcmar)

The rising energy demand in data centers and the limited battery lifetime of mobile de-
vices introduces new challenges for the software engineering community. Addressing
these challenges requires ways to measure and predict the energy consumption of soft-
ware systems. Energy consumption is influenced by the resource demands of a software
system, the hardware on which it is running, and its workload. Trade-off decisions between
performance and energy can occur. To support these decisions, we propose an extension
of the meta-model of the Palladio Component Model (PCM) that allows for energy con-
sumption predictions. Energy consumption is defined as power demand integrated over
time. The PCM meta-model is thus extended with a power consumption model element
in order to predict the power demand of a software system over time. This paper covers
two evaluations for this meta-model extension: one for a Java-based enterprise applica-
tion (SPECjEnterprise2010) and another one for a mobile application (Runtastic). Pre-
dictions using an extended PCM meta-model for two SPECjEnterprise2010 deployments
match energy consumption measurements with an error below 13 %. Energy consumption
predictions for a mobile application match corresponding measurements on the Android
operating system with an error of below 17.2 %.

1.5 Towards Modeling and Analysis of Power Consumption of Self-Adaptive Soft-
ware Systems in Palladio
(Christian Stier, Henning Groenda, and Anne Koziolek)

Architecture-level evaluations of Palladio currently lack support for the analysis of the
power efficiency of software systems and the effect of power management techniques on
other quality attributes. This neglects that the power consumption of software systems
constitutes a substantial proportion of their total cost of ownership. Currently, reasoning
on the influence of design decisions on power consumption and making trade-off decisions
with other Quality of Service (QoS) attributes is deferred until a system is in operation.
Reasoning approaches that evaluate a system’s energy efficiency have not reached an ab-
straction suited for architecture-level analyses. Palladio and its extension SimuLizar for
self-adaptive systems lack support for specifying and reasoning on power efficiency under
changing user load. In this paper, we (i) show our ideas on how power efficiency and
trade-off decisions with other QoS attributes can be evaluated for static and self-adaptive
systems and (ii) propose additions to the Palladio Component Model (PCM) taking into
account the power provisioning infrastructure and constraints.

1.6 Integrating Workload Specification and Extraction for Model-Based and Mea-
surement-Based Performance Evaluation: An Approach for Session-Based Soft-
ware Systems
(André van Hoorn, Christian Vigele, Eike Schulz, Wilhelm Hasselbring, and Hel-
mut Krcmar)

Workload modeling and generation/simulation are essential to systematically and accu-
rately evaluate performance properties of software systems for both measurement-based
(e.g., load testing and benchmarking) and model-based performance evaluation (e.g., pre-
diction). For measurement-based evaluation, established load generation tools exist that
take workload specifications as input and generate corresponding requests to the system
under test (SUT). Specifications of workloads are also tightly integrated in formalisms and
approaches for model-based performance evaluation, including analytic and simulative
techniques. The definition of workload specifications that represent the real workload as
accurately as possible is one of the biggest challenges in both areas. Only few approaches
for sharing workload specifications between the model-based and the measurement-based
worlds exist.

In this talk, we will present our approach that aims to interchange and automate the ex-
traction and transformation of workload specifications for measurement-based and model-
based performance evaluation of session-based software systems. The approach comprises
three main components: First, a domain specific language (DSL) allows the layered mod-
eling of probabilistic workload specifications of session-based systems. Second, we auto-
matically extract instances of this DSL from recorded session logs of production systems,
e.g., employing Kieker. During this extraction process, different groups of customers with
similar navigational patterns are identified using configurable clustering algorithms. Third,

instances of the DSL are transformed to workload specifications for load generation tools
and model-based performance evaluation tools. We will present a transformation to the
common load testing tool Apache JMeter, including the Markov4JMeter extension devel-
oped in our previous work. Moreover, we will present our work in progress on transform-
ing instances of the DSL to workload models in the Palladio Component Model. We eval-
uate our approach by comparing workload-specific characteristics (e.g., session lengths
and arrival rates) from the recorded and the extracted/generated workload of the industry
benchmark SPECjEnterprise2010.

1.7 6 years of Performance Modeling at ABB Corporate Research
(Heiko Koziolek)

Despite significant scientific research, systematic performance engineering techniques are
still hardly used in industry, as many practitioners rely on ad-hoc performance firefighting.
It is still not well understood where more sophisticated performance modeling approaches
are appropriate and the maturity of the existing tools and processes can be improved. While
there have been several industrial case studies on performance modeling in the last few
years, more experience is needed to better understand the constraints in practice and to
optimize existing tool-chains. This talk summarizes six years of performance modeling
at ABB, a multi-national corporation operating mainly in the power and automation in-
dustries. In three projects, different approaches to performance modeling were taken, and
experiences on the capabilities and limitations of existing tools were gathered. The talk
reports on several lessons learned from these projects, for example the need for more effi-
cient performance modeling and the integration of measurement and modeling tools.

1.8 Performance Challenges in a Mainframe System
(Stefan Fiitterling and Michael Grofimann)

The global ordering system of a car manufacturer processes several hundred thousand car
orders each year. It is used by thousands of dialog-users at car-dealerships, market systems,
production plants and several other third party systems which are also supplied with all
necessary data. The system is running on an IBM mainframe and uses several technology
stacks such as CICS/Cobol, Websphere Application Server/Java, Messaging and DB2.
The system is subject to a constant change and growth due to enhanced functionalities,
the addition of new markets and market systems, as well as the rise in car sales and the
increasing complexity of the cars themselves.

The general growth has lead to an increase in mainframe costs, where today no one can
answer exactly the questions on how much CPU consumption a user (or user-class) is trig-
gering or in which parts of the system the most CPU consumption is caused. Additionally
the goal for 2016 is, to charge-back CPU cost on a user-class basis. Here, a detailed report-
ing is necessary, where CPU consumption is evaluated on a per user-class and per business

transaction level. The new reporting will help to improve the operation, the optimization
and the analysis of the system.

The general questions to be answered are:

e Who is calling which business transaction and how much cpu-time is consumed?
e How expensive is a business transaction?

e How can the cpu-consumption of secondary transactions be evaluated in an event
based system and how can it be attributed to user-classes and/or business transac-
tions?

e Which technology (i.e. CICS/Cobol or WAS/Java) causes the growth? Where are
the cost drivers?

e How large is the future cpu-consumption in the context of a forecast for the predicted
growth in car sales and additional functionality due to new releases.

The presentation describes the gathering of CPU consumption data, its aggregation on
basis of a user-class mapping and the creation of performance reports and performance
predictions.

1.9 Using the Free Application Performance Diagnosis Tool “inspectIT”
(Stefan Siegl)

inspectIT (http://www.inspectit.de) is a free Java performance diagnosis solution devel-
oped at NovaTec Consulting. In this live presentation I will guide you through the features
of inspectIT. We will be analyzing a sample application (DVDStore), that NovaTec ex-
tended to suffer from certain performance problem patterns, which we often see at our
customers.

e <phone rings>

o Customer Support: “We once again had a complaint about hang ups and slow re-
sponse times when our customer wanted to buy a DVD on our store.”

o Development Guy: “We set up tests for this situation already; we do not see any
problems. Did the customer tell you what he did specifically? We are at a loss here”

...this is where we will come in and try to figure out what is actually going on in the
DVDStore. Is there really a problem in the code? Is it the user not using the application
correctly? We will find out.

1.10 LibReDE: A Library for Resource Demand Estimation
(Simon Spinner and Jiirgen Walter)

When creating a performance model, it is necessary to quantify the amount of resources
consumed by an application serving individual requests. In distributed enterprise systems,
these resource demands often cannot be observed directly, their estimation is a major chal-
lenge. Different statistical approaches to resource demand estimation based on monitoring
data have been proposed in the literature, e.g., using linear regression, Kalman filtering, or
optimization techniques. However, the lack of publicly available implementations of these
estimation approaches hinders their adoption performance engineers. LibReDE provides
a set of ready-to-use implementations of approaches to resource demand estimation. It is
the first publicly available tool for this task and aims at supporting performance engineers
during performance model construction. The library can be used for offline and online
performance model parameterization. LibReDE helps performance engineers to select an
estimation approach for a system under study by automatically selecting suitable estima-
tion approaches based on their pre-conditions and by offering cross-validation techniques
for the resulting resource demands. Based on the cross-validation results, the performance
engineer is able to compare the accuracy of different estimation approaches for a system
under study.

1.11 Approaching the Cloud: Using Palladio for Scalability, Elasticity, and Effi-
ciency Analyses
(Sebastian Lehrig and Matthias Becker)

In cloud computing, software architects develop systems for virtually unlimited resources
that cloud providers account on a pay-per-use basis. Elasticity management systems provi-
sion these resource autonomously to deal with changing workload. Such changing work-
loads call for new objective metrics allowing architects to quantify quality properties like
scalability, elasticity, and efficiency, e.g., for requirements/SLO engineering and software
design analysis. However, Palladio so far did not support such novel metrics. To cope with
this problem, we extended Palladios simulation approach SimuLizar by additional metrics
for scalability, elasticity, and efficiency. In this tool paper, we focus on illustrating these
new capabilities. For this illustration, we analyze a simple, self-adaptive system.

1.12 Static Spotter for Scalability Anti-Patterns Detection
(Jinying Yu and Goran Piskachev)

Understanding large and old legacy systems is tedious and error-prone task. Design pat-
terns (and anti-patterns) detection is a reverse engineering technique which allows analysis
of such systems. Software architects use this technique to recover bad design decisions.
Particularly, web-based applications face scalability issues. Scalability is especially impor-

tant for cloud-based systems which need to handle different environments (e.g. change of
workload over time). We want to automatically detect scalability anti-patterns of existing
component-based applications on the source code level. In literature, there are different
ways to define the scalability anti-patterns. Moreover, there exist several general pattern
detection engines, but none of them, examines the detection of scalability anti-patterns. In
our work, first we define scalability anti-patterns and specify them using our domain spe-
cific language, and second we use our model-driven static spotter to detect the specified
anti-patterns. There are two inputs required for our Eclipse based implementation of the
static spotter: (1) the catalog of specified patterns (in our case the scalability anti-patterns)
and (2) tree model representation of the source code of our application. To demonstrate our
work, we use an example web-based application where we detect the specified scalability
anti-patterns.

1.13 CactoSim — Optimisation-Aware Data Centre Prediction Toolkit
(Sergej Svorobej, Henning Groenda, Christian Stier, James Byrne, and Pj Byrne)

Virtualisation is a common technique in todays data centres for running Cloud-scale appli-
cations, providing isolation between diverse systems and customers as well as comparably
lightweight relocation and consolidation of virtual on physical machines. Currently topol-
ogy optimisation algorithms are in use in data centres, their configuration typically being
trial-and-error based instead of using sound reasoning. Simulation can be used to en-
able the evaluation of such optimisation algorithms towards better reasoning at decision
time. This paper describes work towards the development of a simulation-based prediction
prototype (CactoSim) and its integration with the live data centre topology optimisation
prototype (CactoOpt). This coupling enables the evaluation of runtime optimisations at
design time. This paper describes CactoSim and how it provides extended architecture
models at its interfaces but internally employs Palladio. It showcases a method for using
extended architecture models with the base Palladio Component Model (PCM), includ-
ing the required model transformations. In this specific case, the supported infrastructure
model for data centres is described, which goes beyond PCM and takes into account the
complexity of the real-world data centres virtualisation infrastructure. Finally, an integra-
tion method for simulation and live data centres is described, which allows CactoSim to
pull live models and utilise them directly for simulation experiments.

1.14 Benchmarking Workflow Management Systems
(Marigianna Skouradaki, Vincenzo Ferme, Cesare Pautasso, Dieter Roller, and
Frank Leymann)

The goal of the BenchFlow project is to design the first benchmark for assessing and com-
paring the performance of BPMN 2.0 Workflow Management Systems (WfMSs). WfMSs
have become the platform to build composite service-oriented applications, whose per-
formance depends on two factors: the performance of the workflow system itself and the

performance of the composed services (which could lie outside of the control of the work-
flow).

Despite the rapid evolution of benchmarks, there is only a recent appearance of them
targeting to Service Oriented Architecture (SOA) middleware. In particular for WfMS
there is not yet a currently accepted benchmark, despite the recent appearance of standard
workflow modeling languages such as BPMN 2.0. Our main goal is to present to the
community the open challenges of a complex industry-relevant benchmark.

1.15 Application Performance Monitoring: Trade-Off between Overhead Reduc-
tion and Maintainability
(Jan Waller, Florian Fittkau, and Wilhelm Hasselbring)

Monitoring of a software system provides insights into its runtime behavior, improving
system analysis and comprehension. System-level monitoring approaches focus, e.g., on
network monitoring, providing information on externally visible system behavior.
Application-level performance monitoring frameworks, such as Kieker or Dapper, allow
to observe the internal application behavior, but introduce runtime overhead depending on
the number of instrumentation probes.

We report on how we were able to significantly reduce the runtime overhead of the Kieker
monitoring framework. For achieving this optimization, we employed micro-benchmarks
with a structured performance engineering approach. During optimization, we kept track
of the impact on maintainability of the framework. In this paper, we discuss the emerged
trade-off between performance and maintainability in this context.

To the best of our knowledge, publications on monitoring frameworks provide none or only
weak performance evaluations, making comparisons cumbersome. However, our micro-
benchmark, presented in this paper, provides a basis for such comparisons. Our experiment
code and data are available as open source software such that interested researchers may
repeat or extend our experiments for comparison on other hardware platforms or with other
monitoring frameworks.

1.16 The DIN/ISO Definition and a Measurement Procedure of Software Efficiency
(Werner Dirlewanger)

Colloquially people used to assign the attribute speed (i. e. performance) not only to hard-
ware but also to software. But software does not have an attribute speed. It defines—for
each user initiated task—a sequence of information processing steps (machine instruc-
tions) to be performed. To find a suitable term for the aspect under construction we use
two implementations (Imp1 and Imp2) of the application on the same hardware and per-
form two performance measurements yielding the performance values P1 and P2. To find
a term describing the the behaviour of the application software we compare P1 to P2.
This yields a measure of how good Imp?2 transforms the task submitted into a sequence of

machine instructions compared to Imp1: Imp2 is less or more efficient.

This procedure requires a fitting definition of P and a measurement method which simu-
lates in detail the properties of the user entity and delivers detailed performance values.
This is done by the ISO 14656 method. It measures the timely throughput, the mean exe-
cution times and the total throughput, each as a Vektor of m values, where m ist the total
number of task types. The software efficiency values are: The timely throughput efficiency
171, the mean execution time efficiency I;r and the total throughput efficiency I, each
being a vector of m values. Additionally there is the quotient of maximal timely served
users I 4 xusr Which is a scalar.

In the talk the ISO method will be explained. All is supported by examples of real mea-
surement projects. History: DIN 66273 defines a very detailed performance measurement
method, but the software efficiency aspect was not yet part of this Standard. The use of the
DIN performance measurement method for getting software efficiency values was firstly
published in the author’s DIN-textbook. ISO took over the idea in ISO 14756. Compre-
hensive description: The author’s textbook on ISO 14756.

1.17 Enabling Assembly of Systems and its Implications within the Palladio Com-
ponent Model
(Misha Strittmatter)

The scope of Palladio models has always been software systems and their inner structure
and behavior. That is why the ability to assemble structures into structure of higher or-
der stops at the system level. This makes it impossible to simulate a system in interplay
with other systems without using workarounds. This contribution proposes meta-model
changes, which enable the composition of systems. The implications of these changes
onto the submodels of Palladio are discussed. Systems and their interfaces will then be
defined within repositories. Only one composed structure diagram will be needed. Usage
Models will be able to call the interfaces of one outer structure, which may be a compo-
nent or system. If a model should be simulated, an allocation model for this outer structure
has to be provided. As a side effect, it will then be possible to apply load directly onto
a single component, which may be beneficial in some cases. Further implications onto
Palladios tooling and developer role concept are also discussed. The modification will
be performed in the scope of the PCM refactoring process, so it will not cause much ad-
ditional development effort nor will it break functionality, as this is first mitigated by a
backwards transformation.

1.18 Parallel Simulation of Queueing Petri Nets
(Jiirgen Walter, Simon Spinner, and Samuel Kounev)

Queueing Petri Nets (QPNs) show high accuracy to model and analyze various computer
systems. To apply these models at runtime scenarios a speedup of simulation is desirable.

Prediction speed at design time is of importance as well, as we can see at the transforma-
tion from Palladio Component Model (PCM) to QPNs. SimQPN is a simulation engine to
analyze QPNs. At a time where multi-core processors are standard, parallelization is one
way to speedup simulation. Decades of intensive research showed no general solution for
parallel discrete event simulation, which provides reasonable speedups. In this context,
Queueing Networks (QNs) and Petri Nets (PNs) have been extensively studied. We re-
search the application of parallel simulation for QPNs. We developed a parallel simulation
engine that employs application level and event level parallelism. The simulation engine
parallelizes by the use of a conservative barrier-based synchronization algorithm. Here we
optimized for common model structures and applied active waiting. The speedup for a
single run depends on the capability of the model. Hence, we performed three case studies
which all show speedups throughout parallelization.

1.19 Adaptive Instrumentation of Java Applications for Experiment-Based Perfor-
mance Analysis
(Henning Schulz, Albert Flaig, Alexander Wert, and André van Hoorn)

Running load tests, instrumentation of selected application parts is a common practice in
order to measure performance metrics. Instrumentation means to extend the target appli-
cation by measurement probes while executing measurements. For instance, in Java byte-
code instrumentation, additional commands are inserted into the bytecode of the target
application. Since data generation is time-consuming, it may affect the target application
and thus the measurement. Countering this problem, stepwise approaches execute sev-
eral measurements while using only few measurement probes per measurement. Utilizing
existing approaches, the target application has to be restarted in order to change the in-
strumentation. The resulting measurement overhead can cause the execution of stepwise
measurements to be impracticable or bound to high manual effort. In this presentation,
we introduce the Adaptable Instrumentation and Monitoring (AIM) framework enabling
stepwise measurements without system restarts. Furthermore, we show the advantages
of selective instrumentation with AIM over excessive instrumentations. For instance, we
introduce an approach to highly precise and fully automated performance-model calibra-
tion. Thereby, the relative error is smaller than 4%, whereas excessive instrumentations
introduce an error of up to 50%. Last not least, we present the embedding of AIM in the
Kieker framework, merging the adaptability of AIM with the comprehensive monitoring
and analysis capabilities of Kieker.

1.20 Using and Extending LIMBO for the Descriptive Modeling of Arrival Behav-
iors
(Joakim v. Kistowski, Nikolas Roman Herbst, and Samuel Kounev)

LIMBO is a tool for the creation of load profiles with variable intensity over time both
from scratch and from existing data. Primarily, LIMBO’s intended use is the description

10

of load intensity variations in open workloads. Specifically, LIMBO can be used for the
creation of custom request or user arrival time-stamps or for the re-parameterization of
existing traces.

LIMBO uses the Descartes Load Intensity Model (DLIM) internally for the formalized
description of its load intensity profiles. The DLIM formalism can be understood as a
structure for piece-wise defined and combined mathematical functions. We will outline
DLIM and its elements and demonstrate its integration within LIMBO.

LIMBO is capable of generating request or user arrival time stamps from DLIM instances.
In a next step, these generated time-stamps can be used for both open workload based
benchmarking and simulations. The TimestampTimer plug-in for JMeter already allows
the former. LIMBO also offers a range of tools for easy load intensity modeling and
analysis, including, but not limited to, a visual decomposition of load intensity time-series
into seasonal and trend parts, a simplified load intensity model as part of a model creation
wizard, and an automated model instance extractor.

As part of our LIMBO tutorial, we explain these features in detail. We demonstrate com-
mon use cases for LIMBO and show how they are supported. We also focus on LIMBOs
extensible architecture and discuss how to use LIMBO as part of another tool-chain.

1.21 Using Java EE ProtoCom for SAP HANA Cloud
(Christian Klaussner and Sebastian Lehrig)

Performance engineers analyze the performance of software architectures before their ac-
tual implementation to resolve performance bottlenecks in early development phases. Per-
formance prototyping is such an approach where software architecture models are trans-
formed to runnable performance prototypes that can provide analysis data for a specific
target operation platform. This coupling to the operation platform comprises new chal-
lenges for performance prototyping in the context of cloud computing because a variety
of different cloud platforms exists. Because the choice of platform impacts performance,
this variety of platforms induces the need for prototype transformations that either sup-
port several platforms directly or that are easily extensible. However, current performance
prototyping approaches are tied to only a small set of concrete platforms and lack an in-
vestigation of their extensibility for new platforms, thus rendering performance protoyping
ineffective for cloud computing. To cope with this problem, we extended Palladios per-
formance prototyping approach ProtoCom by an additional target platform, namely the
SAP HANA Cloud, and analyzed its extensibility during the extension process. In this
tool paper, we focus on illustrating the capabilities of our extension of ProtoCom. For this
illustration, we use a simple example system for which we create a ProtoCom performance
prototype. We particularly run this prototype in the SAP HANA Cloud.

11

1.22 Experience with Continuous Integration for Kieker
(Nils Christian Ehmke, Christian Wulf, and Wilhelm Hasselbring)

Developing new features and extensions for the Kieker framework is very often an agile
process. We are successfully using CI (Continuous Integration) as an assistance during the
development for some years now, extending it more and more. Unit tests and performance
benchmarks are executed regularly, static analysis tools ensure a constant code quality, and
nightly builds allow an easy access to snapshot versions of Kieker. All of this is not only
a support for more experienced Kieker developers, but also for new members joining the
project.

Our presentation is an experience report about the success of CI in Kieker. We detail the
structure, the used tools and the history of our CI infrastructure. We report on advantages
and disadvantages recognized during the usage. Furthermore, the presentation includes an
outlook for further activities regarding our CI infrastructure.

1.23 Towards Performance Awareness in Java EE Development Environments
(Alexandru Danciu, Andreas Brunnert, and Helmut Krcmar)

This paper presents an approach to introduce performance awareness in integrated devel-
opment environments (IDE) for Java Enterprise Edition (EE) applications. The approach
automatically predicts the response time of EE component operations during implementa-
tion time and presents these predictions within an IDE. Source code is parsed and repre-
sented as an abstract syntax tree (AST). This structure is converted into a Palladio Com-
ponent Model (PCM). Calls to other Java EE component operations are represented as
external service calls in the model. These calls are parameterized with monitoring data
acquired by Kieker from Java EE servers. Immediate predictions derived using analytical
techniques are provided each time changes to the code are saved. The prediction results
are always visible within the source code editor, to guide developers during the compo-
nent development process. In addition to this immediate feedback mechanism, developers
can explicitly trigger a more extensive response time prediction for the whole component
using simulation. The talk will cover the conceptional approach, the current state of the
implementation and sketches for the user interface.

1.24 Identifying Semantically Cohesive Modules within the Palladio Meta-Model
(Misha Strittmatter and Michael Langhammer)

The Palladio meta-model is currently contained within one file and is subdivided into
packages. This structure formed through the years, while the PCM was developed and
extended. The top-level packages are partly aligned with the containment structure of
the PCM submodels (e.g. repository, system). There are other top-level packages, which
contain crosscutting or general concepts (e.g. parameter, composition, entity). Further

12

ones are concerned with quality dimensions (e.g. reliability, QoS Annotations). Some
extensions distributed their new classes across packages, which were semantically fitting.
Within the scope of the Palladio refactoring, this structure is being transformed into a mod-
ular structure. The goal is to divide the Palladio meta-model into smaller, semantically co-
hesive meta-models (meta-model modules). This has several advantages. The meta-model
becomes better maintainable and easier to extend and understand. When a Palladio model
is created, the model developer can choose the meta-model modules which are relevant
to him and is not confused by the full amount of content from all extensions. Within this
contribution, first, the current structure of the Palladio meta-model is briefly explained.
Next, the semantically cohesive modules, which are currently contained or even scattered
across the current structure, are presented and their interdependencies explained.

1.25 Evolution of the Palladio Component Model: Process and Modeling Methods
(Reiner Jung, Misha Strittmatter, Philipp Merkle, and Robert Heinrich)

Palladio and its component meta-model have grown over time to support a wide variety
of models for application performance prediction. The present meta-model is a large in-
terwoven structure. Specific additions, e.g., for reliability and other quality properties,
have been developed separately and resulted often in derived meta-models which cannot
be used together. Furthermore, as discussed on KPDAYS 2013, certain views, typing and
instance definitions lack a precise definition. Therefore, the Palladio Component Model
(PCM) must evolve into a modular and easy to extend meta-model, and the Palladio tools
must support this modularity to allow users to combine those Palladio functionality they
need for their purposes. To achieve this modularity, we must solve two challenges. First,
the modularization well be a long running task. Therefore, we need a process and road
map to guide us from the present Palladio to the modular future Palladio. And second,
the complexity of the existing metamodel and the need to keep the resulting meta-models
maintainable, we need guidance for the modularization of the PCM and its tooling. Fur-
thermore, the use methods must support future evolution steps. In this presentation, we
first provide a brief summary on our method to construct modular meta-models based
on aspect and view based modeling. This general distinction is supported by collected
construction advice and contextual meta-model patterns. Furthermore, we illustrate how
tools should be constructed around such metamodels. And second, we lay out a plan,
how this evolution of the PCM can be realized in a stepwise approach which could also
be distributed among different volunteers. As the tooling is an integral part of Palladio,
the evolution of the meta-model will cause alterations to the tooling. Therefore, the plan
encompasses both tool and meta-model evolution.

13

1.26 Toward a Generic and Concurrency-Aware Pipes & Filters Framework
(Christian Wulf, Nils Christian Ehmke, and Wilhelm Hasselbring)

The Pipes-and-Filters design pattern is a well-known pattern to organize and execute com-
ponents with sequential dependencies. The pattern is therefore often used to perform sev-
eral tasks consecutively on large data streams, e.g., during image processing or dynamic
analyses. In contrast to the pattern’s familiarity and application, almost each common
programming language lacks of flexible, feature-rich, fast, and concurrency-aware Pipes-
and-Filters frameworks. So far, it is common practice that most developers write their
own implementation tailored to their specific use cases and demands hampering any effec-
tive re-use. In this paper, we discuss Pipes-and-Filters architectures of several Java-based
applications and point out their drawbacks concerning their applicability and efficiency.
Moreover, we propose a generic and concurrency-aware Pipes-and-Filters framework and
provide a reference implementation for Java called TeeTime.

1.27 Evaluation of Alternative Instrumentation Frameworks
(Dusan Okanovi¢ and Milan Vidakovic)

When monitoring application performance parameters under production workload, during
continuous monitoring process, everything must be done to reduce the overhead generated
by monitoring system. This overhead is highly unwanted because it can have negative
effect on the end user’s experience. While this overhead is inevitable, certain steps can be
taken to minimize it.

Our system for continuous monitoring - DProf - uses instrumentation, and sends gathered
data to the remote server for further analysis. After this data is analyzed, new monitoring
configuration can be created in order to find the root cause of the performance problem.
New parameters turn monitoring off, where performance data is within expected, and on,
where data shows problems. This way, the overhead is reduced, because only problematic
parts of software are monitored. The first version of our tool used Aspect] for instru-
mentation. The downside of this approach was the fact that the resulting bytecode is not
fully optimized, generating even higher overhead than expected. Also, the monitored sys-
tem had to be restarted each time monitoring configuration changed in order to apply new
monitoring parameters.

We have explored the use of other AOP or AOP-like tools, mainly DiSL framework, with
our system. The goal is to find a tool that has lower overhead than Aspect]. Support for
runtime changes of monitoring configuration is also considered.

14

1.28 Cloud Application Design Support for Performance Optimization and Cloud
Service Selection
(Santiago Gomez Sdez, Vasilios Andrikopoulos, and Frank Leymann)

The introduction of the Cloud computing paradigm and the significant increase of avail-
able Cloud providers and services have contributed in the last years to increase the number
of application developers strongly supporting to partially or completely run their appli-
cations in the Cloud. However, application developers nowadays face application design
challenges related to the efficient selection among a wide variety of Cloud services to-
wards efficiently distributing their applications in one or multiple Cloud infrastructures.
Standards like TOSCA allow for the modelling and management of application topology
models, further supporting the application distribution capabilities, potentially in a multi-
Cloud environment. However, such approaches focus on enabling portability among Cloud
providers, rather than assisting the application developers in the Cloud services selection
decision tasks. In this work we focus on the challenges associated with the application
performance requirements and evolution, and therefore aim to define the means to support
an efficient application (re-)distribution in order to efficiently handle fluctuating over time
workloads. There are two fundamental aspects which must be taken into consideration
when partially or completely running the application in the Cloud. Firstly, the distribution
of the application in the Cloud has a severe effect on the application performance however
it is not always evident whether it is beneficial or detrimental. Secondly, an application
workload, and therefore its resources demands, fluctuates over time, and its topology may
have to be adapted to address the workload evolution.

15

2 Papers

16

Using Java EE ProtoCom for SAP HANA Cloud”

Christian Klaussner Sebastian Lehrig
Heinz Nixdorf Institute Software Engineering Chair
University of Paderborn Chemnitz University of Technology
Zukunftsmeile 1 StraBe der Nationen 62
33102 Paderborn, Germany 09107 Chemnitz, Germany
cfk@mail.uni-paderborn.de sebastian.lehrig @informatik.tu-chemnitz.de

Abstract: Performance engineers analyze the performance of software architectures
before their actual implementation to resolve performance bottlenecks in early devel-
opment phases. Performance prototyping is such an approach where software archi-
tecture models are transformed to runnable performance prototypes that can provide
analysis data for a specific target operation platform. This coupling to the opera-
tion platform comprises new challenges for performance prototyping in the context
of cloud computing because a variety of different cloud platforms exists. Because the
choice of platform impacts performance, this variety of platforms induces the need for
prototype transformations that either support several platforms directly or that are eas-
ily extensible. However, current performance prototyping approaches are tied to only
a small set of concrete platforms and lack an investigation of their extensibility for new
platforms, thus rendering performance protoyping ineffective for cloud computing.

To cope with this problem, we extended Palladio’s performance prototyping ap-
proach ProtoCom by an additional target platform, namely the SAP HANA Cloud,
and analyzed its extensibility during the extension process. In this tool paper, we fo-
cus on illustrating the capabilities of our extension of ProtoCom. For this illustration,
we use a simple example system for which we create a ProtoCom performance pro-
totype. We particularly run this prototype in the SAP HANA Cloud, thereby showing
that our extension can efficiently be applied within a practical context.

1 Introduction

Performance engineers analyze the performance of software architectures before their
actual implementation to resolve performance bottlenecks in early development phases.
This early detection and resolving of performance problems reduces fix-it-later costs and
promises a high customer satisfaction, due to a high quality of service right from the be-
ginning of system operation. Performance prototyping is such an approach to performance
engineering. In performance prototyping, engineers transform software architecture mod-
els to runnable performance prototypes. These prototypes can provide analysis data for a
specific target operation platform.

The coupling of performance prototypes to the operation platform comprises new chal-
lenges in the context of cloud computing. In cloud computing, a variety of different cloud

*The research leading to these results has received funding from the EU Seventh Framework Programme
(FP7/2007-2013) under grant no 317704 (CloudScale).

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

17

platforms exists. Because the choice of platform impacts performance, this variety of plat-
forms needs to be covered by transformations to performance prototypes [LLK13]. There-
fore, prototype transformations either need to support several platforms directly or have
to be easily extensible. However, current performance prototyping approaches are tied to
only a small set of concrete platforms and lack an investigation of their extensibility for
new platforms, thus rendering performance prototyping ineffective for cloud computing.

In related work, initial attempts have been made to support a larger quantity of plat-
forms [Bec08, GL13]. However, such attempts remain on a conceptual level and do not
provide transformation implementations that would make performance prototyping more
efficient. Other works provide such implementations but are tied to single platforms only.
For example, the implementation by Lehrig and Zolynski [LZ11] only has support for
Java SE as a target platform. To the best of our knowledge, no related approach investi-
gates the extensibility of performance prototypes.

To cope with this problem, we extended Palladio’s Java SE performance prototyping ap-
proach ProtoCom [BecOS8] by an additional target platform and analyzed its extensibility
during the extension process. We decided to enrich ProtoCom by Java EE capabilities such
that we could reuse first conceptual ideas of our previous work [GL13]. Moreover, we use
the SAP HANA Cloud as concrete target platform because it represents a practically used
cloud computing environment with Java EE support.

The contribution of this tool paper is an illustration of the capabilities of our ProtoCom
extension. For this illustration, we use a simple example system for which we create a
Java EE ProtoCom performance prototype. We particularly run this prototype in the SAP
HANA Cloud, thereby showing that our extension can efficiently be applied within a prac-
tical context. For our results regarding the extensibility of ProtoCom, we refer to Klauss-
ner’s Bachelor’s thesis [Klal4] (we identify both, implementation parts that are easily
extensible and parts that can be improved regarding extensibility). His thesis particularly
gives a complete technical overview of our ProtoCom extension.

This paper is structured as follows. We introduce our example system in Sec. 2. We
use this system throughout our paper as running example. In Sec. 3, we describe the
fundamentals of our work (performance prototyping with ProtoCom, Java EE, and the
SAP HANA Cloud). Afterwards, we describe our Java EE extension to ProtoCom in
Sec. 4. This extension allows us to use ProtoCom within SAP HANA Cloud in Sec. 5.
In Sec. 6, we discuss related work in the area of performance prototyping. We close this
paper by giving concluding remarks and an outlook on future work in Sec. 7.

2 Running Example: The Alice&Bob System

As running example, we use the Alice&Bob system as illustrated in Fig. 1. This system
consists of two Java EE servers: JavaEE-Server-A allocates the Alice component that pro-
vides the interface lAlice with the operation callBob() and JavaEE-Server-B allocates the
Bob component that provides the interface IBob with the operation sayHello(). The IAlice
interface is provided to a user who can invoke its operation through a client-side technol-

18

Closed Workload Usage Scenario CPU N
Populat.|on:. 10 Scheduling: Processor Sharing
Think Time: 1 Sec. Processing Rate: 100 Work Units/Sec.
Z 4 ~
4 AN
P 7 JavaEE-Server-A JavaEE-Server-B (o)
: £] £]
— = >0 Alice —(— 14— —->0— Bob
! e
:
User Ad
1Alice 1Bob Resource Demands B
CPU Demand:
+ callBob() +sayHello() O DoublePMF [(20;0.2) (30;0.3) (50;0.5)]

Figure 1: Alice&Bob System

ogy like a browser. This invocation can be received by a component on the server side —
in our case by the Alice component implementing the IAlice interface.

Furthermore, we annotated performance-relevant information to the Alice&Bob system
using yellow sticky notes. These sticky notes state that (1) the user population is 10 with a
think time of 1 second within a closed workload, (2) the CPU of JavaEE-Server-B follows
a processor sharing (round-robin) scheduling strategy while processing with 100 work
units per seconds, and (3) calls to sayHello() cause a CPU demand as specified by the given
probability mass function. The latter specifies that 20 CPU work units are demanded in
20% of the cases, 30 CPU work units are demanded in 30% of the cases, and 50 CPU work
units are demanded in 50% of the cases.

3 Fundamentals

In this section, we describe the fundamentals needed to understand our extension to the
performance prototyping approach ProtoCom. We accordingly describe the state-of-the
art in performance prototyping with ProtoCom in Sec. 3.1. Afterwards, we describe the
target platform for our extension — Java EE and the SAP HANA Cloud — in Sec. 3.2.

3.1 Performance Prototyping with ProtoCom

Software engineers and architects aim to analyze quality attributes of a software system,
e.g., performance, early in the design process in order to avoid costs for subsequent adjust-
ments. Performance prototyping is an approach that facilitates such analyses by simulating
the performance of a software system in a realistic execution environment and under dif-
ferent load levels.

19

Palladio supports engineers in efficiently constructing such performance prototypes. For
this support, the Palladio Component Model (PCM) provides a component-based Archi-
tecture Description Language (ADL). The PCM allows engineers to create a formalized
model of the components and performance-relevant properties of a software architecture,
similar to the model of our Alice&Bob system illustrated in Fig. 1.

After such a PCM model is created by performance engineers, it serves as input for the
code generator ProtoCom, which transforms it into a runnable performance prototype for
the desired target technology. Currently, ProtoCom supports the generation of perfor-
mance prototypes for three target technologies: Java SE with RMI, Java EE with EJBs
(Enterprise Java Beans), and Java EE with Servlets for the SAP HANA Cloud, which we
introduce in this paper.

Our implementation transforms components from the model to Java EE Servlets. These
Servlets can communicate via HTTP (cf. Sec. 4), while all previous implementations were
based on RMI communication for distributing components. When running a generated
performance prototype, an external HTTP load generator, e.g., JMeter, is used to simulate
users interacting with the system according to the usage scenario specified in the model.
Meanwhile, the performance prototype takes several mesasurements, e.g., response times,
which allow a subsequent examination of the software architecture’s performance. We
give a more detailed description of this workflow in Sec. 5.

3.2 Java EE and SAP HANA Cloud

The Java Enterprise Edition (Java EE) is a set of specifications and APIs for Java that fa-
cilitate the development of enterprise software. This type of software is usually run on
one or more servers (as illustrated in Fig. 1) and makes use of web technologies. There
exist several implementations of the Java EE specifications, e.g., GlassFish and WildFly
(formerly JBoss). Additionally, some projects implement only a subset of the specifica-
tions. For example, Apache Tomcat! implements Servlets, which are Java classes that can
respond to requests. A common use case for Servlets is the HTTP request-response model
for typical websites.

The SAP HANA Cloud is a Platform-as-a-Service (PaaS) that provides a Java EE environ-
ment and a cloud infrastructure for running enterprise applications. It is based on Apache
Tomcat and includes additional services for applications, e.g., a document service that can
be used to store unstructured or semi-structured data.

4 Java EE ProtoCom

Adding Java EE for the SAP HANA Cloud as target technology for ProtoCom required the
implementation of new transformations and a new framework (the ProtoCom “runtime”).

'http://tomcat.apache.org

20

When generating code from PCM instances, the entities and concepts of the source model
have to be mapped to constructs of the target language. Although both the PCM and Java
have similar constructs, e.g., interfaces and components/classes, they differ in expressive-
ness. Therefore, a one-to-one mapping is sometimes impossible. Tab. 1 lists the PCM
entities and concepts regarded in our extension together with their respective Java map-
ping. Especially the provided and required roles of components need specific patterns to
be transformed correctly [Klal4].

PCM Entity/Concept | Java

Interface Interface

Component Component class
Provided role Port class

Required role Context class

System System class

Assembly context Component class instance
Call action RPC over HTTP

Control flow Control flow

Resource environment | Resource environment class
Allocation Allocation class

Usage scenario [External]

Table 1: Mapping of PCM entities and concepts to Java, cf. [GL13, Klal4]

The addititions we made can be grouped intro three categories: inter-component commu-
nication, user interface, and load generator.

4.1 Inter-Component Communication

For the communication between components across resource container boundaries (i.e.,
ExternalCallAction entities in PCM), we use a custom, lightweight RPC protocol based on
JSON and HTTP. Compared with other RPC protocols like SOAP, our custom protocol is
easier to process in intermediary components and tools involved in the execution of the
performance prototype. For example, when using Apache JMeter for the simulation of
usage scenarios, data has to be exchanged between JMeter and the performance prototype.
Thanks to JMeter’s scripting capabilities (including JavaScript) the data received from the
performance prototype can be processed without any manual parsing as would be the case
with SOAP and XML.

Conceptually, our RPC method works similar to Java RMI. Components register them-
selves with a unique name at a central registry that is accessible via a Servlet. Other
components can then contact this registry and obtain references to other named compo-
nents. After a connection is established, method calls to remote components are initiated
by sending the method name, parameter types, and arguments (serialized to JSON) to the
target component, as shown in List. 1.

21

The formalParameters array consists of the type names of the formal parameters and is
used — together with the name — to find the correct method to invoke at the destination,
whereas the actualParameters array specifies the actual type names of the serialized ar-
guments. These type names are required during deserialization in order to recreate the
serialized objects. For example, the argument in List. 1 is deserialized as StackContext
object and passed to the callBob0 method which expects a StackContext argument. In this
case, the serialized argument consists of an empty JSON object, instructing the deserializer
to create a new StackContext object to be passed to the method.

"name":"callBob0",
"formalTypes":["de.uka.ipd.sdq.simucomframework.variables.StackContext"],
"actualTypes":["de.uka.ipd.sdq.simucomframework.variables.StackContext"],
"arguments":[{}]

Listing 1: RPC protocol representation of a call to Alice’s callBob method

4.2 User Interface

Since the Java EE performance prototypes run on the SAP HANA Cloud, they are inac-
cessible through a console. Therefore, we developed an HTML user interface that can be
accessed through a web browser. Fig. 2 shows a screenshot of the user interface used to
operate the performance prototype generated from the Alice&Bob system introduced in
Sec. 2. It allows performance engineers to specify the location of the central component
registry and to start particular modules, i.e., startable entities of the performance prototype
like resource containers (that start all allocated components) and systems. Additionally, it
provides downloads for the transformed usage scenarios (JMeter files) and analysis results.

4.3 Load Generator

In order to generate load on the performance prototype, we provide an interface for ex-
ternal load generators, e.g., Apache JMeter. The ProtoCom transformations automatically
generate a JMeter test plan for each usage scenario in the model. ExternalCallActions are
realized by sending HTTP requests to the respective components according to the RPC
protocol described in Sec. 4.1.

22

. ProtoCom Performance Prototype

& Registry

http://l 080/0rg. Jlator.temporary/

Modules

Name State Actions
Container: JavaEE-Server-A Started

Container: Java-EE-Server-B Started

System: AliceAndBobSystem Stopped Start

& Usage Scenarios

Name Download

defaultUsageScenario & JMX

@ Analysis Results

Experiment Last Run Download

Figure 2: The user interface of the performance prototype

5 Using Java EE ProtoCom for SAP HANA Cloud

This section describes how ProtoCom is used in the SAP HANA Cloud. First, it explains
how the abstract resource demands from the PCM are translated to actual demands on the
hardware of the cloud platform. Afterwards, it shows the workflow of transforming and
executing performance prototypes.

5.1 Hardware Calibration

Before running a performance prototype, the abstract resource demands for CPU and HDD
specified in the SEFFs of the PCM components have to be translated to demands for the
hardware that the performance prototype is running on. For that purpose, ProtoCom pro-
vides a set of calibration strategies, e.g., Fibonacci, which simulates CPU intensive tasks
with minimized RAM access [LZ11]. The calibration computes several iterations — in this
case the n Fibonacci numbers — and measures the time required for these computations.
The results are stored in a calibration table for later lookup, as shown in Tab. 2. When a
demand from the model has to be translated to a real hardware demand, the calibration ta-
ble is used to find the iteration count n for the given demand. For example, a CPU demand
of 0.036 seconds would be achieved by computing the 40" Fibonacci number.

2Results taken from http://www.cs.utsa.edu/~wagner/CS3343/recursion/fibrecurs2.html

23

n Time
10 | 0.032 Sec.
20 | 0.033 Sec.
30 | 0.035 Sec.
40 | 0.036 Sec.
50 | 0.038 Sec.

Table 2: A calibration table for the Fibonacci strategy”

Lehrig and Zolynski [LZ11] validate such calibration tables by creating a model with a
processing resource that has a processing rate of 1000 units and a closed workload usage
scenario in which a single user repeatedly invokes a task that consumes 1000 units. Ideally,
the response time of this usage scenario should consume a time of 1 second. The results
for the Large Chunks HDD calibration show that the mean response time of the usage
scenario is indeed around 1 second, with deviations resulting from external factors, e.g.,
process scheduling behavior controlled by the operating system.

The calibration of the hardware resources is a time-consuming task and has to be per-
formed once for each hardware configuration. Regarding the SAP HANA Cloud, all cali-
bration strategies of ProtoCom work for both local installations (development and testing)
and the actual cloud platform.

5.2 Prototyping Workflow for SAP HANA Cloud

This section describes the typical workflow of performance prototyping with ProtoCom
for SAP HANA Cloud. The activity diagram in Fig. 3 shows all steps involved.

@ | Create Model
Calibrate Transform with []
LEnvironmen‘c [ProtoCom Start Modules
Adjust Model
@ [accepted results] T [found problem]

Download+Examine Run Usage Scenario
Results (JMeter)

Figure 3: Performance prototyping workflow with ProtoCom for SAP HANA Cloud

24

Performance engineers start with creating a model of the software architecture to exam-
ine. Afterwards, they calibrate the environment that the performance prototype will run
on. This can either be the environment of the cloud infrastructure or a local installation of
the SAP HANA Cloud runtime. Subseqently, the model is transformed to a performance
prototype and deployed on the target platform. At this point, performance engineers inter-
act with the user interface illustrated in Fig. 2. They start the modules, i.e., the resource
containers and the system, and download the generated JMeter test plan. Loading this test
plan into JMeter allows them to configure and run the measurements.

Finally, the results of the analysis are provided as a download in the user interface. Per-
formance engineers examine these results in the Palladio-Bench and decide if the model
needs further improvements, e.g., caused by a performance bottleneck, or if the results
are satisfying. In this case, software engineers can start with the implementation of the
architecture.

Following this workflow for our Alice&Bob system shows that the performance prototype
generated from the model in Fig. 1 can be deployed in the SAP HANA Cloud to take
performance measurements. Evaluating the results of the prototype and comparing them
to the results of ProtoCom for Java SE with RMI is part of our future work.

6 Related Work

Besides works on ProtoCom, there are only a few approaches on performance prototyp-
ing. Becker et al. [BDHO8] describe these approaches and their limitations compared to
ProtoCom in their related work. In this section, we therefore only focus on related work
on ProtoCom directly.

In his PhD thesis, Becker [Bec08] provides the groundwork for ProtoCom and for trans-
forming PCM instances to performance prototypes using Java EE EJBs (Enterprise Java
Beans). However, the performance prototypes generated by these transformations suffer
from several usability issues. For example, the generated code requires manual adjust-
ments after the transformations. Furthermore, the deployment process of the generated
performance prototypes proved to be inefficient.

Building on this work, Lehrig and Zolynski [LZ11] present an improved version of Pro-
toCom that aims to resolve these shortcomings. They extend the transformations and the
framework of ProtoCom such that the generated performance prototypes target the Java SE
technology and use Java RMI for inter-process communication. However, the transforma-
tions in this version of ProtoCom proved to be slow and inextensible due to the use of
Xpand® templates as a means for model-to-text transformations. Therefore, Lehrig and
Zolynski provide a reimplemented version of ProtoCom (“ProtoCom 3”) [Kar] that re-
places the Xpand templates with templates for the programming language Xtend 2*. This
version of ProtoCom served us as a good basis for analyzing the extensibility of ProtoCom.
As Klaussner describes in his Bachelor’s thesis [Klal4], the new transformation parts in-

3http://www.eclipse.org/modeling/m2t/?project=xpand
“http://www.eclipse.org/xtend

25

deed provide a good extensibility. However, some parts of ProtoCom’s generic framework
still provide room for improvement regarding extensibility [Klal4].

Since the release of Becker’s PhD thesis, a new version of Java EE EJBs was published,
providing features that simplify the transformations. Furthermore, there is a need for
performance prototype transformations targeting multiple platforms [LLK13]. These de-
velopments led to the addition of new Java EE EJB transformations by Giacinto and
Lehrig [GL13]. However, these transformations are provided only on a conceptual level
and also lack an implementation. In our work, we provide such a Java EE implementation
and use it within the SAP HANA Cloud, thus making our approach more efficient.

7 Conclusions

In this tool paper, we introduce a novel ProtoCom version that is capable of automati-
cally generating Java EE performance prototypes that can directly operate within the SAP
HANA Cloud (out-of-the-box). In this context, we give an overview of novel Java EE
features in ProtoCom and describe how generated performance prototypes are used within
the SAP HANA Cloud.

Performance engineers can now efficiently generate performance prototypes based on
Java EE. Engineers achieve best efficiency within the SAP HANA Cloud because our
ProtoCom version is capable of using dedicated SAP HANA Cloud features such as its
document service (e.g., to store calibration tables). However, engineers can now also
analyze other Java EE platforms (Glassfish, Tomcat, etc.) more efficiently because our
ProtoCom version introduces features shared among all of such platforms (e.g., RPC over
HTTP communication). Here, we profit from the standardization process behind Java EE.
Furthermore, we showed that engineers can easily extend ProtoCom if new requirements
arise [Klal4].

In future work, we want to conduct several case studies within the SAP HANA Cloud
using our novel ProtoCom version. We plan to reuse the case studies from our earlier work
with ProtoCom in virtualized environments [LZ11]. This reuse will allow us to compare
our previous results with new results gained within a less-controlled environment (the
SAP HANA Cloud), eventually leading to assessing the predictability of cloud computing
environments.

References

[BDHOS8] Steffen Becker, Tobias Dencker, and Jens Happe. Model-Driven Generation of Perfor-
mance Prototypes. In Samuel Kounev, Ian Gorton, and Kai Sachs, editors, Performance
Evaluation: Metrics, Models and Benchmarks, volume 5119 of Lecture Notes in Com-
puter Science, pages 79-98. Springer Berlin Heidelberg, 2008.

[Bec08] Steffen Becker. Coupled Model Transformations for QoS Enabled Component-Based
Software Design. PhD thesis, University of Oldenburg, Germany, January 2008.

26

[GL13]

[Kar]

[Klal4]

[LLK13]

[LZ11]

Daria Giacinto and Sebastian Lehrig. Towards Integrating Java EE into ProtoCom. In
KPDAYS, pages 69-78, 2013.

Karlsruhe Institute of Technology. ProtoCom - SDQ Wiki. http://sdqweb.ipd.kit.
edu/wiki/ProtoCom. Retrieved: 07/12/2014.

Christian Klaussner. Extensible Performance Prototype Transformations for Multiple
Platforms. Bachelor thesis, Software Engineering Group, University of Paderborn, Soft-
ware Engineering Group, Paderborn, Germany, July 2014.

Michael Langhammer, Sebastian Lehrig, and Max E. Kramer. Reuse and Configuration
for Code Generating Architectural Refinement Transformations. In VAO ’13. ACM, 2013.

Sebastian Lehrig and Thomas Zolynski. Performance Prototyping with ProtoCom in a
Virtualised Environment: A Case Study. In Proceedings to Palladio Days 2011, 17-
18 November 2011, FZI Forschungszentrum Informatik, Karlsruhe, Germany, November
2011.

27

Towards Modeling and Analysis of Power Consumption of
Self-Adaptive Software Systems in Palladio

Christian Stier, Henning Groenda
FZI Research Center for Information Technology
Karlsruhe, Germany
{stier|groenda} @fzi.de

Anne Koziolek
Karlsruhe Institute of Technology
Karlsruhe, Germany
koziolek @kit.edu

Abstract: Architecture-level evaluations of Palladio currently lack support for the anal-
ysis of the power efficiency of software systems and the effect of power management
techniques on other quality characteristics. This neglects that the power consumption
of software systems constitutes a substantial proportion of their total cost of owner-
ship. Currently, reasoning on the influence of design decisions on power consumption
and making trade-off decisions with other Quality of Service (QoS) characteristics
is deferred until a system is in operation. Reasoning approaches that evaluate a sys-
tem’s energy efficiency have not reached a suitable abstraction for architecture-level
analyses. Palladio and its extension SimuLizar for self-adaptive systems lack support
for specifying and reasoning on power efficiency under changing user load. In this
paper, we (i) show our ideas on how power efficiency and trade-off decisions with
other QoS characteristics can be evaluated for static and self-adaptive systems and (ii)
propose additions to the Palladio Component Model (PCM) taking into account the
power provisioning infrastructure and constraints.

1 Introduction

Palladio [BKR09] enables the evaluation of quality characteristics such as performance, cost
or reliability for component-based software systems at early design stages. By predicting
the performance and reliability of software systems it is possible to reason on design
alternatives and infer whether agreed upon Service Level Agreements (SLAs) can be
maintained. While Palladio accounts for the execution environment of software, its focus
is on software-centric design decisions. Currently Palladio has limited support for data
center design and sizing decisions. In particular, power consumption or provisioning are
not considered although they are a major cost-factor in data centers. Power consumption
accounts for roughly 15% of a data center’s Total Cost of Ownership (TCO) [GHMPO08]. A
data center needs to be equipped with suitably sized power provisioning infrastructure to
avoid risking blackouts under peak load. Cost of an additional Watt of provisioned peak
power is estimated around $11 to $12.5 [FWB07, GHLK™ 12]. When power provisioning

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

28

and cooling costs are considered, the cost associated with power consumption is responsible
for 40% of a data center’s TCO [GHMPOS].

Even though power consumption decisively determines the TCO of a software system it is
currently not sufficiently considered on an architectural level. Tradeoff decisions between
power consumption and other quality dimensions are deferred to deployment time. The
impact of design decisions on the energy efficiency of a software system can only be
determined by accounting for the power consumption characteristics of the deployment
environment.

Previous work on energy consumption analysis of software architectures focuses on spe-
cific architectural styles [SEMMO8]. As it focuses on power consumption induced by
communication it cannot be applied to predict the effect of individual design decisions
on power consumption. Other approaches make limiting assumptions regarding the usage
context [GWCA12] or application characteristics [MBAG10] which restrict their applica-
bility outside of their specific problem domain. Brunnert et al. [BWK14] introduce the
specification and evaluation of power consumption characteristics to Palladio. The authors
assume power consumption to follow the same pattern for all physical machines. Even
though a fixed model may accurately capture power consumption of current machines,
it likely will become inaccurate in the future when considering recent trends in energy
proportionality of physical machines [HP13]. Brunnert et al. perform an average case
power consumption analysis. Consequently, it is not possible to identify phases in which
the power consumption surpasses critical limits. As electricity pricing schemes usually
factor in both peak power consumption and total energy consumption it is critical to take
into account both average and peak power consumption for the modeled system [ZWW12].

This paper proposes (i) an approach enabling trade-off decisions between multiple quality
characteristics of static and self-adaptive software systems. Our approach accounts for
the operation of software systems in a data center. Our second contribution is (ii) an
explicit model of the power consumption of software systems and the power provisioning
infrastructure integrated into Palladio. The paper describes the Power Consumption Ana-
lyzer (PCA) approach leveraging the model and allowing continuous power consumption
analysis. It supports reasoning on maintaining power consumption thresholds leveraging
Palladio simulations and analysis of power-conscious self-adaptation tactics [PLL14] on
an architectural level. Power consumption properties are evaluated in a post-simulation
analysis that requires no modification of the simulation. In order to enable the analysis of
power-conscious self-adaptation tactics, we extend the Palladio-based SimuLizar approach
[BLB13] to support power consumption evaluations at intra-simulation using our PCA.

We show that our approach can be applied to evaluate whether limits in power consumption
are adhered to for a given usage context. We are able to identify peaks in power consumption
and violations not only for individual physical machines but also for Power Distribution
Units (PDUs). By accounting for peak power consumption we improve the prediction of a
data center’s TCO when compared to previous work [BWK14].

This paper is structured as follows. Section 2 outlines foundations of our approach. Section
3 discusses related work. Section 4 introduces our model extensions to PCM. Section 5
sketches how the PCA interprets these model extensions to support power consumption

29

analysis. Finally, Section 6 summarizes the work presented in this paper and outlines our
plans for future work.

2 Foundations

The Palladio [BKRO9] approach enables software architects to predict quality character-
istics of a component-based software architecture. The architecture is specified in the
Palladio Component Model (PCM). Software systems specified in PCM are assumed to
be static: PCM does not include a specification of architectural runtime adaptations. Qual-
ity characteristics of a system defined in PCM can be predicted using analytical solvers
[KBHO7, KRO8] or simulators [BKR09, MH11, BBM13].

Individual modeling concerns in PCM are separated into specialized submodels or views.
PCM encompasses an explicit structural view on the hardware deployment environment
onto which software components are deployed. The deployment environment is specified
in the Resource Environment model. The Resource Environment model consists of a set
of nested Resource Containers. Outer containers represent physical parts of a data center
such as racks and compute nodes, whereas inner containers serve as operating system or
virtualization layers. Resource Containers host a set of ProcessingResourceSpecifications
where each specification represents a resource to be used by components, e.g. CPU or
HDD.

SimuLizar by Becker et al. [BBM 13, BLB13] extends Palladio to enable a systematic design
of self-adaptive software systems. Self-adaptive software systems adapt their configuration
at run-time to cope with changing environmental properties such as varying user load. One
example for such a reconfiguration is the migration of a virtual machine from an over-
to an under-utilized node. Reconfigurations are the outcome of self-adaptation tactics.
Becker et al. subdivide tactics into “a condition (input) and a self-adaptation action (output)”
[BLB13]. The condition specifies when a self-adaptation action is triggered depending
on measurements taken via system probes. Probes are attached to PCM in the Palladio
Measurement Specification (PMS) model. Currently, the PMS only allows to capture
performance-centric measurements such as the response time or utilization. Analysis of
the self-adaptive system is carried out with the SimuLizar simulator. The simulator allows
predicting quality characteristics of a self-adaptive software system specified according
to the SimuLizar approach. Software architects can use the provided simulative analysis
to reason on the impact of self-adaptation mechanisms on quality characteristics of the
simulated system.

Energy-conscious self-adaptation tactics form a subset of self-adaptation tactics that “mod-
ify runtime software configuration for the specific purpose of lowering energy consumption”
[PLL14]. They are aimed at reducing consumption over a period of time. Power-conscious
self-adaptation tactics perform reconfigurations to reduce the power draw of a software sys-
tem at a specific point time. Both energy- and power-conscious self-adaptation tactics rely
on consumption measurements or estimates when reasoning on the benefit of performing
an adaptation.

30

Power models are used to estimate power consumption in absence of actual power measure-
ments [RRKO8]. A power model describes power consumption of hardware and software
components, individual services or complete server nodes based on a set of system metrics.
The fundamental assumption of power models is that power consumption correlates with the
values of a set of system metrics, e.g. CPU utilization or I/O throughput. Examples include
linear regression models correlating CPU utilization [FWBO07] or software performance
counters [ERKRO06] with power consumption. Power models evaluate power consump-
tion at a stationary point. In order to determine energy consumption over a time-frame,
numerical integration algorithms can be applied.

3 Related Work

Seo et al. investigate the energy consumption of different architectural communication
styles [SEMMO08]. The authors present a set of evaluation models for specific styles.
Among the analyzed communication styles are client-server and publish-subscribe. Their
approach focuses on energy consumption caused by communication and disregards all other
aspects of a software system. While their approach allows to compare energy efficiency of
employing specific communication styles against each other it can not be applied to reason
on power consumption of other architectural design decisions.

An approach for multi-objective architecture optimization for embedded systems is proposed
by Meedenyia et al. [MBAG10]. In their paper the authors focus on the tradeoff between
reliability and energy consumption. A model that evaluates the energy consumed by service
calls is applied to predict workload-dependent energy consumption. In order to account for
idle consumption the authors additionally include a static consumption offset. All services
offered by a component are assumed to cause the same energy consumption. This is an
acceptable abstraction for the embedded system domain where one component handles a
homogeneous task, e.g. controlling the brakes based on sensor signals. The parameter space
of these sensors are restricted by physical constraints such as the maximum speed of a car.
This is not the case for other other domains like enterprise software. Business components
offer an array of services with a large input parameter space. Depending on parameter
values, business components require largely varying resource demands. Assuming that all
services of a component consume the same amount of energy consequently would result in
imprecise consumption predictions.

The design of energy efficient self-adaptive software systems on an architectural level
has already been investigated by Gtz et al. [GWCA12, GWR™13]. Main goal of the
proposed architectural design framework is to find optimal system configurations for single
users. This is achieved by adapting the runtime configuration of the system to the QoS
requirements of a single user. Multi-user scenarios are not considered by the approach.
Hence it cannot be applied to the design of self-adaptive systems that are used by multiple
users. Gotz argues that QoS requirements could be checked against an architectural model
of the self-adaptive systems using simulation [G13, p. 103f.]. The developer leaves the
development of a concept for this evaluation open to be addressed in future work.

31

Brunnert et al. [BWK14] outline an approach for capturing application profiles that sub-
sume the core characteristics of a static software system. These profiles are used to make
QoS-driven deployment decisions for different software architectures. Runtime reconfig-
urations are not considered by the authors. Brunnert et al. enhance power consumption
characteristics as part of PCM’s Resource Environment specifications to enable design-time
power consumption analysis for software systems. Reasoning on power consumption is
limited to an average-case analysis of static software systems. It is thus not possible to
identify whether restrictions on peak power consumption are violated at specific points in
time. Consequently, sizing decisions for the power provisioning infrastructure are therefore
limited.

CloudSim by Calheiros et al. [CRBT11] is a simulator for Infrastructure-as-a-Service (IaaS)
data centers. It focuses on the operation and optimization of running virtual machines
(VMs) in a data center. All information is provided as Java source code extending the
CloudSim simulation environment. There is no model abstraction of system entities and
their relation. Unlike Palladio, CloudSim does not consider parametric dependencies
and has no explicit usage model. Rather it simulates VMs as isolated entities. Power
consumption predictions per node are carried out based on the CPU utilization aggregated
over all VMs that are deployed on the same node. VM load is modeled directly as an
utilization function over time. Reasoning on the power consumption of a software system
requires accurate utilization descriptions.

4 Modeling the Power Consumption Characteristics of Software Sys-
tems

In order to reason on the power consumption of a software system on architectural level its
consumption properties need to be captured as part of its architectural description. This
section outlines our extension of PCM with power consumption characteristics.

infrastructure binding specification

N— N

ower distribution . consumption
p <<determines>> P

N " <<determines>> ower model
hierarchy characteristics P

<<annotates>>

pcm::resourceenvironment

Figure 1: Relation between models used for specifying power consumption characteristics of a
software system

PCM’s Resource Environment models the hardware environment strictly by their perfor-
mance and reliability characteristics. Our model annotates the hardware components in the

32

Resource Environment with their power consumption characteristics. Figure 1 depicts the
relation between the model extensions and PCM. Our model introduces a model abstraction
of the system’s power provisioning infrastructure (Power Infrastructure). Power Specifi-
cation describes models for evaluating the power consumption of hardware components
and the power provisioning infrastructure. The Power Binding model links both models
by binding each element in the infrastructure to the model used for evaluating its power
consumption.

This section is organized as follows. Section 4.1 discusses advantages and disadvantages of
different extension mechanisms that were considered for introducing power consumption
characteristics to PCM. Section 4.2 presents the power provisioning model. In section 4.3
an overview is given on the model for specifying power models. Section 4.4 outlines the
model used to specify consumption characteristics of hardware components.

4.1 Extending the Palladio Component Model

There are three approaches to extend PCM by another quality dimension. They are presented
in the following including their advantages and drawbacks.

First, PCM can be invasively modified to include additional quality characteristics. This
approach was taken for reliability [BKBR12] and is proposed by Brunnert et al. for power
consumption predictions [BWK14]. The main disadvantage of an invasive extension is that
it breaks support of existing tooling.

Second, PCM’s profile extension mechanism [KDHT 12] or EMF’s child creation extenders
[Mer08] can be used to introduce new properties and elements to PCM. These approaches
are best taken when invasive changes to PCM are required that should not be propagated to
all PCM-based tooling.

Third, it is possible to introduce a new meta-model which annotates or references existing
PCM elements. As this alternative annotates existing model elements, it should only be
chosen when no backwards navigation is needed or indicated.

We chose the last option where a separate model represents power consumption character-
istics of the modeled software system. Model elements that have a counterpart in PCM’s
Resource Environment are annotated with their consumption characteristics. The reasons
for choosing this extension mechanism are as follows. Wile power consumption is an im-
portant quality characteristic, it is not essential to other characteristics such as performance.
Hence a non-invasive extension is indicated. Power consumption properties of hardware
have no direct implications on their performance. It consequently suffices to introduce
power consumption characteristics to PCM in an annotation model.

33

infrastructureJ

Powerlnfrastructure

Repository
0.1
<<abstract>>
PowerProvidingEntity (0.1 * <<abstract>>

suppliablePeakPower PowerConsumingEntity
:Measure<Power>

<<abstract>> PowerConsuming

PowerConsuming Resource
ProvidingEntity

4 Q:m::resourceenvironment

ProcessingResource
Specification

7 b

MountedPower * 1
DistributionUnit

PowerDistributionUnit

ResourceContainer

Figure 2: Power Infrastructure meta-model

4.2 Power Provisioning Infrastructure

The power provisioning infrastructure of data centers is typically structured hierarchically
[FWBO07]. It consists of a hierarchy of entities that provide and distribute power, e.g. PDUs,
and entities that consume power, such as the physical components of a node. Figure 2
depicts our proposed model for the power provisioning infrastructure.

PowerlnfrastructureRepository hosts a set of power provisioning infrastructure model
descriptions. Typically only one infrastructure model is considered. However, the repository
enables an easier modeling of alternative power provisioning infrastructures.

PowerConsumingEntity subsumes all components in the system that consume power.

PowerConsumingResource represents a physical resource that consumes power. It annotates
a ProcessingResourceSpecification in a PCM instance with its consumption properties.
Every PowerConsumingResource is a PowerConsumingEntity. An example for PowerCon-
sumingEntity is the CPU of a compute node.

A PowerProvidingEntity distributes power to a set of PowerConsumingEntities nested
below them. suppliablePeakPower defines the peak power that all PowerConsumingEntities
connected to it can draw in total at any point in time.

Aside from entities that only provide or consume power there are also components that
take on both providing and consuming roles, e.g. PDUs. PowerConsumingProvidingEntity

34

subsumes these entities.

PowerDistributionUnit extends PowerConsumingProvidingEntity. A PDU is connected to a
power source (PowerProvidingEntity) from which it draws power. The PDU then further
distributes power to connected PowerConsumingEntities.

MountedPowerDistributionUnit further specializes PowerDistributionUnit. It links the
PDU to a ResourceContainer in PCM’s Resource Environment. In essence, a mounted
PDU corresponds with a Power Supply Unit of a node or a rack-mounted PDU. The
relationship between a mounted PDU and its ResourceContainer is explicitly modeled so
that consumption properties of nodes and racks can individually be traced.

4.3 Power Model Specifications

specification J

PowerModelRepository

0.1
M
<<abstract>> 0..1 * <<interface>>
PowerModelSpecification ConsumptionFactor
ResourcePower DistributionPower

ModelSpecification ModelSpecification MeasuredFactor FixedFactor

metricType 1 L pcm::metricspec

NumericalBase
MetricDescription

Figure 3: Power Specification meta-model

The Power Specification model shown in Figure 3 enables an explicit specification of power
models and their input parameters. The calculation method is not specified in the Power
Specification model instance. Rather, a calculator is implemented for each instance as part

35

of PCA as is explained further in Section 5.

The Power Specification Model is designed for unit support, e.g watt and ampere. Palladio’s
stochastical expression language StoEx [Koz08] was considered for specifying power
models but ruled out due to lacking support for metric units.

specification J pcm::metricspec
BasicSpecRepo

:ResourcePower -
ModelSpecification Wﬂ
Utilization
? :NumericalBaseMetric
Description

LinearPowerModel
:ResourcePower
ModelSpecification

¢

Idle:FixedFactor Busy:FixedFactor u:MeasuredFactor ——

Figure 4: Linear power model represented as an instance of the PowerModelSpecification

A PowerModelRepository contains a set of PowerModelSpecifications. PowerModelSpec-
ification represents a certain type of power consumption model (c.f. Figure 3). In the
following, we will explain the concepts of the model based on the exemplary LinearPower-
Model instance displayed in Figure 4. The depicted LinearPowerModel represents a simple
linear regression-based power model for compute nodes as proposed by Fan et al [FWBO07].
Fan et al. identify a close-to-linear relation between power consumption of a whole node
and its CPU utilization . The linear power model predicts the power consumption P (u)
under utilization u by interpolating between the node’s power consumption in an Idle and
Busy state: P(u) = Praie + (Ppusy — Praie) - u-

A ConsumptionFactor specifies an input parameter of a power model. In the example, Idle,
Busy and u are consumption factors. ConsumptionFactors are further distinguished into
Fixed and Measured Factors.

Fixed Factors are independent from measurements and describe static power consumption
characteristics of a system. For the linear power consumption model the fixed factors are
made up of the CPU’s power consumption under Idle (Prqic) and Busy (Ppuysy) load.

As their name implies, Measured Factors are extracted from the simulated system through
measurements. A Measured Factor’s metric is specified in direct reference to Palladio’s
Metric Specification Framework [Leh14]. For the linear power model the measured CPU
utilization u is included as a Measured Factor.

Similar to Palladio’s Resource Repository, instances of the Power Specification model are
intended for reuse. Linear and other power models allow to predict the power consumption
of a wide range of systems. Hence they are defined separately from the Power Infrastructure
model.

This section discussed the specification of power models as a set of input parameters.

36

Consumption parameters alone do not suffice in evaluating the power consumption. It is
necessary to define how the predictions are calculated from these parameters. We opted for
a code-based realization of the calculation methods of power models. Section 5 provides
details on the calculation.

4.4 Specifying Consumption Characteristics of the Infrastructure

Power consumption characteristics of the infrastructure are not directly specified in the
infrastructure model. They are maintained in the separate Binding model and referenced
from the Infrastructure model. The main rationale behind separating these two models lies
in increased reuse and ease of variation compared to a direct specification of consumption
characteristics in the infrastructure model. E.g., power consumption characteristics of an
IBM System X3350M3 server can be described in terms of its consumption in idle (230 W)
and busy states (410 W) as is done by Brunnert et al. [BWK14].

infrastructure) binding J specification J

PowerBinding
Powerlnfrastructure Repository
Repository
0.1
?0,,1 .
*
bstract 0.1 FixedFactorValue | tor
<<abstract>> | "
<<abstract>> * o —] - - FixedFactor
" . Power value: Measure<Double, 1
PowerProvidingEntity | distributionPowerBinding Power>

X B

<<abstract>> DistributionPower ResourcePower * 1 ResourcePower
PowerConsumingEntity Binding Binding ModelSpecification
A * 1 resourcePowerBinding
1 DistributionPower
PowerConsuming * ModelSpecification

Resource

Figure 5: Power Binding meta-model

Figure 5 depicts our proposed binding model. It specifies the relation between the entities
in the provisioning infrastructure and power models. Both Resource and Distribution-
PowerBinding specialize PowerBinding.

A PowerBinding comes with a set of FixedFactorValues. Every FixedFactorValue deter-
mines the value of a FixedFactor. In case a server’s power consumption can be described by
a linear power model, the FixedFactorValues of the respective PowerBinding would specify
the consumption of the node in a busy and idle state in Watt.

A ResourcePowerBinding defines the consumption characteristics of a type of PowerCon-
sumingResource. Continuing with the previous example, all X3350M3 nodes in a system
can reference the same binding. Should a CPU-based linear power consumption model not

37

sufficiently capture consumption characteristics of a node, e.g. because it is exclusively
used as a file server, the PowerConsumingResource can reference a more suitable binding.

Every PowerProvidingEntity references a DistributionPowerBinding, which defines with
what values the input parameters of a DistributionPowerModelSpecification are instantiated.
As for ResourcePowerBinding, a DistributionPowerBinding can be reused across multiple
PowerProvidingEntities.

5 Power Consumption Analyzer

The Power Consumption Analyzer (PCA) evaluates the power consumption of a software
system. The analysis requires the specification of the system as a PCM instance and
corresponding consumption annotations in the shape of a Power Consumption model (c.f.
Section 4) instance. As part of a needs analysis for architecture-level power consumption,
we identified two use cases covering static and self-adaptive software systems. PCA support
both use cases, which are as follows: The Power Consumption Analyzer (PCA) evaluates
the power consumption of a software system. The analysis requires the specification of
the system as a PCM instance and corresponding consumption annotations in the shape
of a Power Consumption model (c.f. Section 4) instance. As part of a needs analysis
for architecture-level power consumption, we identified two use cases covering static and
self-adaptive software systems. PCA support both use cases, which are as follows:

In the first use case, a software architect wants to predict power consumption of the sys-
tem in a specific usage context. The software architect intends to compare the impact
of design decisions on the systems’ power consumption. In this case, the structure and
consumption characteristics of hardware components have no impact on the system per-
formance. Consequently, power consumption is analyzed as part of a post-simulation
step. The advantage of analyzing power consumption separate from the simulation is that
different power provisioning infrastructures can be compared without requiring additional
time-intensive simulation runs. A new simulation is only necessary when both performance
and power consumption characteristics have changed, e.g. because new servers are added
to the resource environment.

In the second case, the software architect is interested in evaluating the impact a power-
conscious self-adaptation tactic has on multiple quality characteristics. Power-conscious
self-adaptation tactics use power consumption measurements to reason on the power
efficiency of the system and issue system reconfigurations. The mutual dependency between
current system architecture and power consumption requires an intra-simulation analysis.

The implementation of PCA is designed for both intra- as well as post-simulation power
consumption analysis. Figure 6 sketches the integration of the PCA with the Quality
Analysis Lab developed by Lehrig [Leh14] that is part of the upcoming Palladio release 3.5.
The PCA evaluates the power consumption for a given EvaluationContext. This context
consists of an instance of our Power Consumption model, the PCM instance it annotates,
and a set of relevant measurements taken from the simulated system-under-analysis.

PCA computes the power consumption of individual PowerConsumingResources using

38

uality Analysis Lab (QUAL
Q ¥ ¥ (QuAL) Legend
Software Probe Recorder Ul — QuAL
Architecture Framework Framework I~ === | — — Extension
Simulator |—3 (EDP2) | Power |
————— Consumption
Simulizar I Utilization I---' :f?-s-%-s» ! Analysis :
| Filter : | View
—_—— i e
————— 1 ———— 1 —— == ;
| Intra- | . | Post- <parametefizes>>
| Simulation I—l>| Evaluation Q—i Simulation
| Context |
| Context] | | Context

_____ —_— _—d —_—— ==

| <<uses>>
H

> | LinearPowerModel |

L _ Caleulator _

Figure 6: Integration of the Power Consumption Analyzer with Palladio’s Quality Analysis Lab
(QuAL) [Leh14]

calculators. A calculator programmatically evaluates power consumption of infrastructure
elements. For example, the LinearPowerModelCalculator for the linear power model
depicted in Figure 6 determines the power consumption of the node based on its current
utilization by evaluating the factors of P(u) = Prqie + (PBusy — Praie) - u. Every calculator
offers a calculate method that takes exactly one measurement for every metricType
of a MeasuredFactor specified in the corresponding PowerModelSpecification instance.
FixedFactors do not change and are thus passed as part of the calculator’s constructor
parameters.

After determining power consumption of all nested PowerConsumingEntities the analyzer
aggregates the power consumption of a PowerProvidingEntity. We apply the power model
concept to individual elements in the power provisioning infrastructure. This design
enables modeling of arbitrary conversion losses [PKAQ7] for each individual element in the
provisioning infrastructure hierarchy.

The following sections briefly sketch how the PCA is used as part of post- and intra-
simulation power consumption analysis to support software architects in designing power-
efficient software systems.

5.1 Post-Simulation Power Consumption Analysis

Post-simulation power consumption analysis allows software architects to analyze the power
consumption of a software system after a previous simulation run. It is possible to analyze
the power consumption of any element in the power provisioning infrastructure at any
given point in time. Consumption characteristics of the power provisioning infrastructure

39

can be changed without requiring repeated simulation. Post-simulation analysis leverages
measurements that were extracted from the simulation for a set of system metrics, e.g.
resource utilization for the linear power model presented in Section 4.3. Multiple power
provisioning systems can be compared on the basis of the same simulation run as changes
in the power consumption characteristics do not induce changes in the simulation logic.
Software architects can configure the analysis, e.g. by setting the size of the interval for
utilization-based metrics.

PCA calculates power consumption measurements of a PowerProvidingEntity by aggregat-
ing the power consumption of all connected elements. In case of post-simulation analysis
the measurements are taken from the Recorder Framework (c.f. Figure 6), which stores all
measurements of a simulation run. Power consumption is always calculated at a discrete
point in time. Yet, measured data from the experiment does not necessarily contain mea-
surements for said specific point in time. This is resolved by passing a derived calculated
value from the post-simulation context to the analyzer.

5.2 Intra-Simulation Power Consumption Analysis

Power-conscious self-adaptation tactics as proposed in [JHIT10, DSGT12, VANOS,
RRTT08] adapt the system based on power consumption measurements. While each
of the tactics has been evaluated for a set of specific software systems it is difficult to
estimate how they would impact quality characteristics of other systems. Estimating the
effect of using multiple energy-conscious self-adaptation tactics concurrently is even more
difficult. Furthermore, power-conscious and other self-adaptation tactics can influence
each other depending on specific thresholds for activation. By making power consumption
measurements available at intra-simulation time software architects are enabled to evaluate
combinations of all tactics and reason on QoS implications on an architectural level.

Intra-simulation power consumption analysis uses the same technical infrastructure as post-
simulation power consumption analysis. The PCA derives power consumption metrics from
measurements collected during the simulation by aggregating the power consumption of
individual elements in the Power Infrastructure model instance. The only difference is that
the PCA processes constantly updated measurements from a running simulation instead of
pre-recorded measurements. Calculators provide power consumption estimates of hardware
components to power consumption probes, which in turn provide power consumption
measurements as a basis for decisions of power-conscious self-adaptation tactics.

We are currently implementing the presented concepts as an extension of SimuLizar.
6 Conclusion and Outlook

This paper presented a model-driven approach for analyzing the power consumption of
static and self-adaptive software systems. By accounting for different power models and
temporary peaks our analysis improves the precision of power consumption estimations on

40

an architectural level when compared to previous work [BWK14, MBAG10].

Our proposed Power Consumption model captures the consumption characteristics of
a software system and its power provisioning infrastructure. It is designed to support
design-time reasoning on the power consumption of power-conscious software systems. We
presented how the three major aspects provisioning infrastructure (Power Infrastructure),
consumption characteristics of hardware components (Power Binding) and the power mod-
els used to evaluate consumption characteristics of the components (Power Specification)
can be abstracted. We showed the advantages of integrating them using a loose coupling
concept. It allows software architects to separately define and extend a software system’s
power provisioning infrastructure and the power models used to predict the consumption of
different types of hardware components.

The paper outlines a methodology and implementation for post- and intra-simulation
power consumption analysis of software systems. Post-simulation analysis allows software
architects to evaluate the power consumption of a software system. Thereby, multiple design
alternatives can be compared against each other for their effect on power consumption. Not
only is it possible to track peaks in power consumption for individual nodes but also for all
other elements in the power provisioning infrastructure, e.g. PDUs. As a significant portion
of large-scale software systems’ TCO is determined by their power efficiency, this ultimately
allows software architects to more accurately reason on the TCO. No repeated simulations
are required when power consumption properties of the system-under-analysis are changed.
Our approach further supports software architects in selecting a set of energy-conscious self-
adaptation tactics that are best suited to meet QoS goals in multiple quality dimensions. We
showed the integration of intra-simulation power consumption analysis with the SimuLizar
approach and how our extension supports reasoning on energy-conscious self-adaptation
tactics.

In future work we will increase the precision of power consumption predictions and enable
architecture-level cost projections based on power consumption.

The Power Infrastructure model includes power sources as explicit entities. As of now,
constant restrictions on the peak power provided by these PowerProvidingEntities are
captured. We plan to introduce temporal constraints on power consumption that are driven
by electricity price and availability. We expect a significant improvement of operational
cost projections for software systems that are operated in dynamic environments.

Power efficiency of software systems can be controlled through hardware and middleware
techniques such as ACPI [Hew13]. ACPI allows to control power efficiency by transitioning
resources between states with different power consumption and performance properties.
Palladio currently does not distinguish operational states of hardware. By introducing the
modeling of operational states to Palladio’s hardware resources, the evaluation of techniques
such as power capping [RRT+08] will be supported. We expect this to improve accuracy of
both power consumption and performance predictions.

We plan to account for reconfigurations to the execution environment of software systems,
e.g. turning nodes off and on. This allows focusing on the optimization for whole data
centres instead of a set of applications. Their inclusion should contribute further in achieving
more precise power consumption predictions for self-adaptive software systems.

41

Further ideas for future work include an explicit modeling of the power consumption caused
by network equipment, as well as cooling and ventilation. Our approach currently does not
explicitly account for cooling and ventilation, as both are strongly correlated with power
consumption of the computing infrastructure [FWBO07]. When modeling a system’s total
power consumption we thus follow Fan et al.’s proposition to include them into our power
models “as a fixed tax over the critical power” [FWBO07]. However, the approach presented
in this paper allows to include detailed power models for cooling by including them as
PowerConsumingEntities. Dependencies between the heat generated by the compute
hardware and their power consumption can be represented as MeasuredFactors to consider
load variations in a data center. We currently account for network power consumption
as a fixed factor since it is reported to be mostly static [FWB07, NPI*08]. Our model
can be extended to include network power consumption in a similar way as for cooling
and ventilation. The necessary steps comprise the introduction of network equipment as a
specialized PowerConsumingEntity and the specification of their consumption properties in
the Power Binding and Power Specification model.

7 Acknowledgements

This work is funded by the European Union’s Seventh Framework Programme under grant
agreement 610711.

References

[BBM13] Matthias Becker, Steffen Becker, and Joachim Meyer. SimuLizar: Design-Time
Modelling and Performance Analysis of Self-Adaptive Systems. In Proceedings of
Software Engineering 2013, SE2013, February 2013.

[BKBR12] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-Based Reliability
Prediction with the Palladio Component Model. [EEE Transactions on Software
Engineering, 38(6):1319-1339, Nov 2012.

[BKRO9] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model
for model-driven performance prediction. Journal of Systems and Software, 82(1):3 —
22, 2009. Special Issue: Software Performance - Modeling and Analysis.

[BLB13] Matthias Becker, Markus Luckey, and Steffen Becker. Performance Analysis of Self-
Adaptive Systems for Requirements Validation at Design-Time. In Proceedings of the
9th ACM SigSoft International Conference on Quality of Software Architectures, Q0SA
’13. ACM, June 2013.

[BWK14] Andreas Brunnert, Kilian Wischer, and Helmut Krcmar. Using Architecture-level
Performance Models As Resource Profiles for Enterprise Applications. In Proceedings
of the 10th International ACM Sigsoft Conference on Quality of Software Architectures,
QoSA 14, pages 53-62, New York, NY, USA, 2014. ACM.

[CRBT11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
and Rajkumar Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud

4

[DSGT12]

[ERKRO6]

[FWB07]

[GI3]

[GHLKT12]

[GHMPOS]

[GWCA12]

[GWR13]

[Hew13]

[HP13]

[JHIT10]

[KBHO7]

Computing Environments and Evaluation of Resource Provisioning Algorithms. Softw.
Pract. Exper., 41(1):23-50, January 2011.

Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien
Hermenier. An Energy Aware Framework for Virtual Machine Placement in Cloud
Federated Data Centres. In Proceedings of the 3rd International Conference on Future
Energy Systems: Where Energy, Computing and Communication Meet, e-Energy 12,
pages 4:1-4:10, New York, NY, USA, 2012. ACM.

Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ranganathan.
Full-System Power Analysis and Modeling for Server Environments. In Workshop on
Modeling Benchmarking and Simulation (MOBS), 2006.

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power Provisioning for
a Warehouse-sized Computer. SIGARCH Computer Architecture News, 35(2):13-23,
June 2007.

Sebastian Gotz. Multi-Quality Auto-Tuning by Contract Negotiation. PhD thesis,
Technische Universitit Dresden, Dresden, Germany, February 2013.

B. Grot, D. Hardy, P. Lotfi-Kamran, B. Falsafi, C. Nicopoulos, and Y. Sazeides. Opti-
mizing Data-Center TCO with Scale-Out Processors. Micro, IEEE, 32(5):52-63, Sept
2012.

Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The Cost of a
Cloud: Research Problems in Data Center Networks. SIGCOMM Comput. Commun.
Rev., 39(1):68-73, December 2008.

Sebastian Gotz, Claas Wilke, Sebastian Cech, and Uwe ABBmann. Sustainable ICTs
and Management Systems for Green Computing, chapter Architecture and Mechanisms
for Energy Auto Tuning, pages 45-73. 1GI Global, June 2012.

Sebastian Gotz, Claas Wilke, Sebastian Richly, Christian Piechnick, Georg Piischel,
and Uwe ABmann. Model-driven Self-optimization Using Integer Linear Programming
and Pseudo-Boolean Optimization. In The Fifth International Conference on Adaptive
and Self-Adaptive Systems and Applications (ADAPTIVE 2013), pages 55-64. IARIA,
2013.

Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Tech-
nologies Ltd., Toshiba Corporation. Advanced Configuration and Power Interface
Specification, 2013.

Chung-Hsing Hsu and S.W. Poole. Revisiting Server Energy Proportionality. In
Parallel Processing (ICPP), 2013 42nd International Conference on, pages 834—840,
Oct 2013.

Gueyoung Jung, M.A Hiltunen, K.R. Joshi, R.D. Schlichting, and C. Pu. Mistral:
Dynamically Managing Power, Performance, and Adaptation Cost in Cloud Infrastruc-
tures. In 2010 IEEE 30th International Conference on Distributed Computing Systems
(ICDCS), pages 62-73, June 2010.

Heiko Koziolek, Steffen Becker, and Jens Happe. Predicting the Performance of
Component-Based Software Architectures with Different Usage Profiles. In Sven
Overhage, Clemens A. Szyperski, Ralf Reussner, and Judith A. Stafford, editors,
Software Architectures, Components, and Applications, volume 4880 of Lecture Notes
in Computer Science, pages 145—163. Springer Berlin Heidelberg, 2007.

43

[KDH' 12]

[Koz08]

[KROS]

[Leh14]

[MBAG10]

[Mer08]

[MH11]

[NPIT08]

[PKAO7]

[PLL14]

[RRKOS]

[RRTT08]

Max E. Kramer, Zoya Durdik, Michael Hauck, Jorg Henss, Martin Kiister, Philipp
Merkle, and Andreas Rentschler. Extending the Palladio Component Model using
Profiles and Stereotypes. In Steffen Becker, Jens Happe, Anne Koziolek, and Ralf
Reussner, editors, Palladio Days 2012 Proceedings (appeared as technical report),
Karlsruhe Reports in Informatics ; 2012,21, pages 7-15, Karlsruhe, 2012. KIT, Faculty
of Informatics.

Heiko Koziolek. Parameter dependencies for reusable performance specifications of
software components. PhD thesis, Carl von Ossietzky University of Oldenburg, 2008.

Heiko Koziolek and Ralf Reussner. A Model Transformation from the Palladio Compo-
nent Model to Layered Queueing Networks. In Proceedings of the SPEC International
Workshop on Performance Evaluation: Metrics, Models and Benchmarks, SIPEW °08,
pages 58-78, Berlin, Heidelberg, 2008. Springer-Verlag.

Sebastian Lehrig. Quality Analysis Lab (QuAL): Software Design Description and
Developer Guide Version 0.2. Technical report, Universitit Paderborn, Faculty of
Electrical Engineering - Computer Science - Mathematics, April 2014.

Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske. Architecture-
Driven Reliability and Energy Optimization for Complex Embedded Systems. In
George T. Heineman, Jan Kofron, and Frantisek Plasil, editors, Research into Practice -
Reality and Gaps, volume 6093 of Lecture Notes in Computer Science, pages 52—67.
Springer Berlin Heidelberg, 2010.

Ed Merks. Creating Children You Didn’t Know Existed. http://ed-merks.
blogspot.de/2008/01/creating—children-you-didnt-know.
html, January 2008. Online; accessed 31/10/2014.

Philipp Merkle and Jorg Henss. EventSim — An Event-driven Palladio Software
Architecture Simulator. In Steffen Becker, Jens Happe, and Ralf Reussner, editors,
Palladio Days 2011 Proceedings (appeared as technical report), Karlsruhe Reports in
Informatics ; 2011,32, pages 15-22, Karlsruhe, 2011. KIT, Fakultit fiir Informatik.

Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and David
Wetherall. Reducing Network Energy Consumption via Sleeping and Rate-adaptation.
In Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI’ 08, pages 323-336, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

A. Pratt, P. Kumar, and T.V. Aldridge. Evaluation of 400V DC distribution in telco and
data centers to improve energy efficiency. In Telecommunications Energy Conference,
2007. INTELEC 2007. 29th International, pages 32-39, Sept 2007.

Giuseppe Procaccianti, Patricia Lago, and Grace A. Lewis. Green Architectural Tactics
for the Cloud. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on,
pages 41-44, April 2014.

Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A Comparison
of High-level Full-system Power Models. In Proceedings of the 2008 Conference on
Power Aware Computing and Systems, HotPower’ 08, pages 3-3, Berkeley, CA, USA,
2008. USENIX Association.

Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and

Xiaoyun Zhu. No "Power” Struggles: Coordinated Multi-level Power Management for
the Data Center. SIGARCH Comput. Archit. News, 36(1):48-59, March 2008.

44

[SEMMOS]

[VANOS]

[ZWW12]

Chiyoung Seo, G. Edwards, S. Malek, and N. Medvidovic. A Framework for Estimat-
ing the Impact of a Distributed Software System’s Architectural Style on its Energy
Consumption. In Seventh Working IEEE/IFIP Conference on Software Architecture,
WICSA 2008, pages 277-280, February 2008.

Akshat Verma, Puneet Ahuja, and Anindya Neogi. pMapper: Power and Migration Cost
Aware Application Placement in Virtualized Systems. In Valrie Issarny and Richard
Schantz, editors, Middleware 2008, volume 5346 of Lecture Notes in Computer Science,
pages 243-264. Springer Berlin Heidelberg, 2008.

Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Electricity Bill Capping for Cloud-
Scale Data Centers that Impact the Power Markets. In Parallel Processing (ICPP),
2012 41st International Conference on, pages 440-449, Sept 2012.

45

Application Performance Monitoring:
Trade-Off between Overhead Reduction and
Maintainability

Jan Waller, Florian Fittkau, and Wilhelm Hasselbring

Department of Computer Science, Kiel University, Kiel, Germany
{jwa,ffi,wha} @informatik.uni-kiel.de

Abstract: Monitoring of a software system provides insights into its runtime behavior,
improving system analysis and comprehension. System-level monitoring approaches
focus, e.g., on network monitoring, providing information on externally visible sys-
tem behavior. Application-level performance monitoring frameworks, such as Kieker
or Dapper, allow to observe the internal application behavior, but introduce runtime
overhead depending on the number of instrumentation probes.

We report on how we were able to significantly reduce the runtime overhead of the
Kieker monitoring framework. For achieving this optimization, we employed micro-
benchmarks with a structured performance engineering approach. During optimiza-
tion, we kept track of the impact on maintainability of the framework. In this paper, we
discuss the emerged trade-off between performance and maintainability in this context.
To the best of our knowledge, publications on monitoring frameworks provide none or
only weak performance evaluations, making comparisons cumbersome. However, our
micro-benchmark, presented in this paper, provides a basis for such comparisons.

Our experiment code and data are available as open source software such that
interested researchers may repeat or extend our experiments for comparison on other
hardware platforms or with other monitoring frameworks.

1 Introduction

Software systems built on and around internal and external services are complex. Their
administration, adaptation, and evolution require a thorough understanding of their struc-
ture and behavior at runtime. Monitoring is an established technique to gather data on
runtime behavior and allows to analyze and visualize internal processes.

System monitoring approaches, such as Magpie [BIMNO3] or X-Trace [FPK*07], are
minimal invasive and target only network and operating system parameters. Although
these approaches have the advantage of minimal performance impact, they are not able to
provide a view of internal application behavior.

A solution to these limitations is application level monitoring, as provided by SPASS-
meter [ES14], Dapper [SBBT10], or Kieker [vHWH12]. However, application-level mon-
itoring introduces monitoring overhead depending on the number of monitored operations
and the efficiency of the monitoring framework. For a detailed view of a software system’s
internal behavior, monitoring must be all-embracing, causing significant performance im-

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

46

<<component>>

Q uopelUBWINIISU|

Kieker.Monitoring

2]

<<component>> <<component>>
Monitoring Analysis —
Probe Controller

}
}

pujdwes
Jlpoliad

_O
_O
_O

<<component>> $:|
Kieker.Analysis

Q

0
o
3
=h
Q
c
Q
§ Q <<component>>
<<component>>{| <<artifact>> An-aIYSiS
1+ Monitoring Menia s '_|F|Iter _
Controller Record Input6 /‘T‘\Output
s 7
- Q i ¥
5 H
3
= LT
g <<component>> Monitori <<component>>
: : onitoring || f
o Monli_:orlng Log/Stream Analysis
Writer Reader

uolelnbuod) 6

<<subsystem>> $:|
Pipe & Filter

Figure 1: UML component diagram of a top-level view on the Kieker framework architecture

pact. While many monitoring frameworks are claiming to have minimal impact on the
performance, these claims are often not backed up with a concise performance evaluation
determining the actual cost of monitoring.

Two of our recent projects, ExplorViz [FWWH13] and iObserve [HHJ T 13], use monitor-
ing to evaluate distributed cloud systems. They need detailed information on the internal
behavior of these systems. Therefore, they rely on a high-throughput monitoring frame-
work which is easy to adapt and maintain. Furthermore, the framework must be able to
transport logged data from the observed system components and aggregate it on a remote
analysis system.

The Kieker monitoring framework has been developed in our research group over the past
years. We evaluated this monitoring framework with a micro-benchmark to assess its
capability as high-throughput framework and used a structured performance engineering
approach to minimize its overhead while keeping the framework maintainable.

In this paper, we present our monitoring micro-benchmark MooBench and its application
in a structured performance engineering approach to reduce the monitoring overhead of the
Kieker framework. We report on our exploration of different potential optimization options
and our assessment of their impact on the performance as well as the maintainability and
usability of the framework. While high-throughput is very important to observe distributed
systems, the maintainability trade-off should be minimal. Otherwise the framework may
become unusable for a broader audience, effectively rendering the optimization useless.

47

In summary, our main contributions are:

 a micro-benchmark for monitoring frameworks,

 an example of a structured performance engineering activity for tuning the through-
put of monitoring frameworks using a micro-benchmark,

* and an evaluation of the trade-off between performance and maintainability in a
high-throughput monitoring framework.

Besides our approach and evaluation, we provide the research community with all sources
to repeat and validate our benchmarks and our results in our download area.' These down-
loads include our results in a raw data format, statistical analyses, and generated diagrams.

The rest of the paper is organized as follows. In Section 2, we introduce software quality
terms and the Kieker monitoring framework. Our benchmark developed for overhead eval-
uation of monitoring frameworks is presented in Section 3. Our performance tunings and
our evaluations are described in Section 4, Finally, related work is discussed in Section 5,
while we draw the conclusions and present future work in Section 6.

2 Foundations

This paper evaluates performance advances realized for the Kieker framework in conjunc-
tion with their impact on maintainability. For a better understanding of these two charac-
teristics we provide a brief description of the used software quality attributes (Section 2.1)
and an overview of the Kieker framework (Section 2.2) in this section.

2.1 Software Quality

The ISO/IEC 25010 [ISO11] standard, the successor of the well-known ISO/IEC 9126
[ISOO01] standard, defines software quality over eight distinct characteristics and 23 sub-
characteristics. In this paper we mainly focus on performance efficiency and maintainabil-
ity supplemented by functional completeness, as these characteristics are used to evaluate
different modifications of our monitoring framework.

Performance efficiency, as defined in [ISO11], comprises time behavior, resource utiliza-
tion, and capacity, as sub-characteristics for the degree of requirement fulfillment. For our
evaluation we focus on processing and response time in combination with throughput.

Maintainability is very important for a monitoring framework to be applicable in different
software projects. It is characterized by modularity, reusability, analyzability, modifiabil-
ity, and testability. However, maintainability, especially if realized by modularization or
generalization, can lead to a reduction in performance. Therefore, optimizations for these
two characteristics are conflicting requirements.

"http://kieker-monitoring.net/overhead-evaluation/

48

2.2 Kieker Monitoring Framework

The Kieker? framework [VHWH12, vHRH*09] is an extensible framework for applica-
tion performance monitoring and dynamic software analysis. The framework includes
measurement probes for the instrumentation of software systems and monitoring writers
to facilitate the storage or further transport of gathered data. Analysis plug-ins operate on
the gathered data, and extract and visualize architectural models, augmented by quantita-
tive observations.

In 2011, the Kieker framework was reviewed, accepted, and published as a recommended
tool for quantitative system evaluation and analysis by multiple independent experts of the
SPEC RG. Since then, the tool is also distributed as part of SPEC RG’s tool repository.>
Although originally developed as a research tool, Kieker has been evaluated in several
industrial systems [vVHRHT09].

Kieker Architecture

The Kieker framework provides components for software instrumentation, collection of
information, logging of collected data, and analysis of this monitoring data. A top-level
view of its architecture is presented in Figure 1. Each Kieker component is extensible and
replaceable to support specific project contexts.

The general Kieker architecture is divided into two parts: The Kieker.Monitoring com-
ponent for monitoring software systems and the Kieker.Analysis component for analysis
and visualization of gathered data. These two components are connected by a Monitoring
Log or Stream, decoupling the analysis from the monitoring and providing the means to
perform the analysis on a separate system resulting in a reduced performance impact on
the monitored system.

The focus of this paper is on the Kieker.Monitoring component, see the left side in Fig-
ure 1. It is realized by three subcomponents for data collection, monitoring control, and
data delivery. Data collection is performed by MonitoringProbes which are technology
dependent, as they are integrated into the monitored software system. The Monitoring-
Controller plays a central role in the monitoring side of Kieker. To handle record data,
it accepts MonitoringRecords from probes and delivers them to the MonitoringWriter.
Kieker comes with different MonitoringWriters addressing different needs for monitoring
data handling, like logs and streams. Asynchronous MonitoringWriters contain a separate
WriterThread to decouple the overhead of writing from the monitored software system.
In this case, MonitoringRecords are exchanged and buffered via a configurable (block-
ing) queue. All interfaces of Kieker.Monitoring are well defined, allowing to add new
components or to augment functionality in a transparent way.

2http://kieker-monitoring.net
3http://research.spec.org/projects/tools.html

49

: MonitoredClass : MonitoringProbe : MonitoringWriter : WriterThread

Application i i
M monitoredMethod() triggerBefore() ’

isMonitoringEnabled()
|

collectData()

- — =>{r: MonitoringRecord

writeMonitoringRecord(r)
W, L notifyWriter(r)

|
triggerAfter() |

Ci

| |
| |
| |
collectData() : :
C, | |
- — > r: MonitoringRecord : :
w writeMonitoringRecord(r) !
M L notifyWriter(r)
<—————————= K P

i ! ! X ! !

Figure 2: UML sequence diagram for method monitoring with the Kieker framework [WH13]

3 MooBench Benchmark

Benchmarks are used to compare different platforms, tools, or techniques in experiments.
They define standardized measurements to provide repeatable, objective, and comparable
results. In computer science, benchmarks are used to compare, e. g., the performance of
CPU, database management systems, or information retrieval algorithms [SEHO03]. In this
paper, we use the MooBench benchmark to measure the overhead caused by monitoring
a method, to determine relevant performance tuning opportunities, and to finally evaluate
the impact of the optimization in the Kieker framework.

In this section, we first introduce the notion of monitoring overhead and provide a partition
into three causes of monitoring overhead (Section 3.1). Next, we provide a benchmark to
measure these portions of monitoring overhead (Section 3.2).

3.1 Monitoring Overhead

A monitored software system has to share some of its resources with the monitoring frame-
work (e. g., CPU-time or memory), resulting in the probe effect [Jai91]. The probe effect
is the influence on the behavior of the system by measuring it. This influence includes
changes to the probabilities of non-deterministic choices, changes in scheduling, changes
in memory consumption, or changes in the timing of measured sections. Here, we take a
look at the overhead causing parts of the probe effect.

Monitoring overhead is the amount of additional usage of resources by a monitored exe-
cution of a program compared to a normal (not monitored) execution of the program. In

50

Listing 1: MonitoredClass with monitoredMethod()

class MonitoredClass {
ThreadMXBean threadMXBean = ManagementFactory
.getThreadMXBean ();
long monitoredMethod (long methodTime, int recDepth) {
if (recDepth > 1) {
return this.monitoredMethod (methodTime, recDepth —1);
} else {
final long exitTime = this.threadMXBean
.getCurrentThreadUserTime () + methodTime;
long currentTime ;
do {
currentTime = this.threadMXBean
.getCurrentThreadUserTime ();
} while (currentTime < exitTime);
return currentTime ;

this case, resource usage encompasses utilization of CPU, memory, I/O systems, and so
on, as well as the time spent executing. Monitoring overhead in relation to execution time
is the most commonly used definition of overhead. Thus, in the following, any reference to
monitoring overhead concerns overhead in time, except when explicitly noted otherwise.

3.1.1 Causes of Monitoring Overhead

In Figure 2, we present a simplified UML sequence diagram representation of the control
flow for monitoring a method execution in the Kieker monitoring framework.Although
this diagram is tailored to the Kieker framework, other application level monitoring frame-
works usually have a similar general behavior. As annotated in red color in the diagram,
we propose a separation into three different portions of monitoring overhead while moni-
toring an application [WH12].

These portions are formed by three common causes of application level monitoring over-
head: (1) the instrumentation of the monitored system itself (1), (2) collecting data within
the system, e. g., response times or method signatures, (C'), and finally (3) either writing
the data into a monitoring log or transferring the data to an analysis system (W). These
three causes and the normal execution time of a monitored method (7") are further detailed
below:

T The actual execution time of the monitoredMethod(), i. e., the time spent executing
the actual code of the method if no monitoring is performed, is denoted as 7T'.

51

In Figure 2 this time is annotated with ared T'. Although sequence diagrams provide
a general ordering of before and after, the depicted length of an execution carries
no meaning. Thus, for reasons of space and clarity, the illustration of the actual
execution time 7" in the figures is small compared to the sum of the three overhead
timings. However, note that in actual systems the execution time 7" is often large
compared to the sum of overhead.

Before the code of the monitoredMethod() in the MonitoredClass is executed,
the triggerBefore() part of the MonitoringProbe is executed. Within the probe,
isMonitoringEnabled() determines whether monitoring is activated or deactivated
for the monitoredMethod(). If monitoring is currently deactivated for the method,
no further probe code will be executed and the control flow immediately returns to
the monitoredMethod(). Besides these operations of the monitoring framework,
I also includes any overhead caused by the used instrumentation. For instance,
when performing aspect-oriented instrumentation with AspectJ, similar calls to our
triggerBefore() are performed internally.

In Figure 2, I indicates the execution time of the instrumentation of the method
including the time required to determine whether monitoring of this method is acti-
vated or deactivated.

If monitoring of the monitoredMethod() is active, the MonitoringProbe will col-
lect some initial data with its collectData() method, such as the current time and
the method signature, and create a corresponding MonitoringRecord in memory
(duration C17). After this record is forwarded to the MonitoringWriter, the control
flow is returned to the monitoredMethod().

When the execution of the actual code of the monitoredMethod() finished with
activated monitoring, the triggerAfter() part of the MonitoringProbe is executed.
Again, some additional data, such as the response time or the return values of the
method, is collected and another corresponding MonitoringRecord is created in
main memory. Finally, this record is forwarded to the MonitoringWriter, too.

In Figure 2, the time needed to collect data of the monitoredMethod() and to create
the MonitoringRecords in main memory is C = Cy + Cs.

Each created and filled MonitoringRecord r is forwarded to a MonitoringWriter
with the method writeMonitoringData(r). The MonitoringWriter in turn stores
the collected data in an internal buffer, that is processed asynchronously by the
WriterThread into the Monitoring Log/Stream.

Depending on the underlying hardware and software infrastructure and the avail-
able resources, the actual writing within this additional thread might have more or
less influence on the results. For instance, in cases where records are collected faster
than they are written, the internal buffer reaches its maximum capacity and the asyn-
chronous thread becomes effectively synchronized with the rest of the monitoring
framework. Thus, its execution time is added to the caused runtime overhead of V.
In other cases, with sufficient resources available, the additional overhead of the
writer might be barely noticeable [WH12].

52

Listing 2: Benchmark thread calling monitoredMethod()

MonitoredClass mc; //initialized before
long start_ns , stop_ns;

for (int i = 0; i < totalCalls; i++) {
start_ns = System.nanoTime ();
mc. monitoredMethod (methodTime , recDepth);
stop_ns = System.nanoTime ();
timings[i] = stop_ns — start_ns;

In Figure 2, W = W; 4 W is the amount of overhead caused by placing the mon-
itoring data in an exchange buffer between the MonitoringWriter and the Writer-
Thread as well as possibly the time of actually writing the collected monitoring
data into a monitoring log or into a monitoring stream.

3.1.2 Measures of Monitoring Overhead

In this paper, we are focussed on improving the monitoring throughput, i.e., the number
of MonitoringRecords sent and received per second, instead of the flat monitoring cost
imposed per MonitoringRecord, i. e., the actual change in a monitored method’s response
time. This response time and the monitoring throughput are related: improving one mea-
sure usually also improves the other one. However, with asynchronous monitoring writers
(as in the case of Kieker and our experiments) the relationship between throughput and
response time can become less obvious.

In order to measure the maximal monitoring throughput, it is sufficient to minimize 7'
while repeatedly calling the monitoredMethod(). Thus MonitoringRecords are pro-
duced and written as fast as possible, resulting in maximal throughput. As long as the
actual WriterThread is capable of receiving and writing the records as fast as they are
produced (see description of W above), it has no additional influence on the monitored
method’s response time. When our experiments reach the WriterThread’s capacity, the
buffer used to exchange records between the MonitoringWriter and the WriterThread
blocks, resulting in an increase of the monitored method’s response time.

3.2 Our Monitoring Overhead Benchmark

The MooBench micro-benchmark has been developed to quantify the three portions of
monitoring overhead under controlled and repeatable conditions. It is provided as open
source software.* Although the benchmark and our experiments are originally designed for
the Kieker framework, they can be adapted to other monitoring frameworks by exchanging
the used monitoring component and its configuration.

4http://kieker-monitoring.net/MooBench

53

1. Design/ . 3. Analysis /
Implementation

Figure 3: Benchmark engineering phases [WH13]

In order to achieve representative and repeatable performance statistics for a contempo-
rary software system, benchmarks have to eliminate random deviations. For instance,
software systems running on managed runtime systems, such as the Java VM (JVM), are
hard to evaluate because of additional parameters influencing the performance, such as
class loading, just-in-time compilation (JIT), or garbage collection [GBE(O7]. Therefore, a
benchmark engineering process with guidelines to produce good benchmarks is required.

Our benchmark engineering process is partitioned into three phases [WH13] (see Fig-
ure 3). For each phase, a good benchmark should adhere to several common guidelines.
For instance, it should be designed and implemented to be representative and repeat-
able [Gra93, Kou05, Hup09]. Similar guidelines should be followed during the execu-
tion and analysis/presentation of the benchmark [GBEO7], i. e., using multiple executions,
a sufficient warm-up period, and an idle environment. Furthermore, a rigorous statistical
analysis of the benchmark results and a comprehensive reporting of the experimental setup
are required in the analysis and presentation phase. Refer to [WH13] for an overview on
our employed guidelines.

In the following, we detail the three benchmark engineering phases of our micro-benchmark
for monitoring overhead. First, we describe our design and implementation decisions to
facilitate representativeness and repeatability. Next, we give guidelines on the execution
phase of our benchmark, focussing on reaching a steady state. Finally, we describe the
analyses performed by our benchmark in the analysis & presentation phase.

3.2.1 Design & Implementation Phase

The architecture of our benchmark setup is shown in Figure 4. It consists of the Bench-
mark System running in a JVM, and an External Controller initializing and operat-
ing the system. The Benchmark System is divided into two parts: First, the Moni-
tored Application, consisting of the Application instrumented by the Monitoring com-
ponent. Second, the Benchmark, consisting of the Benchmark Driver with one or more
active Benchmark Threads accessing the Monitored Application. For benchmarking
the Kieker framework, the Monitoring is realized by the Kieker.Monitoring component
(see Figure 1). For benchmarking of other monitoring frameworks, this component would
be replaced accordingly.

For our micro-benchmark, the Monitored Application is a basic application core, consist-
ing of a single MonitoredClass with a single monitoredMethod() (see Listing 1). This
method has a fixed execution time, specified by the parameter methodTime, and can sim-
ulate recDepth nested method calls (forming one trace) within this allocated execution
time. During the execution of this method, busy waiting is performed, thus fully utiliz-

54

Enterprise Server

O <<component>> ;':-J:l Q
External Controller

Java VM
<<component>> E
Benchmark System
<<component>> <<component>> E
Monitored Application Benchmark
<<component>> E <<component>>

Monitoring Benchmark Driver
<<component>> E _O <<component>>

Application] | Benchmark Thread

Figure 4: Architecture of the benchmark setup

ing the executing processor core. The loop of the method cannot be eliminated by JIT
compiler optimizations, thus avoiding common pitfalls in benchmark systems. In order
to correctly simulate a method using the CPU for a period of time despite the activities
of other threads in the system, we use getCurrentThreadUserTime() of IMX’s Thread-
MXBean. The operating system and the underlying hardware of the Benchmark System
have to provide a sufficient accuracy of the method in order to get stable and repeatable
results. In the case of single threaded benchmarks on an otherwise unoccupied system we
could use calls of System.nanoTime() or System.currentTimeMillis() instead.

The Benchmark Driver initializes the Benchmark System, then starts the required num-
ber of Benchmark Threads, and collects and persists the recorded performance data.

One or more concurrently executing Benchmark Threads call the monitoredMethod()
while recording its response time with calls to System.nanoTime() (see Listing 2). Each
thread is parameterized with a fotal number of calls, as well as the method time and the
recursion depth of each call. The total number of calls has to be sufficiently large to
include the warm-up period and a sufficient portion of the steady state. Execution time
and recursion depth can be utilized to control the number of method calls the monitoring
framework will monitor per second.

The External Controller calls the Monitored Application with the desired parameters
and ensures that the Monitoring component is correctly initialized and integrated into the
Monitored Application.

55

Each experiment consists of four independent runs, started by the external controller on
a fresh JVM invocation. Each individual portion of the execution time is measured by
one run (see 7', I, C', and W in Figure 2). This way, we can incrementally measure the
different portions of monitoring overhead as introduced in the previous Section 3.1. For
instance, we can use this information to guide our optimizations.

1. In the first run, only the execution time of the chain of recursive calls to the moni-
toredMethod() is determined (7).

2. Inthe second run, the monitoredMethod() is instrumented with a Monitoring Probe,
that is deactivated for the monitoredMethod(). Thus, the duration 7" + I is mea-
sured.

3. The third run adds the data collection with an activated Monitoring Probe without
writing any collected data (T'+ I + C).

4. The fourth run finally represents the measurement of full monitoring with the addi-
tion of an active Monitoring Writer and an active Writer Thread (T' + I + C + W).

In summary, this configurable benchmark design allows for repeatable measurements of
monitoring overhead, that are representative for simple traces.

3.2.2 Execution Phase

The actual benchmark execution is controlled by the provided External Controller. Each
independent experiment run to determine a portion of overhead can be repeated multiple
times on identically configured JVM instances to minimize the influence of different JIT
compilation paths. Furthermore, the number of method executions can be configured to
ensure steady state.

In order to determine the steady state of experiment runs, the benchmark user can analyze
the resulting data stream as a time series of averaged measured timings. Such a typical
time series diagram for experiments with Kieker is presented in Figure 5. To visualize the
warm-up phase and the steady state, invocations are bundled into a total of 1,000 bins. The
benchmark calculates the mean values of each bin and uses the resulting values to generate
the time series diagram.

Our experiments as well as our analyses of JIT compilation and garbage collection logs
of benchmark runs with the Kieker framework on our test platform suggest discarding the
first half of the executions to ensure a steady state in all cases (the grey-shaded part of
Figure 5 illustrates this). We propose similar analyses with other monitoring frameworks,
configurations, or hard- and software platforms to determine their respective steady states.

Furthermore, the Benchmark Driver enforces the garbage collection to run at least once at
the beginning of the warm-up phase.Our experiments suggest that this initial garbage col-
lection reduces the time until a steady state is reached. The regular spikes in the measured
execution times, seen in Figure 5, correspond to additional garbage collections.

56

Warm-up | Steady state

B Mean response time of ...
—— Writing (W) —— Instrumentation (1)
—— Collecting (C) —— Method time (T)
o_|
<

3‘0

Mean response time (ps)

Q_J\ | I | I l A ‘] 1 , |) |

T T T T
0 500000 1000000 1500000 2000000
Number of method executions

Figure 5: Time series diagram of measured timings

Finally, the benchmark user should ensure that the hard- and software environment, used
to execute the experiments, is held idle during the experiments. Thus, there should be no
perturbation by the execution of background tasks.

3.2.3 Analysis & Presentation Phase

In accordance with Georges et al. [GBEQ7], in the statistical analysis of the results of the
benchmark runs, our benchmark provides the mean and median values of the measured
timings across all runs instead of reporting only best or worst runs. In addition, it includes
the lower and upper quartile, as well as the 95% confidence interval of the mean value.

Of note is the calculation of the monitoring throughput within the benchmark. As men-
tioned in the benchmark design phase, our benchmark collects the response times of the
MonitoredMethod(). These response times measurements are collected in a number of
bins, each containing one second worth of method executions. The number of response
times per bin corresponds to the reported throughput of method executions per second.

To facilitate repetitions and verifications of our experiments, the benchmark user has to
provide a detailed description of the used configurations and environments.

3.3 Evaluations of MooBench

Our proposed micro-benchmark has already been evaluated with the Kieker framework in
multiple scenarios. In [vVHRHT09], we performed initial single-threaded measurements of
the Kieker framework and demonstrated the linear scalability of monitoring overhead with

57

increasing recursion depths. In [WH12], we compared the monitoring overhead of several
multi-threaded scenarios, of different writers, and of different hardware architectures with
each other. In [VHWHI12], we complemented additional results of our micro-benchmark
by measurements of the SPECjEnterprise®2010 macro-benchmark. A detailed compari-
son of several different releases of Kieker as well as of different monitoring techniques and
writers has been performed in [WH13]. Finally, in [FWBHI13], we extended the bench-
mark to measure the additional overhead introduced by an online analysis of monitoring
data concurrent to its gathering.

In order to broaden our evaluation basis, we intend to perform similar measurements with
further available monitoring framework. Furthermore, we plan to validate our results by
performing similar measurements with additional, more extensive benchmark suites and
macro-benchmarks. Finally, it is of interest to compare further hard- and software config-
urations, e. g., different heap sizes, JVMs, or platforms as well as, e. g., different instru-
mentation techniques.

4 Overhead Reduction and its
Impact on Maintainability

This section provides an evaluation of the monitoring overhead of Kieker with the Moo-
Bench micro-benchmark. The benchmark is used to measure the three individual portions
of monitoring overhead. The results of the benchmark are then used to guide our per-
formance tunings of Kieker. The tuned version is again evaluated and compared to the
previous one with the help of our benchmark. Thus, we provide an example how micro-
benchmarks can be used to steer a structured performance engineering approach.

In the rest of the section, we first provide a description of our experimental setup (Sec-
tion 4.1) to enable repeatability and verifiability for our experiments. Next, we describe
our base evaluation of the Kieker framework without any tunings (Section 4.2). The next
four sections (4.3 -4.6) describe our incremental performance tunings (PT). Finally, we
discuss threats to the validity of our conducted experiments (Section 4.7).

4.1 Experimental Setup

Our benchmarks are executed on the Java reference implementation by Oracle, specifi-
cally an Oracle Java 64-bit Server VM in version 1.7.0_25 running on an X6270 Blade
Server with two Intel Xeon 2.53 GHz E5540 Quadcore processors and 24 GiB RAM with
Solaris 10 and up to 4 GiB of available heap space for the Java-VM.

In our experiments, we use modified versions of Kieker 1.8 as the monitoring framework
under test. All modifications are available in the public Kieker Git repository with tags
starting with 1.8-pt-. Furthermore, access to these modifications and to the prepared ex-
perimental configurations and finally to all results of our experiments are available online.’

Shttp://kieker-monitoring.net/overhead-evaluation/

58

Table 1: Throughput for basis (traces per second)

No instr. Deactiv. Collecting Writing
Mean 1176.5k 757.6k 63.2k 16.6k
95% CI + 25.9k + 5.5k + 0.1k + 0.02k
Q: 1189.2k 756.6k 63.0k 16.2k
Median 1191.2k 765.9k 63.6k 16.8k
Qs 1 194.6k 769.8k 63.9k 17.2k

Aspect] release 1.7.3 with load-time weaving is used to insert the particular Monitor-
ing Probes into the Java bytecode. Kieker is configured to use a blocking queue with
10,000 entries to synchronize the communication between the MonitoringWriter and the
WriterThread. The employed TCP writer uses an additional buffer of 64 KiB to re-
duce network accesses. Furthermore, Kieker is configured to use event records from the
kieker.common.record.flow package and the respective probes.

We use a single benchmark thread and repeat the experiments on ten identically configured
JVM instances with a sleep time of 30 seconds between all executions. In all experiments
using a disk writer, we call the monitoredMethod() 20,000,000 times on each run with
a configured methodTime of Ous and a stack depth of ten. We discard the first half of
the measured executions as warm-up and use the second half as steady state executions to
determine our results.

A total of 21 records are produced and written per method execution: a single TraceMeta-
Data record, containing general information about the trace, e. g., the thread id or the host
name, and ten BeforeOperationEvent and AfterOperationEvent records each, contain-
ing information on the monitored method, e. g., time stamps and operation signatures. This
set of records is named a frace.

We perform our benchmarks under controlled conditions on a system exclusively used for
the experiments. Aside from this, the server machine is held idle and is not utilized.

To summarize our experimental setup according to the taxonomy provided by Georges et al.
[GBEO7], it can be classified as using multiple JVM invocations with multiple benchmark
iterations, excluding JIT compilation time and trying to ensure that all methods are JIT-
compiled before measurement, running on a single hardware platform with a single heap
size and on a single JVM implementation.

However, the benchmark can be adapted to other scenarios, such as using replay compila-
tion [GEBOS] to avoid JIT compiler influence, a comparison of different JVMs [EGDBO03],
varying heap sizes [BGH™06], or different hardware combinations.

4.2 Base Evaluation

In this section, we present the results of our base evaluation of Kieker. We use the
Kieker 1.8 code without the performance tunings mentioned in the following sections. The
results from this base evaluation are used to form a baseline for our tuning experiments.

59

Table 2: Throughput for PT1 (traces per second)

No instr. Deactiv. Collecting Writing
Mean 1190.5k 746.3k 78.2k 31.6k
95% CI + 4.1k + 4.1k + 0.1k + 0.1k
Q: 1191.0k 728.1k 78.3k 28.1k
Median 1194.1k 756.6k 78.5k 32.5k
Qs 1195.1k 763.7k 78.7k 34.7k

The overhead of writing monitoring data (W) is measured in the fourth experiment run of
each experiment. Writing requires the transport of the produced MonitoringRecords out
of the probe into a remote site via a network connection.

We use the TCP writer, intended for online analysis of monitoring data, i.e., the Moni-
toringRecords are transported to a remote system, e. g., a storage cloud, to be analyzed
while the monitored system is still running. In the case of our experiments, we used the
local loopback device for communication, to avoid further perturbation and capacity limits
by the local network. Per method execution 848 bytes are transmitted.

Experimental Results & Discussion

The results of our base evaluation are presented in Table 1 and the response times for the
four partitions of monitoring overhead of the TCP writer are shown in Figure 6.

For the uninstrumented benchmark system (first experiment run to measure the method
time (77)), we measured an average of 1,176.5k traces per second. Adding deactivated
Kieker probes (second experiment run to measure (7'+ 1)) resulted in an average of 757.6 k
traces per second.

Activating the probes and collecting the monitoring records without writing them (third
experiment run to measure (1" + I + (")) further reduced the average throughput to 63.2k
traces per second. The fourth experiment run with the addition of an active monitoring
writer (measuring (7T+1+4C+W)) exceeds the writer thread’s capacity (see Section 3.1.2),
thus causing blocking behavior.

The TCP writer for online analysis produces an average of 31.6k traces per second. Fur-
thermore, the 95% confidence interval and the quartiles suggest very stable results, caused
by the static stream of written data.

4.3 PT1: Caching & Cloning

As is evident by our analysis of the base evaluation, i. e., by the response times presented
in Figure 6 and by the throughputs in Table 1, the main causes of monitoring overhead
are the collection of data (C') and the act of actually writing the gathered data (/). Thus,
we first focus on general performance tunings in these areas. We identified four possible
performance improvements:

60

First, our preliminary tests showed that certain Java reflection API calls, like constructor
and field lookup, are very expensive. These calls are used by Kieker to provide an exten-
sible framework. Instead of performing these lookups on every access, the results can be
cashed in HashMaps.

Second, the signatures of operations are stored in a specific String format. Instead of
creating this signature upon each request, the resulting String can be stored and reused.

Third, a common advice when developing a framework is not to expose internal data struc-
tures, such as arrays. Instead of directly accessing the array, users of the framework should
only be able to access cloned data structures to prevent the risk of accidentally modifying
internal data. However, in most cases internal data is only read from a calling component
and not modified. For all these cases, copying data structures is only a costly effort with-
out any benefit. We omit this additional step of cloning internal data structures and simply
provide a hint in the documentation.

Finally, some internal static fields of classes were marked private and accessed by reflec-
tion through a SecurityManager to circumvent this protection. These fields were changed
to be public to avoid these problems when accessing the fields.

Experimental Results & Discussion

The resulting throughput is visualized in Table 2 and the response time is shown in Fig-
ure 6. As can be expected, the changes in the uninstrumented benchmark and with deacti-
vated probes are not significant. However, when adding data collection (C') we measured
an increase of 15k additional traces per second compared to our previous experiments.
Finally, the TCP writer’s throughput almost doubled while still providing very stable mea-
surements (small confidence interval).

The improvement discussed in this section will be used in Kieker because of their minimal
influence on the maintainability and the great improvements in the area of performance
efficiency.

4.4 PT2: Inter-Thread Communication

From PT1 we conclude that the queue is saturated and the monitoring thread waits for a
free space in the queue, i. e., the writer thread to finish its work. Otherwise, the monitoring
thread should be able to pass the records into the queue and proceed with the method.
Therefore, our target is to decrease the writing response time. In this step, we want to
achieve this goal by optimizing the communication between monitoring and writer thread.

Internal communication is presently modeled with the Java ArrayBlockingQueue class.
It is used to pass monitoring records from the monitoring thread to the writer thread.
To improve the inter-thread communication performance, we use the disruptor frame-
work,% which provides an efficient implementation for inter-thread communication. It

Shttp://lmax-exchange.github.io/disruptor/

61

Table 3: Throughput for PT2 (traces per second)

No instr. Deactiv. Collecting Writing
Mean 1190.5k 757.6k 78.2k 56.0k
95% CI =+ 3.6k + 6.2k + 0.1k + 0.2k
Q: 1190.5k 760.0k 78.1k 52.3k
Median 1191.6k 766.8k 78.4k 53.9k
Qs 1194.2k 771.4k 78.7k 61.0k

utilizes a ringbuffer to provide a higher throughput than, for instance, the Java Array-
BlockingQueue class.

The evaluation uses Kieker 1.8 with the designated disruptor ringbuffer. Again, we mea-
sure the record throughput per second and the average response time.

Experimental Results & Discussion

The resulting throughput is visualized in Table 3 and the response time is shown in Fig-
ure 6. Again, the no instrumentation and deactivated run is roughly the same from the
previous experiments. Since we did not improve the collecting phase of Kieker, the re-
sponse time and throughput for this part is approximately the same as in PT1. The writing
response time decreased from 16.35 ps to 6.18 us which is a decrease of about 62%. The
decrease in the response time is accompanied with an increase in the average throughput
rate from 31.6k to 56.0k traces per second (77%).

Therefore, our goal of decreasing the writing response time is achieved. The disruptor
framework speeds up the transfer into the buffer and also the reading from the buffer
resulting in the decreasing of the response time in the writing phase. However, the response
time of the writing phase still suggests that the monitoring thread is waiting for the buffer
to get an empty space for record passing.

The maintainability of Kieker is unharmed by this optimization because the disruptor
framework can be abstracted to provide a single put method into the buffer and the writer
components can be easily rewritten to the designated observer pattern of the disruptor
framework. It even improves the maintainability of the code since the thread management
and message passing is conducted by the disruptor framework. Therefore, this improve-
ment will be used in Kieker.

4.5 PT3: Flat Record Model

As discussed in PT2, the monitoring thread is waiting for the writer thread to finish its
work. Therefore, we want to further decrease the writing response time in this optimiza-
tion. In contrast to PT2, we aim for reducing the work which has to be conducted by the
writer thread.

62

Table 4: Throughput for PT3 (traces per second)

No instr. Deactiv. Collecting Writing
Mean 1176.5k 729.9k 115.7k 113.2k
95% C1 + 2.1k + 4.4k + 0.2k + 0.5k
Q 1 186.0k 726.5k 115.8k 113.1k
Median 1187.1k 734.5k 116.2k 114.3k
Qs 1189.2k 739.7k 116.5k 115.0k

The main work, which has to be conducted by the TCP writer, is the serialization of in-
coming MonitoringRecord objects into a byte representation and writing this byte repre-
sentation into a ByteBuffer. The root of the object serialization challenge is the creation
of the MonitoringRecords which are only created to pass them to the writer thread which
serializes them. No calculation is conducted with those records. Therefore, we can also
write the required monitoring information directly into a ByteBuffer and pass it into the
writer thread. This optimization imposes several performance advantages. First, the object
creation and thus garbage collection for those objects is avoided. Furthermore, the Byte-
Buffers passed into the disruptor framework are fewer objects than passing thousands of
MonitoringRecord objects. Since less work has to be conducted by the disruptor frame-
work, the inter-thread communication should be even faster.

For the evaluation we use Kieker 1.8 with the enhancement of directly writing the monitor-
ing information into a ByteBuffer. Again, we measure the record throughput per second
and the average response time.

Experimental Results & Discussion

The resulting throughput is shown in Table 4 and the response time is visualized in Fig-
ure 6. The no instrumentation and deactivated phase are the same as in the previous exper-
iments. In the collecting phase, the response time decreased from 11.44 ps to 7.23 us and
the throughput increased from 78.2k to 115.7k traces per second. The writing response
time decreased from 6.18 us to 0.2 us. The average throughput for the writing phase in-
creased from 56.0k to 113.2k traces per second.

The decrease in the writing response time is rooted in the reduction of the work of the
writer thread. This work is reduced to sending the ByteBuffer to the network interface and
therefore the ringbuffer does not fill up most of the time. The remaining 0.2 us overhead
for the writing phase is mainly found in the putting of the ByteBuffer into the ringbuffer.
The collecting phase also became more efficient. The response time decreased since no
MonitoringRecord objects are created and therefore less garbage collection takes place.

This improvement will not be used in Kieker because it is harder for the framework user
to add own MonitoringRecord types with this optimization. If she wants to add a Mon-
itoringRecord type, she would be forced to write directly into the ByteBuffer instead of
just using object-oriented methods. Thus, the optimization would hinder the modularity
and reusability of the code.

63

Table 5: Throughput for PT4 (traces per second)

No instr. Deactiv. Collecting Writing
Mean 1190.5k 763.3k 145.1k 141.2k
95% CI + 2.0k =+ 4.0k + 0.2k + 0.3k
Q 1187.4k 747.0k 144.2k 139.4k
Median 1191.4k 762.5k 146.1k 142.7k
Qs 1195.2k 778.4k 146.8k 144.2k

4.6 PT4: Minimal Monitoring Code

In PT3, we optimized the writing phase such that the monitoring thread does not need
to wait for the writer thread. Now, about 80% of the time consumed for monitoring the
software execution is spent in the collecting phase. Therefore, we try to optimize this
phase. As a further optimization, we deleted anything not directly related to pure monitor-
ing. For instance, we deleted interface definitions, consistence checks, and configurability.
Furthermore, we provide only five hard coded types of MonitoringRecords.

For the evaluation we use a newly created project, which only includes minimal code for
the monitoring. Again, we measure the record throughput per second and the average
response time.

Experimental Results & Discussion

The resulting response time is visualized in Figure 6 and the throughput is shown in Ta-
ble 5. The response time of the no instrumentation, deactivated, and writing phase are
roughly equal to the previous experiments. In the collecting phase, the response time
decreased and the throughput increased from 115.7k to 145.1k traces per second.

We attribute the decrease in the response time in the collecting phase mainly to the hard
coding of the monitoring since less generic lookups must be made. Furthermore, the
consistence checks had also an impact.

This improvement will not be used in Kieker because the monitoring tool now lacks im-
portant features for a framework, e.g., configurability and reusability.

4.7 Threats to Validity

In the experiments at least one core was available for the monitoring. If all cores were
busy with the monitored application, the results could be different. We investigated this
circumstance in [WH12].

Further threats involve our benchmark in general. Common threats to validity of micro-
benchmarks are their relevance and systematic errors. Our benchmark bases on repeatedly
calling a single method. However, by performing recursive calls, the benchmark is able

64

6|0

Response time of ...
Writing (W)
Collecting (C)

2 Instrumentation (l)
KN Method time (T)

(mean with 95% ClI)

5|0

40

Response time (us)
3|0

| |
Base PT1 PT2 PT3 PT4
Performance tuning configuration

Figure 6: Overview of the tuning results in response time

to simulate larger call stacks. Additional comparisons of our results with more complex
benchmarks or applications are required for validation. If the configured method execu-
tion time is negligible compared to the overhead, these comparison may be inappropriate.
However, our experiments with different method execution times suggest that the results
are still valid.

Further threats are inherent to Java benchmarks. For instance, different memory layouts
of programs or JIT compilation paths for each execution might influence the results. This
is countered by multiple executions of our benchmark. However, the different compilation
paths of our four measurement runs to determine the individual portions of monitoring
overhead might threaten the validity of our results. This has to be countered by further
validation of our benchmark. All benchmark runs include multiple garbage collections
which might influence the results. However, this is also true for long running systems that
are typically monitored.

5 Related Work

Monitoring is an important part of administration and operation software systems, espe-
cially in distributed systems. It allows to determine online or offline bottlenecks or other
technical problems in a deployed software system or its neighboring systems which affect
the operation. To provide monitoring capabilities, approaches have targeted different lev-
els in the system. Early approaches monitor systems through network communication and
services. X-Trace [BIMNO3], for example, aggregates such monitoring information and
builds system traces on that data. It is minimal invasive for the application, but cannot pro-
vide detailed information on machine or application internal behavior. Magpie [FPK*07]

65

is a framework for distributed performance monitoring and debugging which augments
network information with host level monitoring of kernel activities, for example. Both
approaches do not provide detailed information on their overhead, but data collection is
provided by network infrastructure and the operating system. Therefore only the logging
affects the overall system capacity. However, none of these approaches provided a detailed
performance impact analyses.

Dapper [SBBT10] and SPASS-meter [ES14] provide, like Kieker, application level moni-
toring providing insights into internal behavior of applications and its components. Caus-
ing a significant impact on the overall performance of those software systems. To reduce
the performance impact, Dapper uses sampling, which ignores traces during monitoring.
The sampling mechanism of Dapper observes the system load and changes the sampling
rate to limit the performance impact.

On systems, like search engines, the jitter of sampling may not have a big impact, as Sigel-
man et. al. [SBB'10] claim for their applications at Google. In such scenarios sampling
can be an approach to balance the monitoring performance trade-off. However, in many
scenarios, e.g., failure detection or performance forecasting, detailed monitoring data is
necessary to produce a comprehensive view of the monitored system. Therefore, sam-
pling, the reduction of probes, or limiting the scope of the observation to network or host
properties is not always an option to limit performance overhead of monitoring. Therefore,
we addressed the performance impact of the Kieker framework and minimized it.

Magpie provides a comparison of the impact of different observation methods in their
scenario, but no detailed analysis of the overhead. Dapper and X-Trace address the issue
of overhead as a characteristic of monitoring, which has to be considered when monitoring.
But to the best of our knowledge, no other monitoring framework has been evaluated with
a specialized monitoring benchmark targeting the overhead of monitoring itself.

6 Conclusions and Outlook

The paper presents our proposed micro-benchmark for monitoring frameworks. Further-
more, we introduce a structured performance engineering activity for tuning the through-
put of the monitoring framework Kieker. The evaluation was conducted by utilizing our
monitoring overhead benchmark MooBench. It demonstrates that high-throughput can be
combined with maintainability to a certain degree. Furthermore, it shows that our TCP
writer is the fastest writer and thus applicable for online analysis, which is required for our
upcoming ExplorViz [FWWH13] project.

Our performance tuning shows an upper limit for the monitoring overhead in Kieker. How-
ever, in productive environments, monitoring probes are usually configured in a way to
stay below the system’s capacity. Furthermore, the execution time of most methods (T) is
larger than the measured 0.85 us. Refer to our previous publications for measurement of
the lower limit of monitoring overhead [WH12, vHWH]12, vHRH109]. Note, that these
previous measurements usually employed a stack depth of one compared to our used stack
depth of ten.

66

As future work, we intend to reduce the impact of deactivated probes by utilizing other
instrumentation frameworks than Aspect], for instance, DiSL [MZA™12]. Furthermore,
we will evaluate whether a generator can handle the monitoring record byte serializa-
tion and thus PT3 might become applicable in Kieker without loosing maintainability and
usability for the framework users. In addition, we plan to measure Kieker with multi-
threaded versions of our monitoring benchmark and test further configurations. We also
plan to compare the benchmark results for Kieker to the resulting benchmark scores of
other monitoring frameworks.

References

[BGH106]

[BIMNO3]

[EGDBO03]

[ES14]

[FPK*07]

[FWBH13]

[FWWH13]

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
et al. The DaCapo benchmarks: Java benchmarking development and analy-
sis. In Proceedings of the 21st Conference on Object-Oriented Programming
Systems Languages and Applications (OOPSLA), pages 169-190, 2006.

Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan.
Magpie: Online modelling and performance-aware systems. In Proceedings
of the 9th Conference on Hot Topics in Operating Systems (HotOS), pages
85-90, 2003.

Lieven Eeckhout, Andy Georges, and Koen De Bosschere. How Java pro-
grams interact with virtual machines at the microarchitectural level. In Pro-
ceedings of 18th Conference on OO Programming Systems Languages and
Applications (OOPSLA), pages 169—186, 2003.

Holger Eichelberger and Klaus Schmid. Flexible Resource Monitoring of
Java Programs. Journal of Systems and Software (JSS-9296), pages 1-24,
2014.

Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion Sto-
ica. X-Trace: A pervasive network tracing framework. In Proceedings of the
4th USENIX Conference on Networked systems design & implementation
(NSDI), pages 271-284, 2007.

Florian Fittkau, Jan Waller, Peer Christoph Brauer, and Wilhelm Hassel-
bring. Scalable and Live Trace Processing with Kieker Utilizing Cloud Com-
puting. In Proceedings of the Syposium on Software Performance: Joint
Kieker/Palladio Days (KPDays), pages 89-98, 2013.

Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring. Live
Trace Visualization for Comprehending Large Software Landscapes: The
ExplorViz Approach. In Proceedings of the 1st IEEE International Working
Conference on Software Visualization (VISSOFT), 2013.

67

[GBEO7]

[GEBO§]

[Gra93]

[HHI*13]

[Hup09]

[ISO01]
[ISO11]

[Jaiol]

[Kou05]

[MZA+12]

[SBBT10]

[SEHO3]

Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous
Java performance evaluation. In Proc. of 22nd Conf. on Object-oriented
programming systems and applications (OOPSLA), pages 57-76, 2007.

Andy Georges, Lieven Eeckhout, and Dries Buytaert. Java performance eval-
uation through rigorous replay compilation. In Proceedings of the 23rd Con-
ference on Object-Oriented Programming Systems Languages and Applica-
tions (OOPSLA), pages 367-384, 2008.

Jim Gray, editor. The Benchmark Handbook: For Database and Transaction
Systems. Morgan Kaufmann, 2nd edition, 1993.

Wilhelm Hasselbring, Robert Heinrich, Reiner Jung, Andreas Metzger,
Klaus Pohl, Ralf Reussner, and Eric Schmieders. iObserve: Integrated Ob-
servation and Modeling Techniques to Support Adaptation and Evolution of
Software Systems. Technical Report 1309, Kiel University, 2013.

Karl Huppler. The Art of Building a Good Benchmark. In First TPC Technol-
ogy Conference on Performance Evaluation and Benchmarking (TPCTC),
pages 18-30, 2009.

Software Engineering — Product Quality — Part 1: Quality Model, 2001.

Systems and software engineering — Systems and software Quality Require-
ments and Evaluation (SQuaRE) — System and software quality models,
2011.

Raj Jain. The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. John
Wiley & Sons, 1991.

Samuel Kounev. Performance Engineering of Distributed Component-Based
Systems — Benchmarking, Modeling and Performance Prediction. PhD the-
sis, TU Darmstadt, Germany, 2005.

Lukas Marek, Yudi Zheng, Danilo Ansaloni, Aibek Sarimbekov, Walter
Binder, Peter Tuma, and Zhengwei Qi. Java Bytecode Instrumentation Made
Easy: The DiSL Framework for Dynamic Program Analysis. In Proceed-
ings of the 10th Asian Syposium on Programming Languages and Systems
(APLAS), pages 256263, 2012.

Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical report,
Google, Inc., 2010.

Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using bench-
marking to advance research: A challenge to software engineering. In

Proceedings of the 25th International Conference on Software Engineering
(ICSE), pages 74-83, 2003.

68

[VHRH109]

[VHWH12]

[WHI2]

[WHI13]

André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens
Ehlers, Soren Frey, and Dennis Kieselhorst. Continuous Monitoring of Soft-
ware Services: Design and Application of the Kieker Framework. Technical
Report 921, Kiel University, Germany, 2009.

André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Anal-
ysis. In Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering (ICPE), pages 247-248, 2012.

Jan Waller and Wilhelm Hasselbring. A Comparison of the Influence of
Different Multi-Core Processors on the Runtime Overhead for Application-
Level Monitoring. In Multicore Software Engineering, Performance, and
Tools (MSEPT), pages 42-53, 2012.

Jan Waller and Wilhelm Hasselbring. A Benchmark Engineering Methodol-
ogy to Measure the Overhead of Application-Level Monitoring. In Proceed-
ings of the Syposium on Software Performance: Joint Kieker/Palladio Days
(KPDays), pages 59-68, 2013.

69

Toward a Generic and Concurrency-Aware
Pipes & Filters Framework

Christian Wulf, Nils Christian Ehmke, and Wilhelm Hasselbring

Software Engineering Group
Kiel University
24098 Kiel, Germany
{chw,nie,wha} @informatik.uni-kiel.de

Abstract: The Pipes-and-Filters design pattern is a well-known pattern to organize
and execute components with sequential dependencies. The pattern is therefore often
used to perform several tasks consecutively on large data streams, e.g., during image
processing or dynamic analyses. In contrast to the pattern’s familiarity and application,
almost each common programming language lacks of flexible, feature-rich, fast, and
concurrency-aware Pipes-and-Filters frameworks. So far, it is common practice that
most developers write their own implementation tailored to their specific use cases and
demands hampering any effective re-use.

In this paper, we discuss Pipes-and-Filters architectures of several Java-based ap-
plications and point out their drawbacks concerning their applicability and efficiency.
Moreover, we propose a generic and concurrency-aware Pipes-and-Filters framework
and provide a reference implementation for Java called TeeTime.

1 Introduction

Pipes-and-Filters is a common architectural pattern in several projects and applications,
often used to process large data streams. Figure 1 shows an example Pipes-and-Filters-
oriented processing to visualize program traces, which are reconstructed from serialized
method events. Each filter component, also called stage, fetches incoming elements from
its input ports, processes them, and finally sends the resulting elements via its output ports.

During the development of Kieker [RVHM ™08, vHRH'09, vHWH12], an application per-
formance monitoring and architecture discovery framework, we encounter various archi-

Figure 1: An example Pipes-and-Filters-oriented processing pipeline to visualize program traces
reconstructed from serialized method events. Ports serve as interface to connect two stages with

each other.

<<component>> <<component>> | <<component=> =] <<component>>
TCP Reader byte Method Event emry/e);'t Trace trace | Trace Visualizer
array i Deserializer even Reconstructor

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

70

tecture and performance issues with Kieker’s Pipes-and-Filters-oriented analysis compo-
nent. Feedback from users confirm these issues. Although suitable for most post-mortem
analyses, the framework is not capable of processing the amount of data required for more
complex analyses, such as live architecture reconstruction and performance anomaly de-
tection. The underlying analysis implementation does not take advantage of multi proces-
sor systems and relies extensively on slow reflection calls and string comparison. More-
over, Kieker’s analysis component does not support the composition of multiple stages.

There are only very few Pipes-and-Filters frameworks that are not tailored to a particular
use case, but designed for arbitrary pipeline architectures. To the best of our knowledge,
none of them are easy to use, extensible, efficient, and address both the usage and the
abstraction of multi-core architectures in one single framework.

Hence, we decided to develop a generic and concurrency-aware Pipes-and-Filters frame-
work using our experience and our requirements from Kieker. This includes a fast refer-
ence implementation called TeeTime, ports for stages, and a convenient application pro-
gramming interface which abstracts from the management of concurrency.

Our framework is not limited to Kieker and thus can be used in other projects as well.
Furthermore, it can be applied to various programming languages, although TeeTime is
written in the Java programming language. A manual and the source code of TeeTime are
publicly available at Sourceforge'.

Hence, our contributions are:

* An approach for a generic and concurrency-aware Pipes-and-Filters framework, and

* areference implementation for the Java programming language.

The rest of this document is structured as followed. First, we present related work and
existing frameworks in Section 2. In the subsequent two sections, we describe our ap-
proach focusing on its architecture in Section 3 and its concurrency handling in Section 4.
Section 5 finally contains our conclusion and future work.

2 Related Work

Due to the fact that Pipes-and-Filters is a frequently used pattern, various generic solutions
exist already. We present and discuss an excerpt of existing frameworks focusing on Java-
based implementations. Furthermore, we list work regarding strategies for the concurrent
execution of stages.

'https://sourceforge.net/projects/teetime/

71

2.1 Current Java-based Pipes-and-Filters Frameworks

A generic Pipes-and-Filters framework is Apache Commons Pipeline®. This framework
can take advantage of additional threads, but assumes that the stages are implemented in a
thread-safe manner. Furthermore, the project has no released version and is not developed
any further since 2009.

Apache Camel® is a Java framework to configure routing and mediation rules using the
enterprise integration patterns. It can also be used to assemble Pipes-and-Filters oriented
systems. However, in contrast to TeeTime, it does neither support typed ports nor the con-
current execution of multiple stages. The official recommendation to handle concurrency
is, among others, the usage of a database as synchronization point*.

Ptolemy II [BL10] is a Java framework that supports experimenting with the actor-oriented
design. Although it can be used to assemble networks in a Pipes-and-Filters oriented
style, it requires additional knowledge to configure and execute a pipeline configuration
that goes beyond the Pipes-and-Filters pattern. Furthermore, its use of a scheduler and
coarse-grained synchronization mechanisms results in an additional run-time overhead.

The Kieker Monitoring and Dynamic Analysis Framework> provides a Pipes-and-Filters-
API to create analysis networks. Due to its drawbacks mentioned in Section 1, we will
replace it by TeeTime’s API.

ExplorViz [FWBH13] is a tool that enables live trace visualization for system and pro-
gram comprehension in large software landscapes. It comprises a Pipes-and-Filters-based
component that is tailored to the processing of program traces. Hence, it is not suited as a
generic Pipes-and-Filters framework.

XML Calabash® is an implementation of the XML pipeline language XProc. 7 This lan-
guage can be used to describe pipelines consisting of atomic or compounded operations
on XML documents.

Pipes® is a Java-based framework using process graphs. So called pipes represent the
atomic computing steps and form, once connected, the processing graph. As the pipes im-
plements interfaces with generics, they are type-safe, but have to be arranged in sequential
order.

Java 8 introduced a new streams API that allows to successively apply multiple functions
on a stream of elements. Besides the lack of reading from and writing to more than one
stream at once, its support for executing stages in parallel is limited to particular use cases.

Akka® is a framework for both Scala and Java following the actor model [HBS73]. It
focuses on scalability (regarding concurrency and remoting) and fault tolerance. Although

2http://commons.apache.org/sandbox/commons-pipeline/
3https://camel.apache.org/

4see http://camel.apache.org/parallel-processing-and-ordering.html
Shttp://kieker-monitoring.net/

Shttp://xmlcalabash.com/

Thttp://www.w3.org/TR/xproc/
8https://github.com/tinkerpop/pipes/wiki

http://doc.akka.io

72

it is possible to map Akka’s actor-based API to a Pipes-and-Filters-based one, Akka is not
optimized for the execution of pipeline architectures.

2.2 Concurrent Execution of Stages

There are at least two common strategies to execute a pipeline configuration concur-
rently [SLY ™11, SQKPI10].

The first strategy (S1) distributes the given threads over a distinct subset of the declared
stages, e.g., each thread executes a single stage. Depending on whether two connected
stages are executed by the same thread or by different threads, the corresponding pipe is
synchronized or unsynchronized, respectively. Stages are typically not synchronized as
each of them is executed by only a single thread.

The major challenge of this strategy lies in finding the optimal assignment of threads to
stages. While static assignment approaches are usually more efficient for stable and pre-
dictable pipeline configurations, dynamic assignment approaches can additionally handle
imbalanced stages.

The second strategy (S2) assigns a copy of the whole pipeline structure to each thread.
Each thread maintains a sorted list of all available pipes. Moreover, each thread uses a
scheduler that iteratively takes one of the last stages of the pipeline whose input pipes are
non-empty. This strategy does not require pipes to be synchronized, but rather stateful
stages since the copies of a stage usually share one single state.

Some approaches [SLY 11, NATC09] use work-stealing pipes to balance the workload
across all available threads. Such pipes then require single-producer-multiple-consumers
data structures that cause additional run-time overhead due to further synchronization and
management effort.

3 Toward the TeeTime Framework

Our framework targets software engineers that need to process data in a stream-oriented,
throughput-optimized, and type-safe fashion. Although our reference implementation is
written in Java, our framework’s software architecture can be easily adapted to other
object-oriented programming languages that are aware of threads and type parameters,
e.g., C#.

We base our framework on the Tee-and-Join-Pipeline design pattern [BMR196], a gener-
alized version of the Pipes-and-Filters design pattern. It allows a stage to be connected by
more than one input and output pipe. For this reason, we call our reference implementation
TeeTime.

After giving an overview of our framework’s architecture, we describe the most important
features in more detail.

73

AnalysisConfiguration Analysis
-consumerStages : List <<use>> |+tAnalysis(AnalysisConfiguration)
-finiteProducerStages : List [&< - - - - - - +init()

-infiniteProducerStages : List +start() : Collection<Pair<Thread, Throwable>>
AbstractStage <<Interface>>
#logger : Logger IStage
#d:Sting = |---------- >l +execute()
+onSignal(ISignal, InputPort)
A
! 1
! I
inputPorts outputPorts <<use>> | | <<use>>
1
I
I
1 \I/
* * <<Interface>>
InputPort<T> OutputPort<T> c<uses> ISignal
+receive() : T +send(m) [~ 77777 >|+trigger(Stage)
+read() : T +sendSignal(ISignal) N
1
<<use>>

<<Interface>>

IPipe
AbstractPort<T> i +insert(Object)
-type : Class<T> O V2 pipe > +remove() : Object
+insertSignal(ISignal)
+removeSignal() : ISignal

Figure 2: Overview of the basic entities in our Pipes-and-Filters framework architecture

3.1 Overview of the Software Architecture

The core of our framework consists of four basic entities: Stages, Ports, Pipes, and
AnalysisConfigurations.

A stage represents a processing unit within a pipeline that takes elements from its input
ports, uses them to compute a result, and puts this result to its output ports. Therefore, the
concept of ports allows a stage to communicate with multiple predecessors and successors.
Additionally, a stage is assigned a unique identifier and a logger to ease in debugging.

A pipe connects an output port of one stage with an input port of another stage by means
of a queue. However, a pipe can also be used to realize self-loops by connecting an output
port with an input port of the same stage.

An analysis configuration represents a concrete pipeline setup. It defines the stages that
should be used and connects their ports with each other.

In Figure 2 we show an overview of the basic entities in our Pipes-and-Filters framework
architecture.

74

3.2 Stage Scheduling

Our framework does not make use of an explicit stage scheduler to decide what stage
should be executed next. Instead the pipes between the stages undertake this task.

Each time a stage sends an element to one of its output port, the corresponding connected
pipe stores the element in its internal queue. Depending on the pipe’s implementation,
it then either triggers the execution of the receiver stage or it immediately returns to the
sender stage.

The former implementation is used to realize intra-thread communication, i.e., to connect
two stages that are executed by the same thread. It ensures progress and reduces the mem-
ory usage since passing an element through the whole pipeline has the highest priority.
This strategy is also known as the backpressure technique.

The latter implementation is used to realize inter-thread communication, i.e., to connect
two stages that are executed by two different threads. It causes only a minimal delay in the
execution of the sending stage.

In this way, we gain the highest possible throughput with respect to the framework’s flex-
ible architecture. For example, we require a throughput of ten thousands to millions of
elements per second when analyzing monitoring logs with Kieker. In such situations, an
explicit scheduler causes too much run-time overhead because it needs to switch too often
between all stages.

The avoidance of a dedicated scheduler additionally reduces the overall complexity of
the framework itself and allows the (JIT-)compiler to perform further optimizations, e.g.,
utilizing cache locality due to back-pressuring [SLYT11].

3.3 Type-safe Connection of Stages

We extend our framework with typed ports to provide a fully type-safe environment.
Therefore, it is impossible to connect two incompatible ports which dramatically reduces
the need for debugging.

The framework checks for type safety at compile-time and at run-time. The former is
realized by specifying a type parameter for each port. In this way, the compiler is able to
verify that a pipe connects two ports of the same type.

The latter is realized by checking whether each two ports have the same type attribute
(cp. Figure 2) just before a pipeline is being executed. It is not possible to check the
type parameter at run-time because some object-oriented programming languages, such as
Java, perform type-erasure on the type parameters.

75

3.4 Reacting to Signals

We further extend our framework by a generic signal concept. A signal represents an event
that is triggered within one stage and passed to all other stages with respect to the given
pipeline architecture.

Similar to transmitting an element, a signal is sent from an output port to an input port us-
ing a pipe. For this purpose, both the intra-thread and the inter-thread pipe implementation
already mentioned above have another internal queue that is used for signals only.

For example, a StartingSignal is triggered and processed by the first stage when the
execution of a pipeline begins. Afterwards the signal is passed to all successor stages of
the first stage where the same procedure is repeated until the last stage has processed the
signal.

Besides the StartingSignal, our framework implementation currently provides a
ValidatingSignal that occurs when the connections of a stage are being validated
and a TerminatingSignal that occurs when the execution of a pipeline is being ter-
minated.

Moreover, our framework allows to add further signal types. A new signal type must
conform to the ISignal interface and needs to be triggered once. The correct signal
passing is then handled by our framework automatically.

3.5 Composition of Stages

Stage composition is a key concept that allows to build on top of already available stages.
It effectively hides complexity and also improves the usability. For this reason, our frame-
work offers direct support for composing stages.

3.6 Basic Stages

While developing and using Kieker [RVHM ™08, vHRH109, vHWH12], we have identi-
fied various atomic stages that are often used either directly or indirectly to build more
complex, high-level stages. Below, we describe some of the most important ones in more
detail.

Distributor The distributor is characterized by one input port and a customizable num-
ber of output ports. It takes an element from its input port and distributes it to its output
ports. The distributor uses the DistributionStrategy interface to decide how the
input element should be distributed among the output ports. We currently provide im-
plementations that forwards the input element either to one output port according to the
round-robin style, or to each output port. Instead of simply forwarding the element, a

76

solution would be conceivable where the distributor delivers a deep clone of the input
element.

Merger The merger is characterized by a customizable number of input ports and a
single output port. It takes elements from a subset of its input ports and merges them to
its output port. Similar to the distributor, the merge step is done according to a particular
implementation of the MergeStrategy interface. We currently provide a round-robin
implementation that forwards the element of the next non-empty input port to the output
port.

File system stages The directory reader outputs all available files within a given direc-
tory. The text line file reader reads in a text file from its input port and successively sends
each text line via its output port. The file writer takes a byte array from its input port and
writes it to a pre-configured file.

Generic stages Besides the stages mentioned above, there are also generic stages that
process elements independent of the elements’ types. The repeater stage takes one element
from its input port and outputs a multiple of it to its output port. The delay stage delays
the passing of an element to its successor stage by a customizable amount of time. The
throughput stage counts the number of passing elements and outputs the corresponding
throughput if it is triggered by another stage to do so. The InstanceOfFilter stage checks
whether an incoming element matches a configurable particular type and passes it to one
of its two output ports representing a valid or invalid match.

Further stages We continuously extend the set of provided stages. Besides the basic
ones mentioned above, we currently offer stages that, e.g., count the words contained in a
string, encrypts and decrypts a byte array, and outputs the current time in a configurable
regular interval.

We also provide stages that interact with I/O devices, such as the file system and the
network (via TCP, IMX, JMS, and JDBC). In this way, it is also possible to build a pipeline
distributed over several computing nodes.

3.7 Example stage

We now consider the TeeTime implementation of the directory reader described above
(see Listing 1) to show (1) that the API only requires few additional knowledge beyond
the Pipes-and-Filters pattern itself and (2) that it is able to abstract from any concurrent
data structure or directive.

The stage extends the ConsumerStage that, among others, provides methods for the
declaration of ports (see line 3) and encapsulates the handling of the first input port by

77

[o IR R e R R N S

e e e e
N AW = O 0

means of the parametrized execute method (see line 11). If a stage requires more than
one input port, it simply declares it and checks the ports on available input.

Line 5 and 6 contain the declarations of a file filter and a file comparator, respectively. Both
are used in the execute method to list only relevant files (see line 12) in the desired order
(see line 20). Finally, the read files are successively send via the declared output port (see
lines 23-25).

Hence, the source code only contains those statements that are necessary to declare a
directory reader. In particular, it does not make use of any concurrent data structure,
e.g., a concurrent blocking queue, and any concurrent directive, such as volatile or
synchronized to interact with its predecessor or successor stage.

Listing 1: The TeeTime implementation of the directory reader

public class Directory2FilesFilter extends ConsumerStage<File> {
private final OutputPort<File> outputPort = this.createOutputPort();

private FileFilter filter;
private Comparator<File> fileComparator;

// omitted costructors

@Override
protected void execute(final File inputDir) ({
final File[] inputFiles = inputDir.listFiles (this. filter);

if (inputFiles == null) {
this.logger.error ("Directory,,
an_I/0O_error_occured.");
return ;

s "o

+ inputDir + _does_not_exist_or,_

}

if (this.fileComparator != null) {
Arrays.sort(inputFiles , this.fileComparator);

}

for (final File file : inputFiles) {
this .send(this.outputPort, file);

}
}

// omitted getter and setter

public OutputPort<File> getOutputPort() {
return outputPort;

}

78

4 Concurrency Handling

To the best of our knowledge there is no similar Pipes-and-Filters framework that man-
ages and handles a concurrent execution in such a transparent and efficient way. In the
following, we describe how our approach concurrently executes the stages, how it handles
synchronization issues, and how it does everything in a highly efficient and automatic way.

4.1 Concurrent Execution of Stages

Since there are several different use cases for using a Pipes-and-Filters-oriented architec-
ture, we do not commit ourselves to one of the two strategies mentioned in Section 2.
Instead, we recommend a hybrid approach that makes use of both approaches.

Consider the sample pipeline consisting of a producer and a consumer whereby elements
are produced faster than consumed. In this scenario, duplicating and executing the pro-
ducer in more than one thread does not increase the throughput since the consumer is the
bottleneck. Furthermore, if the producer reads from an I/O device, instantiating more than
one producer is often not advisable since most I/O devices can be accessed only in a se-
quential way excluding any concurrent access. However, duplicating and executing the
consumer stage increases the performance provided the internal state can be shared effi-
ciently. Hence, a combination of S1 and S2 can perform better than each of the strategies
in isolation.

4.2 Automatic Thread Instantiation and Management

To enable concurrent execution of stages, a number of threads and a suitable management
handling their life-cycle is required. Instead of manually instantiating and managing these
threads for each individual pipeline, we propose a more abstract concept that encapsulates
such technical issues by our framework.

For this purpose, each stage is declared either as consumer or producer where a producer
is further divided into finite or infinite.

A consumer changes its internal state and/or produces one or more output elements if and
only if it receives one or more input elements. Thus, a consumer stage provides at least
one input port. It terminates when it receives a termination signal.

A producer changes its internal state and/or produces one or more output elements ac-
cording to its semantics. It provides no input ports and is responsible for its termination.

A producer is finite if it terminates itself after a finite number of executions. A producer is
infinite if it does not terminate autonomously. In this case, the framework terminates the
producer stage after all finite producers are terminated.

Based on this categorization, the framework is able to determine the amount of threads

79

necessary for the execution and the assignment of the stages to the threads. For instance,
since a producer is independent of other stages, it can be executed concurrently. However,
for the sake of fine-grained optimizations, it is also possible to manually assign stages to
threads.

4.3 Synchronization of Stages

4.3.1 Synchronization by Pipe

In our framework, a pipe is responsible for the transmission of elements between two
stages.

When connecting two stages within the same thread, the framework chooses an unsyn-
chronized pipe implementation holding a single element. Once a stage sends an element,
the corresponding pipe stores it and executes the receiver stage. The receiver stage finally
pulls the element from the pipe.

When connecting two stages executed within two different threads, the framework chooses
a pipe implementation consisting of a synchronized queue. Once a stage sends an element,
the corresponding pipe adds it in a non-blocking fashion to the queue. The receiver stage
can either use a busy-waiting or a blocking strategy in order to pull the element from the
pipe.

The synchronized queue is a highly optimized implementation'® for the single-producer/
single-consumer scenario. It is lock-free, cache-aware, and uses only a few well-placed
load/load and store/store barriers for the synchronization. In particular, it does not make
use of any types of the Java Concurrency API and of any volatile declaration. We have
also tested a pipe implementation that bases on the work-stealing paradigm, however it
performs significantly slower due to the heavy use of volatile fields.

4.3.2 Synchronization by Shared State

We call a stage stateful if it contains attributes and uses them to compute its outputs.
Otherwise we call a stage stateless. It is recommended to implement stages in a stateless
way, as this avoids synchronization overhead and issues between stages. However, in the
Kieker project we identified various scenarios relying on stateful stages.

For instance, consider an aggregation stage that outputs a result not until a particular num-
ber of executions. Before reaching such a threshold, this stage needs to memorize the
result of the current and all previous executions.

Our framework does not yet help in synchronizing a shared state although we plan to
abstract from particular scenarios (see Section 5). Currently, a developer must be aware
of concurrency issues that could arise due to a shared state and has to ensure a proper
synchronization.

Onttps://github.com/JCTools/JCTools/

80

5 Conclusions and Outlook

In this paper, we indicated the drawbacks of current Pipes-and-Filters frameworks and pro-
posed a more flexible and concurrency-aware Pipes-and-Filters framework architecture. It
focuses on a type-safe application programming interface that makes complex decisions
for the programmer and abstracts from technical issues to avoid building an incorrect and
inefficient pipeline. We also provide a fast Java-based reference implementation called
TeeTime.

We constantly improve our framework by reducing the management overhead, by adding
more functionality, and by simplifying the API. Our next step is to give the responsibility
of choosing and instantiating a pipe completely to the framework. Afterwards, we plan to
automatize the thread assignment as much as possible so that ideally the programmer only
needs to describe the pipeline structure and to specify the number of processor cores to
use. For this purpose, we follow the idea to utilize further stage information available at
compile-time, such as the ratio of the input and output ports or the properties of a stage’s
state. Moreover, we work on an automatic exception handling by the framework and a
way to save and load arbitrary pipeline configurations that were created at run-time.

References

[BL10] Christopher Brooks and Edward A. Lee. Ptolemy II - Heterogeneous Concurrent Mod-
eling and Design in Java, February 2010. Poster presented at the 2010 Berkeley EECS
Annual Research Symposium (BEARS).

[BMR'96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1. edition, 1996.

[FWBH13] Florian Fittkau, Jan Waller, Peer Christoph Brauer, and Wilhelm Hasselbring. Scalable
and Live Trace Processing with Kieker Utilizing Cloud Computing. In Proceedings of
the Symposium on Software Performance: Joint Kieker/Palladio Days 2013, volume
1083, pages 89-98. CEUR Workshop Proceedings, November 2013.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR For-
malism for Artificial Intelligence. In Proceedings of the 3rd International Joint Con-
ference on Artificial Intelligence, IICAI’73, pages 235-245, San Francisco, CA, USA,
1973. Morgan Kaufmann Publishers Inc.

[NATCO09] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical Modeling of Pipeline
Parallelism. In Proceedings of the 18th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 281-290, September 2009.

[RvHM'08] Matthias Rohr, André van Hoorn, Jasminka Matevska, Nils Sommer, Lena Stoever,
Simon Giesecke, and Wilhelm Hasselbring. Kieker: Continuous Monitoring and on
demand Visualization of Java Software Behavior. In Claus Pahl, editor, Proceedings of
the IASTED International Conference on Software Engineering 2008 (SE’08), pages
80-85, Anaheim, CA, USA, Februar 2008. ACTA Press.

[SLYT11] D. Sanchez, D. Lo, R.M. Yoo, J. Sugerman, and C. Kozyrakis. Dynamic Fine-Grain
Scheduling of Pipeline Parallelism. In Proceedings of the 20th International Con-

81

[SQKP10]

[VHRH'09]

[VHWH12]

ference on Parallel Architectures and Compilation Techniques (PACT), pages 22-32,
October 2011.

M. Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt. Feedback-
directed Pipeline Parallelism. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT), PACT ’10, pages 147—
156, New York, NY, USA, 2010. ACM.

André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers, Soren
Frey, and Dennis Kieselhorst. Continuous Monitoring of Software Services: De-
sign and Application of the Kieker Framework. Forschungsbericht, Kiel University,
November 2009.

André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceed-
ings of the 3rd joint ACM/SPEC International Conference on Performance Engineer-
ing (ICPE 2012), pages 247-248. ACM, April 2012.

82

Evaluation of Alternative Instrumentation Frameworks
Dusan Okanovi¢, Milan Vidakovié¢

Faculty of Technical Sciences
University of Novi Sad
Fruskogorska 11
Novi Sad, Serbia
oki@uns.ac.rs
minja@uns.ac.rs

Abstract: Our previous research focused on reducing continuous monitoring
overhead by employing architectural design that performs adaptive monitoring. In
this paper we explore the use of other AOP or AOP-like tools for instrumentation.
The goal is to find a tool that has lower overhead than Aspect). Support for
runtime changes of monitoring configuration is also considered. Our main topic of
interest is DiSL framework, because it has similar syntax as, already used Aspect/,
but allows for more instrumentation options.

1 Introduction

When monitoring application performance parameters under production workload,
during continuous monitoring process, everything must be done to reduce the overhead
generated by monitoring system. This overhead is highly unwanted because it can have
negative effect on the end user's experience. Although inevitable, this overhead can be
minimized.

The DProf system [OvVHVK13] for continuous monitoring uses instrumentation, and
sends gathered data to a remote server for further analysis. After this data is analyzed,
new monitoring configuration can be created in order to find the root cause of the
performance problem. New parameters turn monitoring off, where performance data is
within expected, and on, where data shows problems. This way, the overhead is reduced,
because only problematic parts of software are monitored. First implementations of our
tool used Aspect)® for instrumentation. The downside of this approach was the fact that
the bytecode with weaved aspects is not fully optimized. The result was higher overhead
than expected. Also, the monitored system had to be restarted each time new monitoring
parameters are set.

We have explored the use of other aspect-oriented or similar tools, mainly DiSL
framework [MVZ'12], with our system. The goal is to find a tool that has lower
overhead than AspectJ. Support for runtime changes of monitoring configuration is also
considered.

! http:/iwww.eclipse.org/aspectj (October 2014)

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

83

The remainder of the paper is structured as follows. In section 2. we provide an overview
of the DProf system, current implementation problems, and possible Aspect)
alternatives. How to replace Aspect] with DiSL is shown is section 3. In the last section
we draw conclusions and outlines for future work.

2 DProf system

The DProf system proposed in [OvHVK13] has been developed for adaptive monitoring
of distributed enterprise applications with a low overhead.

For monitoring data acquisition, DProf utilizes the Kieker? framework [vHWH12]. The
main reason for this was low overhead the Kieker imposes on a monitored system.
Unlike profilers and debuggers used by software developers during development
process, the Kieker separates monitoring from analysis of gathered data.

Deployment diagram of the DProf monitoring system is shown in figure 1. Monitoring
probes gather data. Kieker's Monitoring Controller directs this data to the DProfWriter.
DProfWriter sends data into the ResultBuffer. ResultBuffer holds the data and sends it in
bulks to the RecordReceiver periodically. RecordReceiver then stores it into the
database.

Analyzer performs the analysis of the data, reconstructs call trees from it, and, when
required, creates a new set of monitoring parameters. New parameters are created based
on configuration file, described in [OVK12]. Parameters are received by DProfManager.
This component controls the work of the ResultBuffer and the AspectController.
AspectController configures Aspect] framework through modifications in aop.xml
configuration file.

Application sj AspectController sj

O\ AspectContipollerMBean
aop.xml| (1 \
A\ aY
ResultBufferMBea] ~ DProfManager B
MonitorflygProbe (()

DProfManggerService

DProfwriter E Network

Analyzer ﬂ_/

Database server sj

Timer Service ﬂ
DBMS

MonitoringControllersj

RecordReciever sj

ResultBuffer B
O
\

RecordRecieverService

Figure 1. Deployment diagram of the DProf monitoring system

2 At the time of implementation, Kieker 1.6 was used.

84

Additional components that support the change of monitoring parameters at application
runtime have been developed using Java Management Extensions®. Use of the JMX
technology allows for the reconfiguration of the DProf monitoring parameters both
manually and programatically.

2.1 Limitations of this approach

In some situations the use of AspectJ imposed significant overhead that no architectural
redesign of the system could reduce. While this overhead was very small in simple
monitoring cases, there were cases where it rose unexpectedly. In those cases reflection
and access to join-point information was used.

Another problem is the fact that Aspect) does not allow the join points to be inserted
within the methods. To be more precise, they are not able to "see" into a method and
check if it contains loops, since these methods are most likely to cause performance lags.

Weaving of aspects is usually performed at load-time. This means that for every
monitoring configuration change, the system has to be restarted - both monitoring
system and monitored application. This results in reduction of overall quality of service,
because availability is reduced. Although careful planning can, as shown in [OV12], but
the fact remains: run-time loading and unloading of instrumentation should be employed.

Another approach is to use proxy classes, described in [GHJV94]. All of the methods
would be instrumented using aspects, but proxy classes would choose whether to accept
their performance data or not. While this approach is very flexible, it adds another layer
of classes and method invocations into the system, leading to even more overhead.

It is obvious that AspectJ has to replaced with another framework. This new framework
will have to impose very low overhead and support run-time insertion and removal of
monitoring probes.

2.2 Possible AspectJ alternatives

Since Java is a statically typed, it is very hard to manipulate code at runtime. In current
Java virtual machines (JVMs), it is possible only to replace method bodies, not method
signatures. This hotswapping of loaded classes is usually implemented using JVM Tool
Interface* (JVMTI).

There are several bytecode manipulation libraries. These allow for manipulation at very
low level, enabling developers to optimize instrumentation and place probes almost
arbitrarily. Some of these tools are ASM®, BCEL®, Javassist’ and Soot®. However, the
resulting instrumentation code is difficult to read, maintain and debug.

3 JMX, http://www:.oracle.com/technetwork/java/javamail/javamanagement-140525.html
4 JVMTI, http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti
® ASM, http://asm.ow2.org/

85

Modern AOP tools are based on these bytecode manipulation tools, but provide higher
abstraction layer for defining instrumentation. However, AOP has not been designed for
profiling and continuous monitoring. AOP and modern AOP tools suffer from
supporting limited set of join points, and they do not support instrumentation of basic
blocks, loops, or even, byte codes. Also, bytecode generated by AOP tools is not always
optimized.

Dynamic AOP [PGAO02] approach enables runtime adaptation of applications, and
consequently monitoring systems, by changing aspects and reweaving code in a running
system. It enables creation of tools where developers can refine the set of dynamic
metrics of interest and choose the application components to be analyzed while the target
application is executing. Such features are essential for analyzing complex, long-running
applications, where the comprehensive collection of dynamic metrics in the overall
system would cause excessive overheads and reduce developers’ productivity. In fact,
state-of-the-art profilers, such as the NetBeans Profiler [Dim03], rely on such dynamic
adaptation, but currently these tools are implemented with low-level instrumentation
techniques, which cause high development effort and costs, and hinder customization
and extension.

Existing dynamic AOP frameworks are implemented using one of the following
approaches.

The first approach uses pre-runtime instrumentation to insert hooks - small pieces of
code - at locations that can become join-points. These locations are determined using
pre-processing, and applied using load-time instrumentation or on just-in-time
compilation. Another approach is to implement runtime event monitoring using low-
level JVM support to capture events - method entry/exit and field access. The most
challenging approach is to implement runtime weaving. It can be implemented with
customized JVM or using JVM hotswapping support.

PROSE [NARO08] platform has been implemented in three versions. The first uses, now
obsolete, JVM Debugging Interface’. The second is implemented based on the IBM
Jikes Research Virtual Machine and has very large overhead. The third version is
implemented for HotSpot and Jikes JVMs, but is not able to work with code where
compiler already performed optimizations, such as method inlining. JAsCo [VSV+05]
introduces new AOP language and concepts of aspect beans and connectors. Aspect
beans are used to define join-points and advices. Connectors deploy aspect beans in a
concrete component context. The development of JAsCo technology has been stalled for
some time now.

HotWave [VBAMO9] uses existing industry standard Aspect) language, and generates
code that can be used by hotswapping mechanism. Aspects can be woven right after
JVM hootstrapping, but also while the code is executing. Previously loaded classes are

¢ BCEL, http://commons.apache.org/proper/commons-hcel/

" Javassist, http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist

8 Soot: a Java Optimization Framework, http://www.sable.mcgill.ca/soot

® http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/architecture.html

86

hotswapped with classes woven with new aspects. If the class was already weaved with
aspects, new weaving uses original class bytes, not those from previously weaved
version. HotWave lacks support for around advices. The workaround is to use a pair of
before and after advices and inter-advice communication. This is acceptable for
continuous monitoring because we do not want to change program behavior. Inter-advice
communication allows the creation of synthetic local variables that can be passed
between any advice. This is something Aspect] and other AOP frameworks do not
support. HotWave has never been fully developed, and remained only a prototype.

Another approach similar to HotWave is shown in [WWS10]. DCE VM is an extension
of standard JVM. It allows the classes within to be changed while JVM executes. This
tool has also been only a prototype.

Domain specific language for instrumentation (DiSL [MVZ*12]) has been developed to
counter some of the problems that occur when using AOP for Java software monitoring.
Considering the level of abstraction, DiSL is somewhere between low-level tools like
ASM, and high-level tools like AspectJ.

Using DiSL guarantees that the monitored software will never change its behavior,
something that ASM does not. DiSL developer has to deal with some details of byte
code manipulation, but much less than when using tools like ASM. Code generated
using AspectJ will always pass bytecode verification, while with DiSL, developer has to
ensure that it passes. Unlike Aspect], it allows for instrumentation to be inserted within
methods.

DiSL uses similar pointcut/advice model as Aspect), and even similar syntax, but it
removes some of the constructs. One of the omitted constructs is around advice. This
advice is often used by developers of dynamic analysis tools. Instead of it, a combination
of before/after advices can be used, with the addition of synthetic local variables for
inter-advice communication. DiSL constructs are transformed into code snippets that are
inlined before or after indicated bytecode sections. The omission of around is not a
problem when constructing monitoring tools. Around advices intended use is changing
of program's behavior, something that monitoring should not do.

Performance evaluation of monitoring tools developed with DiSL showed less overhead
than AspectJ implementation of such tool, while providing more functionality (e.g. basic
block analysis). Code generated by DiSL weaver is smaller, thus making the memory
footprint of the monitoring tool smaller.

3. Using DiSL With DProf

Replacing of the AspectJ with the DiSL will be shown on the example already shown in
[OVHVK13]. In this example we monitor the software configuration management
application.

87

So far, we have used the monitoring probe implemented as aspect shown in our previous
papers. This aspect intercepts execution of annotated method, and in around advice we
perform measurements.

Since DiSL does not support around advices, we have to implement two new advices -
@Before(...) and @Aafter (...). New aspect is shown in Listing 1. Synthetic local
variable startTime (annotated with @syntheticLv) holds the value of the method
execution start time between before and after advice execution. In before advice we take
time when method execution starts, and in after advice we take end time, and create and
store monitoring record, in the same way as in original aspect.

lpublic class ExecutionTimeMonitoring {

2
3

ul

[ee]

10

11
12}

@SyntheticLocal public static long startTime;

@Before (marker = BodyMarker.class, guard =
DProfAnnotatedGuard.class)

static void onMethodEntry () { startTime = System.nanoTime () ;}

@After (marker = BodyMarker.class, guard =
DProfAnnotatedGuard.class) {
static void onMethodExit (MethodStaticContext msc) {

double endTime = System.nanoTime () ;
DProfExecutionRecord dProfExec =
new DProfExecutionRecord(..., endTime - startTime, ...);

MonitoringController.getInstance ()
.newMonitoringRecord (dProfExec) ;

Listing 1. DiSL aspect for execution time monitoring

This class is weaved with application classes and is used to monitor call tree shown in

Fig. 2.

1.

SRV::
@3:..0rganizationFacade
.createOrganization()

7

SRV:: SRV
@2:..City @2:..0rganizationFacade
.getld() .checkOrgName()
A%
SRV:: SRV
@1:..0rganization @1:..0rganization
.getid() .getAddress()

Figure 2. Monitored call tree

In the first pass only the root method - was weaved and monitored. When deviation from
expected performance was detected, another level of nodes was included into
monitoring. In the next pass, no deviation from expected values was detected in
execution of cCity.getId() method, while there was a deviation in
OrganizationFacade.checkOrgName () results. City.getId() was un-weaved,
and methods invoked from organizationFacade.checkOrgName () were weaved. In
the last pass, no deviation was detected in the results for methods in the lowest level of
the call tree, and OrganizationFacade.checkOrgName () was declared to be the
cause of the problem.

In the background, Analyzer analyzed the obtained data. Based on the analysis results, it
issued commands to the DProfManager. Based on these commands, DiSL performed
aspect weaving.

The main goal of this experiment was to measure performance overhead ogenerated by
monitoring. The overhead was measured by repeatedly invoking monitored method
(monitoring configuration was fixed). On our test platform, implementation that uses
DiSL yielded approximately 1.2% less overhead then Aspect] implementation.

Some performance peaks were detected, in both cases, but only when weaving was
initiated, on application restart. After reweaving, as when JVM restarts, new classes are
loaded, linked and just-in-time compiled. This causes longer execution times at the
beginning of each DProf cycle.

4 Conclusion

This paper presented the use of the DiSL framework with the DProf system in order to
reduce performance overhead. The result is a tool that can be used for continuous
monitoring of any kind of applications, including distributed applications. Because DiSL
uses similar syntax to AspectJ, and is fully Java based, learning curve for this new tool is
not an issue.

The evaluation of DProf/DiSL combination was performed by monitoring the sample
software configuration management application, which was monitored using DProf on
Aspect) platform in our previous work. The comparison of the results shows that the
generated overhead is slightly less when using DiSL.

Further work depends on the DiSL development. FRANC [AKZ*13] framework, built on

DiSL, will provide the possibility to implement runtime changing of monitoring
parameters.

References

[AKZ"13] Ansaloni, D.; Kell, S.; Zheng, Y.; Bulej, L.; Binder, W.; Tiima, P.: Enabling modularity
and re-use in dynamic program analysis tools for the java virtual machine. In

&9

Proceedings of the 27th European conference on Object-Oriented Programming
(ECOOP'13). Springer-Verlag, Berlin, Heidelberg, p. 352-377. 2013.

[BLCO2] Bruneton, E.; Lenglet, R.; Coupaye, T.: ASM: A Code Manipulation Tool to Implement
adaptable systems. http://asm.ow?2.org/current/asm-eng.pdf. 2013.

[Dim03] Dimitriev, M.: Design of JFluid. Technical Report: SERIES13103. Sun Microsystems
Inc., USA. 2003.

[GHIV94] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional. 1994.

[MVZ*12] Marek, L.; Villazon, A.; Zheng, Y.; Ansaloni, D.; Binder, W.; Qi Z.: DiSL: a domain-
specific language for bytecode instrumentation. In Proceedings of the 11th annual
international conference on Aspect-oriented Software Development (AOSD '12). p. 239-
250. 2012.

[NARO8] Nicoara, A.; Alonso, G.; Roscoe, T.: Controlled, Systematic, and Efficient Code
Replacement for Running Java Programs. SIGOPS Operating Systems. v. 42, n. 4. p.
233-246. 2008.

[OV12] Okanovi¢, D.; Vidakovi¢, M.: Software Performance Prediction Using Linear Regression.
In Proceedings of the 2nd International Conference on Information Society Technology
and Management. Kopaonik, Serbia. p. 60-64. 2012.

[OVK12] Okanovi¢, D.; Vidakovi¢, M.; Konjovi¢, Z.: Monitoring of JEE Applications and
Performance Prediction. Journal of Information Technology and Applications, v.1, n.2.
p. 136-143. 2012.

[OVvHKZ13] Okanovi¢ D.; van Hoorn, A.; Vidakovi¢, M.; Konjovié¢, Z.: SLA-Driven Adaptive
Monitoring of Distributed Applications for Performance Problem Localization,
Computer Science and Information Systems (ComSIS), vol. 10, no. 1, pp. 25-50, 2013.

[PGAO2] Andrei Popovici, Thomas Gross, and Gustavo Alonso. 2002. Dynamic weaving for
aspect-oriented programming. In Proceedings of the 1st international conference on
Aspect-oriented software development (AOSD '02). ACM, New York, NY, USA, p.
141-147

[VBAMO9] Villazon, A.; Binder, W.; Ansaloni, D.; Moret, P.: Advanced Runtime Adaptation for
Java. SIGPLAN Not. v. 45, n. 2. p. 85-94. 2009.

[VHWH12] van Hoorn A.; Hasselbring, W.; Waller, J.: Kieker: A Framework for Application
Performance Monitoring and Dynamic Software Analysis. Proceedings of the 3rd
ACMY/SPEC International Conference on Performance Engineering (ICPE 2012). ACM,
Boston, Massachusetts, USA. p. 247-248. 2012.

[VSV*05] Vanderperren, W.; Suvée, D.; Verheecke, B.; Cibran, M. A.; Jonckers, V.: Adaptive
Programming in JAsCo. In Proceedings of the 4th international conference on Aspect-
oriented software development (AOSD '05). p. 75-86. 2005.

[WWS10] Wirthinger, T.; Wimmer, C.; Stadler, L.: Dynamic Code Evolution for Java. 8th
International Conference on the Principles and Practice of Programming in Java, Vienna,
Austria. 2010.

Acknowledgement
The research presented in this paper was supported by the Ministry of Science and

Technological Development of the Republic of Serbia, grant 111-44010, Title: Intelligent
Systems for Software Product Development and Business Support based on Models.

90

The DIN/ISO definition and a measurement procedure
of software efficiency

Dr. W. Dirlewanger

Kassel University, Prof. i. R.
Dept. of Mathematics and Computer Science
Mozartstrasse 1034246 Vellmar

performance-we@t-online.

Summary and foreword: People like to assign the attribute speed (i. e. performance) not only to hardware
but also to software. But software does not have an attribute speed. Software defines - for each user initiated
task - a sequence of information processing steps (machine instructions) to be performed. A suitable term for
the aspect under construction can only be found when having a second imlementation (Imp2) of the
application on the same hardware. We have to perform two performance measurements of the data
processing system. Measurement 1, using the first implementation (Imp1), yields the performance value P1.
Measurement 2, using the second implementation (Impl), yields the performance value P2. To find a term
describing the property of the software we compare P1 to P2. This yields a measure of ,,how good* Imp2
transforms the task submitted into a sequence of machine instructions compared to Impl: Imp2 is less or
more efficient than Impl.

This procedure requires a fitting definition of performance and places great demands to the measurement
method. It has to simulate in detail the properties of the user entity and has to deliver detailed performance
values. This is done by the ISO 14656 method. It measures the timely throughput, the mean execution times
and the total throughput, each as a vector of m values, where m is the total number of task types. Based on
this data the following software efficiency values are defined: The timely throughput efficiency I, the mean
execution time efficiency Iue and the total throughput efficiency Iy, each being a vector of m values.
Additionally there is the quotient of maximal timely served users Iyaxuse Which is a scalar.

In the talk the ISO method will be presented and explained and it will be shown how the software efficiency
values are to be computed. All is supported by examples of real world measurement projects.

Though published years ago the ISO method is little known. Published in the golden age of Mainframe-
MIPS may be it was far ahead of its time. But the author is still on fascinated of the abilities of this method.
And he is convinced that it may be helpful to save it from falling in oblivion. It is one of the most useful
tools for computer performance measuring and Software efficiency measuring. It is applicable also to
simulated software for instance in the first phases of a software project. It is mandatory in every software
project to specify the enduser requirements concerning the timeliness of the service. These requirements
have to be described in the system specification . The ISO workload model is an excellent template for this
part of the specification.

A historic aspect is: DIN 66273 was published in 1991 [1]. The software efficiency aspect was not yet part
of this National Standard. The use of the DIN performance measurement method for getting software
efficiency values was firstly proposed by the author in [3]. ISO took over the idea 1999 in ISO 14756 [2]. It
is comprehensively described in [4].

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

91

1 The international Standard ISO/IEC 14756

-- Defines the performance term for system performance.

— It describes a method for defining workloads (ISO workload data model).

— It defines a method for measuring data processing performance of a defined IP system
using the ISO workload data model.

— It defines the principles of the user emulator.

— It defines a method for rating the measured performance values.

.-- It defines a method for estimating the (runtime-) efficiency of (application- or system-)
software which is part of the measured data processing system.

2 Special qualities of the ISO 14756 method

(1) Arbitrary system under test (SUT):

The users in an ISO type measurement are emulated by a remote terminal emulator (RTE) whose
input information is an ISO workload parameter set (WPS). The RTE is connected via the real
user interface to the SUT. This ensures that any SUT can be measured, independently of
manufacturer, configuration, internal construction, operating system, CPU type, system
architecture and so on. It may be for instance a mono-processor computer, a cluster of computers
or a cloud service. So, even a PC can be compared to a mainframe or to a super computer.

(2) Independence of RTEs manufacturer:

The measurement and its results are independent of the manufacturer or programmer of the RTE
and of the computer type used for the RTE. The only condition is that the RTE fulfills the
specification of an ISO RTE and naturally can be connected to the SUTs user interface.
Measurement results are not influenced by the RTEs individual technical details.

(3) Control of the correct work:

The ISO RTE specification includes a set of control mechanisms which insure the correct
working of the RTE during a measurement. If — for instance — the hardware used in the RTE is
not fast enough to emulate the planed number of users correctly this will become evident. The
same applies to the RTE if it doesn't realize the user behavior correctly and so on.

(4) Nearly every benchmark can be represented in ISO form:

The ISO workload model is very universal. Nearly every benchmark can be brought to the ISO
representation. Beginning with the classic “Debit Credit OLTP Benchmark”, nearly any multi-
user-multi-programing benchmark, naturally the classic SPEC batch-benchmarks, or benchmarks
for today's SAP/R3-applications can be represented as an ISO type workload.

(5) Component tests can also be rewritten to ISO form:

Even computer component tests, for instant speed measurement of a hard disk, can be realized
by an ISO type workload; in this case the hard disk is the SUT and the hardware beyond the disk
interface (for instance SATA) is the RTE.

(6) Emulated users can be human beings or machines:

Naturally it doesn't matter if the users emulated by the RTE are human beings or machines. For
instance the SUT is the central unit of a computer and the regarded interface is the connection to
the so-called frontend or a terminal multiplexer. This can also be described by an ISO type RTE.

92

(7) Forgery-proof by random task stream:

The ISO RTE generates the the task stream transmitted to the SUT randomly. Two subsequent
measurements must not have identical job or task sequences as input. Nevertheless predefined
global parameters - as for instance the relative task frequencies or think time mean values of the
users - are realized according to the statistic accuracy defined in the workload. The ISO RTE
works in detail randomly but global deterministic. Intentionally the ISO RTE doesn't use
recorded job streams or task streams as a workload. In that case the SUT could be optimized on
such a task stream and the measuring results would be falsified.

(8) Reproducibility of measurement results:

ISO results are repeatable. Whenever and whoever repeats a measurement the results are the
same. In fact, this is an important difference to common “performance measurements”, that often
lack on repeatability

(9) High precision:
The ISO method is a high precision measure method which delivers very exact results.

3 Measurement by emulated users

m Lronceng

GroRrechner

il

File-Server

PC-Net=

Simulator-
-+

Mef-
System

Mainframe-C/S

Multiuser System

Client/Server

Fig. 1 SUT: Arbitrary type and architecture

93

Fig.2 A SUT in real operation

For performing a measurement a RTE is used. It is table driven by the so-
called workload parameter set. The ISO workload describes the behavior of
all users of the information system. It consists of:

1. Workload parameter set

2. Application programs

3. Operating system command procedures

4. Computational results

5. User data stored in the SUT

6. Parameters for controlling the correct work of the RTE

Steps of the measurement:

Install applications in the SUT

Load workload parameter set into RTE

Run and record; store computational results

Testing correctness

(RTE: correct work and statistical significance of random variables;
SUT: correct and complete computational results)

5. Analysis of recorded data and computation of performance

values and rating values

L=

94

ﬁ\\ \\ User tasks
e g
~ N\

. Dataprocessing- \E 1S0- Wordoad

’ System = Cmulator | Parameler
(yL Z//— Sytem Sat
—

Computational ‘ N ‘_—/]
Results hﬁgﬁl&«
}.. - System : + - User A
under Test Emulation
(SuT) (RTE)

Fig. 3 Measurement Configuration

4 The workload parameter set

Basic parameters:
Number n of user types
Number of users of each type Nyer(1),..., Nyser(n)
Number w of activity types
Number p of timeliness functions
Number m of task types
Number u of task chain types

Definitions of the w activity types, each described by :
Input string or mouse pointer action, rules for input
variation if there is so.

Definitions of the m task types, each defined by:
Activity type and wait mode WAIT/NOWAIT for the
result of the actual task and
timeliness functions for completing the task
(Example: Maximal 80% within 2 sec,
maximal 15% within 6 sec, maximal 5% within 6 sec,
none longer than 15 sec.)

Definitions of the u task chain types:
Chain length (number of tasks) and task sequence

Statistic parameters of the (random to be created) think times
of the users
Firstly: matrix of n x m think time mean values
(Remark: Think time is task preparation time.)
Secondly: matrix of n x m think time
standard deviation values

95

5 The measurement run

RTE on
Stabilization phase
Rating interval

Supplementary run
RTE off

6 The ISO performance P computed from the recorded logfile

P is the following triple of vectors: P=(B, Tus, E)
where B = (B(1),, B(m)) is the (total) throughput vector.

B(j) is the mean number of tasks of the j-th task type sent
from the RTE to the SUT per time unit.

Tume = (Tue(1),..., Tue(m)) s the execution time vector .

Twme(j) is the mean execution time of tasks of
the j-th task type.

E = (E(1),, E(m)) is the (timely) throughput vector.
E(j) is the mean number of tasks of the

j-th task type which were timely

executed by the SUT per time unit.

7 Rating of the measured performance values

Throughput rating

Ry = (Rru(1),..., Rry(m)) is the throughput
rating vector

with
Ruu(j) = B(j) / Brei(j)
Bre(j) is the throughput

of the j-th task type of the so called
theoretical reference machine.

96

Mean execution time rating Rue = (Rme(1),..., Rue(m)) is the execution
time rating vector
with
RMEG) :TRef(j) / TME(j)
Tred(j) 1s the mean execution time of tasks
of the j-th task type.
of the so called theoretical
reference machine.

Timely throughput rating Ry = (Rr(1),..., Rp(m)) s the timely
throughput rating vector
with

Rn(j) = E() / B()

The “theoretical reference machine” is a fictional SUT. It is a not really existing SUT which
executes all tasks so fast that all timeliness functions are just fulfilled but none faster. The Tred(j)
values and Bre(j) values can be computed directly from the data of the workload parameter set.
No measurement is needed.

Overall rating: Only if all of the 3 x m rating values are not less 1 the SUT satisfies the

timeliness requirements of the user entity. Elsewhere the system has to be rejected due to
insufficient response times.

8 Measurement example 1

The diagrams below (see Fig 4 and 5) show the measured performance and the rating of two
mainframe computers having the same hardware. Workload: “ISO CC1-I-REP=1" (somewhat
modified). The application software is identical. The operating systems are different.

Terms in the diagrams:

Leistungsgrofien —--------------- Performance terms
Belastung Throughput B
Auftrage/sec ------------------—- Tasks per sec
Auftragsdurchlaufzeit --------- Execution time
AAx Task type x
Anzahl der EAG ---------------- Number of emulated users
Bewertungsgrofien ------------- Performance rating terms
tan j) - Mean execution time Twe(j) of the j-th task type
L1(G) - Throughput rating value Ryu(j) of the j-th task type
L2(G) - Mean execution time rating value
Rume(j) of the j-th task type
L3(J) - Timely throughput rating value

of the j-th task type

97

TR IR kit i a8

Lc'rsl||||g's.g|ulh-u ;

Delastung (Durchsalz)

Aulleagscurchibaneeil I-H.tLI\n':nrh'.:'iIJm .

B {Auhripeisec) Ay el
[R T
o e S
014 : i ; ;
[5T E VL, TP TR e
o H : H ! L=k
- i i : —B—an
e vesrany A e L P
a0 : ' . ; :
| !
b A
m T PO SO AN O .z
! | _i._,.s-i e s
i - T - e 1
. — 3 —&]
10} i '] 1 i ' J
] § " 15 » 34] § 10 [] n
A PR 1 | 11114 ATH il er FAd
T R Beserbunpsgedlion
Durchsaiz Anbwortzeil Termittrent
Ll 1! Ll
Moottt e s
ek @ik v
. H S
110} ...;..,.:. HENE 1= --‘-—,__.i
e ' N
Wi -
' o
LA e LR [T I'L. f
| S i N ;A4 .
i e b = \“ :
i "~ . . i LA VRS
T Ty . . *

ol 1 B I
| 180 b—p et) e |
P05 W 18w ou (O T T L R || P Ini 15 om 3

Azl dhr FAG Anzshl o A Ampnl dur AR

Fig. 4 Mainframe-Nr. 1, Hardware: 8 MIPS
Operating system from “Manufacturer 17

For more than 12 users is the system no longer timely:
Nmax = 12

98

el T o [.eiﬁ@gsgri}ﬂun

Relasiumg (Derchsalz} Attllragsdurchlambzest [Anlwnrt i)
B (Anripeine| fy el

L]

it
[1H
A

—h—0l
S R
—4= 1l

LN]

06

LU

ant

Anrahl der FAL Aigalil i EAL

Bl T s flewertinpsgrifen

Durchsaiz Antword zeil Termintsene
L 12 11

K PSR

.=.
e
L -

nin +

LI R L I_‘i

LN S| I L A "

Anzahl drr EAG Aozt dur EAG i Al e LA

Fig. 5 Mainframe-Nr. 2
Hardware: Same as in Fig. 4 and also 8 MIPS
Operating system: Changed to those of “Manufacturer 2”

For more than 24 users is the system no longer timely:
Nmax = 24

99

9 Software efficiency in example 1

SW efficiency has several qualities, for instance

— storage usage
— changeability
— maintainability
— runtime

The focus of ISO 14756 is runtime efficiency. Wanted here is the operation systems software
efficiency.

The ISO standard 14756 describes the necessity of the reference environment (see Fig.6) in
detail. It also describes how to define it for measuring software efficiency. But it does not
explain detailed how to compare the measured performance values P1 and P2. To the author's
knowledge the ISO working group — which developed the standard 14756 - took it (at that time,

i. e. when the Standard was written) for granted how to compare two performance values P1 and
P2.

The following comparison of P1 and P2 is done according to a proposal explained in [3] and [4]
in detail.

SW Reference Environment

for Appl-SW-Efficiency : 1+3+4
for System-SW-Efficiency: 1 +2 + 4

(D Workload (user community) |
G Application-SW
G System-SW

@ Hardware |

Fig. 6 The reference environment (simplified)

100

The example: We look for the software efficiency of the two measured systems above(see Fig. 4
and Fig 5).:

The environment is “ 1 +2 +4” .

The measured terms are:

System 1: P1=(BI1, Tmel, El)

P1 represents 3xm values:
Bl =BI(), ceeeeeeene. , B1(3))
TMEl = (TMEI (1)), N TME1(3))
El =(EI(1), ccccreenns , E1(3))

System 2: P2 = (B2, Tue2, E2)

P2 represents 3xm values:
B2 =(B2(1), .coveen , B2(3))
TME2 = (TMEZ (1)), N TME2(3))
E2 =(E2(1), ccevveenne ,E2(3))

The software efficiency values computed from the measured values are:

Throughput efficiency values (for n=10 users) (for n=15 users)

Tasktype I Im(1)=B2(1)/BI1(1) 0.130/0.080=1.63 0.125/0.100= 1.25
Task type 2 Im(2)=B2(2)/B1(2) 0.058/0.035=1,66 0.080/0.410=1.95
Task type 3 Im(3)=B2(3)/B1(3) 0.058/0.450=1,29 0.081/0.060 = 1,35

Mean execution time efficiency values (for n= 10 users) (for n=15 users)

Task type 1 Iue(1)= Twel(1)/ Twe2(1) 14.5/2.10=6.90 20/4.5=4.44
Task type 2 Ive(2)= Twel(2)/ Twe2(2) 61.0/21.9=2.78 80/20.5 =3.90
Task type 3 Tws(3)= Twel(3) / Tw2(3) 39.0/13.5=2.89 50/26 =1.87

Timely efficiency values (for n= 10 users) (for n=15 users)
Task type 1 In(1)=E2(1)/E1(1) 0.130/0.080=1.51 0.125/0.060 = 2.08

Task type 2 In(2)=E2(1)/E1(2) 0.058/0.035=1.66 0.080/0.038 =234
Task type 3 In(3)=E2(3)/E1(3) 0.058/0.045=123 0.080/0.060 = 1.43

101

We see: For n =10 users are the throughput oriented efficiency values around 1.5 and the
response time oriented efficiency values nearly at 3. For n =15 users are the throughput oriented
efficiency values around 2 and the response time oriented efficiency values nearly at 4.

Remarks: 1) Be aware that n=10 users is not the same system software
environment as n=15 users !
2) Due to the fact that the lowest Nya value of the compared two systems is 12
it is really meaningless to investigate the software efficiency for more than
12 users.

There is an additional software efficiency measure:
I|'naXuSC|' = Nmax2 /Nmaxl
Its value is 24/12=2
Final result:
The operating system of manufacturer 2 is about two times more efficient that of manufacturer 1
when driving a computer center operation as represented by the ISO workload CCI1. I. e.: When
using the operating system 2 the computer system serves about 100% more users timely.
That was very surprising and was opposite to the meaning of the system programmers of both

companies. They were up to this measurement convinced that there would be nearly no
difference in the software efficiency of these two mainframe operating systems.

10 Example 2 and software efficiency

The hardware and operating systems are the same as in example 1. But the application software
is SAP/R2 instead of the software contained in the (modified) ISO workload CC1 of example 1.

Used were 4 parts of the SAP software:

RF (Finances) : 40% of the users
RM-MAT (Materials management): 30% of the users
RM-PPS (Production) : 10% of the users
RV (Sales) : 20% of the users
An ISO type workload was developed. The workload parameter set (shortened):
4 user types
110 activity types
110 task types

21 chain types
3 timeliness functions (mean values 3, 6 and 36 seconds)

102

Measured N, values:

Operating system 1: Ny 1= 110
Operating system 2: Ny.2= 170

Software efficiency
Lnaxuser = Nmax2 / Nimax] = 170/ 110 = 1.55

Using the operating system 2 instead of operating system 1
the computer system serves (about) 55% more users timely.

11 ISO 14756 and simulated software

The ISO method is not only applicable to real computer systems and its software. It is also
applicable for instance to simulated software. Therefore its use is recommended from the first
steps of a software project up to the running software in a real computer center operation, and
further on in the maintenance phase, for instance when repairing defects or when developing
new releases. This is an opportunity to realize high software efficiency (as one of the basic
criteria of software quality) along the total life time of the software from its birth to its death.
And — even — it can be a help in the first steps of an eventually following project.

A special point of interest is saving man power. Nowadays the practice is to write ad hoc (and
highly uncoordinated) new individual test systems for software efficiency whenever the
question comes up. Opposite to this it is recommended to integrate this question from the
beginning of a software project. This can be done by specifying the workload as an ISO
workload which has to become central point of the project specification from the beginning of
the project. The workload has to be designed only once and an ISO RTE is to buy or to write
only once. The pair workload-RTE can be used by all members and in all phases of the software
project. Only and only than when the specification of the software project changes the ISO type
workload has to be adapted.

103

12 Final remarks

The ISO Standard 14756 defines a very universal method for measuring computer systems
performance and software (runtime-) efficiency.

A RTE which is implemented according to this standard represents a universal high precision
measurement tool and it delivers reproducible measurement results (compare chapter 2).

Implementations of an ISO RTE were realized for instance by the Siemens Nixdorf Computer
Company, Telekom and others. To the authors knowledge these companies didn't offer their tools
in the market for sale. Free demo versions of an ISO RTE are found on the CD which is part of
[4]. AnISO 14756 conform RTE offered in the market is for instance “S_aturn” (see [5]).

The ISO method is not only applicable to real computer systems and its software. It is also
applicable for instance to simulated software. Therefore its use is recommended from the first
steps of a software project. It is a chance to save man power and to improve the software
efficiency of the delivered software product. The ISO workload principle is an outstanding
template to describe the endusers demands on his computer center and the installed software.

References

[1] DIN 66273-Serie, Messung und Bewertung der Leistung von DV-Systemen,
Deutsches Institut fiir Normung, 10772 Berlin, 1991

[2] ISO/IEC, International Standard 14756, Information technology — Measurement and rating
of performance of computer-based software systems, ISO Copyright Office,
CH 1211 Geneve 20, Casa Portale 56. 1999

[3] W. Dirlewanger, Messung und Bewertung der DV-Leistung auf Basis der
Norm DIN 66273, Hiithig-Verlag, ISBN: 3-7785-2147-0, 1994

[4] W. Dirlewanger, Measurement and Rating of Computer Systems Performance and of
Software Efficiency. An Introduction to the ISO/IEC 14756 Method and a Guide to its
Application, ISBN-10: 3-89958-233-0, ISBN-13: 078-3-89958-239-8,

Kassel University Press, 2007 (free extract: http://www.upress.uni-kassel.de)

[5] http://www.zott.net

104

Technical Open Challenges on Benchmarking Workflow
Management Systems

Marigianna Skouradaki, Dieter H. Roller, Frank Leymann

Institute of Architecture and Application Systems
University of Stuttgart
Germany
{skouradaki, dieter.h.roller, leymann } @iaas.uni-stuttgart.de

Vincenzo Ferme, Cesare Pautasso
Faculty of Informatics
University of Lugano

Switzerland
{firstname.lastname @usi.ch}

Abstract: The goal of the BenchFlow project is to design the first benchmark for as-
sessing and comparing the performance of BPMN 2.0 Workflow Management Systems
(WEMSs). WEMSs have become the platform to build composite service-oriented ap-
plications, whose performance depends on two factors: the performance of the work-
flow system itself and the performance of the composed services (which could lie out-
side of the control of the workflow). Our main goal is to present to the community the
state of our work, and the open challenges of a complex industry-relevant benchmark.

1 Introduction

This paper is an introduction to the Benchflow project'. The goal of this project is to
design the first benchmark for assessing and comparing the performance of BPMN 2.0?
Workflow Management Systems (WfMSs). WfMSs have become the platform to build
composite service-oriented applications (SOA), whose performance depends on two fac-
tors: the performance of the workflow system itself and the performance of the composed
services (which could lie outside of the control of the workflow). Therefore the develop-
ment of such a benchmark, reveals a number of challenges that were not present in bench-
mark of other types of systems, such as database management systems, or programming
language compilers.

In this work we present a list of challenges that are recognized during the design of such a
benchmark. We present the current state of our work, as well as the design decisions taken
so far, and also discuss the open challenges.

"http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php
2http://www.bpmn.org/

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

105

2 Description of the Workflow Management System environment

The purpose of this section is to provide to the reader a high-level understanding of the
WEMSs. For that we first need to clarify the concept of “workflow”, which is basically, the
focus point of a WIMS. According to [Spe99] a “workflow is the computerized facilitation
or automation of a business process, in whole or part”. In other words, a workflow is the
automation of a series of business activities that are needed for achieving a goal. In this
respect a Workflow Management System (WfMS) is a system that supports the reengineer-
ing and automation of business and information processes. Its main characteristics are the
definition of workflows, and the provision of fast re(design) and re(implementation) as the
business needs change [GHS95]. All the components of the WfMS, are compliant with
the semantics of a metamodel that defines concepts such as the structure of a process and
the operations that can be performed on a process model instance [LROO].

Business Process Modeling,
Workflow Definition Tool

\
Process Model

Buildtime

Workflow Management System Database

Runtime _
} | 4
| "

[)
Applications
<— | &IT Tools

Figure 1: Major Components of a Workflow Management System [LROO]

In Figure 2 we can see the main design and run-time components of a WfMS:

Buildtime provides means to the user to define the constructs such as process models, or-
ganizational structures, and information technology aspects (e.g. scripts, programs).
Workflow Definition Tool is the tool with which the users define the workflow according to
a workflow language that is compliant with the WfMS.

Process Model is an intermediate representation [Ley10] of the previously defined work-
flow, in a format that the WfMS can process. Process Models can be expressed through

106

different definition languages. For many years there was no standard definition language,
and each company chose to implement a customized form of the stardard definition lan-
guages on their engines. WS-BPEL [Org07] became an industry-accepted standard for
executing processes over WSDL-based Web services. Later, it was followed by the cre-
ation and industrial acceptance of the BPMN 2.0 standard [JE11]. This work focuses on
benchmarking WfMSs that support BPMN 2.0.

Runtime is the part that performs the actual execution of the processes, featuring opera-
tions, such as creating, navigating and controlling processes.

Database of the WEMS keeps and handles all the information that are essential for the
build and runtime. Thus, in the database we find stored the process models, and also the
state of their instances.

User and IT Tools the user (either the owner of a workflow or a participant in it) interacts
with the WEMS to report about the progress of his or her tasks, which may be performed
directly or through applications and other IT tools.

Currently, WfMSs can be seen as one of the key middleware components of Service Ori-
ented Architectures (SOA). As human users are less and less part of the workflow execu-
tion, whereby many different, possibly geographically distributed, service components in-
teract to provide the corresponding functionality, under the control of the WfMS [ZDGHOS,
GKW™12].

3 Open Technical Challenges

Given the peculiar characteristics of WfMSs, in the following we identify and briefly dis-
cuss some of the technical challenges in benchmarking WfMSs.

Automate the generation of realistic workload for different use case scenarios In
order to keep our measurements accurate we need to create realistic workload scenar-
ios. As workflow-based applications are currently present in various types of application
domains[LR97], it is challenging to select a sufficiently large subset of domains and syn-
thesize a domain-independent workload. In order to address this challenge we have started
designing a workload generator for creating process models according to pre-defined cri-
teria. The workload generator needs to take into consideration a set of variables that are
related to the correct operation of the workflows, e.g. data-flow, key performance indica-
tors (KPI), actors, and interactions with external entities (e.g. Web Services, databases,
external scripts).

The setup of the benchmark environment During the setup of the benchmark environ-
ment the challenge is to eliminate the interference of non-WfMS resources as for example
database systems, and Web Services used by a process. In order to do that, we design
the benchmark environment to be distributed on different physical machines that are con-
nected through the same local network. To do this we need to ensure a flexible deployment
mechanism.

System Internal Load Optimization The request load to WIMS is different for the vari-
ous day times. In order to handle this situation the WfMS shifts work to the daytime where

107

the load is lower. The challenge in this case is to take into account these optimizations in
the measurements of the throughput.

Benchmark Long Running Processes The lifetime of a process can span from some
milliseconds to hours, weeks, or even some years. The processes that run for more than
some hours are called “long-running” processes. An example of a long running process
might be a process that sends a message to an external partner and needs to wait for weeks
or even years for the reply. The long-running processes have two main characteristics:

1. the storage of the instances in database increases in size and
2. caching cannot be used from either the WfMS or the DBMS

The challenge in this case is to find a method to benchmark this type of processes without
having to wait for years for the completion of the benchmark.

Performance Impact of Workflow Language Features BPMN 2.0 provides a large set
of constructs, that express iteration, parallelism, exception handling, interactions with ex-
ternal entities etc. According to a research among the Websites and release notes of the
currently available engines, we have observed that the documentation on the coverage of
BPMN 2.0 constructs is usually inadequate. There is also the hypothesis that WfMSs
avoid implementing all of the constructs for performance reasons. It is also important to
consider which of these constructs are actually used in real-world processes [MROS8]. The
challenge in this case is to: a) run compliance tests to define which constructs are actually
supported by the available WfMSs, and b) decide which constructs need to go into the
workload mix.

4 Project Status

The initial phase of the project focused on analyzing a large collection of process models,
for collecting data to proceed to workload characterization and generation. The set up of
the benchmark environment is also planned at this phase.

Currently we have collected a large collection of 8363 real-life process models that are
expressed in various modelling languages. Collecting process models can be a big chal-
lenge as companies are not willing to share them to protect their corporate assets. The
ways by which we countenanced the process model sharing was to sign confidentiality
agreements, and to develop tools for obfuscating the models [SRPL14], and thus protect-
ing the company’s intellectual property. Our collection contains: 1% WS-BPEL, 4% EPC,
7% YAWL, 24% Petri Net, and 64% BPMN & BPMN 2.0 Models, where 2/3 of them are
BPMN 2.0. These data justify our decision to focus on the engines that support the BPMN
2.0 standard, as it seems to have become widely accepted in industry and academia.

However, the focus on the BPMN 2.0 standard was not the only decision that was taken
with respect to the data derived from the analysis of the process models collection. We
have currently ran statistical analysis on more than hundred different metrics, observ-
ing process models characteristics (e.g. control flow gateways fan-in, fan-out, cyclomatic
complexity), and the frequency of appearance of the BPMN 2.0 elements in the collected

108

process models. This led to a better understanding of which BPMN 2.0 features are present
in the real world, and thus would need to be supported by the engines participating in the
benchmark. We also arrived at the definition of representative process model mockups,
generated based on the results of a cluster analysis over structural complexity, and lan-
guage construct usage metrics.

The statistical analysis that we did on the process models gave us information about the
model characteristics at a “micro” level. We also wanted to define complete structures
that are repeatedly found in the process models. By this way we can combine different
structures with each other and have an even more realistic workload. The problem of
discovering the reoccurring structures is reduced to “Frequent Pattern Discovery”, and it
is NP-complete [Ben02]. To address this challenges we have implemented an extension
of the VF-2 algorithm which is said to be one of the most efficient algorithms in graph
isomorphism [PCFSV04]. The exported structures must now be characterized accord-
ing to benchmark-related criteria, and combined with respect to the metrics found in the
aforementioned statistical analysis. The idea is to give all the acquired information as an
input to a workload generator, and create realistic workload, that is compliant for different
benchmarking scenarios.

The choice BPMN 2.0 engines to be included in the benchmark is also a decision that
needs to be taken at this phase of the project. The current state is that there are more than
20 engines available implementing the BPMN 2.0 Standard. We are currently collecting
the available engines, and relevant information in a Wikipedia page®. Unfortunately, the
lack of documentation in terms of the engine’s compliance to the BPMN 2.0 standard, is
currently delaying our decision. In order to find out this information we are contacting the
vendors asking for information, and conducting compliance tests towards the engines. The
aforementioned statistical analysis also plays its roles at this point, as we need to choose
among these engines which implement at least the most frequently used elements of the
BPMN 2.0 Standard.

In terms of the benchmark set-up we developed and deployed the first prototype of a
WEMS on different physical machines connected through the same local network. The
challenges that we needed to address are currently solved using Docker* that offers a
flexible deployment mechanism with a minimal impact on the performance measurement.
Docker guarantees a good level of isolation and a quick start up, and enables repeatability
of the tests because the initial conditions are kept inside the Docker containers and are
exactly the same for each execution of the benchmark.We are currently using Faban’ to
develop the first prototypes of benchmark drivers, we are running the first experiments
using the three models we derived from the statistical analysis of a large model collection,
and we are analyzing the execution log to compute the first KPIs such as throughput.

3http://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines
4https://www.docker.com
Shttp://www.faban.org

109

5 Related Work

In the topic of benchmarking the performance of WfMSs, only some work is available
(e.g., [GMWO00, BBD10, DPZ11]). In the most recent approaches, the SOABench project
[BBD10] can be seen as an initial step to provide a performance assessment and compari-
son framework for SOA middleware systems.

SPEC has also introduced a group that focuses on benchmarking SOA infrastructures
[Stal0]. However information on their progress of research is still not available on the
website. Vendors of proprietary systems are also executing internal benchmarks (e.g.
[SAP11], [Incl1], [ICO7]) in order to evaluate their work and inform the prospective
customers. However, there is not any standard method followed in these becnhmark ap-
proaches. As easily concluded, and also emphasized by the literature, the need to introduce
a benchmark standard for that addresses the industry state-of-art needs is now imperative
[KKL06, WLR'09, RvdAHO7, LMJ10]. Our work intends to the creation of such a stan-
dard benchmark, that differs from the related work, in terms of: a) the number of WfMSs
to be compared, b) the complexity and diversity of the workload mix, c) the number of the
executed performance tests, and d) the number of performance metrics that will be taken
into consideration, and their aggregation into a meaningful number.

6 Discussion & Conclusion

In this paper we have presented the open challenges for the creation of a benchmark for
W{MSs that we have been addressing in the first phase of the BenchFlow project as well as
some solutions for addressing them. We have seen how the synthesis of the workload mix
needs to be created through a workload generator, how we plan to setup the benchmark
environment and isolate it from internal interferences, and how the compliance tests and
statistics on BPMN 2.0 support are important before deciding the workload mix. We have
also raised issues such us long-running processes benchmarking, and the consideration of
WIMS internal load optimization into our benchmark.

By presenting this set of open research challenges in this position paper, we aim to present
the SOSP community with a complex industry-relevant benchmarking challenge and dis-
cuss how to deal with the aforementioned open challenges.

References

[BBD10] D. Bianculli, W. Binder, and M.L. Drago. SOABench: Performance Evaluation of
Service-Oriented Middleware Made Easy. In Proc. of the 19th International World
Wide Web Conference (WWW 2010), Raleigh, NC, 2010.

[Ben02] E. Bengoetxea. Inexact Graph Matching Using Estimation of Distribution Algorithms.

PhD thesis, Ecole Nationale Supérieure des Télécommunications, Paris, France, Dec
2002.

110

[DPZ11]

[GHS95]

[GKW12]

[GMWO00]

[IC07]
[Inc11]
[JE11]

[KKLO6]

[Ley10]

[LMJ10]

[LR97]

[LROO]

[MROS8]

[Org07]

[PCESV04]

[RvdAHO7]

Florian Daniel, Giuseppe Pozzi, and Ye Zhang. Workflow Engine Performance Evalua-
tion by a Black-Box Approach. In Proc. of the International Conference on Informatics
Engineering & Information Science, ICIEIS 2011, pages 189-203. Springer, Novem-
ber 2011.

D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed and
parallel Databases, 3(2):119-153, 1995.

Spyridon Gogouvitis, Kleopatra Konstanteli, Stefan Waldschmidt, George Kousiouris,
Gregory Katsaros, Andreas Menychtas, Dimosthenis Kyriazis, and Theodora Var-
varigou. Workflow management for soft real-time interactive applications in virtualized
environments. Future Generation Computer Systems, 28(1):193 — 209, 2012.

Michael Gillmann, Ralf Mindermann, and Gerhard Weikum. Benchmarking and Con-
figuration of Workflow Management Systems. In Proc. of the 7th International Con-
ference on Cooperative Information Systems, CooplS 2000, pages 186—197, 2000.

Intel and Cape Clear. BPEL Scalability and Performance Testing. White paper, 2007.
Active Endpoints Inc. Assessing ActiveVOS Performance, 2011.

Diane Jordan and John Evdemon. Business Process Model And Notation (BPMN)
Version 2.0. Object Management Group, Inc, January 2011.

Rania Khalaf, Alexander Keller, and Frank Leymann. Business processes for Web
Services: Principles and applications. IBM Systems Journal, 45(2):425-446, 2006.

Frank Leymann. BPEL vs. BPMN 2.0: Should You Care? In Jan Mendling, Matthias
Weidlich, and Mathias Weske, editors, Business Process Modeling Notation, volume 67
of Lecture Notes in Business Information Processing, pages 8—13. Springer Berlin Hei-
delberg, 2010.

Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A distributed service-oriented
architecture for business process execution. ACM Trans. Web, 4(1):2:1-2:33, January
2010.

Frank Leymann and Dieter Roller. Workflow-Based Applications. IBM Systems Jour-
nal, 36(1):102-123, 1997.

Frank Leymann and Dieter Roller. Production Workflow: Concepts and Techniques.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

M. Muehlen and J. Recker. How much language is enough? Theoretical and practi-
cal use of the business process modeling notation. In Advanced Information Systems
Engineering, pages 465-479. Springer, 2008.

Organization for the Advancement of Structured Information Standards (OASIS). Web
Services Business Process Execution Language (WS-BPEL) Version 2.0, April 2007.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach.
Intell., 26(10):1367-1372, October 2004.

N. Russell, W.M.P. van der Aalst, and A.H.M. Hofstede. All That Glitters Is Not Gold:
Selecting the Right Tool for Your BPM Needs. CUTTER IT JOURNAL, 20(11):31-38,
November 2007.

111

[SAPI11]

[Spe99]

[SRPL14]

[Stal0]

[WLR09]

[ZDGHO5]

IBM SAP. SAP NetWeaver Business Process Management Performance, Scalability,
and Stability Proof of Concept. Technical report, IBM SAP International Competence
Center (ISICC)Walldorf, Germany SAP NetWeaver BPM Product Management, Wall-
dorf, Germany SAP Labs, Berlin, Germany SAP Active Global Support, Walldorf,
Germany, 2011.

Workflow Management Coalition Specification. Workflow Management Coalition,
Terminology & Glossary (Document No. WFMC-TC-1011). Workflow Management
Coalition Specification, February 1999.

Marigianna Skouradaki, Dieter Roller, Cesare Pautasso, and Frank Leymann.
BPELanon: Anonymizing BPEL Processes. In Proc. of ZEUS’ 14, pages 09-15, 2014.

Standard Performance Evaluation Corporation. SPEC SOA Subcommittee, February
2010. http://www.spec.org/soa/.

B. Wetzstein, P. Leitner, F. Rosenberg, 1. Brandic, S. Dustdar, and F. Leymann. Moni-
toring and Analyzing Influential Factors of Business Process Performance. In Proc. of
the IEEE International Conference on Enterprise Distributed Object Computing Con-
ference, EDOC 2009, pages 141 —150, September 2009.

Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Kerard Hogg. Service-
oriented Architecture and Business Process Choreography in an Order Management
Scenario: Rationale, Concepts, Lessons Learned. In Companion to the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA °05, pages 301-312, New York, NY, USA, 2005. ACM.

112

Evaluating the Prediction Accuracy of Generated
Performance Models in Up- and Downscaling Scenarios

Andreas Brunnert!, Stefan Neubig!, Helmut Krcmar?
Ifortiss GmbH
Guerickestr. 25, 80805 Miinchen, Germany
{brunnert, neubig } @fortiss.org
2Technische Universitit Miinchen
Boltzmannstr. 3, 85748 Garching, Germany
krcmar @in.tum.de

Abstract: This paper evaluates an improved performance model generation approach
for Java Enterprise Edition (EE) applications. Performance models are generated for
a Java EE application deployment and are used as input for a simulation engine to
predict performance (i.e., response time, throughput, resource utilization) in up- and
downscaling scenarios. Performance is predicted for increased and reduced numbers
of CPU cores as well as for different workload scenarios. Simulation results are com-
pared with measurements for corresponding scenarios using average values and mea-
sures of dispersion to evaluate the prediction accuracy of the models. The results show
that these models predict mean response time, CPU utilization and throughput in all
scenarios with a relative error of mostly below 20 %.

1 Introduction

Numerous performance modeling approaches have been proposed to evaluate the per-
formance (i.e., response time, throughput, resource utilization) of enterprise applications
[BDMIS04, Koz10, BWK14]. These models can be used as input for analytical solvers
and simulation engines to predict performance. Performance models are especially useful
when scenarios need to be evaluated that cannot be tested on a real system. Scaling a sys-
tem up or down in terms of the available hardware resources (e.g., number of CPU cores)
are examples for such scenarios.

Evaluating the impact of up- or downscaling on performance is a typical activity during
the capacity planning and management processes. Capacity planning concerns questions
such as "How many hardware resources are required for the expected workload of new en-
terprise application deployments?” and involves evaluating the behavior of an application
when a system is scaled up. Capacity management on the other hand is usually concerned
with evaluating whether the existing hardware resources are sufficient for the current or
expected load. This involves not only upscaling but also downscaling scenarios in which
the amount of hardware resources needs to be reduced to save costs (e.g., license fees that
depend on the number of CPU cores used).

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

113

Nowadays, creating a performance model requires considerable manual effort [BVDT14].
This effort leads to low adoption rates of performance models in practice [Koz10]. To
address this challenge for Java Enterprise Edition (EE) applications, we have proposed an
automatic performance model generation approach in [BVK13]. This work improves the
existing approach by further reducing the effort and time for the model generation.

In order to evaluate whether the automatically generated performance models are fit for
use during capacity planning and management, we evaluate the improved model genera-
tion approach in up- and downscaling scenarios. In a first step, an automatically generated
performance model is used to predict the performance of a system in an upscaling sce-
nario, in which additional CPU cores are added to the system. Afterwards, a downscaling
scenario is evaluated in which the number of CPUs is reduced. During the evaluation of
the up- and downscaling scenarios not only the number of CPU cores is modified, but also
the amount of users interacting with the system simultaneously.

2 Generating Performance Models

This section is based on our previous work on generating performance models for Java
EE applications [BVK13]. In this work, we are using the same concepts for the model
generation but reduce the time required for generating a performance model to mostly less
than a minute. To make this work self-contained, a brief overview of the model generation
process is given, changes are described in more detail. The model generation process is
divided into a data collection and a model generation step, the explanation follows these
two steps.

2.1 Data Collection

The data that needs to be collected to create a representative performance model is depen-
dent on which components should be represented in the model [BVK13]. Following Wu
and Woodside [WWO04], Java EE applications are represented using the component types
they are composed of. The main Java EE application component types are Applets, Ap-
plication Clients, Enterprise JavaBeans (EJB) and web components (i.e., JavaServer Pages
(JSP) and Servlets) [Sha06]. As Applets and Application Clients are external processes
that are not running within a Java EE server runtime, the remainder of this paper focuses
on EJB and web components. To model a Java EE application based on these component
types, the following data needs to be collected [BVK13]:

1. EJB and web component as well as operation names
2. EJB and web component relationships on the level of component operations

3. Resource demands for all EJB and web component operations

114

BranchMetrics
-;n\t/o‘((‘saFt'llcan)Count(; Iolng(u(j_ltil) 11 BranchDescriptor A1 ParentOperationBranch *1 | JavaEEComponentOperationMBean
-total emand : long(i Z
-totalResponseTime : long(idl) K< <<
-totalAllocatedHeapBytes : long(idl)
1 1 4

OperationCallLoopCount {ordered) Operationldentifier
] cp Tong(idl) P * 1 [ExternalOperationCall| * 1 [jy5e™ string(idi)
-loopCount : long((i))
-loopCountOccurrences : long(idl) :Z‘;g;:giﬁ::g?S.tilr:\gn(?é:t)il) ;

Figure 1: JavaEEComponentOperationMBean data model

In [BVK13] we have collected this information using dynamic analysis, saved it in comma-
separated value (CSV) files and used an additional process step to aggregate this informa-
tion into a database. To speed up the model generation process we are no longer using files
as persistence layer and have removed the additional step of aggregating the data stored
in the files in a relational database. Instead, the data required for modeling an applica-
tion is collected and aggregated in Managed Beans (MBeans) [Mic06] of the Java Virtual
Machine (JVM). MBeans are managed Java objects in a JVM controlled by an MBean
server.

The reason for choosing MBeans as persistence layer is that the Java Management Exten-
sion (JMX) specification defines them as the standard mechanism to monitor and manage
JVMs [Mic06]. The JIMX and related specifications also define ways to manage, access
and control such MBeans locally as well as from remote clients. For example, the JIMX
remote application programming interface (API) allows access to all MBeans of a system
remotely using different network protocols. Building upon the JMX standard therefore
ensures that the approach is applicable for all products that are compliant with the Java EE
[Sha06] and JMX [Mic06] specifications.

One of the key challenges for the transition from CSV files to MBeans is to find a data
model with low impact on an instrumented system. The instrumentation for the dynamic
analysis collects structural and behavioral information as well as resource demands for
each component operation invocation. As storing the data for each invocation separately
in an MBean is not possible due to the high memory consumption, the data needs to be
aggregated. Additionally, recreation of existing control flows from the data needs to be
possible. To accompany these requirements and to implement the MBean data collection
with low impact on the monitored system, the data model shown in figure 1 is used.

A JavaEEComponentOperationMBean is registered for each externally accessible com-
ponent operation. Internal component operations are not represented in the data model.
Each JavaEEComponentOperationMBean instance is identified by an Operationldentifier
attribute. The Operationldentifier is a unique identifier of a component operation in a
Java EE runtime. It therefore contains the respective componentName (i.e., EJB or web
component name), the component type (i.e., Servlet/JSP/EJB) and its operationName (i.e.,
Servlet/JSP request parameter or EJB method name).

The component relationships are also stored in the data model. These relationships differ
depending on component states as well as input and output parameters of their operations
(i.e., whether an external operation is called or not). To simplify the data model, com-

115

ponent states and parameters of component operations are not represented. Instead, the
invocation counts for different control flows of a component operation are stored in the
model.

A control flow of a component operation is represented by the BranchDescriptor class and
its ordered list of ExternalOperationCalls. ExternalOperationCalls are identified using an
Operationldentifier attribute. Using this attribute, ExternalOperationCalls can be linked
to the corresponding JavaEEComponentOperationMBeans. This link allows recreating
the complete control flows of requests processed by applications in a Java EE runtime.

ExternalOperationCalls have an additional OperationCallLoopCount attribute, which is
used to track the number of times an external operation is called in a row. This attribute
helps to limit the amount of data that needs to be stored in the MBeans, as repeating
invocations do not need to be stored separately. Instead, each loopCount that may occur
in an otherwise equal control flow can be tracked using the same data structure. For each
loopCount, the OperationCallLoopCount class stores the number of times a loopCount
occurred in the loopCountOccurrences attribute.

A BranchDescriptor also contains a BranchMetrics attribute, which tracks the number of
times a control flow occurred (invocationCount) and how much CPU, heap and response
time is consumed by the current component operation in this control flow in total. This
information allows calculating the control flow probability and its resource demand during
the model generation.

To differentiate requests processed by applications in a Java EE runtime, control flows of
an operation are grouped according to the component operation that is invoked first during
a request (i.e., by users or external systems). This grouping is specified in the Parent-
OperationBranch class. It maps a list of BranchDescriptors to a JavaEEComponent-
OperationMBean and contains a reference to the Operationldentifier of the first operation.
This reference improves the data collection and model generation performance.

2.2 Performance Model Generation

The data stored in the MBean data model (see figure 1) is used to generate component-
based performance models. The meta model for the generated models is the Palladio
Component Model (PCM) [BKR09]. PCM consists of several model layers that are all re-
quired to use PCM for performance predictions [BKR09]. This section describes how the
repository model layer can be generated automatically as the other model layers can only
be created using the information contained in this model. The PCM repository model con-
tains the components of a system, their operation behavior and resource demands as well
as their relationships. Repository model components are assembled in a system model to
represent an application. User interactions with the system are described in a usage model.
The other two model layers in PCM are the resource environment and allocation model.
The purpose of a resource environment model is to specify available resource contain-
ers (i.e., servers) with their associated hardware resources (CPU or HDD). An allocation
model specifies the mapping of components to resource containers. To simplify the use

116

o IComponentA

void operationA(string parentoperation)
void operationB(string parentoperation)

A operationA of ComponentA # operationC of ComponentB

! Guarded Branch

<<Provides>> ! Cond: parentoperation.VALUE == "ComponentA_operationA'
¢ Control Flow 1 ¢ Control Flow 2
£] ComponentA . Probability: 06 . Probability: 0.4
T SEFF <operationA> ° ° [] # internalAction)
7 SEFF <operations> & Cal opeationc of ompanens ResourceDemand
oporafion " > 0,056 <CPU>

& IntPMF((5:0.2)(90.8)]
<<Requires>>
q ! Guarded Branch
#(Component operationC 4! Cond: parentoperation.VALUE == "ComponentA_operation8'
npu

internalAction

o IComponentB Resourcel Demand

0,123 <cPU>

[=] void operationC(string parentoperation)
<<Provides>> °
=] ComponentB)
%1 SEFF <operationC>

] % internalAction ()

ResourceDemand
042 <cPu>

(a) Repository model example (b) RDSEFF of ComponentA.operationA (¢c) RDSEFF of Compo-

[BVK13] [BVK13] nentB.operationC
@ ComponentC © Heap .
[=] void operationD(string parentoperation) | |=| void alloc(int bytesRequested) 2% operationD of ComponentC
void free(int bytesReleased) o Guarded Branch
<<Requires>> o Cond: parentoperation VALUE=="ComponentC_operationD"
<<Provides>> <<Provides>>
€] ComponentC £ Heap #{ Heap.alloc $4 Heap free
¥ SEFF <operationD> %7 SEFF <alloc> Py InputvariableUsage InputvariableUsage

FT SEFF <free> ¢ bytesRequested # aName 5 bytesReleased)
bleci bleci

PassiveResourceCompartment D eVAlDE o0 L5005 <cpu> 4 VALUE = 200
HeapSize <Capacity: 2147483647>

PassiveResourceCompartment

(d) Heap component (e) Calling Heap.alloc and Heap.free from RDSEFFs

Figure 2: PCM repository model elements

of generated repository models, default models for the other PCM model layers are gener-
ated automatically once the repository model generation is complete [BVK13]. The PCM
usage model is not generated automatically and has to be modeled manually.

Following the data model in figure 1, JavaEEComponentOperationMBean instances in a
Java EE runtime are used to generate a repository model. The model generation is imple-
mented as a Java-based client that accesses the MBean data using the JMX Remote API.
The list of available JavaEEComponentOperationMBeans is first of all used to generate
component elements in the repository model (e.g., ComponentA and ComponentB in fig-
ure 2(a)). The component list can be derived from the data model by filtering the available
JavaEEComponentOperationMBeans by the componentName attribute of the associated
Operationldentifier. Operations provided by Java EE components are also available in
the same data structure and are generated in the same step. In a PCM repository model,
operations provided by a component are specified in an interface (e.g., IComponentA and
IComponentB in figure 2(a)).

Afterwards, the data in the list of ExternalOperationCalls for each BranchDescriptor of a
JavaEEComponentOperationMBean is used to represent component relationships. These
relationships are specified in a repository model by a requires relationship between the
repository component that calls a specific component operation and the interface that pro-
vides this operation (e.g., ComponentA requires IComponentB in figure 2(a)). The model
generation can therefore use information about external operations called in specific oper-
ation control flows (using the Operationldentifier of the ExternalOperationCalls) to create
the relationships of repository model components.

So far, only components, interfaces and their relationships are available in the repository

117

model. In the next step, the behavior of component operations needs to be specified.
The component operation behavior is specified in Resource Demanding Service Effect
Specifications (RDSEFF). RDSEFFs are behavior descriptions similar to activity diagrams
in the Unified Modeling Language (UML).

As explained in the data collection section 2.1, a component operation can be included in
different requests processed by a Java EE runtime (see ParentOperationBranch in figure
1). To represent the resulting behavior differences in a performance model, a parent-
operation parameter is passed between component operations. An example can be found
in figure 2(b): operationA of ComponentA is the first operation called during a request,
it thus specifies the parentoperation as ComponentA_operationA in the external call to
ComponentB.operationC. This parameter is used in the RDSEFF of operationC of Com-
ponentB to differentiate the operation behavior depending on the parameter value (see fig-
ure 2(c)). The initial parentoperation parameter value that is set when a request starts
is passed on to all sub-invocations. For example, ComponentA_operationA would be
passed on if ComponentB.operationC would call another external operation within this
request. The behavior description of ComponentA.operationA in figure 2(b) is also con-
tained in a guarded branch with the condition that the current operation needs to be Com-
ponentA _operationA. This is necessary to ensure that all component operations can be
used equally in the PCM repository and usage model layers. Thus, operations that only
start requests and those that are also (or only) used within requests are indistinguishable.

A component operation can behave differently even though the same parentoperation ini-
tiated the request processing. These control flow differences are represented in RDSEFFs
using probability branches [BKR09]. The probability of each branch (=BranchDescriptor)
can be calculated based on data in BranchMetrics objects. If only one BranchDescriptor
object exists for a ParentOperationBranch object, the probability is one. Otherwise, the
invocationCount sum of all BranchMetrics objects for a ParentOperationBranch is used to
calculate the probability for a single probability branch in a RDSEFF. An example for such
probability branches can be found in figure 2(b). The RDSEFF of ComponentA.operationA
contains two probability branches (Control Flow I and Control Flow 2). One is executed
with 60 % probability whereas the second is executed with 40 % probability. The Oper-
ationCallLoopCounts for different ExternalOperationCalls in a specific branch are repre-
sented as loop probabilities. For example, in figure 2(b), the external call to operationC of
ComponentB is executed five times in 20 % of the cases and nine times in the other 80 %.

Resource demand data in BranchMetric objects is also represented in a probability branch
of a RDSEFF. The mean CPU demand in milliseconds (ms) calculated based on the
BranchMetrics data can be directly assigned to an internal action of a probability branch.
In the example in figure 2(b), ComponentA.operationA consumes 0.123 ms CPU time in
Control Flow 1, whereas Control Flow 2 consumes 0.456 ms.

Representing heap memory demand of a component operation is not directly supported
by the PCM meta model. Therefore, the passive resources element of the meta model is
reused for this purpose [BKR09]. Even though passive resources are intended to be used
as semaphores or to represented limited pool sizes (e.g., for database connections), one can
also use them to create a simplistic representation of the memory demand of an applica-
tion. For this purpose, a heap component is generated in each repository model as shown

118

in figure 2(d). This heap component contains a specified amount of passive resources that
represents the maximum heap size available in a JVM. The maximum configurable value
for the available passive resources of the heap component is 23!-1. Thus, if one interprets
one passive resource as one byte (B), the maximum configurable heap is two gigabytes
(GB). As this is a very low value for Java EE applications nowadays, the model genera-
tion can be configured to interpret one passive resource as 10 bytes, so that the maximum
representable heap is 20 GB. To do this, all heap memory demands read from the Branch-
Metrics objects are divided by ten and are rounded because passive resources can only be
acquired as integer values. As this reduces the accuracy of the model, one passive resource
is interpreted as one byte by default.

To allow other component operations in the repository model to consume heap memory,
the heap component offers two operations: alloc(int bytesRequested) and free(int bytes-
Released) (see figure 2(d)). This model follows the API for applications written in the
programming language C. Using the information about the heap demand gathered in the
data collection step (see section 2.1), calls to the Heap.alloc operation are generated at
the beginning of each execution flow and calls to Heap.free at the end. An example is
shown in figure 2(e): operationD of ComponentC calls alloc with a value of 200 bytes
at the beginning, performs some internal processing and releases the 200 bytes allocated
previously. Even though this memory model representation is not realistic for Java appli-
cations as the garbage collector (GC) behavior is not represented, the overall utilization of
the passive resources helps to get an idea of the heap memory demand of an application.

3 Evaluating the Performance Prediction Accuracy

The feasibility of the model generation approach is evaluated in a case study using a
SPECjEnterprise2010' industry standard benchmark deployment. SPECjEnterprise2010
is used for this evaluation to make it reproducible as it defines an application, a workload
as well as a dataset for a benchmark execution.

3.1 SPECjEnterprise2010 Deployment

The SPECjEnterprise2010 benchmark represents the business case of an automobile man-
ufacturer. It is divided into three application domains. The evaluation in this paper focuses
on the Orders domain. This domain is used by automobile dealers to order and sell cars. To
avoid the need to model all domains, the communication between the Orders and the other
domains is disabled. The setup of the Orders domain consists of a benchmark driver to
generate load and a system under test (SUT) on which the Orders domain application com-

ISPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECj-
Enterprise2010 results or findings in this publication have not been reviewed or accepted by SPEC, therefore
no comparison nor performance inference can be made against any published SPEC result. The official web site
for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.

119

ponents are executed. The Orders domain is a Java EE web application that is composed of
Servlet, JSP and EJB components. The automobile dealers (hereafter called users) access
this application using a web interface over the hypertext transfer protocol (HTTP) and can
perform three different business transactions: browse, manage and purchase. These three
business transactions are composed of several HTTP requests to the system. The user
interactions with the system are implemented as load test scripts in the Faban harness?.
Faban is a workload creation and execution framework which is used to generate load on
the SUT.

The benchmark driver and the SUT are each deployed on a virtual machine (VM) to sim-
plify changing the number of available CPU cores. These two virtual machines are con-
nected by a one gigabyte-per-second network connection and are mapped to an IBM Sys-
tem X3755M3 hardware server which is exclusively used for the SPECjEnterprise2010
benchmarks performed for this evaluation. Both virtual machines run CentOS 6.4 as op-
erating system and are configured to have 20 GB of random-access memory (RAM). The
benchmark driver is equipped with eight CPU cores, the number of CPU cores of the SUT
is varied during the evaluation. The SPECjEnterprise2010 Orders domain application is
deployed on a JBoss Application Server (AS) 7.1.1 in the Java EE 6.0 full profile. The
database on the SUT VM is an Apache Derby DB in version 10.9.1.0. The JBoss AS and
the Apache Derby DB are both executed in the same JVM, which is a 64 bit Java Open-
JDK Server VM in version 1.7.0. An external Java-based client for the model generation
is connected to the SUT using the JBoss JMX remote APIL.

3.2 Evaluating the Data Collection Overhead

The model generation approach introduced in this work relies on data collected using a
runtime instrumentation. The instrumentation overhead for collecting the required data is
analyzed in this section. As mentioned in the data collection section (see section 2.1), the
instrumentation is capable of collecting the CPU and Java heap memory demand for each
externally accessible component operation. The instrumentation code is therefore always
executed before and after a component operation and can have a great influence on the
performance data stored in the performance model.

To evaluate the impact of the data collection, the resource demand of several control
flows of the SPECjEnterprise2010 Orders domain application is analyzed using differ-
ent data collection configurations. For each of the following data collection configurations
a SPECjEnterprise2010 benchmark run is executed and afterwards a performance model
is generated. The SPECjEnterprise2010 deployment outlined in section 3.1 is used in a
configuration with four CPU cores for the SUT. To avoid influences of warm up effects
and varying user counts, only steady state data (i.e., data collected during 10 minutes be-
tween a five minute ramp up and a 150 second ramp down phase) is collected. The data
collection runs are executed with a workload of 600 concurrent users which corresponds
to a CPU utilization of the SUT of about 50 %. The resulting performance models contain

Zhttp://java.net/projects/faban/

120

Table 1: Measured instrumentation overhead for the data collection - control flow one

Component Operation Model 1.1 Model 1.2 Model 2.1 | Model 2.2
Order Name CPU Heap CPU Heap CPU CPU
1 app.sellinventory 1.023 ms | 33,650B | 3.001 ms | 225,390 B 0.756 ms 3.003 ms
2 CustomerSession.selllnventory 0.785 ms 60,450 B 0.731 ms
3 CustomerSession.getInventories | 0.594 ms | 49,540 B 0.548 ms
4 OrderSession.getOpenOrders 0.954 ms | 70,600 B 0.878 ms
5 dealerinventory.jsp.sellinventory | 0.108 ms 16,660 B 0.103 ms
Total Resource Demand 3.464 ms | 230,900 B | 3.001 ms | 225,390 B | 3.015ms | 3.003 ms
Mean Data Collection Overhead 0.116 ms 1378 B 0.003 ms

the aggregated resource demands collected in the MBeans for these component operations
and therefore simplify the analysis. The resource demand for the database is already in-
cluded in the following measurements, as the embedded derby DB is executed in the same
thread as the Servlet, JSP and EJB components.

The mean CPU and heap demands for single component operations involved in three dif-
ferent control flows are shown in tables 1, 2 and 3. Both resource demand types (CPU and
heap) are represented as mean values for the data collected during the steady state. The
heap demand values in this table are rounded to 10 byte intervals as the model generation
is configured to do so to have 20 GB of heap available in the model (see section 2.1).

In a first step, a benchmark run is executed while the CPU and heap demand for all com-
ponent operations involved in the request processing is collected. The performance model
generated based on this configuration is called Model 1.1 in tables 1, 2 and 3. Afterwards,
a benchmark run is executed while only the CPU demand for each component operation is
collected. The resulting performance model based on this data collection configuration is
called Model 2.1 in tables 1, 2 and 3. Both benchmark runs are repeated but this time, only
resource demand data (CPU or CPU & heap) for the first component operations (those
where Order==1 in tables 1, 2 and 3) of each HTTP request is collected. These measure-
ments already include the CPU and heap demands of the sub-invocations (Order >1 in
tables 1, 2 and 3). The resulting performance models are called Model 1.2 for the first con-
figuration (CPU and heap collection turned on) and Model 2.2 for the second configuration
(CPU collection turned on).

The total mean CPU and heap demand values in the first model versions (/.7 and 2.7)
are compared with the corresponding values for the second model versions (/.2 and 2.2)
to calculate the instrumentation overhead. It can be shown that collecting heap and CPU
demands for each component operation is a lot more expensive than only collecting CPU
demand. For the HTTP request analyzed in table 1, the mean overhead for the data col-
lection including heap demand is 0.116 ms CPU time and 1378 byte heap memory for
each component operation. If only the CPU demand is collected, the mean data collection
overhead drops dramatically to 0.003 ms for each component operation.

Other execution flows during the same benchmark runs confirm these values (two addi-
tional examples are given in tables 2 and 3). The mean instrumentation overhead for the
CPU-only collection is mostly below 0.020 ms whereas the mean instrumentation over-
head for the CPU and heap collection ranges mostly between 0.060 and 0.120 ms. As
some component operations in the SPECjEnterprise2010 benchmark have an overall CPU

121

Table 2: Measured instrumentation overhead for the data collection - control flow two

Component Operation Model 1.1 Model 1.2 Model 2.1 | Model 2.2
Order Name CPU Heap CPU Heap CPU CPU
1 app.view_items 0.406 ms | 20,560 B | 3.529ms | 615,440B | 0.165ms | 3.566 ms
2 ItemBrowserSession.browseForward | 3.315 ms | 565,130 B 3.282 ms
3 ItemBrowserSession.getCurrentMin | 0.003 ms 60 B 0.003 ms
4 ItemBrowserSession.getCurrentMax | 0.003 ms 60 B 0.002 ms
5 ItemBrowserSession.getTotalltems 0.003 ms 60 B 0.002 ms
6 purchase.jsp.view_items 0.147ms | 40,380 B 0.142 ms
[Total Resource D d [3.877ms [626,250 B [3.529ms [615440 B [3.598 ms [3.566 ms |
| Mean Data Collection Overhead [0.070ms [2162B | ‘ | 0.006ms | |
Table 3: Measured instrumentation overhead for the data collection - control flow three
Component Operation Model 1.1 Model 1.2 Model 2.1 | Model 2.2
Order Name CPU Heap CPU Heap CPU CPU
1 app.add_to_cart 0.213ms | 11,300 B | 0.393 ms | 27,520 B 0.108 ms 0.388 ms
2 OrderSession.getltem 0.276 ms | 13,460 B 0.255 ms
3 shoppingcart.jsp.add_to_cart | 0.059 ms 5960 B 0.058 ms
Total Resource Demand 0.548 ms | 30,720B | 0.393 ms | 27,520 B 0.421 ms 0.388 ms
Mean Data Collection Overhead 0.077 ms 1600 B 0.017 ms

demand of below 0.150 ms, collecting the heap demand for this deployment causes too
much overhead. The following evaluation therefore focuses on models generated based on
the CPU demand collection.

3.3 Comparing Measured and Simulated Results

In the next two sections, the prediction accuracy of generated performance models is eval-
uated in an upscaling and a downscaling scenario. The steps for both evaluations are
similar and are described in the following paragraphs.

Load is generated on the SUT to gather the required data for the model generation in
each scenario using the data collection approach outlined in section 2.1. As the database
is included within the server JVM, the collected data already contains its CPU demands.
Similar to the benchmark runs in the overhead evaluation, only steady state data (i.e., data
collected during 10 minutes between a five minute ramp up and a 150 second ramp down
phase) is collected. Afterwards, a software prototype that implements the performance
model generation approach is used to generate a PCM model based on the collected data.

PCM models can be taken as the input for a simulation engine to predict the application
performance for different workloads and resource environments. The standard simulation
engine for PCM models is SimuCom which uses model-2-text transformations to translate
PCM models into Java code [BKR09]. The code is then compiled and executed to start
a simulation. To evaluate the accuracy of the simulation results, they are compared with
measurements on the SUT. The following comparisons only use steady state data collected
during simulation and benchmark runs of similar length.

The benchmark driver reports the mean response time and throughput for each business

122

transaction for a benchmark run. However, the predicted response time values cannot be
compared with response time values reported by the driver, because they do not contain the
network overhead between the driver and the SUT. Therefore, response time of the busi-
ness transactions browse (B), manage (M) and purchase (P) is measured on the SUT using
an additional instrumentation. To identify business transactions using this instrumenta-
tion, the benchmark driver is patched to add a unique transaction identifier to each request.
This identifier allows combining several HTTP requests into one business transaction. In-
coming requests are aggregated on the fly to the business transaction they belong to by
summing up their response times. The resulting business transaction response time mea-
surements are stored with a timestamp to calculate the mean throughput on a per-minute
basis.

The CPU time consumed by the JVM process of the JBoss AS on the SUT (and thus
its CPU utilization) is collected every second to reconstruct its approximate progression
and to compare the measured and simulated ranges. The calculation of the mean CPU
utilization is based on the first and the last CPU time consumption value in the steady
state of a benchmark run in order to avoid biasing effects caused by unequal measurement
intervals.

Each benchmark run is performed three times, the results are combined giving each run the
same weight. Since all runs have the same duration, the overall mean value of CPU utiliza-
tion can be calculated by averaging the corresponding values of each run. The throughput
values represent the amount of times a business transaction is invoked per minute, thus the
collected per-minute values are combined to a mean value. To evaluate response times,
samples of equal sizes are drawn from each result. Response time measurement and simu-
lation results are described using mean and median values as well as values of dispersion,
namely the quartiles and the interquartile range (IQR). Variance and standard deviation are
excluded from our investigation due to the skewness of the underlying distributions [Jai91]
of the response times of browse, manage and purchase. In the following sections, means
are illustrated tabularly, medians and quartiles are illustrated using boxplot diagrams.

3.4 Evaluating Prediction Accuracy in an Upscaling Scenario

To evaluate the performance prediction accuracy of automatically generated performance
models in an upscaling scenario, the number of CPU cores for simulation and benchmark
runs is increased step by step. To increase the CPU core count of the SUT for the bench-
mark runs, the VM is reconfigured accordingly. The number of simulated CPU cores is
varied by editing the generated resource environment model.

If workload stays stable, the CPU utilization significantly declines with each increase of
cores as does its impact on the overall application performance. As a result, after reach-
ing a sufficient number of CPU cores, the measured response times stay almost constant
regardless of any further increases while the simulated response times decrease further
reaching their lower bound only at a very high number of CPU cores. Therefore, an in-
creasing inaccuracy in the simulated values is expected since the generated model solely

123

Table 4: Measured and simulated results in an upscaling scenario

C U T | MMRT SMRT RTPE | MMT | SMT TPE MCPU | SCPU | CPUPE
B | 6323ms | 65.06ms | 291% | 1820.6 | 1813.1 | 0.41 %

4| 600 | M| 11.58ms | 13.28ms | 14.71% | 906.8 | 917.3 | 1.16% | 48.76 % | 46.87% | 3.88%
P 827ms | 9.73ms | 17.67% | 904.9 | 900.3 | 0.50 %
B | 69.25ms | 57.56ms | 16.89% | 2708.3 | 2721.5 | 0.49%

6| 900 | M| 1254ms | 11.95ms | 4.69% | 13543 | 1354.4 | 0.01% | 51.72% | 46.85% | 9.42%
P 895ms | 8.72ms | 2.60% | 1352.4 | 1368.1 | 1.16 %
B | 88.82ms | 56.25ms | 36.66% | 3617.8 | 3641.9 | 0.67%

8| 1200 | M | 14.13ms | 11.64ms | 17.67% | 1806.4 | 1795.0 | 0.63% | 57.34% | 46.97% | 18.09 %
P 931ms | 846ms | 9.15% | 1811.6 | 1819.2 | 0.42%

depends on CPU demands and disregards other factors such as I/O operations on hard disk
drives. Thus, to keep the CPU utilized, the workload on the system is varied proportional
to the number of CPU cores by increasing the number of concurrent users accessing the
SUT. In the following, a performance model generated on the SUT configured with 4 CPU
cores is used. The average CPU utilization while gathering the data required for the model
generation was 52.46 % which corresponds to a closed workload consisting of 600 users
with an average think time of 9.9 s.

In a first step, the generated model is evaluated by simulating the application performance
for an environment which is equal to the one the model has been generated with. After-
wards, the model is evaluated for environments with an increased number of CPU cores.
The measured and simulated results are shown in table 4. For each configuration specified
by the number of cores (C) and the number of users (U), the table contains the following
data per business transaction (T): Measured Mean Response Time (MMRT), Simulated
Mean Response Time (SMRT), relative Response Time Prediction Error (RTPE), Mea-
sured Mean Throughput (MMT), Simulated Mean Throughput (SMT), relative Through-
put Prediction Error (TPE), Measured (MCPU) and Simulated (SCPU) Mean CPU Uti-
lization and the relative CPU Utilization Prediction Error (CPUPE).

The simulation predicts the mean response time of the business transactions with a relative
error of less than 20 %, except for the browse transaction in the case of 8 CPU cores and
1200 concurrent users, which shows a relative prediction error of 36.66 %. CPU utilization
is predicted with relative errors ranging from 3.88 % to 18.09 %. Due to space limitations,
the span consisting of the minimum and maximum of the measured and simulated CPU
utilization values is not shown. However, while both ranges mostly overlap, the measured
span lies slightly above the simulated one. The same applies to the mean CPU utilization
values shown in table 4, as the simulated mean is slightly lower than the measured one.
The prediction of the mean throughput is very close to the real values, as the think time of
9.9 s is much higher than the highest response time. Response time prediction errors thus
have a low impact on the throughput. Except for the last simulation of browse, the quality
of the predictions ranges from very good to still acceptable for the purpose of capacity
planning [MALT04].

Further statistical measures are illustrated as boxplot diagrams in figure 3. Boxplot dia-
grams consist of a box whose bounds denote the first quartile @) (lower bound) as well as
the third quartile ()5 (upper bound) of the underlying data sample. The quartiles are con-

124

150 35 4 35
30 30
= 120 - -
E E 25 E 25
o o o
£ 901 €20 T €20 f—
= = =
% 60 | L 815 | 8 15 -
s 2 10 - 310
a & a
o I — e e L
i e T
0O+ o+ 0
MRT SRT MRT SRT MRT SRT
Browse Browse Manage Manage Purchase Purchase
(a) 4 CPU cores and 600 users
150 ————— 35— 35
30 e 30 A
= 120 + - -
E E 25 E 25
o o o
£ 0 4]-7 £ 20 T £E20 4+
= = | s
ﬂ) Q
% 60 | 515 815 417
2 = 2 10 4| — . 2 10 4 4]-7
a & a
L 30+ I e
B s %-
0O+ o+ 0
MRT SRT MRT SRT MRT SRT
Browse Browse Manage Manage Purchase Purchase

(b) 6 CPU cores and 900 users

150 ——————— 35— 35 4
T 30 30
= 120 - -
E E 25 E 25
o o o
£ 90 £ 20 EWt—n
=] - =] =]
Q) 3 Q)
2 60 == 2 15 1 4|7 g 15 ’4"7
2 210 4 — . 2 10 +— S
> > >
2 30 g 4
s #_ . ,%F
0O +——7—— 0+ 0 -
MRT SRT MRT SRT MRT SRT
Browse Browse Manage Manage Purchase Purchase

(c) 8 CPU cores and 1200 users

Figure 3: Boxplot diagrams of an upscaling scenario

nected by vertical lines to form the box that indicates the interquartile range (IQR) which
is defined as Q3 — Q1. Furthermore, the median @5 is illustrated by a horizontal line
within the box, thus separating it into two parts. Vertical lines outside the box (whiskers)
indicate the range of possible outliers while their length is limited to 1.5 times the IQR.

The relative prediction error of the median response time ranges from 8.38 % to 33.80 %
for the browse and purchase transactions. The median response time of the manage trans-
action, however, is predicted with a relative error of 36.52 % to 68.29 %. The skewness of a
business transaction’s underlying distribution can be determined considering the median’s
position between the quartiles) and Q3. The boxplot diagrams in figure 3 show that the
skewness is not simulated correctly. To investigate the dispersion of business transactions,
we determine the IQR. Its relative prediction error ranges from 21.96 % to 50.94 % for the

125

Table 5: Measured and simulated results in a downscaling scenario

C| U | T | MMRT SMRT RTPE MMT | SMT TPE MCPU | SCPU | CPUPE
B | 71.54ms | 64.03ms | 10.50% | 2413.9 | 2415.8 | 0.08 %

81800 | M| 1296ms | 12.64ms | 2.49% | 1203.5 | 1209.2 | 0.48% | 37.41% | 35.17% | 5.99 %
P 9.36ms | 9.33ms | 0.25% | 12159 | 1228.7 | 1.05%
B | 67.62ms | 66.03ms | 2.35% | 2413.9 | 24254 | 0.48 %

6| 800 | M| 1252ms | 13.08ms | 4.45% | 1202.0 | 1196.6 | 0.45% | 46.38% | 46.94% | 1.21%
P 9.05ms | 9.64ms | 6.57% | 1208.2 | 1215.0 | 0.56 %
B | 71.15ms | 87.46ms | 22.92% | 2437.0 | 2420.8 | 0.66 %

4 1800 | M| 1298ms | 17.04ms | 31.29% | 1199.7 | 1193.5 | 0.51% | 65.60% | 70.27% | 7.12%
P 893ms | 12.88ms | 44.33% | 1211.6 | 1212.1 | 0.04 %

manage and purchase transactions and is up to 83.13 % for the browse transaction.

In the measurement results, the effect of increasing the workload dominates, thus the mea-
sured CPU utilization slightly increases from 48.76 % to 57.34 %. The response times
increase accordingly. In the simulation results, the effect of core increase slightly dom-
inates over the effect of increasing the workload. Therefore, the response times slightly
decrease over the course of the experiment, while the simulated CPU utilization remains
almost constant.

3.5 Evaluating Prediction Accuracy in a Downscaling Scenario

The prediction accuracy of generated performance models in a downscaling scenario is
evaluated by reducing the number of CPU cores step by step. Starting with 8 CPU cores,
the number of cores is decreased by 2 in each evaluation step. This scenario does not
require the number of users to be varied, as the CPU utilization increases. The business
case of scaling the number of CPU cores down is to optimize production systems (e.g., to
evaluate if several applications can be hosted on one machine or to reduce license fees). In
this case, the number of users does not change. Therefore, the workload is kept constant
at 800 users with a think time of 9.9 s accessing the SUT in parallel.

Since the number of cores is reduced during the experiment, a sufficiently low starting
value of CPU utilization is required. Therefore, data to generate a performance model
for this evaluation is collected with an average CPU utilization of 38.9 %. To compare
the simulation results with the measured ones, the previously described evaluation process
is applied. The comparison of the mean response time, CPU utilization and throughput
values is shown in table 5.

The relative prediction error for the mean response time of all business transactions is at
most 44.33 %. CPU utilization is predicted with a maximum relative error of 7.12 %. In
contrast to the upscaling scenario, the simulated CPU utilization grows slightly above the
measured results as the CPU cores are decreased. The relative prediction error of the mean
throughput is about 1 %.

The relative prediction error of the median response time as shown in the boxplots in fig-
ure 4 ranges from 5.27 % to 38.50 % for the browse and purchase transactions and from

126

150 35 4 35
7 120 =0 =301
£ E 25 E 25
o o o
£ 9 4]-7 £ 20 T E20 +—F—
o T @)
2 60 - 515 +— 4|— 215——]—'—
s 2101 — R 210 P
34— — 8 g -
5 —T— 5 %
0O+ [I S—1 0
MRT SRT MRT SRT MRT SRT
Browse Browse Manage Manage Purchase Purchase
(a) 8 CPU cores and 800 users
150 +—————— 35— 35 4
z120 4 - 0 T =3
£ E 25 T E 25
o o o
£ 4"'7 £ 20 E20+—
GJ T Q GJ
2 60 4 2 15 B g 15 4]—';
s 2101 — S0
g 30— 4 8 [__]
s #7 BN =
0O+ [L A—1 0 -
MRT SRT MRT SRT MRT SRT
Browse Browse Manage Manage Purchase Purchase
(b) 6 CPU cores and 800 users
150 35— 35 4
7 120 =0 =307
£ E 25 E 25
o o o
£ % 47 — E£20 E 20 T
Q Q Q
£ 60 - g 15 [— g1’ |
[=} o =}
a 2 10 +— 4 210 +— .
2 30— o 2
5 4T7 5 %
0O+ o+ 0O+
MRT SRT MRT SRT MRT SRT
Browse Browse Manage Manage Purchase Purchase

(c) 4 CPU cores and 800 users

Figure 4: Boxplot diagrams of a downscaling scenario

50.51 % to 82.96 % for the manage transaction. This is in line with the observations pre-
viously made in the upscaling scenario. The relative IQR prediction error ranges from
27.34 % to 43.48 % for the manage and purchase transaction; for the browse transaction it
is up to 83.37 %.

Comparing the measured mean and median response times shows that the lowest values
are achieved in the 6 CPU core configuration. Even with 4 CPU cores, the browse and
purchase response times are lower than in the 8 CPU core configuration. As the CPU uti-
lization of the investigated configurations is relatively low, the lower performance of the
SUT with 8 CPU cores can be explained by an increased scheduling overhead. Due to
the low CPU utilization, its impact on the overall performance of the SUT is lower than
the impact of other factors such as I/O operations. The response time prediction behaves

127

incorrectly in these cases, as the generated performance model only relies on the CPU de-
mand measured during the data collection step and does not take these effects into account.
However, the simulation of CPU utilization is still very close to the measurements. This
is useful for determining a lower bound of feasible configurations regarding the amount of
cores. Simulating an environment consisting of 3 CPU cores results in a simulated CPU
utilization of 91.96 % and indicates that this would lead to instability of the SUT for the
given workload. This configuration is thus not investigated in this downscaling scenario.

4 Related Work

Running Java EE applications have already been evaluated using performance models by
several authors. Chen et al. [CLGLOS5] derive mathematical models from measurements
to create product-specific performance profiles for the EJB runtime of a Java EE server.
These models are intended to be used for performance predictions of EJB components run-
ning on different Java EE products. Their approach is thus limited to Java EE applications
that solely consist of this component type.

Liu et al. [LKLO1] also focus on EJB components and show how layered queuing networks
can be used for the capacity planning of EJB-based applications. In their work, they model
an EJB-based application manually and describe how an analytical performance model
needs to be calibrated before it can be used for the capacity planning. To improve this
manual process, Mania and Murphy [MMO2] proposed a framework to create analytical
performance models for EJB applications automatically. However, the framework was
never evaluated to the best of our knowledge.

The difficulties in building and calibrating performance models for EJB applications man-
ually are also described by McGuiness et al. [MMLO04]. Instead of using analytical so-
lutions to predict the performance of an EJB-based application, they are using simulation
models. The authors argue that simulation models are better suited for the performance
evaluation of EJB applications due to their flexibility and increased accuracy compared to
analytical models.

The applicability of analytical performance models for Java EE applications with realistic
complexity is analyzed by Kounev and Buchmann [KB03] using the SPECjAppServer2002
industrial benchmark. Kounev extends this work in [Kou(06] by using queuing Petri nets to
evaluate the performance of a SPECjAppServer2004 benchmark deployment. The latest
version of the SPECjAppServer benchmark (SPECjEnterprise2010) is used by Brosig and
Kounev in [BHK11] to show that they are able to semi-automatically extract PCM models
for Java EE applications. Their model generation approach is based on data generated by
the monitoring framework of Oracle’s WebLogic product and thus not transferable to other
Java EE server products. It also requires manual effort to distribute the resource demand
based on the service demand law once a model is generated.

The previous work is extended by the approach introduced in this work as it is applicable
for all Java EE server products and can generate performance models for EJB as well as
for web components automatically.

128

5 Conclusion and Future Work

The approach presented in this work aims to make performance modeling better applicable
in practice. The ability to generate performance models at any time simplifies their use
in Java EE development projects, as the effort to create such models is very low. The
evaluation showed that the generated performance models predict the performance of a
system in up- and downscaling scenarios with acceptable accuracy. The approach can thus
support related activities during the capacity planning and management processes.

Future work for this approach includes extending the data collection and model generation
capabilities. First of all, we need to investigate whether the user session information avail-
able in the Java EE runtime can be used to generate usage models automatically. Further
extensions are required to support additional technologies specified under the umbrella
of the Java EE specification, such as JavaServer Faces (JSF) or web services. For this
purpose, the model generation approach also needs to be extended to support distributed
systems. A key challenge for such an extension is the integration and correlation of MBean
data collected from multiple Java EE servers. Additional improvements are required to re-
duce the instrumentation overhead as soon as heap demand needs to be collected.

6 Acknowledgements

The authors would like to thank Jorg HenB3, Klaus Krogmann and Philipp Merkle from
the Karlsruhe Institute of Technology (KIT) and FZI Research Center for Information
Technology at KIT for their valuable input and support while implementing the heap rep-
resentation approach in PCM.

References

[BDMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
Based Performance Prediction in Software Development: A Survey. IEEE Transac-
tions on Software Engineering, 30(5):295-310, 2004.

[BHK11] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Automated Extraction of
Architecture-Level Performance Models of Distributed Component-Based Systems. In
26th IEEE/ACM International Conference On Automated Software Engineering (ASE),
pages 183-192, Oread, Lawrence, Kansas, USA, 2011.

[BKRO9] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1):3-22,
2009.

[BVD'14] Andreas Brunnert, Christian Vogele, Alexandru Danciu, Matthias Pfaff, Manuel
Mayer, and Helmut Krcmar. Performance Management Work. Business & Information
Systems Engineering, 6(3):177-179, 2014.

129

[BVK13]

[BWK14]

[CLGLOS5]

[Jai9l]

[KBO3]

[Kou06]

[Koz10]

[LKLO1]

[MALY04]

[Mic06]
[MMO2]

[MMLO04]

[Sha06]
[WWO04]

Andreas Brunnert, Christian Vogele, and Helmut Krcmar. Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications. In Maria Simon-
etta Balsamo, William J. Knottenbelt, and Andrea Marin, editors, Computer Perfor-
mance Engineering, volume 8168 of Lecture Notes in Computer Science, pages 74—88.
Springer Berlin Heidelberg, 2013.

Andreas Brunnert, Kilian Wischer, and Helmut Krcmar. Using Architecture-Level
Performance Models As Resource Profiles for Enterprise Applications. In Proceedings
of the 10th International ACM Sigsoft Conference on Quality of Software Architectures,
QoSA ’14, pages 53-62, New York, NY, USA, 2014. ACM.

Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance Prediction of
Component-based Applications. Journal of Systems and Software, 74(1):35-43, 2005.

Raj Jain. The Art of Computer Systems Performance Analysis. Wiley Computer Pub-
lishing, John Wiley & Sons, Inc., 1991.

Samuel Kounev and Alejandro Buchmann. Performance Modeling and Evaluation of
Large-Scale J2EE Applications. In Proceedings of the 29th International Conference of
the Computer Measurement Group on Resource Management and Performance Eval-
uation of Enterprise Computing Systems (CMG), Dallas, Texas, USA, pages 273-283,
2003.

S. Kounev. Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. [EEE Transactions on Software Engineering,
32(7):486-502, 2006.

Heiko Koziolek. Performance evaluation of component-based software systems: A
survey. Performance Evaluation, 67(8):634-658, 2010.

Te-Kai Liu, Santhosh Kumaran, and Zongwei Luo. Layered Queueing Models for En-
terprise JavaBean Applications. In Proceedings of the IEEE International Conference
on Enterprise Distributed Object Computing, pages 174—178, Washington, DC, USA,
2001. IEEE.

Daniel A. Menascé, Virgilio A. F. Almeida, F. Lawrence, W. Dowdy, and Larry Dowdy.
Performance by Design: Computer Capacity Planning by Example. Prentice Hall,
Upper Saddle River, New Jersey, 2004.

Sun Microsystems. Java Management Extensions (JMX) Specification, vers. 1.4, 2006.

D. Mania and J. Murphy. Framework for Predicting the Performance of Component-
Based Systems. In Proceedings of the 10th IEEE International Conference on Soft-
ware, Telecommunications and Computer Networks, Croatia, Italy, 2002.

D. McGuinness, L. Murphy, and A. Lee. Issues in Developing a Simulation Model of
an EJB System. In Proceedings of the 30th International Conference of the Computer
Measurement Group (CMG) on Resource Management and Performance Evaluation
of Enterprise Computing Systems, Las Vegas, Nevada, USA, 2004.

Bill Shannon. Java Platform, Enterprise Edition (Java EE) Specification, v5, 2006.

Xiuping Wu and Murray Woodside. Performance modeling from software components.
SIGSOFT Softw. Eng. Notes, 29(1):290-301, 2004.

130

Using and Extending LIMBO for Descriptive Modeling of
Arrival Behaviors

Joéakim v. Kistowski, Nikolas Herbst, Samuel Kounev

Chair for Computer Science II, Software Engineering
University of Wiirzburg
joakim kistowski @uni-wuerzburg.de
nikolas.herbst@uni-wuerzburg.de
samuel.kounev @uni-wuerzburg.de

Abstract: LIMBO is a tool for the creation of load profiles with variable intensity
over time both from scratch and from existing data. Primarily, LIMBO’s intended use
is the description of load arrival behaviours in open workloads. Specifically, LIMBO
can be employed for the creation of custom request or user arrival time-stamps or for
the re-parameterization of existing traces.

LIMBO bases on the Descartes Load Intensity Model (DLIM) for the formalized
description of its load intensity profiles. The DLIM formalism can be understood as
a structure for piece-wise defined and combined mathematical functions. We outline
DLIM and its elements and demonstrate its integration within LIMBO.

LIMBO is capable of generating request or user arrival time stamps from DLIM
instances. In a next step, these generated time-stamps can be used for both open work-
load based benchmarking and simulations. The TimestampTimer plug-in for JMeter
already allows the former. LIMBO also offers a range of tools for easy load intensity
modeling and analysis, including, but not limited to, a visual decomposition of load
intensity time-series into seasonal and trend parts, a simplified load intensity model as
part of a model creation wizard, and an automated model instance extractor.

As part of our LIMBO tutorial, we explain these features in detail. We demonstrate
common use cases for LIMBO and show how they are supported. We also focus on
LIMBOs extensible architecture and discuss how to use LIMBO as part of another
tool-chain.

1 Introduction

Today’s cloud and web-based IT services need to handle huge amounts of concurrent users.
Customers access services independently of one another and expect reliable quality-of-
service under highly variable and dynamic load intensities. In this context, any knowledge
about a service’s load intensity profile is becoming a crucial information for managing the
underlying IT resource landscape. Load profiles with large amounts of concurrent users
are typically strongly influenced by human habits, trends, and events. This includes strong
deterministic factors such as time of the day, day of the week, common working hours and
planned events.

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

131

Common benchmarking frameworks such as Faban', Rain [BLY T 10], and IMeter [Hal08]
allow job injection rates to be configured either to constant values, stepwise increasing
rates (e.g., for stress tests), or rates based on recorded workload traces. The tool we present
in this document aims at closing the gap between highly dynamic load intensity profiles
observed in real life and the current lack of support for flexible handling of variable load
intensities in benchmarking frameworks.

In [vKHK14b], we introduce two modeling formalisms at different abstraction levels: At
the lower abstraction level, the Descartes Load Intensity Model (DLIM) offers a structured
and accessible way of describing the load intensity over time by editing and combining
mathematical functions. The high-level DLIM (hl-DLIM) allows the description of load
variations using few defined parameters that characterize the seasonal patterns, trends, as
well as bursts and noise elements. An example load profile consisting out of a seasonal
part, a trend and bursts is presented in Fig. 1.

20

arrival rates

0 time 1800
—— seasonal function impact of trend B impact of burst

Figure 1: Example profile with a seasonal pattern, trend, and bursts.

In this document, we present LIMBO? [vKHK14a] - an Eclipse-based tool for handling
and instantiating load intensity models based on DLIM. LIMBO offers an accessible way
of editing DLIM instances and extracting them from existing traces. It also supports using
hl-DLIM parameters for easy creation of new DLIM instances through a model creation
wizard. In addition, we provide the TimestampTimer plugin for JMeter [Hal08], which en-
ables the use of LIMBO-generated time stamps for the definition of JMeter work unit start
times. We also provide extensive documentation for LIMBO on our website?, including
a thorough tutorial. In this document, we provide a description of the LIMBO tool and
its architecture. We demonstrate LIMBO’s extensibility and its use as part of other code
projects.

'Faban http://faban.org
2LIMBO http://go.uni-wuerzburg.de/limbo

132

2 Definition of Load Intensity

In the context of LIMBO, load intensity is a discrete function describing arrival rates of
workload units (e.g. users, sessions or requests) over time. We assume that the work units
are of a homogeneous type and define the arrival rate r(t) at time ¢ as follows:

r(t) = R'(t)
with R(t) = [{ug, [to < t}|

where R(t) is the amount of all work units w,,, with their respective arrival time t, that
have arrived up until time .

3 Use-Cases for LIMBO

LIMBO can be used in many contexts, some of which might not be directly apparent. The
following sections describe a few use-case scenarios in which the ability to create and
modify a load intensity model is extremely helpful. This is intended to also demonstrate
the usefulness of load intensity modeling in general and to give the reader a few additional
ideas on what to do with LIMBO.

3.1 Core Use-Cases

LIMBO was created with the specific goal of being used as part of the following use cases:

e Creation of artificial load intensity profiles for specific benchmarking purposes

e Extraction of existing load intensity profiles from pre-existing traces.

LIMBO features an extensible architecture, which allows LIMBO’s application beyond
these core use cases, €.g.:

1. Creating artificial Load Intensity Profiles for Benchmarking

A model describing the load intensity variations over time can be used to create
request or user arrival time-stamps that can then be used to define the beginning time
of a unit of work within a benchmarking framework. This enables a user to use a
multitude of different varying workloads, which in turn helps with the benchmarking
of system properties that deal with such variations (such as elasticity) [WHGK14].

This use-case describes the possibility of a custom created load intensity profile, that
has been specifically designed to help with the benchmarking of such a property. Of
course, this load intensity profile may be subject to additional requirements, such as
representability.

133

2. Creating a Load Intensity Model Instance from an existing Trace

A model instance can be used to describe a past real-world load profile (within a
certain error). This opens up a number of sub-use-cases:

o Parametrization of Request / User Arrival Traces

Among others, Zakay et al. [ZF13] sample request traces for benchmark work-
load generation. When doing so several problems can arise. The trace might
be taken from a system that is magnitudes larger than the test system on which
the benchmark is to be executed. The trace might also have been taken over
a long time period and has to be temporally compressed for the benchmark.
When using a load intensity model instead of a simple trace, these problems
become easily manageable. They can be managed either by modifying the
model instance directly, or through parametrization of the request time-stamp
generation.

o Anonymization of Request/ User Arrival Traces

Request traces of real cloud or web based systems often include additional
information that may contain information about the system’s users. Even the
exact time-stamps themselves may still provide a reader of the trace with the
ability to extract information about the behavior of single users.

An abstract load variation representation helps to minimize this problem. Sys-
tem providers, who are concerned about customer anonymity, might be more
likely to provide usage information for research purposes in an abstract form
as made possible by a load intensity model.

3.2 Additional Use-Cases

These additional use-cases are either derived from the two previous cases or constitute new
approaches to LIMBO’s Load Intensity Model. They describe more complex scenarios, in
which the features provided by LIMBO can play a central part.

1. Load Intensity Forecasting

A model instance that has been derived from the incoming request trace of a cur-
rently running system can be used to predict future request intensity variations. Do-
ing so can also help with the detection of unplanned events that deviate from an
extrapolated periodic model. Such a forecasting mechanism could be deployed on
cloud systems. In that context it would help to improve dynamic resource manage-
ment, by increasing the efficiency of elastic resource re-allocation.

2. Anomaly Detection

A calibrated load intensity model instance could serve as a baseline allowing the
computation of anomaly metrics. This approach incorporating DLIM model in-
stances as baseline will most presumably end up with a higher anomaly detection

134

accuracy and less false positives [Bie12]. Such a baseline can also be used in other
fields of computer science, since it can always be used for comparison against
anomalies. In a security context, it might be used for finding access patterns that
deviate from usual access patterns in the form of their load intensity as part of an
intrusion detection benchmark as proposed in [MK12].

4 LIMBO

LIMBO allows editing of load intensity models based on DLIM and supports guided model
creation using the parameters defined in hl-DLIM.

4.1 Models

o Descartes Load Intensity Model: DLIM describes request arrival rates over time
and offers a way to define a piece-wise mathematical function for the approximation
of variable arrival rates with support for (partial) periodicity, flexibility and compos-
ability.

o High-level DLIM: hl-DLIM offers abstracted knowledge about load intensity vari-
ations modeled through a limited number of workload parameters. Inspired by the
time series decomposition approach in BFAST [VHNC10], a hl-DLIM instance de-
scribes a Seasonal and Trend part. Additionally, it features a Burst and Noise part.

4.2 Features

LIMBO offers a significant number of different features, all targeted at enabling easy and
comprehensive creation and modification of load intensity profiles. LIMBO has been im-
plemented using an extensible architecture. It is thus open for extension with additional
features. At this time, LIMBO’s major features are:

1. Creation of new load intensity profiles using hl-DLIM: LIMBO enables the use
of hl-DLIM parameters for easy creation of new DLIM instances through a model
creation wizard.

2. Modification of DLIM load profiles: LIMBO allows for modification of DLIM
load profiles, by adding, removing, and modifying the piece-wise mathematical
functions of which these profiles are composed.

3. Visualization of load profiles: LIMBO includes a graphical view for the display
of DLIM instances. This view also contains a more detailed visualization feature,
which decomposes DLIM instances into their seasonal parts, trends, and bursts. It
then displays each part’s contribution towards the total load intensity.

135

4. Timestamp generation: Load intensity profiles can be used to generate request or
user arrival time stamps. These time stamps can be used as input for common bench-
marking frameworks, such as JMeter [Hal08]. LIMBO’s extensible architecture also
allows for easy addition of additional time-stamp exporters for other benchmarking
frameworks, such as FinCos [MBM13].

5. Timestamp use for load generation: We provide the TimestampTimer plugin for
JMeter. This plugin allows the use of LIMBO-generated time-stamps for the defini-
tion of work unit start times.

6. Model instance extraction: DLIM instances can be extracted from existing arrival
rate traces using one of the implemented model instance extractors:

e Simple DLIM Extraction Process (s-DLIM): An accurate extraction process,
which extracts DLIM instances from existing arrival rate traces. Our evalua-
tion of s-DLIM accuracy in [vK14] shows a median extraction error of 12.4%.
Comparison with BFAST[VHNCI10] also shows, that s-DLIM provides excel-
lent performance, with all extractions completing in less than 0.2 seconds and
providing an average speedup of 8354 compared to BFAST decomposition.

e Periodic DLIM Extraction Process (p-DLIM): A less accurate extraction pro-
cess to extract DLIM instances from existing arrival rate traces. Other than
s-DLIM, p-DLIM instances are intended to be repeated for load intensity fore-
casting.

e high-level DLIM Extraction Process: Extracts hl-DLIM instances from exist-
ing arrival rate traces.

LIMBO’s extensible architecture allows furhter model extraction and calibration
methods to be integraded, as well as for reading other file formats, such as trace files
as exported by Kieker [vHWH12].

4.3 Implementation

LIMBO, the tooling for DLIM and hl-DLIM models, is realized as a plug-in for the Eclipse
IDE. It provides an editor for the creation and modification of model instances, as well as
additional utilities for using the created models. Using DLIM’s EMF-generated code base
as a basis, the following features have been implemented:

e Model Evaluation: Support for the DLIM function output calculation and manual
refinement of model instances.

o Modeling Process Assistance: Includes an automated process for the creation and
extraction of DLIM instances. Additionally, LIMBO provides a model instantiation
guidance by means of a wizard.

o Ultilities: Additional functionality is provided for existing DLIM instances. Includ-
ing functionality for the generation of arrival rate series from a time-stamp series,

136

and a tool that calculates the difference between an arrival rate trace and a model
instance.

LIMBO consists of five individual plug-ins as visualized in Fig. 2. Note that all pack-
ages and plug-ins begin with the prefix “tools.descartes.dlim”. For better readability
”tools.descartes” is omitted for the remainder of this paper.

dlim.editor dlim.generator

g M R
5 1=C

dlim.edit dlim.exporter dlim.extractor

Figure 2: LIMBO architecture.

1. DLIM Generator The dlim.generator plug-in contains the DLIM element inter-
faces and implementations, as well as their default utilities (e.g., for validation). It
also contains model evaluation tools, as well as arrival rate and time-stamp series
generators. It features two extension points:

e Exporter extension points supports custom implementations by implementing
the dlim.exporter.IDIimExporter interface. Default exporters are contained in
the dlim.exporter plug-in.

e Extractor extension point allows the addition of extractors for deriving a
model instance from an existing trace. Extractors must implement dlim.reader.
IDlimArrivalRateReader for their trace parser and dlim.extractor.IDlimExtrac-
tor for the model instance creator. Default extractors are contained in the
dlim.extractor plug-in.

The dlim.generator plug-in also provides LIMBO’s core functionalities for use as
part of other projects. The most important provided packages are:

e dlim: This package contains the model element interfaces. It is generated by
the EMF genmodel, but has been modified to return a CustomDIlimFactorylmpl
Instance for the DlimFactory.eINSTANCE, instead of the generated DIlimFac-
torylmpl.

e dlim.generator: This package contains the model evaluation logic, primarily
used for arrival rate and time-stamp series generation. The ModelEvaluator
class, specifically, is the primary access point to all model evaluation logic. It
is instantiated using the model’s root element (which is always a Sequence)
and a seed for the random number generator (for Noise evaluation). It pro-
vides the getArrivalRateAtTime(double rootTime) method, which returns
the model’s resulting arrival rate for a given time.

137

o dlim.exporter.utils

This package contains utilities that help when implementing a new exporter.
The use of these utilities is highly recommended.

— ArrivalRateGenerator: Provides functionality to sample a list of arrival
rates from a DLIM instance, represented by its dlim.generator.Model-
Evaluator.

— TimeStampWriter: Provides functionality to generate a list of request
time stamps using a list of arrival rates (as is provided by ArrivalRate-
Generator.

e dlim.reader
This package contains classes and interfaces responsible for the parsing of time
series.

— ArrivalRateReader: Provides functionality to read arrival rates from an
arrival rate file. Can read either a single arrival rate at a given time, or
returns a list of all ArrivalRateTuples contained in the file.

— IDlimArrivalRateReader: Interface for an arrival rate reader. Must be
implemented by a reader for the Extractor extension point.

— DefaultArrivalRateReader: A default implementation of IDlimArrival-
RateReader. s able to read arrival rate files of the same format as pro-
duced by the arrival rate file exporter.

— RequestTimeSeriesReader: Provides functionality to parse a request
time-stamp trace into an file containing the arrival rates per second for
each second.

2. DLIM Generator Edit
This plug-in contains the providers used by the editor, which provide display specific
information, such as the display images and labels of model elements.

3. DLIM Generator Editor
The dlim.editor plug-in contains all GUI elements and their utilities. It also contains
implicit modeling process knowledge in its GUIL.

4. DLIM Exporter
The dlim.exporter plugin offers three default implementations of the dlim.generator
plugin’s dlim.exporter. IDIimExporter interface and the exporter extension point:

e DlimArrivalRateExporter: Exports an arrival rate time series.

e DlimEqualDistanceRequestStampExporter: Exports request time stamps
with an equal distance from one another within each sampled arrival rate in-
terval.

e DlimUniformRequestStampExporter: Exports request time stamps with a
uniform random sampling within each sampled arrival rate interval.

138

5. DLIM Extractor

The dlim.extractor plug-in offers two default implementations of the dlim.extrac-
tor.IDlimEXxtractor interface and the extractor extension point:

e PeriodicProcessExtractor: Extracts a DLIM instance based on the Periodic

DLIM Extraction Processes (p-DLIM).

o SimpleProcessExtractor: Extracts a DLIM instance based on the Simple

DLIM extraction process (s-DLIM).

Both extractor extension point implementations in this plug-in use the provided de-
fault dlim.reader. ArrivalRateReader provided by the dlim.generator plug-in.

5 Conclusions

This paper provides a detailed description of LIMBO: A toolkit for creating and editing
of DLIM instances. By enabling the flexible handling of load intensity profiles, LIMBO
addresses a strong need in the areas of benchmarking and elastic capacity management.
We describe the features of LIMBO and summarize the use cases and fields of possible
application. We also provide a detailed description of LIMBO’s architecture with a focus
on extension points and functionality provided for use in other projects.

References

[Biel2]

[BLY*10]

[Hal08]

[MBM13]

[MK12]

[VHNCI10]

Tillmann Carlos Bielefeld. Online performance anomaly detection for large-scale soft-
ware systems, 2012.

Aaron Beitch, Brandon Liu, Timothy Yung, Rean Griffith, Armando Fox, and David A.
Patterson. Rain: A Workload Generation Toolkit for Cloud Computing Applications.
Technical Report UCB/EECS-2010-14, EECS Department, University of California,
Berkeley, Feb 2010.

Emily H Halili. Apache JMeter: A Practical Beginner’s Guide to Automated Testing
and performance measurement for your websites. Packt Publishing Ltd, 2008.

Marcelo R.N. Mendes, Pedro Bizarro, and Paulo Marques. FINCoS: Benchmark Tools
for Event Processing Systems. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ICPE 13, pages 431-432, New York, NY,
USA, 2013. ACM.

Aleksandar Milenkoski and Samuel Kounev. Towards Benchmarking Intrusion Detec-
tion Systems for Virtualized Cloud Environments. In Proceedings of the 7th Interna-
tional Conference for Internet Technology and Secured Transactions (ICITST 2012),
pages 562-563, New York, USA, December 2012. IEEE.

Jan Verbesselt, Rob Hyndman, Glenn Newnham, and Darius Culvenor. Detecting trend
and seasonal changes in satellite image time series. Remote Sensing of Environment,
114(1):106 — 115, 2010.

139

[VHWH12]

[vK14]

[VKHK 14a]

[VKHK 14b]

[WHGK14]

[ZF13]

André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering, ICPE
*12, pages 247-248, New York, NY, USA, 2012. ACM.

Jéakim v. Kistowski. Master’s Thesis: Modeling Variatons in Load Intensity Profiles,
March 2014.

Jéakim Gunnarson von Kistowski, Nikolas Roman Herbst, and Samuel Kounev.
LIMBO: A Tool For Modeling Variable Load Intensities. In Proceedings of the
Sth ACM/SPEC International Conference on Performance Engineering (ICPE 2014),
ICPE ’14, pages 225-226, New York, NY, USA, March 2014. ACM.

J6akim Gunnarson von Kistowski, Nikolas Roman Herbst, and Samuel Kounev. Mod-
eling Variations in Load Intensity over Time. In Proceedings of the 3rd International
Workshop on Large-Scale Testing (LT 2014), co-located with the 5th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE 2014), pages 1-4, New York,
NY, USA, March 2014. ACM.

Andreas Weber, Nikolas Roman Herbst, Henning Groenda, and Samuel Kounev. To-
wards a Resource Elasticity Benchmark for Cloud Environments. In Proceedings of
the 2nd International Workshop on Hot Topics in Cloud Service Scalability (HotTopiCS
2014), co-located with the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014). ACM, March 2014.

Netanel Zakay and Dror G. Feitelson. Workload resampling for performance evalu-
ation of parallel job schedulers. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ICPE 13, pages 149-160, New York, NY,
USA, 2013. ACM.

140

Approaching the Cloud: Using Palladio for Scalability,
Elasticity, and Efficiency Analyses*

Sebastian Lehrig Matthias Becker
Software Engineering Chair Heinz Nixdorf Institute
Chemnitz University of Technology University of Paderborn
StraBe der Nationen 62 Zukunftsmeile 1
09107 Chemnitz, Germany 33102 Paderborn, Germany
sebastian.lehrig @informatik.tu-chemnitz.de matthias.becker @upb.de

Abstract: In cloud computing, software architects develop systems for virtually un-
limited resources that cloud providers account on a pay-per-use basis. Elasticity man-
agement systems provision these resource autonomously to deal with changing work-
loads. Such changing workloads call for new objective metrics allowing architects to
quantify quality properties like scalability, elasticity, and efficiency, e.g., for software
design analysis. However, analysis approaches such as Palladio so far did not support
these novel metrics, thus rendering such analyzes inefficient.

To tackle this problem, we (1) extended Palladio’s simulation approach SimuLizar
by additional metrics for scalability, elasticity, and efficiency and (2) integrated the Ar-
chitectural Template language into Palladio allowing architects to model cloud com-
puting environments efficiently. A novel analysis process guides software architects
through these new capabilities. In this paper, we focus on illustrating this new process
by analyzing a simple, self-adaptive system.

1 Introduction

In cloud computing, software architects develop applications on top of compute environ-
ments being offered by cloud providers. For these applications, the amount of offered
resources is virtually unlimited while elasticity management systems provision resources
autonomously to deal with changing workloads. Furthermore, providers bill provisioned
resources on a per-use basis [AFGT10]. As a consequence of these characteristics, archi-
tects want their applications to use as few resources as possible in order to save money
while still maintaining the quality requirements of the system. Quality properties that
focus directly on these aspects are scalability, elasticity, and efficiency [BLB15, HKR13].

These quality properties need to be quantified for requirements engineering and software
design analysis by means of suitable metrics. For instance, cloud consumers and cloud

*The research leading to these results has received funding from the EU Seventh Framework Programme
(FP7/2007-2013) under grant no 317704 (CloudScale).

TThis work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Centre “On-The-Fly Computing” (SFB 901).

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

141

providers need to negotiate service level objectives (SLOs), i.e., metrics and associated
thresholds [EMP13]. Such SLOs have to consider characteristics like changing work-
loads (“how fast can an application adapt to a higher workload?”) and pay-per-use pricing
(“how expensive is serving an additional consumer?”’). However, architecture-level anal-
ysis approaches so far did not support these novel metrics. Therefore, software architects
currently cannot efficiently analyze their designs at the architectural level and potentially
have to implement and try all reasonable design variants for making informed design de-
cisions. Such an approach leads to high effort and high development costs in the end.

In related work, design-time engineering methods for analyzing performance properties
exist. These approaches currently have a limited support for scalability, elasticity, and
efficiency analyses. Scalability analyses (e.g., Palladio [BKR09]) are semi-automated, i.e.,
based on a series of manually conducted and interpreted performance analyses. Elasticity
analyses (e.g., Palladio’s simulation approach SimuLizar [BBM13]) allow to model and
analyze self-adaptations, typically used by cloud computing environments, but have a high
modeling effort. Efficiency analyses (e.g., CDOSim [FFH12]) require an implemented
SaaS application to determine the most cost-efficient cloud computing environment but
are limited to aaS environments and lack support for early design-time analyses.

To tackle these problems, we (1) extended SimuLizar [BBM13] by additional metrics for
scalability, elasticity, and efficiency and (2) integrated the Architectural Template lan-
guage [Leh13] into Palladio allowing architects to model cloud computing environments
efficiently. A novel analysis process guides software architects through these new capabil-
ities.

The contribution of this paper is a tool-based illustration of this new process. For our
illustration, we analyze a simple, self-adaptive system.

This paper is structured as follows. We introduce the simple, self-adaptive system we use
as a running example in Sec. 2. In Sec. 3, we overview our novel process for analyzing
cloud computing systems regarding scalability, elasticity, and efficiency. Afterwards, we
illustrate this process and accompanying tools by applying our running example to this
process (Sec. 4). We conclude the paper with a summary and an outlook on future work in
Sec. 5.

2 Running Example: A Simplified Online Book Shop

As an example scenario, we consider a simplified online book shop. An enterprise assigns
a software architect to design this shop, given the following requirements:

Ryci: Functionality In the shop, customers shall be able to browse and order books.

Rgcqret Scalability The enterprise expects an initial customer arrival rate of 100 cus-
tomers per minute. It further expects that this rate will grow by 12% in the first
year, i.e., increase to 112 customers per minute. In the long run, the shop shall
therefore be able to handle this increased load without violating other requirements.

Reiqs¢: Elasticity The enterprise expects that the context for the book shop repeatedly

142

changes over time. For example, it expects that books sell better around Christmas
while they sell worse around the holiday season in summer. Therefore, the sys-
tem shall proactively adapt to anticipated changes of the context, i.e., maintain a
response time of 3 seconds or less as well as possible. For non-anticipated changes
of the context, e.g., peak workloads, the system shall re-establish a response time of
3 seconds or less within 10 minutes once a requirement violation is detected.

R.sy: Efficiency The costs for operating the book shop shall only increase (decrease) by
$0.01 per hour when the number of customers concurrently using the shop increases
(decreases) by 1. In other words, the marginal cost of the enterprise for serving an
additional customer shall be $0.01.

Requirements Rscqle, Retast, and Reyy are typical reasons to operate a system in an elas-
tic cloud computing environment [HKR13], i.e., an environment that autonomously provi-
sions the required amount of resources to cope with contextual changes. Thus, the software
architect designs the shop as a 3-layer Software as a Service (SaaS) application operating
in a rented Infrastructure as a Service (IaaS) cloud computing environment that provides
replicable virtual servers (see Fig. 1). The three layers involve the typical layers of web
applications: presentation, application, and data layer.

e |
P (moesss==ss e e ,
| Presentation Layer | «Stateless» II Data Layer |
| I i |
SaaS | t Application Layer I: :
Environ- Ib- Book Shop$:| I Book 2] e H Book Datab 21| 1 Enterprise/
ment | Frontend C| I Management I ook Database : laaS Consumer
5 X L |
- = T: __________ _\ __________ T
“““ < S | SLOs
- N P /
. - ~ ™, . . N Vi
laas x,};ﬁx-}f x-}?\ n-}fj<_ 7
Environ- | clpe L clgr
ment b od I R g

(Replicable) Virtual Servers/Tiers
laasS Provider

Figure 1: Overview of the simplified online book shop.

The architect investigates possible variants of the 3-layer architectural style. First, the ar-
chitect considers a 3-layer/3-tier architecture [TMDO09]. In a 3-layer/3-tier architecture,
the three layers of a 3-layer architecture (presentation, application, and data) are allocated
to three different tiers. In an elastic laaS environment, these tiers are represented by differ-
ent replicable virtual servers. Second, the architect considers the SPOSAD architectural
style [Koz11], a 3-layer variant with an application layer that can safely be replicated to
foster scalability. The SaaS middle layer has to be stateless to achieve this safe replication.

Now, the software architect would like to know whether the planned online shop should
be realized according to (a) a 3-layer/3-tier architecture, (b) the SPOSAD architectural
style, or (c) neither of the two. The architect wants to decide based on whether the scala-
bility (Rscqle), elasticity (f2eqs¢), and efficiency (R, yy) requirements will be met by the

143

finally implemented application. In other words, the architect would like to conduct an
architecture-level what-if analysis for the available options to make an informed decision.

However, as current analysis tools do not support metrics for scalability, elasticity, and
efficiency in the context of cloud computing. Therefore, the architect cannot efficiently
analyze the book shop at the architectural level and, therefore, potentially has to implement
and try all considered variants (leading to high effort and high costs).

3 Process

In this section, we propose a novel high-level process for modeling and analyzing cloud
computing based systems. Our process supports architects in conducting architecture-level
analyses for scalability, elasticity, and efficiency. Moreover, we integrated a set of anal-
ysis tools into our process for making such analyzes highly efficient: Palladio [BKR09],
Architectural Templates [Leh13], and SimuLizar [BBM13].

Architectural Templates and SimuLizar are extensions to the Palladio tool suite. Archi-
tectural Templates (ATs) are a mean to express architectural blueprint that architects can
efficiently use and refined for a broad range of software systems. ATs can be specified
and reused for various architectural styles, like “3-layer/3-tier” and “SPOSAD”, and can
be analyzed with SimuLizar. SimuLizar provides modeling capabilities for self-adaptive
systems, i.e., different views for a system and its reconfiguration, as well as a simulation-
based scalability-, elasticity-, and efficiency-analysis.

[SLOs not fulfilled]

Specify SLOs & Select Refine System Models &
(Dynamic) Usage Scenarios Template Reconfiguration Models

Figure 2: High-level process for applying Palladio in cloud computing scenarios.

Figure 2 illustrates our high-level process. The process starts with specifying service-level
objectives (SLOs) and (dynamic) usage scenarios that both formalize the requirements of
the system to be developed (e.g., the ones of our example scenario in Sec. 2). Next, the
software architect has to select an appropriate Architectural Template. The Architectural
Template has then to be further refined by application-specific parts, i.e, interfaces, com-
ponents, and service effect specifications have to model the target systems structure and
behavior. Reconfiguration rules, defined by the Architectural Template, can optionally be
refined as well. To validate whether the SLOs for the target system are met, the system
can be simulated with SimuLizar. The result of the simulation is a set of measurements for
different metrics as defined in [BLB15]. The software architect has now to interpret these
measurements and check whether the modeled target system fulfills the SLOs. If not, the
process continues with the first step to incrementally refine the SLOs and the system until
SLOs can be met.

144

4 Application

In this section, we apply the book shop scenario of Sec. 2 to our novel process as described
in Sec. 3. This application serves as a first proof-of-concept evaluation. We describe each
process step in a separate subsection.

4.1 Specify SLOs & (Dynamic) Usage Scenarios

Based on the requirements of the book shop scenario, we derive and specify SLOs and
(dynamic) usage scenarios.

For the specification of SLOs, we use a dedicated SLO language of our tool suite. Our
language allows to organize SLO specifications in repositories as shown in Fig. 3. For
example, we derived a “3 Seconds Response Time SLO” based on R.;,s;: Where the re-
quirement is checked against a threshold of three seconds. Our SLO of Fig. 3 makes this
threshold explicit as can be seen within the properties view. The simulation can later-on
make use of such information.

4 & platform:/resource/40_PCM_from_servlets_project/cloud/ThreeSecondsResponseTime.slo
4 4 Service Level Objective Repository
4 < Service Level Objective 3 Seconds Response Time 5LO
4 Hard Threshold _4s64whfcEeShHsnvMLMcra

Selection | Parent | List | Tree | Table| Tree with Columns

H Pro.. &2 |[EL Pro...

Property Value
Id '= _4shdwhfcEeShHsnvMLMcra
Thresheld Limit '=3s

Figure 3: Example SLO specification as derived from Rejqs¢-

For the specification of dynamic usage scenarios, we integrated LIMBO [vKHK14], a tool
for load intensity modeling, into our tool suite. Before our integration, usage scenarios had
to be specified in a static manner, i.e., could not vary over time. Therefore, scenarios like
we described for the book shop scenario could not be realized, e.g., to vary load around
Christmas. Because LIMBO allows to model such time-dependent changes in workloads,
we extended our simulation such that LIMBO’s dynamic changes in workloads can be
applied on Palladio’s usage scenarios.

For example, we modeled a change of arrival rates over one year for the book shop scenario
as shown in Fig. 4. The arrival rates generally increase from 100 users per second to 112
users per second as that is the expected trend for one year. We additionally modeled a
peak around Christmas as well as lower arrival rates around the holiday season in summer.
Finally, we added some noise to reflect a realistic use of web applications. Our extended
simulation later-on follows this specification for the arrival rate.

145

I3 Resource Set
4 o platform:/resource/org.scaledlarchitecturaltemplates.example
4 < Sequence First Year Book Shop
4 < Combinator ADD
< MNormal Noise 4.0
4 < Combinator ADD
<= Exponential Increase And Decline 40.0
4 < Combinator SUB
<= Exponential Increase And Decline 30.0
4 4 Time Dependent Function Container yearlyTrend
<4 Linear Trend 100.0

16213 T

arrival
rates

0

0 time 12.0

First Year Book Shop Selection | Parent | List| Tree| Table Tree with Colurnns

Figure 4: Example LIMBO specification as derived from Rscate and Rejast.

4.2 Select Template

The template-based design process starts with selecting an Architectural Template (AT)
from a repository of available ATs. We created such a repository for the CloudScale
project’.

The architect of the book shop scenario directly models the system in two variants, as
a 3-layer/3-tier architecture and as a SPOSAD architecture. For each variant, the archi-
tect selects an appropriate AT from the repository. As an example, the AT specification
for SPOSAD is illustrated in Fig. 5. This AT specifies the different roles of SPOSAD
(SPOSAD itself; presentation, middle, data layers) and a completion. The latter is a trans-
formation able to weave application-independent SPOSAD information into the model
of the book shop. For example, the replication logic in the form of adaptation rules is
application-independent and can, thus, be included in the completion of the AT. AT partic-
ularly provide the means to parametrize such completions, e.g., by the concrete condition
when replication shall be triggered.

Having decided to choose a particular AT for system design, architects can apply that AT
to their system. In Fig. 6, we illustrate such an application for the SPOSAD AT. The
figure shows the PCM Profiles view; a special view for listing applications of Palladio’s
profile mechanism. Each AT role can be applied via this mechanisms, thus, allowing the
architect to assign the different AT roles to the corresponding entities. Accordingly, he has
top assign the SPOSAD role to the system itself and each layer role to the corresponding
component assembly within the system. Creating and refining such component assemblies
is the task of the next process step.

IThe repository is available at github.com/CloudScale-Project; the process to engineer ATs is
described by Lehrig [Leh13].

146

4 gl platform:/resource/org.scaledl.architecturaltemplates.repositories.cloudscale/model/CloudScaleATRepository.type
4 < Repository CloudScaleATRepository
a < ATSPOSAD
< Role PresentationLayer Assemnbly
< Role Middlelayer Assembly
<% Role Datalayer Assembly
< Role SPOSAD System
> <4 QVTO Completion SPOSAD.qvto

Selection | Parent List| Tree| Table | Tree with Columns

O Pro... i

Property Value

Constraints

Entity Mame MiddleLayer Assemnbly
Id _SBBJ8SO0EESL XszsV50NUA
Stereotype g Stereotype MiddleLayerAssembly

Figure 5: Example AT for SPOSAD. The AT includes a role for the system and three roles for
assigning the layers of a 3-layer architecture to component assemblies. The SPOSAD completion
weaves application-independent SPOSAD information into the model.

a OnlineBookShop <System> [ID: _6h150COfEeSubfGVEKsw(Q Q]

ssembly_BookShopFrontend <BookShepFrontend= <Component: BookShopFrontend> < AssemblyContext> [ID: _cdHmcCOgEeSubfGVEKsw(
ssembly_BookManagement <BookManagement> <Component: BookManagement> <AssemblyContext> [ID: _hSPoYCOgEeSubfGVEKsw(Q]
ssembly_BookDatabase <BookDatabase> <Component: BookDatabase> <AssemblyContext> [ID: _keXmICOgEeSubfGVEKswQQ)]

@ Connector Assembly_BookShopFrontend <BookShopFrontends -» Assembly_BookManagement <BookManagement> <AssemblyConnectors |
ES Connector Assembly_BookManagement <BookManagement> -> Assembly_BookDatabase <BookDatabase> <AssemblyConnectors [ID: _xUMNQ
'E ProvDelegation Provided_IBookShopFrentend -= Provided_IBookShepFrontend_BookShopFrontend <ProvidedDelegationConnectors [ID: _7dal
[} Provided_IBookShopFrontend < OperationProvidedRole> [ID: _2DgQ0COgEeSubfGVEKsWQQ]

dection | Parent | List | Tree| Table| Tree with Columns

] Prop... !-:-.l PCM .. ¥2 [*] Probl.. @ Java.. @ Decla... " Search E Cons... &3 Progr... [Simul.. 3 DQL.. B Cons... _0;_-|Error.‘.
= TtrEeLayeerfile - org.scaledl.architecturaltemplates.examples.bocksh Stereotype Feature Tagged Value
f ««<PresentationLayerfissembly>> (PresentationLayerAssembly -» A " . .
ddleTierURI latform:/ forg.scaledlar...

P < <MiddleLayerfssembly= > (MiddleLayerAssembly -> AssemblyCol midele I_T: Threshald ;g ormirEsoureerong scaledl.ar
- <<DatalayerAssembly> > {DataLayerAssembly -> AssemblyContext] fesponse !me reshe ’
- <<ThreeLayerSystem>> (ThreeLayerSystem -> System) responseTimelnterval 100

roleURI platform:/resource/org.scaledlar...

Figure 6: Example application of the SPOSAD AT. Each AT role is assigned to corresponding
PCM entities using its profile mechanisms. The middle layer assembly profile allows for specifying
response time thresholds and intervals for triggering self-adaptations. In the example, response time
is averaged in intervals of 10 seconds and checked against a 3 seconds threshold.

147

4.3 Refine System Models & Reconfiguration Models

Now that the software architect has configured two system models to make use of ATs (3-
layer/3-tier AT and SPOSAD AT), the architect has to assign all AT roles to application-
dependent component assemblies. For the presentation and data layer, the architect can
assemble the same repository components for both design variants. The two variants, 3-
layer/3-tier AT and SPOSAD AT, do not constrain such components differently. For the
application layer, the architect has to assemble a stateless variant of the book management
component to the system if following the SPOSAD AT. Here, the architect has to follow
the constraints of the SPOSAD architectural style. For the case of the 3-layer/3-tier AT,
no such constraints limit the design of the book management component. Both variants,
stateless and statefull, are allowed here.

Fig. 7 illustrates the system model as designed by the architect. The system model is simi-
lar for both variants; only the encapsulating component of the book management assembly
may be different as explained above. Having these assemblies available, the architect can
assign the remaining AT roles to these. This assignment is shown in Fig. 6 (note the three
profile applications for each layer).

For the application layer of the SPOSAD AT, the architect has an additional option to
parametrize the adaptation rules used for replication. As illustrated in Fig. 6 (bottom,
right), the application layer profile provides tagged values for specifying replication thresh-
old and observation intervals.

< OnlineBookshop

1 Assembly_BookShopFrontend <Boo... 4] Assembly_BookManagement <Bock... i Assembly_BookDatabase <Book...

Provided_IBookShopFrontend BookShopFrontend Provided IBookhanagement BookManagement Provided IBookDatsbase BockDatabase

Required_JBookManagement_BookManagement

%{ Provided_IBookShopFrontend Required_[BookDatabase_BookDatabase

Figure 7: The system model of the book shop scenario

148

4.4 Simulate

For our simulation, we reimplemented and improved the Experiment Automation frame-
work, initially developed by Merkle [Mer11]. Experiment Automation is now able to start
several SimuLizar [BBM13] simulations, each time varying model parameters in order to
measure our novel metrics. For instance, we measure user capacity (prerequisite for our
scalability range metric, cf. [BLB15]) by varying the number of users within the system
over several simulation runs. For details about Experiment Automation, we refer to our
developer guide?.

We configured an appropriate Experiment Automation model for the book shop scenario.
Our model references SimuLizar as simulation tool, due to its self-adaptation capabilities.

4.5 Interpret

In this section, we exemplify some first new metric measurements that are now supported.
Implementing the full range of our proposed metrics (and even more) is part of our future
work.

In Fig. 8, we illustrate a result for our user capacity metric (scalability metric). For the
book shop implemented as 3-layer/3-tier variant, we observe a user capacity of 30. There-
fore, if more than 30 users reside within the system, SLOs (and corresponding require-
ments) are violated.

The architect of the book shop investigates the root causes for this insufficient user capac-
ity; a higher number was expected. By investigating the CPU utilization of the application

2Quality Analysis Lab (QuAL): Software Design Description and Developer Guide - Version 0.2:
https://svnserver.informatik.kit.edu/i43/svn/code/QualityAnalysisLab/
Documentation/trunk/org.palladiosimulator.qual.docs/QualityAnalysisLab.pdf
(User: anonymous; Password: anonymous; Visited on 31/10/2014).

JFreeChart
300 .
25
250
25
=200
=
3 175
&
© 150
21251

100

50
25
00

0.0000000
Pointin Time []

= 1: System Capacity

Figure 8: User capacity is 30 for the book shop scenario implemented as 3-layer/3-tier variant

149

380 - . L wE Taoaww PR %] 1 [} - LI Tl B | Ll -

s - '} [] L] n oan " "R, awm R, HICTT L .

Responss Time [s]

0 0 = a0 4 & 60 70 80 S0 100 110 120 130 140 180 180 170 180 180 200 210 220 230 240 250 260 270 280 280 300 310
PaintinTime [s]

® 1:5LO0Violation @ 2 No SLO Violation

Figure 9: SLO violations over time for the book shop scenario implemented as SPOSAD variant

tier, the architect figures out that the application layer component overloads the CPU. Be-
cause the demands to the CPU are realistically modeled, the architect decides to apply the
SPOSAD variant instead (SPOSAD ensures a scalable application layer).

The architect figures out that the capacity of the new system is around 500, which seems to
be fine. However, by investigating the measurements for our “SLO violations over time”
elasticity metric (Fig. 9), the architect observes that there are too many SLO violations
throughout the year.

The software architect now suspects that the database is the new bottle neck resource. The
architect therefore remodels the system with a faster HDD on the data tier and reexecutes
the simulation. Now, no SLOs are violated anymore. Eventually, the architect therefore
suggests to implement the book shop following the SPOSAD architectural style and with
a fast HDD for the data tier. The architect additionally provides the 1-year operation costs
for this variant based on dedicated cost metrics that our simulation now supports.

5 Conclusions

In this paper, we show how we integrated novel metrics for quality properties of cloud
computing systems into Palladio, accompanied by a novel process and a more efficient
modeling language. Following our process, we where able to efficiently analyze a first,
simple example regarding scalability, elasticity, and efficiency.

Our new process and tool suite helps software architects in efficiently analyzing applica-
tions that shall operate within cloud computing environments. For scientists, our tools
are especially interesting because their capabilities for scalability, elasticity, and efficiency
analysis open a plethora of new possibilities for engineering systems.

In future work, we plan to further improve the usability of our tools because several editors

150

are in early-stage development. Afterwards, we want to evaluate these tools and our pro-
cess with more extensive examples. We also plan to optimize our analysis by building up
on already gained measurements and only analyzing changed/additional parts of system
models (scalability, elasticity, and efficiency analysis composition).

References

[AFGT10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy

[BBM13]

[BKR09]

[BLB15]

[EMP13]

[FFH12]

[HKR13]

[Kozl1]

[Leh13]

[Merl1]

[TMDO09]

[VKHK 14]

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.
A view of cloud computing. Commun. ACM, 53(4):50-58, April 2010.

Matthias Becker, Steffen Becker, and Joachim Meyer. SimuLizar: Design-Time Mod-
elling and Performance Analysis of Self-Adaptive Systems. In Proceedings of Software
Engineering 2013 (SE2013), Aachen, 2013.

Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1), January
2009.

Matthias Becker, Sebastian Lehrig, and Steffen Becker. Systematically Deriving Quality
Metrics for Cloud Computing Systems. In Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering, ICPE ’15, New York, NY, USA, 2015.
ACM. Accepted for publication.

Thomas Erl, Zaigham Mahmood, and Ricardo Puttini. Cloud Computing: Concepts,
Technology & Architecture. Prentice Hall, 2013.

Florian Fittkau, Soren Frey, and Wilhelm Hasselbring. CDOSim: Simulating Cloud
Deployment Options for Software Migration Support. In MESOCA ’12, page 3746,
2012.

Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity: What it is, and
What it is Not. In Proceedings of the 10th International Conference on Autonomic
Computing (ICAC 2013), San Jose, CA, June 24-28, 2013.

Heiko Koziolek. The SPOSAD Architectural Style for Multi-tenant Software Applica-
tions. In Proc. 9th Working IEEE/IFIP Conf. on Software Architecture, pages 320-327.
IEEE, July 2011.

Sebastian Lehrig. Architectural Templates: Engineering Scalable SaaS Applications
Based on Architectural Styles. In Proceedings of the MODELS 2013 Doctoral Sympo-
sium co-located with the 16th International ACM/IEEE Conference on Model Driven
Engineering Languages and Systems (MODELS 2013), volume 1071, pages 48-55, Mi-
ami, USA, 2013. CEUR-WS.org.

Philipp Merkle. Comparing Process- and Event-oriented Software Performance Simu-
lation. Master’s thesis, Karlsruhe Institute of Technology (KIT), Germany, 2011.

R.N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations, The-
ory, and Practice. Wiley, 2009.

Jéakim Gunnarson von Kistowski, Nikolas Roman Herbst, and Samuel Kounev.
LIMBO: A Tool For Modeling Variable Load Intensities. In Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering (ICPE 2014), ICPE
’14, pages 225-226, New York, NY, USA, March 2014. ACM.

151

Towards Performance Awareness in Java EE
Development Environments

Alexandru Danciu', Andreas Brunnert!, Helmut Krcmar?
Ifortiss GmbH
Guerickestr. 25, 80805 Miinchen, Germany
{danciu, brunnert} @fortiss.org
2Technische Universitidt Miinchen
Boltzmannstr. 3, 85748 Garching, Germany
krcmar @in.tum.de

Abstract: This paper presents an approach to introduce performance awareness in
integrated development environments (IDE) for Java Enterprise Edition (EE) applica-
tions. The approach predicts the response time of EE component operations during
implementation time and presents these predictions within an IDE. Source code is
parsed and represented as an abstract syntax tree (AST). This structure is converted
into a Palladio Component Model (PCM). Calls to other Java EE component opera-
tions are represented as external service calls in the model. These calls are param-
eterized with monitoring data acquired by Kieker from Java EE servers. Immediate
predictions derived using analytical techniques are provided each time changes to the
code are saved. The prediction results are always visible within the source code editor,
to guide developers during the component development process. In addition to this
immediate feedback mechanism, developers can explicitly trigger a more extensive
response time prediction for the whole component using simulation. The paper covers
the conceptional approach, the current state of the implementation and sketches for the
user interface.

1 Introduction

Detecting performance problems of applications systems is essential before their release to
the field. However, evaluating the performance of application systems in terms of response
time, resource utilization and throughput is a difficult task. Performance tests require re-
alistic environments comprising hardware, middleware, utilized components, test data and
a test workload. Load testing is often one of the last steps performed during a develop-
ment process, even though performance problems can be solved easier, the earlier they are
detected.

Performance awareness represents the ability to detect performance problems and to re-
act to them [T14]. One of the core targets of this concept is supporting developers with
insights on the performance of code they are currently developing. This paper presents
an approach to introduce performance awareness in integrated development environments
(IDE) for Java Enterprise Edition (EE) applications. Java EE supports the implementa-

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

152

tion of component-based software systems. The Java EE specification defines application
component types such as applets, servlets and Enterprise JavaBeans [LD13]. The emphasis
of component-based development is on the specification of loosely coupled independent
components to enable separation of concerns and reuse across the system. Component
developers reuse other components to implement the required functionality. The perfor-
mance of a new component depends among others on the performance of reused compo-
nents [Koz10]. Therefore component developers are facing questions such as:

e Are the service-level agreements (SLA) imposed to my component violated by
reusing a specific component?

e Can the SLAs imposed to my component be achieved with the current component
implementation?

e Does a particular change in the control flow of my component lead to an SLA vio-
lation?

e How is the performance of my component changing for varying workloads?

Answering these questions is an increasingly difficult task, due to three main factors: ap-
plication system architecture, system life cycle and IT governance [BVD™14]. Complex
architectures often lead to geographical, organizational, cultural and technical variety. De-
velopers lack the knowledge about the structure and the deployment of reused components.
Components are subject to a constant iteration between development and operation. It is
difficult for developers to maintain an overview of the performance behavior of compo-
nents. Additionally, components are assigned to different organizational units. Accessing
monitoring data is thus more difficult for the developer. From a technical point of view,
the developer needs experience in the performance engineering domain and in using cor-
responding tools. This article proposes an automated and integrated approach to answer
these questions. The approach predicts the response time of component operations during
implementation time and presents the results within the IDE of the developer.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the approach and describes the three main phases in detail. Section 3 describes existing
research related to this approach. Section 4 concludes this article and describes future
research directions.

2 Developer Performance Awareness Approach

The goal of the approach presented in this paper is to support developers with response
time estimations for Java EE component operations. The main phases and the architecture
of the proposed approach are shown in Figure 1. First, performance data of running Java
EE components is collected from existing application deployments (1). Our approach is
based on the assumption that new components will reuse existing ones to some extent.
The collected data is then aggregated over different component instances, versions and
user workloads (2). Response time estimations for new components are derived by us-
ing Palladio Component Models (PCM). These PCM models are generated based on the
source code of the component operations representing the control flow with an emphasis

153

Data 2 Data 3 Model Developer
collection aggregation generation feedback

Java EE Server Eclipse IDE
Kieker & Monitoring Model*:"_. Code®
Monitoring records Generator Editor

Figure 1: Overview of the approach (structure adapted from [BVK13])

on external calls (3). Two types of estimations can be triggered (4): an immediate estima-
tion after the developer saves a change to the code and an explicitly triggered simulation.
The immediate estimation is performed using an analytical solver and stochastic expres-
sions representing the performance behavior of reused components. The prediction results
are visible within the source code editor. Simulations are intended to provide more precise
predictions and are performed using performance curves [WHW12]. Simulation results
will be displayed in a separate view. The data collection and aggregation phases are exe-
cuted periodically. The model generation and developer feedback phases are triggered by
the developer. Each phase is described in detail below.

2.1 Data Collection

The response time behavior of running components within the application landscape is col-
lected using the Kieker framework [Prol4]. Applications are instrumented using aspect-
oriented programming. Using the adaptive monitoring feature [Pro14], data collection is
activated for specific component operations. Monitoring records are passed by a new mon-
itoring writer via a web-service call to a database application that serves as a backend for
the approach presented in this work. This database application serves as a central reposi-
tory for monitoring records. The web-service deserializes the record and stores it to a rela-
tional database. Monitoring records include response times of component operations and
the current workload of the application in terms of queue length and resource utilization.
The monitoring writer stores for each record an additional description of the deployment
from which the measurement was obtained. This description includes information about
the host and the application server instance. Information about the deployment is retrieved
by the monitoring writer from local configuration files. The monitoring writer also stores
meta-data of the application binaries provided by a central build tool so that performance
measurements can be related to component versions.

154

2.2 Data Aggregation

The response time behavior of component operations can be collected from multiple ap-
plication servers and for different workloads. Also, different versions of a component can
be deployed within the application landscape. The aim of this step is to aggregate indi-
vidual records to performance curves and stochastic expressions describing the response
time behavior of operations in dependence on a set of input parameters such as workload
characteristics. Aggregation is performed using statistical methods and measurements are
aggregated for each component version separately. Java functionality is delivered as de-
ployable units by assembling source code to Java Archives, Web Archives or Enterprise
Archives. The current version of the code, identified by a revision number, is exported
from a repository and assembled. The resulting archive is then deployed to an application
server. However, neither the revision, the assembly nor the deployment suggest which
component version is addressed by a performance measurement. The source code of a
component might remain constant over multiple revisions, assemblies and deployments.
The proposed approach stores for each component the revision numbers which contained
changes to its source code. This revision number is then compared to the revision con-
tained in the deployable unit. A central build tool stores the revision number of the assem-
bled code in a property file within the deployable unit. Measurements can thus be assigned
to specific component versions. The results of this step are provided over a web-service
interface to clients (i.e., IDEs).

2.3 Model Generation

The source code of a new component and the performance data collected for any reused
components are used to generate a component-based performance model. PCM is used as
the meta-model for the generated models.

The main factors influencing the performance of reusable software components are the
component implementation, required services, deployment platform, usage profile and re-
source contention [Koz10]. The focus of this approach are the component implementation
and the required services. The component implementation is represented in terms of the
control flow of individual component operations. Required services are modeled explic-
itly in the model as external calls. The deployment platform is assumed to be constant for
all components. The usage profile is represented in terms of the response times of reused
components in dependence on the workload. The impact of input parameters and resource
contention are not addressed by the approach.

The proposed approach first generates a PCM repository model which specifies the cur-
rently investigated component. The model generation is based on the approaches of Kap-
pler et al. [KKKRO8] and Becker et al. [BHT*10]. Source code of component operations
is parsed and represented as an abstract syntax tree (AST). Each AST is then converted
to a Resource Demanding Service Effect Specifications (RDSEFF). An RDSEFF specifies
the behavior of a single component operation. Calls to reused components are modeled as

155

external call actions. The response time behavior of external calls is modeled either using
stochastic expressions or performance curves depending on whether the model is used as
input for an analytical solver (stochastic expression) or a simulation engine (performance
curve). This information is retrieved from the monitoring record database. Calls within the
boundaries of the investigated component are modeled as internal action calls. Branches,
loops and forks are also represented in the RDSEFF. Since the modeled component is un-
der development, the probabilities of different execution flows are unknown. Therefore,
branches are modeled having equal probabilities. Since binary code is not available for the
investigated component, a dynamic analysis [KKKRO8] of the component behavior can
not be performed. Thus, resource demands of internal call actions are also not represented
in the RDSEFFE.

After creating the PCM repository model, the remaining PCM models that are required
for a simulation, are also generated automatically. The PCM system model describes how
components are combined and which interfaces they provide. The investigated component
is represented as a single instance in the PCM system model. Each public component
operation is modeled as an externally accessible interface. The PCM usage model de-
scribes a closed workload where all operations of the investigated component are called
equally often. The hardware resources such as central processing units (CPU) available
to the investigated component are specified within the PCM resource environment model.
A resource environment model containing one server and a single CPU is generated. The
investigated component is then mapped to this server within the PCM allocation model.

2.4 Developer Feedback

The main goal of the proposed approach is to integrate estimations of the expected re-
sponse time of component operations in the development environment. Two types of feed-
back are envisioned:

1. An implicit estimation of the response time of component operations is automati-
cally performed each time changes to the code are saved.

2. A detailed response time estimation of all component operations triggered by the
developer.

Since changes to code are frequently saved, the immediate estimation must be executed
very fast. The estimation is therefore performed using an analytical solver. Figure 2(a)
shows how this type of feedback could look in the IDE. If the estimated response time ex-
ceeds a specific threshold, a notification will be displayed within the code editor. Thresh-
olds are configured with default values and can be adjusted by the developer. Notifications
are displayed as yellow and red traffic lights and are associated to the corresponding oper-
ation signatures.

The explicitly triggered response time estimation aims at providing more precise results.
Therefore a simulator is used to process the PCM model. The response time behavior of
reused components is modeled using performance curves. Figure 2(b) shows how this type
of feedback could look in the IDE. Results are displayed as probability density function in

156

Simulation Results X

Component.java x
@ public void operation_1(){

)

Mean: X ms

Median: Y ms

Probability (%)

@ public void operation_2()}{

,

Time (ms)

(a) Immediate feedback mockup (b) Simulation results mockup

Figure 2: User interface mockups

a separate view. Important metrics such as mean and median values are also displayed.

3 Related Work

The presented approach is related to existing research on developer performance aware-
ness and performance model generation. In the following, we discuss existing work that
addresses these research areas.

Developer Feedback

Several approaches aim at providing feedback to developers. Weiss et al. [WWHM13]
propose an approach for evaluating the performance of software artifacts based on tai-
lored benchmarks applications during the implementation phase. The authors describe a
scenario, how immediate feedback could be provided to developers in the IDE. Develop-
ers can either track the performance impact of changes to the implementation or compare
different design alternatives. Performance estimations are displayed as numerical values
and bar charts and in a separate view. The presented approach is applicable only to Java
Persistence API services. Instructions on how to design benchmark applications and how
to apply the approach to other components are provided.

Heger et al. [HHF13] present an approach to integrate performance regression root cause
analysis into development environments. The change in performance between two revi-
sions is displayed graphically as a function. Methods causing the regression are presented
to the developer as a graph. The approach employs unit tests to gather performance mea-
surements and thus provides no feedback on the performance expected in realistic envi-
ronments.

Bures et al. [BHK™14] propose the integration of performance awareness in the devel-
opment life cycle of autonomic component ensembles. The authors describe how the
design and operations phases can be augmented with performance-related activities such
as formulating performance goals or collecting performance data. One of these activities
aims at providing feedback to developers. The authors envision the presentation of perfor-
mance measurements to the developer directly in the IDE. Feedback is provided graphi-
cally within a pop-up window. The approach is suitable for the presentation of historical

157

data and doesn’t support a real-time interaction with the developer.
Automatic Performance Model Generation

Brosig et al. [BHK11] present a semi-automatic approach for extracting PCM models from
Java EE applications based on monitoring data collected at run-time using WebLogic-
specific monitoring tools. Call path tracing is employed to determine the control flow.
Only executed paths are identified by the approach. Brunnert et al. [BVK13] present a
similar approach that is applicable for all Java EE server products based on data collected
from custom Servlet filters and EJB interceptors. Neither of the approaches support eval-
uating the performance of single components during the implementation phase.

Becker et al. [BHTT10] present an approach for reverse engineering Java applications
based on static source code analysis. Similar to the approach proposed by Kappler et al.
[KKKROS], source code is parsed to an AST which is then converted to an RDSEFFs.
Krogmann et al. [KKR10] use static and dynamic analysis to reverse engineer Java ap-
plications. This approach requires the evaluated components to be executed in testbeds.
Parametric dependencies between input parameters and the control flow are derived using
genetic search.

4 Conclusion and Future Work

This paper proposed an approach to provide feedback on the estimated response time of
Java EE components to developers within the IDE. Using the approach does not require
any knowledge about reused components or experience in the performance engineering
domain. Developers are not required to make efforts for obtaining access to performance
data and do not have to employ additional tools for processing these data. Feedback is
provided automatically to the developer and requires no additional effort. The approach
focuses on the performance impact of component reuse and ignores the resource demand
of the investigated component. Therefore, the application of this approach is only useful
if component reuse exists. The prediction of response times in dependence on the work-
load is only possible if the behavior of reused components was measured under various
workloads.

Future research will evaluate this approach within a case study. Additionally, the approach
needs to enable the developer to refine generated PCM models, for example by specifying
probabilities for branches within an RDSEFF. Refinements could be performed by anno-
tating code.

References

[BHK11] F. Brosig, N. Huber, and S. Kounev. Automated extraction of architecture-level per-
formance models of distributed component-based systems. In Proceedings of the
26th IEEE/ACM International Conference on Automated Software Engineering, pages
183-192, Nov 2011.

158

[BHK " 14]

[BHT™10]

[BVD*14]

[BVK13]

[HHF13]

[KKKROS]

[KKR10]

[Koz10]

[LD13]

[Prol4]
[Ti4]

[WHW12]

[WWHM13]

Tom4s Bures, Vojtéch Horky, Michat Kit, Luk4s Marek, and Petr Tima. Towards
Performance-Aware Engineering of Autonomic Component Ensembles. In Tiziana
Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation, Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2014.

Steffen Becker, Michael Hauck, Mircea Trifu, Klaus Krogmann, and Jan Kofron. Re-
verse Engineering Component Models for Quality Predictions. In Proceedings of the
14th European Conference on Software Maintenance and Reengineering, European
Projects Track, pages 199-202. IEEE, 2010.

Andreas Brunnert, Christian Vogele, Alexandru Danciu, Matthias Pfaff, Manuel
Mayer, and Helmut Krcmar. Performance Management Work. Business & Infor-
mation Systems Engineering, 6(3):177-179, 2014.

Andreas Brunnert, Christian Vogele, and Helmut Krcmar. Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications. In MariaSimon-
etta Balsamo, WilliamJ. Knottenbelt, and Andrea Marin, editors, Computer Perfor-
mance Engineering, volume 8168 of Lecture Notes in Computer Science, pages 74—
88. Springer Berlin Heidelberg, 2013.

Christoph Heger, Jens Happe, and Roozbeh Farahbod. Automated Root Cause Isola-
tion of Performance Regressions During Software Development. In Proceedings of
the 4th ACM/SPEC International Conference on Performance Engineering, ICPE *13,
pages 27-38, New York, NY, USA, 2013. ACM.

Thomas Kappler, Heiko Koziolek, Klaus Krogmann, and Ralf H. Reussner. Towards
Automatic Construction of Reusable Prediction Models for Component-Based Perfor-
mance Engineering. In Software Engineering 2008, volume 121 of Lecture Notes in
Informatics, pages 140—154, Munich, Germany, February 18-22 2008. Bonner Kollen
Verlag.

K. Krogmann, M. Kuperberg, and R. Reussner. Using Genetic Search for Reverse
Engineering of Parametric Behavior Models for Performance Prediction. /IEEE Trans-
actions on Software Engineering, 36(6):865-877, Nov 2010.

Heiko Koziolek. Performance evaluation of component-based software systems: A
survey. Performance Evaluation, 67(8):634 — 658, 2010. Special Issue on Software
and Performance.

Bill Shannon Linda DeMichiel. Java Platform, Enterprise Edition (Java EE) Specifi-
cation, v7. 2013.

Kieker Project. Kieker User Guide. Research report, April 2014.

Petr Tima. Performance Awareness: Keynote Abstract. In Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering, ICPE *14, pages
135-136, New York, NY, USA, 2014. ACM.

Alexander Wert, Jens Happe, and Dennis Westermann. Integrating Software Per-
formance Curves with the Palladio Component Model. In Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering, ICPE *12, pages
283-286, New York, NY, USA, 2012. ACM.

Christian Weiss, Dennis Westermann, Christoph Heger, and Martin Moser. Systematic
Performance Evaluation Based on Tailored Benchmark Applications. In Proceedings
of the 4th ACM/SPEC International Conference on Performance Engineering, ICPE
’13, pages 411-420, New York, NY, USA, 2013. ACM.

159

Identifying Semantically Cohesive Modules within the
Palladio Meta-Model

Misha Strittmatter, Michael Langhammer
Institute for Data Structures and Program Organisation (IPD)
Karlsruhe Institute of Technology (KIT)
{strittmatter | langhammer} @kit.edu

Abstract: The Palladio Component Model (PCM) is a modeling language for component-
based business information systems. Its primary and original focus lies on perfor-
mance prediction. Its core meta-model is organized within a package structure within
one meta-model.

Over time, the meta-model was extended, which allowed to model additional con-
cerns. The extensions were made directly into the package structure, mostly without
creating sub packages. Some cross-cutting concerns were placed inconsistently. This
deteriorated the organizational structure of the meta-model, which negatively influ-
ences maintainability, understandability and extensibility.

To solve this, the meta-model should be restructured into meta-model modules.
Within this paper, we identified concerns which are contained in the meta-model, to
form a basis for the future modularization. This paper does not propose a definite
modularization, but possible building blocks. What may be put as a single module or
just a package within a module will be subject to future discussion.

1 Introduction

The Palladio meta-model is currently contained within one file and is subdivided into
packages. This structure formed through the years, while the PCM was developed and
extended. The top-level packages are partly aligned with the containment structure of
the PCM submodels (e.g. repository, system). There are other top-level packages, which
contain cross-cutting or general concepts (e.g. parameter, composition, entity). Further
ones are concerned with quality dimensions (e.g. reliability, QoS Annotations). Some
extensions distributed their new classes across packages, which were semantically fitting.
This injecting as well as the scattering of new content is problematic, as some concepts
cannot be easily associated with their concern.

Within the scope of the Palladio refactoring [SMRL13], the current all-enclosing structure
is decomposed into a more modular one. The goal is to divide the Palladio meta-model
into smaller, semantically cohesive, concern based meta-models (meta-model modules).
From this, a small structural core can be formed. Further needed modeling constructs are
regarded as extensions and can be loaded, if desired.

This modularization of the meta-model has several advantages. The meta-model becomes
better maintainable and easier to extend and understand. When a Palladio model is created,

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

160

<<Ci t
Dev‘;?;‘;z::: Component Specifications Stochastic Regular Expressions
_______ i | ,ﬁ : |
—t] X — P
T |
%,
<<System Assembly Model % Queueing Network Model
Architect>> AN . —
\
] S e L MO-T0O
o 2
<<System Allocation Model « S 7, ey, Performance Prototype
Deployer>> A0 = fa,,s, 0-Co,
- P | ,Q'a 4 \ Q""arde‘
_____ — . N G
b~ \ Jopem G
& Instance %, :
%, @,
& R
<<Domain Usage Model R %, % Java Code Skeletons
Expert>> <<User>> / KON) N
C : - T [N
Y e > — ==
Figure 1: Simplified overview of the different PCM models that have to be modeled (from
[RBBT11])

the model developer can choose the meta-model modules which are relevant to him and
is not confused by the full complexity of content from all extensions. This is especially
necessary, when the Palladio approach is extended to further quality attributes and even
other domains than software engineering.

Within this paper, we identify concerns which are contained in the meta-model, to form a
basis for the future modularization. This paper does not propose a definite modularization,
but possible building blocks. What may be put as a single module or just a package within
a module will be subject to future discussion.

This paper is structured as follows: In Section 2, we provide an introduction to the PCM
and further literature references. In Section 3, the current structure of the Palladio meta-
model is explained and illustrated. Section 4 describes how we approached the identifi-
cation of the concerns, which are contained in the meta-model. Next, in Section 5, the
semantically cohesive modules which were identified are presented and their interdepen-
dencies explained. Section 6 concludes the paper and states lessons learned. Finally,
Section 7 outlines the next steps which are necessary for the modularization process.

2 Foundations

The PCM is a component model, that can be used to create a model of a software system
and, amongst other, predict its performance without actually implementing the system. It
has been introduced in various publications [BKR09, Koz08, RBB™ 11]. In order to predict
the performance of a system users of the PCM have to model the system in six different
models (see Figure 1).

First, a user has to create the Repository model. Within the Repository the components

161

and interfaces as well as the provided and required roles between them have to be defined.

In the second model, the System model, the composition of the components has to be
defined. Moreover, provided and required roles of the whole system have to be defined.

The third model is the Service Effect Specification (SEFF) model. A SEFF, which is a
behavior model, has to be specified for each method provided by a component. It contains
control flow elements like resource demands and internal call actions as well as external
call actions. These provided information is used by PCM to predict the performance of the
system in a later step.

The fourth model is the so called Resource Environment Model. It specifies the resources
which are available for the system, i.e. different servers, their computing and memory
power as well as their network connection have to be defined.

The fifth model is the Allocation model. It specifies how components (of the system) are
deployed on the resources.

The last model is the Usage model. The Usage model describes the number or arrival rate
of users who are using the software system.

These six models act as input values for the PCM allowing to predict the performance of
the system. The results of the prediction are the response time of the system and methods
and resource utilization. The results can be visualized in, for example, time charts or pie
diagrams.

The Palladio bench, which is the implementation of the PCM approach, is build using the
Eclipse Modeling Framework (EMF) [SBPMOS]. To allow performance prediction and
code generation, model-to-model transformations and model-to-code generation are used.

3 Current Package and Dependency Structure

In this Section we give a brief overview about composition of the current Palladio Compo-
nent meta-model. Currently, the meta-model is divided in several hierarchical packages.
Table 1 gives an overview about the packages. Generally, the packages are divided ac-
cording to the six models presented in Section 2. The Allocation package, for example,
contains the classes that are used in the allocation model.

The Palladio meta-model also has dependencies to the Identifier, the Units and the Stochas-
tic Expression (StoEx) meta-model. The Identifier meta-model only includes the class
Identifier, which has the unmodifiable attribute ID. During the creation of an instance a
(UUID) is created and assigned to the ID attribute. Hence, Identifier, and all of its sub-
classes, do have a UUID to identify the elements globally. The Units meta-model contains
classes that specify different Units that are used in a SEFF. The StoEx meta-model in-
cludes classes to create stochastical expressions in a SEFF. Therefore, the StoEx model
uses classes that allows the creation of new random variables.

Figure 2 shows the current package structure and the dependencies between the packages
within the Palladio meta-model.

162

Package

Explanation

pcm
core

entity

composition
repository
resourceenvironment
system

allocation
usagemodel
subsystem
resourcetype

protocol

parameter
reliability
seff

seff_performance

seff_reliability

gosannotations

qos_reliability

qos_performance

root-package that contains all other packages
contains the entity and composition packages

contains all core classes that are shared between other
packages

contains all classes that are used in composite models
contains all classes that are used in the repository model
contains the classes to specify the resource environment
contains the System class that represents the system model
contains classes that are necessary for an allocation model
contains classes that are necessary to create a usage model
contains a class to compose sub-systems of a system
contains classes to specify resource types

contains an abstract class as a stub, such that interfaces
could be extended by protocols

contains the specification for variable usage
contains classes for reliability prediction
contains all classes that are necessary to model a SEFF

sub-package of SEFF that contains performance specific
classes

sub-package of SEFF that contains reliability specific
classes

enables the annotation of quality information

sub-package of qosannotations that contains classes to that
are necessary for reliability annotations

sub-package of qosannotations that contains classes to that
are necessary for performance annotations

Table 1: Current packages of the Palladio Component meta-model

163

pcm

core

entity

protocol subsystem

composition

resourcetype repository \ usagemodel

reliability resourceenvironment allocation

seff / gosannotations system

seff_performance ‘ gos_performance ‘

seff_reliability qos_reliability —‘
parameter

\/

Figure 2: Current package structure of the Palladio Component meta-model. An arrow between two
packages implies a dependency from one package to the other package. In order to simplify the
Figure we assume that the arrows are transitive. For example, qosannotations depends on reliability
and repository. However, since reliability already depends on repository we omit the arrow from
gosannotations to repository. We also count dependencies from and to sub-packages as dependencies
from and to the parent package. Finally, we omited dependencies to the entity package.

164

4 Identification Procedure

The content of this paper originates from a thorough, longer running inspection of the
meta-model. Beforehand, we outlined the concerns and their dependencies from an out-
side perspective (similar to the view of an experienced Palladio user). It was the goal
of the inspection to confirm, refine and correct this top-down classification with techni-
cal bottom-up information. We examined, how the package structure, relates to the con-
cerns and arranged all classes to their belonging concerns. We also sought for new con-
cerns.Because besides the top-down visible concerns, the invisible infrastructure of the
meta-model (abstract class hierarchy) and hidden features can only be seen when looking
into the meta-model. We considered how the concerns could be internally structured (e.g.
by subpackages or subconcerns) and which concerns should rather be fused with others.
Further, we inspected the dependencies of every class and if they confirmed to our idea of
dependencies between concerns.

5 Concerns of the Palladio Meta-Model

Within this section, we will describe the concerns, which we identified in the Palladio
meta-model. We will explain, what is the purpose of the concern and what are the main
concepts. How do they originate within the package structure and why they were as-
sembled like this. Outgoing dependencies are shortly explained. Incoming dependencies
which currently exist in the meta-model and are problematic are discussed. Such depen-
dencies could be of the type which go from a core concern to an enhancing concern. Please
note that this is in no way an explanation of the meta-model in detail. Not every class and
individual dependency is explicitly explained, but only the ones which are important for
the concerns from an outside perspective. For additional details, please consult the tech
report [RBBT11].

An overview of the core concerns is shown in Figure 3. Dependencies to the entity concern
are not shown for simplicity, as almost every concern is dependent on it.

5.1 Entity

The entity concern contains a simple class hierarchy to provide IDs and names to sub-
classes. The content of this concern stems mostly from the entity package. The interface
dependent part has been factored out. The exception is the identifier class, which carries an
ID and makes all subclasses uniquely identifiable. It is contained within its own minimal
meta-model. It could be beneficial to locate this whole concern into that meta-model, as
names are also used in further meta-models.

This concern has no outgoing dependencies. However, most classes are dependent on
this concern, as IDs and names are widely used. So, we will not explicitly state these
dependencies everywhere.

165

Legend

Concern

—

Dependency

Variable
Characterization

DataTypes

Composition

Allocation

Resource

Component Type
Hierarchy

Repository

Resource
Environment

Figure 3: Main Concerns

166

5.2 Variable Characterization

The variable characterization concern provides capabilities to specify properties of vari-
ables (e.g. bytesize, structure, value), These variables are mostly input and output param-
eters of calls as well as in component parameter specification. This concern is currently
known as the parameter package. However, as the parameter is a concept and meta-class
from the repository, we chose variable characterization as a name. As the concepts, which
are contained in the concern, are used in different places, we did not merge it, but left it as
an independent concern.

The main concepts of this concern are: The VariableUsage holds the name of a variable
and an arbitrary number of characterizations. The VariableCharacterisation holds type and
value of the characterization. The VariableCharacterisationType declares which character-
ization should be specified: bytesize, structure, value and so on.

There are no outgoing dependencies, but to the StoEx meta-model, as random variables
are used.

5.3 Repository

The repository concern covers the main concepts, which users know from the conventional
repository model within the PCM. Within a repository model, interfaces, components and
their relations can be specified. The repository may also contain custom data types, which
are meta-modeled in a subconcern. Another subconcern provides modeling constructs
for the component type hierarchy (Provides- and CompletesTypes). Further, the content
of the repository concern could be subdivided into an abstract part which contains the
abstract class hierarchy and a concrete part, which assigns semantics to the abstract classes.
Such a further division could foster reuse in other domains and constrain the direction
of dependencies. The classes of the repository constraints originate from the repository,
subsystem and entity packages. However, some specific content of the repository package
was factored out into other concerns.

From the outside view, it is clear what the main concepts of the repository concern are:
components, interfaces and their relations. However, from the inside view, there is an elab-
orate class hierarchy for classifying different types of components. Further main concepts
are: roles and a specialization of the abstract type hierarchy to use operation list signature.

The repository concern is dependent on the composition concern, as it describes how com-
posed elements of the repository are constructed. The variable characterization is also
referenced to enable component parameters. There are some problematic outgoing refer-
ences, which should be reversed. Namely to the reliability and QoS annotations concerns.
To form a clean architecture description language, also the dependency to the behavior of
components (SEFF) should be reversed, so that the repository is not dependent on behavior
but behavior extends or annotates content of the repository concern.

167

DataTypes This subconcern of the repository concern provides modeling capabilities for
custom data types. These data types can then be used in definitions of signature lists for
OperationInterfaces. It originates completely from the repository package. Its main con-
cepts are: the PrimitiveDataType (such as integer, char, string), the CompositeDataType
(similar to struct concept of object oriented programming) and the CollectionDataType (a
set containing multiple instances of the same data type). There are no outgoing dependen-
cies.

Component Type Hierarchy This subconcern of the repository concern contains the
classes to specify the component type hierarchy. The whole concern was contained in the
repository package. ProvidesComponentTypes are used to declare mandatory provided
roles. CompletesComponentTypes are used to constrict required roles. These role con-
straints have to be fulfilled for a conforms relation to hold. These component types can
then be substituted by their conforming components within an composed structure. There
are no outgoing dependencies (except to the parent concern), nor problematic incoming
ones.

5.4 Composition

The composition concerns defines how composed structures can be constructed: compo-
nents are put into their context within a composed structure, which results in an assembly
context. The roles of the assembly contexts are connected by assembly connectors. The
roles of the outer structure are connected to the roles of assembly connectors by delegation
connectors. This concern stems solely from the composition package and will therefor be
known to Palladio users as the composed structure or system diagram. This concern is
dependent on the repository concern, as components and their roles are referenced. There
is also a dependency to variable characterization, as component parameters can be set in
assembly contexts.

5.5 SEFF

The SEFF concern contains all classes that are necessary to model the behavior of a com-
ponent method. For example, the behavior can be modeled in terms of internal actions,
external actions, loops and branches. Unlike the current PCM meta-model, the SEFF does
not allow the modeling of performance or reliability. This will be realized by additional
extensions to the SEFF. Another difference to the current meta-model will be that a SEFF
is no longer contained within BasicComponents. This will decouple the repository from
the SEFF. In addition, this will have the positive effect that concurrent changes on SEFF
and the Repository model will no longer overwrite the other change, if saved. Since SEFFs
are contained in a BasicComponent the SEFF concern has a outgoing dependency to the
repository.

168

5.6 Usage

The usage concern contains all classes that are necessary to create a usage model. It
matches the current usagemodel package in the current Palladio meta-model. The us-
age only has a dependency to the Repository concern. In particular it needs the Opera-
tionSignature and the OperationProvidedRole that are used in the EntryLevelSystemCall.

5.7 Environment

The environment concern contains all classes that are necessary to model the environment
of the system in terms of hardware environment and their linking between one another. The
concern consists of the performance independent part of the resourceenvironment package
from the current Palladio meta-model. Hence, it will contain the classes Environment and
Liniking. The environment concern has no outgoing dependencies.

5.8 Allocation

The Allocation concern contains all classes that are necessary to create an Allocation
model. Like the usage model, it matches its former PCM package, the allocation. The
main concepts are Allocation and AllocationContext. The AllocationContext matches
which component is deployed on which hardware resource. Hence, the allocation con-
cern has dependencies to the composition and the environment concerns.

5.9 Performance

The Performance concern enables the modeling of performance information. It has sev-
eral sub-concerns. Each of the sub-concerns extend other concerns in order to enable the
performance annotations that can be used for performance prediction in a later step.

RDSEFF The RDSEFF (Resource Demanding Service Effect Specification) contains
all classes to enable the modeling of a SEFF that interacts with resources. It contains all
classes from the seff_performance package in the current Palladio meta-model. The main
concepts of the RDSEFF are the ResourceDemandingSEFF class itself as well as Re-
sourceCall and ResourceDemandingBehavior. It has outgoing dependencies to the SEFF
and Resource Environment and an incoming dependency from the Infrastructure concern.

Resource Environment The Resource environment is a sub-concern of the performance
concern. It contains classes that extends the environment model to enable the performance
modeling of hardware resources. These resources are used for the performance prediction

169

in a later step. The main concepts of the resource environment are the ResourceEnviron-
ment, which extends environment, and the ResourceContainer. The resource environment
has outgoing dependencies to the environment and to the Resource Type.

Resource Type repository The resource type concern is a sub-concern of the perfor-
mance model. The resource type contains the concrete resources, e.g. CPU and HDDs
that can be used in the resource environment. Since the resource type repository only con-
tains resources that are used in the resource environment it does not have any outgoing
dependencies.

Resource
Interfaces

Figure 4: Performance Specific Extending Concerns

5.10 Resource Interface

The resource interface [Hau09] concern extends the resource environment and allows a
more detailed performance predictions based on a resource model. The main concepts of
the resource interface are Resourcelnterface and ResourceSignature. The resource inter-
face has an outgoing dependency to the resource environment. Since the class ResourceS-
ignature uses Parameters from the repository it also has an outgoing dependency to the
repository (see Figure 4).

170

5.11 Infrastructure

The infrastructure concern provides capabilities to model infrastructure software compo-
nents (e.g. middleware) [Hau09]. Its dependencies are shown in Figure 4. Calls to such
infrastructure components have no return values and can be made directly from Inter-
nalActions. The infrastructure components therefore provide capabilities to model com-
plex resource demands. The classes infrastructure concern originate in the repository,
composition and SEFF package. This subdivision should also be kept in this concern as
subconcerns or packages.

The main concepts of this concern are: InfrastructureSignatures, -Interfaces, -Roles, -
Connectors and -Calls. Normal and infrastructure Components are distinguished by an
attribute in the ImplementsComponentType, this should be replaced by a construct of more
annotating nature to be able to factor it out of the repository concern.

The InfrastructureCall has an incoming dependency from SEFF, as it is contained within
AbstractInternalControlFlowActions, this should be reversed. Expected outgoing refer-
ences are therefore: to the repository, because of the inheritance from Interface, Roles,
Signature and the annotation of component. There is also a reference to composition, be-
cause of the inheritance of the connectors and another reference to SEFF because of the
introduction of the InfrastructureCall.

Figure 5: Event Communication Concern

5.12 Events

Currently the Event classes are part of the repository package [Rat13]. For the modularized
meta model we propose a own concern for the Event extension of the PCM (see Figure 5.
This concern itself will be separated in the three sub-concerns Events-Repository, Events-
Composition and Events-SEFF. The Events-Repository contains all classes to model an

171

Event based system in the repository model, e.g. source and sink roles. The Events-
Composition contains the classes that are necessary to compose the events modeled in the
repository model. Finally, the Events-SEFF enable the modeling of event based Service
Effect Specifications.

The Events-Repository sub-concern has dependency to the repository concern. The Events-
Composition sub-concern has dependencies to the Events-Repository and to the composi-
tion. The Events-SEFF sub-concern has a dependencies to the Events-Repository and to
the SEFF concern.

Reliability

Figure 6: Reliability and QoS Annotations Concerns

5.13 Reliability

The reliability concern enriches the PCM by structure and information which is needed to
model and analyze reliability of software systems [Bro12]. Its dependencies are shown in
Figure 6. With this extension, InternalActions, hardware resources and external services
are allowed to have a chance to fail. This concern stems from the reliability, seff_reliability
and resource environment packages. Which should also be reflected in its subconcerns or

172

package structure.

The main concepts of the reliability concern are: The abstract class FailureType and
its subclasses: SoftwareInduced-, ResourceTimeout-, HardwareInduced- and NetworkIn-
ducedFailureType. The FailureOccurenceDescription class contains a feature probability
and a reference to a FailureType. FailureOccurenceDescriptions can be annotated to sys-
tem external required interfaces or be contained in internal actions within SEFFs. The
RecoveryAction represents a recovery point within a SEFF. A RecoveryAction contains
multiple RecoveryActionBehaviors, which are RDSEFFs. The ResourceFailureProbabil-
ityAnnotation is a new class which extracts the hard-coded failure rate from resource con-
tainers and LinkingResources.

This concern was retroactively and intrusively added to the meta-model. It is cleanly
contained within its own packages. However, it has many incoming dependencies, from
packages which are more general. These dependencies should be reversed to decouple
these packages and their concerns. The reliability concern will then be an annotating
extension. These problematic incoming dependencies are:

e A repository contains FailureTypes. These should be contained within an own con-
tainer in the reliability concern.

e Signature references failure types.

e The ResourceType concern is dependent, as there are bidirectional relations to Hard-
warelnducedFailureType and NetworkInducedFailureType.

e The SEFF concern is dependent on InternalFailureOccurenceDescription, as they
are referenced by internal actions.

e Passive resources reference ResourceTimeoutFailureType (which is not consistent
with the type level).

All in all, the reliability concern will be dependent on the following concerns: repository,
ResourceType, SEFF and RDSEFF. However, it should be reconsidered, if the extension of
the resource type concern is really necessary. The resource types are statically instantiated
and do not change during modeling. Can a reliability engineer really model something
using these relation, which changes the result of the reliability analysis? If the information
provided by these relations is purely conceptual, they could be omitted.

5.14 QoS Annotations

This concern it used to apply Quality of Service (QoS) annotations to system external ser-
vices or components which are not yet fully specified (e.g. Provides- or CompletesTypes).
Its dependencies are shown in Figure 6. These annotations are not a general specification
but context dependent. I.e. the resource environment is fixed as well as further depen-
dencies and background or concurrent usage overhead. This concern contains two small

173

subconcerns for performance and reliability specific annotations. In the scope of the refac-
toring they may become subpackages of this concern or subpackages of the reliability and
performance concern.

The main concepts are: The QosAnnotations class is just a container, which contains
all annotation specifications. SpecifiedQoSAnnotation is an abstract super class for all
QoS annotations. It references the role and signature, for which an annotation should be
applied. SpecifiedOutputParameterAbstraction provides a variable characterization for a
return value. Within the subconcerns, SpecifiedQoSAnnotation is specialized to provide
annotations of execution time and failure probability and failure type.

Systems contain QoS Annotations, this should be removed. A QoSAnnotation should ref-
erence a repository. The remainder are outgoing references which are legitimate due to
their annotating nature. These dependencies reference the following concerns: repository,
composition, variable characterization. Further, the reliability subconcern depends on the
reliability concern, as the FailureOccurenceDescriptor is used.

6 Conclusion

During the process of inspecting the meta-model, it became clear to us, that containment of
multiple concerns in one package and the distribution of concerns over multiple packages,
degrade the understandability of the meta-model. The initial meta-model might have been
conceptually well formed. However, later modifications and extensions worsened that
design.

Another problem, which stems partly from later modifications and extensions, is that de-
pendencies cannot be properly constrained in the package structure. This makes the meta-
model more difficult to maintain, as one has to regard unexpected dependencies. E.g. when
extending concerns are hard coded into core concepts, changing the extension has to be
done carefully. Also it makes a modularization quite difficult.

Further, the lacking modularization makes the application domain of the meta-model very
specific. As the PCM was initially designed for performance modeling and analysis, the
quality constructs were hard coded into the foundational constructs. If the current Palladio
meta-model is used or extended for other purposes and domains, domain unrelated features
would decrease the comprehensibly for the developers.

To solve these problems, we need to modularize and refactor the meta-model and we need
to set up conventions for future extensions. In the scope of the modularization, hard-
coded parts will be factored out into modules. We hope, that the concerns, which we
identified, and their dependencies will provide a good basis for future deliberations. The
modularization will also bring some more control over the dependencies, as creating a
reference between two meta-models, which are not yet dependent in that direction, requires
explicit loading of the referenced meta-model. So, extra consideration will be provoked,
when inserting such a new dependency.

Conventions will help to ensure, that most extensions will be made externally and not

174

intrusively. These conventions should also propose and restrict the extension method (e.g.
aspect-oriented annotating [JHS™14], profiles [KDH*12]). It may also be beneficial for
the understandability of the extensions, that their package structure reflects which concerns
of the Palladio meta-model are extended.

7 Continuation of the Migration Process

The immediate next steps will be to discuss and settle for a modularization of the meta-
model. We hope that the concerns identified in this paper will provide a solid base for
future deliberations. Next, the meta-model will be refactored.

However, to use the modularized meta-model in future releases of the Palladio Bench,
further steps have to be performed: A backwards transformation has to be implement,
which transforms model instances of the modular meta-model into instances of the classic
meta-model. This will enable all the tools to remain functional. The tools which are ac-
tively maintained can then be ported to operate on the modular in their own time. Another
important step towards release is the implementation of new graphical editors.

The implementation of a forward transformation which transforms instances of the classic
meta-model to the modular one, is not immediately mandatory for a release. However,
providing such a transformation is nevertheless important, as it migrates legacy model
instances.

8 Acknowledgments

This work was partially supported by the Helmholtz Association of German Research
Centers.

References

[BKRO9] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model
for model-driven performance prediction. Journal of Systems and Software, 82:3-22,
2009.

[Brol2] Franz Brosch. Integrated Software Architecture-Based Reliability Prediction for IT Sys-
tems. PhD thesis, Institut fiir Programmstrukturen und Datenorganisation (IPD), Karl-
sruher Institut fiir Technologie, Karlsruhe, Germany, June 2012.

[Hau09] Michael Hauck. Extending Performance-Oriented Resource Modelling in the Palladio
Component Model. Diploma thesis, University of Karlsruhe (TH), Germany, February
2009.

[JHST14] Reiner Jung, Robert Heinrich, Eric Schmieders, Misha Strittmatter, and Wilhelm Has-
selbring. A Method for Aspect-oriented Meta-Model Evolution. In Proceedings of the

175

[KDHT12]

[Koz08]

[Rat13]

[RBBT11]

[SBPMOS]

[SMRL13]

2Nd Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling,
VAO ’14, pages 19:19-19:22, New York, NY, USA, July 2014. ACM.

Max E. Kramer, Zoya Durdik, Michael Hauck, Jorg Henss, Martin Kiister, Philipp
Merkle, and Andreas Rentschler. Extending the Palladio Component Model using Pro-
files and Stereotypes. In Steffen Becker, Jens Happe, Anne Koziolek, and Ralf Reuss-
ner, editors, Palladio Days 2012 Proceedings (appeared as technical report), Karlsruhe
Reports in Informatics ; 2012,21, pages 7-15, Karlsruhe, 2012. KIT, Faculty of Infor-
matics.

Heiko Koziolek. Parameter Dependencies for Reusable Performance Specifications of
Software Components. PhD thesis, University of Oldenburg, 2008.

Christoph Rathfelder. Modelling Event-Based Interactions in Component-Based Ar-
chitectures for Quantitative System Evaluation, volume 10 of The Karlsruhe Series on
Software Design and Quality. KIT Scientific Publishing, Karlsruhe, Germany, 2013.

Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael Hauck, Anne Kozi-
olek, Heiko Koziolek, Klaus Krogmann, and Michael Kuperberg. The Palladio Com-
ponent Model. Technical report, KIT, Fakultit fiir Informatik, Karlsruhe, 2011.

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Eclipse series. Addison-Wesley Longman, Amsterdam, second
revised edition, December 2008.

Misha Strittmatter, Philipp Merkle, Andreas Rentschler, and Michael Langhammer. To-
wards a Modular Palladio Component Model. In Steffen Becker, Wilhelm Hasselbring,
André van Hoorn, and Ralf Reussner, editors, Proceedings of the Symposium on Soft-
ware Performance: Joint Kieker/Palladio Days, KPDAYS 13, volume 1083, pages 49—
58. CEUR Workshop Proceedings, November 2013.

176

Predicting Energy Consumption by Extending the
Palladio Component Model

Felix Willnecker!, Andreas Brunnert', Helmut Krcmar?

Ifortiss GmbH, Guerickstr. 25, 80805 Miinchen, Germany
{willnecker, brunnert} @fortiss.org
2Technische Universitidt Miinchen, Boltzmannstr. 3, 85748 Garching, Germany
krcmar @in.tum.de

Abstract: The rising energy demand in data centers and the limited battery lifetime
of mobile devices introduces new challenges for the software engineering commu-
nity. Addressing these challenges requires ways to measure and predict the energy
consumption of software systems. Energy consumption is influenced by the resource
demands of a software system, the hardware on which it is running, and its workload.
Trade-off decisions between performance and energy can occur. To support these de-
cisions, we propose an extension of the meta-model of the Palladio Component Model
(PCM) that allows for energy consumption predictions. Energy consumption is defined
as power demand integrated over time. The PCM meta-model is thus extended with a
power consumption model element in order to predict the power demand of a software
system over time. This paper covers two evaluations for this meta-model extension:
one for a Java-based enterprise application (SPECjEnterprise2010) and another one
for a mobile application (Runtastic). Predictions using an extended PCM meta-model
for two SPECjEnterprise2010 deployments match energy consumption measurements
with an error below 13 %. Energy consumption predictions for a mobile application
match corresponding measurements on the Android operating system with an error of
below 17.2 %.

1 Introduction

Energy efficiency of software systems becomes a growing software engineering challenge
[BVD™14]. Energy consumption of Information and Communication Technology (ICT)
is rising due to higher demand in data centers, networks, and consumer devices like mobile
devices [SNPT09, WBK14]. Therefore, there is need to investigate the energy saving po-
tential of software systems [JGJ T 12]. Today, hardware manufactures increase the capabil-
ities of the hardware and simultaneously increase the energy efficiency. Operating system
(OS) providers implement energy saving modes to increase the energy efficiency of the
overall system. Though, neither optimization on hardware nor on OS level can compen-
sate the rising demand, yet decrease the energy consumption of ICT systems [GJIW12].
Therefore, software optimizations in terms of energy are investigated more recently as
the application software ultimately causes the energy demand on hardware and OS level
[PLL14].

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

177

Performance of software systems and energy efficiency are often referred to as contra-
dicting optimization goals [HSB12]. For example, the response time of an enterprise
application can be decreased by duplicating the number of replicas of the system. By
introducing additional replicas, the energy consumption of the corresponding system is
directly increased. In contrast, enhancing the efficiency of a system in terms of perfor-
mance metrics can also decrease the energy consumption of a system when a components
resource demand decreases. Thus, performance metrics and energy consumption rely on
the same underlying parameters of resource demand and hardware capabilities. This al-
lows us to adapt and extend technologies used for performance evaluation to simulate the
power demand of software systems and therefore predict the energy consumption of such
systems.

Predicting performance metrics like response time, throughput or hardware utilization are
core capabilities of the PCM modeling environment (Palladio-Bench) [BKR09]. This work
proposes an extension of the PCM meta-model called power consumption model and cor-
responding extensions of the Palladio-Bench to take this meta-model extension into ac-
count. The power consumption model describes the power demand of hardware servers
that are simulated. Furthermore, we extend the Palladio-Bench to calculate the software’s
energy consumption based on the resource utilization of the components and the power
consumption model [BKRO09].

This paper starts by introducing the proposed extension of the PCM meta-model including
extensions of the Palladio-Bench for the generation of an energy report. We evaluate this
extension with an enterprise application to demonstrate that this extension is accurate for
data centers and with a mobile application to show the applicability for mobile devices.
This work closes with an outline of related approaches, a summary and future work.

2 Meta-model Extension

The current state of the PCM meta-model cannot predict the energy consumption of a soft-
ware system. To determine the energy consumption, we specify the power consumption of
the hardware resources. A resource’s electrical power consumption depends on its usage,
caused by the resource demand of the software. Hence, knowing the power consumption
P of a certain utilization level of a resource allows to calculate the energy consumption £
over the considered time 7" as presented in equation 1.

T
o / P(t) dt (1)
0

The correlation between resource utilization and energy demand can be approximated for
server systems with a linear model [FWB07, RSRT07]. Simple models, in which only the
CPU utilization is considered for the power consumption calculation can predict it with
high accuracy [RSR*07]. We leverage this correlation and extend the PCM meta-model
with a power consumption model to represent such simple models as introduced in our
previous work [BWK14]. Power consumption models define the power consumption of a

178

server as a linear equation using utilization values of the server’s resources as independent
variables [BWK14]. This linear equation calculates the power consumption P,,..q for a
server based on the constant power consumption of a system in idle state Cy and the sum
of the power consumption values of all other resources [BWK14]. The power consumption
of a resource is calculated by multiplying a consumption factor C; with its utilization as
presented in equation 2 [BWK14].

Ppred:CO+ Z Ci*ui (2)

1<i<n

The power consumption calculation based on the utilization of a resource needs to be
modified for some resources used in mobile applications. Power consumption of a screen
depends on the brightness or color intensity. The power consumption of sensors for the
Global Positioning System (GPS) relies on the demanded time of the resource. A constant
factor is not sufficient to calculate the power consumption of such sensors [WBK14]. We
developed a generalized equation 3 to take non-constant values into account. Therefore,
the utilization factor u; can not only represent the utilization of traditional resources but
also represent brightness of a display or other sensor specific behavior such as the accuracy
of a GPS sensor. This utilization factor is multiplied by a function that represents the power
consumption of a resource (P;q;¢;). Depending on the attached resource, the function can
either be a linear or a probabilistic distribution function. Furthermore, we consider the
idle state of a device not as constant, but also as a function (P;4¢,). This accommodates
the fact, that background actives of an Operating System (OS) result in varying power
consumption. The generalized equation is formulated as follows:

Pprea = Piieo + Y Piaei * u; 3)
1<i<n

In PCM, servers and mobile devices are represented as resource containers. The new
power consumption model element is added to the existing resource container meta-model
element. This element contains the power consumption characteristics of a server, a mobile
device or a network adapter and represents the power consumption as outlined in equation
3.

The same formula can be applied to the power consumption of a network adapter. For mo-
bile devices, one of the largest power consumer is the cellular network adapter [WBK14].
The utilization factor u; depends on the throughput of the adapter. A typical mobile de-
vice is linked to three different network adapters: Wi-Fi, Cellular and Bluetooth each with
an independent factor function and an offset function for the power consumption of the
adapter in idle state. Therefore, each linking resource is attached to a power consumption
model representing the factor function that is multiplied with the throughput of the adapter
and offset function for the adapter in idle state for the resource.

To model the power consumption of network adapters and processing resources we extend
the PCM resource meta-model. Figure 1 presents our extensions for the PCM meta-model.
The extension contains a Power Consumption Model and two types of Power Consumption

179

Resource Environment

*

Linking Resource 1 Resource Container Processing Resource

— @ & Specification

1 ’ 1

1
Communication Link
Resource Specification

1

1 1
Linking Power 1 Power Consumption Model 1 Power Consumption
Consumption Component . ‘ -offset ‘ Component

Figure 1: Meta-model Extension for predicting Energy Consumption

Components. The central power consumption model contains the offset function repre-
senting the power consumption of the device or linking resource. Furthermore, this model
element contains the device’s battery capacity in milliWatt-hours (mWh) to calculate the
energy consumption of battery depended devices like mobiles and the discharging of its
battery. The result of equation 1 can be subtracted from the battery capacity. This calcula-
tion provides the remaining battery capacity respectively the loading state.

The power consumption model can reference N Power Consumption Components and N
Linking Power Consumption Components, one for each processing resource respectively
one for each linking resource. Each of these components consists of a power consump-
tion factor multiplied with the utilization factor (depending on e.g, utilization, brightness,
throughput, demanded time) during simulation. The factor can be constant or a probabilis-
tic function to simulate varying power consumptions.

Figure 2 shows an example of such a power consumption model element for one server
with 16 Core Processing Units (CPUs) and one Hard Disc Drive (HDD) [BWK14]. We
added a power consumption element to the resource container containing a constant (Cj)
representing the idle power consumption of the server [BWK14]. To represent the power
consumption of the resources CPU and HDD we added two power consumption compo-
nent elements [BWK14]. Each of these processing resources is described with the vari-
ables of equation 2 [BWK14]. A power consumption component contains a factor (C;)
and a reference to the utilization (u;) of the resource [BWK14]. Figure 2, shows a power
consumption model with a constant Cy of 200 Watts (W) for the server in idle state, a
factor Copy of 300 W for the CPU and a factor Cy pp of 50 W for the HDD [BWK14].

In order to model elements like the GPS sensor or display usage in the resource demanding
service effect specifications (RDSEFFs) additional resource types can be added to the

180

[H Serverl

CPU A Power Consumption Model
Scheduling: Processor Sharing Constant: 200
Number of Replicas: 16 Je&d Power Consumption Component 1
Processing Rate: 1000 Resource: CPU

Factor: 300
HDD

fedPower Consumption Component 2
Resource: HDD
Processing Rate: 1000 Factor: 50

Scheduling: Processor Sharing

Figure 2: Power consumption model [BWK14]

resource repository of the PCM meta-model. Two key resources that we found necessary
for this are purpose are DISPLAY and GPS. The resource demand placed on both resources
during a simulation is used for the power consumption calculations depending on a discrete
utilization of either 100 % (on) or 0 % (off).

Calculation of the energy consumption is conducted after the simulation run. We extend
the Palladio-Bench with an energy consumption report. This report is based on the uti-
lization of all resource. After a simulation run, we calculate the power demand for each
resource. We build a sum over all resource-specific power demands of a single resource
container and add the power demand of the resource container itself. The total power de-
mand is integrated over the simulation time as described in equation 1. The result of this
integral is the energy consumption for a single resource container in a PCM resource envi-
ronment model. For constant power demands this can be simplified by just multiplying the
power demand by the simulation time. The result is a report for the energy consumption of
each resource container containing its total power consumption, its total simulation time,
its energy consumption and a simple cost calculation.

3 Evaluation

Two experiments are performed to validate the extensions proposed in this work. We
evaluate the accuracy for server systems by running a SPECjEnterprise2010' benchmark.
For mobile devices we use the sports app Runtastic? and simulate its energy consumption.

'SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The official web
site for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.
ZRuntastic is a trademark of the runtastic GmbH. The official website is located at https://www.runtastic.com/

181

Table 1: Evaluation environment [BWK14]

Component AMD-Based Server Intel-Based Server
Base System IBM System X3755M3 | IBM System X3550M3
CPU 4 x AMD Opteron 6172 2 x Intel Xeon E5645
CPU Cores 2x2.1GHz 6x 2.4 GHz
Random Access Memory | 256 GB 96 GB
(0N openSuse 12.2 openSuse 12.3
Application Server 6 x JBoss Application Server 7.1.1
Application SPEC;jEnterprise2010

Database Apache Derby DB version 10.9.1.0

Java Virtual Machine 64 bit Java OpenJDK version 1.7.0

3.1 SPECjEnterprise2010

This section is based on our previous work “Using Architecture-Level Performance Mod-
els as Resource Profiles” [BWK14]. Two power consumption models based on the pre-
sented PCM meta-model extension were generated for the SPECjEnterprise2010 bench-
mark application on an AMD-based server and an Intel-based server [BWK14]. To con-
struct these power consumption models we used an application that conducted a calibration
run on the target hardware as proposed by Economou et al. [ERKRO06]. The run charged
the resources independently from each other with varying intensity. While the resources
were stressed, resource utilization and power consumption values were collected simulta-
neously. To collect the power consumption of the server systems, we used the Intelligent
Platform Management Interface (IPMI3).

After the calibration run, we executed different workloads using varying amounts of users
and conducted a simulation using the power consumption model for both hardware envi-
ronments. We measured and compared the energy consumption and calculated the error of
the simulated energy consumption. The used environment for this evaluation is described
in table 1 [BWK14].

The power consumption of both servers was predicted with an error below 13 %. Table 2
shows the results for the AMD-based server. The load test ran with 1300 - 3500 clients
(C) and caused between 367.55 W and 436.47 W Measured Mean Power Consumption
(MMPC). The Simulated Mean Power Consumption (SMPC) lied within 320.26 W and
390.95 W resulting in a Power Consumption Prediction Error (PCPE) between 10.43 %
and 12.87 %.

Table 3 shows the results for the Intel-based server. Between 1300 and 4300 clients were
used by the load test and caused between 197.05 W and 264.29 W MMPC. The SMPC
lied within 175.94 W and 232.69 W resulting in a PCPE between 10.71 % and 11.96 %.
The power consumption was relatively stable during the steady state of all load levels,
therefore the energy consumption was simply calculated by multiplying the mean power
consumption values by the simulation time [BWK14].

3http://www.intel.com/design/servers/ipmi/

182

Table 2: Measured and simulated results for the AMD-based server [BWK14]
C MMPC SMPC PCPE

1300 | 367.55W | 32026 W | 12.87 %
2300 | 403.87 W | 35222 W | 12.79 %
3300 | 433.76 W | 384.52W | 11.35%
3500 | 436.47W | 39095 W | 1043 %

Table 3: Measured and simulated results for the Intel-based server [BWK14]
C MMPC SMPC PCPE

1300 | 197.05W | 17594 W | 10.71 %
2300 | 220.47W | 19493 W | 11.58 %
3300 | 241.67W | 21391 W | 1149 %
4300 | 26429 W | 23269 W | 11.96 %

3.2 Runtastic for Android

A power consumption model for two devices running the Android OS is generated and
used for the evaluation of power consumption models for mobile devices. Power con-
sumption models for mobile devices can either use vendor profiles* provided for the An-
droid OS or stress the resources independently and measure the discharging current. The
discharging current C' multiplied with the battery voltage V' results in the power demand
of a hardware resource P as presented in equation 4 [Leil4].

P=V=xC)

We use a calibration app to stress the resources of the mobile devices as the vendor profiles
accuracy and completeness varied between the devices. The power consumption model is
created after the calibration by running a regression on the measured data. An example
of such a model with a CPU, display and a GPS sensor for a mobile device is presented
in figure 3(c). To calculate the power demand of this device, the utilization of CPU, GPS
and display is considered. To calculate the power demand of the CPU its utilization is
multiplied with a factor of 800 milliWatts (mW). As soon as the GPS sensor is used, a
utilization of 100 % is assumed. The GPS sensor in figure 3(c) therefore consumes 250
mW as soon as it is used. Similarly to the GPS sensor, the display can either be used or
not. To take different brightness or color intensity levels into account, the power demand
is either 300 mW in 50 % of the cases or 420 mW in the other 50 %. To calculate the
power consumption P,..q we use the equation: Pp..q = ((300 * 0.5) + (420 * 0.5)) + 800
*ucpy + 250 * ugps + (450 * 0.4) + (520 * 06)) *uprspray. A CPU utilization of
60 % and a utilization of the GPS and Display of 100 % would thus lead to a predicted
power consumption P of 1582 mW. According to equation 1 we build the integral for the
predicted power consumption P with the time 7" of the simulation to determine the energy

“https://source.android.com/devices/tech/power.html

183

<<Provides>>
4 IBeginRun

< void beginRun()

4 BeginRun
4 SEFF <beginRun>

PassiveResourceCompartment

ComponentParameterCompartment
<<Provides>>
4 ITrack 4 Track
4 void trackRun() 4 SEFF <trackRun>

PassiveResourceCompartment

4 calculaeDistance + gotPosiion + dsplayMap

4 150 <CPU> ¢ 1<GPS> + 1<DISPLAY>
e ireOocutoncs

ComponentParameterCompartment °
<<Provides>> () ()
< StopRun

4 IStopRun 4 SEFF <stopRun>

% void stopRun
PRUn() PassiveResourceCompartment

ComponentParameterCompartment

(a) Repository model (b) RDSEFF

[® Mobile Device

4 CPU % Power Consumption Model
Scheduling: Processor Sharing 4 Battery Capacity: 3,200

Number of Replicas: 1 < Factor: DoublePDF(300:0.5)(420:0.5)
Processing Rate: 1000

f(x) Power Consumption Component 1

MTTF: 0

MTTR: 0 Resource: CPU
~ Factor: 800

& GPS

Scheduling: Delay
Number of Replicas: 1
Processing Rate: 1
MTTF: 0

MTTR: 0

~* DISPLAY
Scheduling: Delay
Number of Replicas: 1
Processing Rate: 1
MTTF: 0

MTTR: 0

f{x) Power Consumption Component 2
Resource: GPS
Factor: 250

f(x} Power Consumption Component 3
* Resource: DISPLAY
& Factor: DoublePDF(450:0.4)(520:0.6)

f(x} Linking Power Consumption Component 1
Resource: Wi-Fi
Factor: 120

(c) Power Consumption Model

Figure 3: Power Consumption Example for Mobile

consumption F of the system [BWK14]. The battery capacity of the modeled devices is
3.200 mWh. A constant use of the display and GPS sensor while the CPU is active at 60
% utilization would therefore reduce the battery capacity by about 50 % per hour.

The example in figure 3(a) and 3(b) shows a representation of a simplified sports tracking
application in PCM that tracks the position via GPS, displays a map and calculates the
running distance. Display and GPS are accessible as processing resource. Display and
GPS run concurrent to the calculations representing three different threads: A thread for
the user interface, one thread for the location tracking and one thread for calculating the
distance.

We used Runtastic for Android for this evaluation as this application uses a broad number
of resource types. We predicted and measured the power consumption of a 30-minute-

184

Table 4: Measured and simulated results for Runtastic Android application [Leil4]
Device MMPC SMPC PCPE | BLPE
Samsung Galaxy Tab | 1.251 W | 1.084 W | 13.35% | 0.67 %
LG Google Nexus 5 | 0.883 W | 0.732 W | 17.12% | 1.01 %

long Runtastic run on a Samsung Galaxy Tab and a LG Google Nexus 5. The Nexus
device runs Android 4.4.4 and the Galaxy Tab has Android 4.3 installed. The evaluation
run was conducted with both devices simultaneously. Additionally, both devices were
connected to the same network carrier in order to reduce power-relevant variables (e.g,
different signal strengths). During the run we collected hardware utilizations data with
the Qualcomm Trepn-Profiler’. The utilization data is used to build a simple PCM usage,
system, repository and allocation model. The repository model was constructed similar to
the one shown in figure 3(a) and 3(b) and thus, simply represents the distribution of re-
source demands placed by the Runtastic application on mobile device hardware. We chose
this approach as we did not have access to the source code or debugging interface of the
Runtastic application. The usage model contains only one user starting and tracking a run.
The power consumption during the run was logged for comparing it with the simulation.
We conducted two simulations for the two devices. Both simulations used the same PCM
repository model only with different resource environment models and therefore differ-
ent power consumption models. Afterwards, we calculated the error between the power
consumption prediction and the power consumption measured during the run [Leil4].

Table 4 shows the results for the mobile devices. The application causes between 1.251
W and 0.883 W MMPC. The SMPC lies within 1.084 W and 0.732 W resulting in a
PCPE between 13.35 % and 17.12 %. The accuracy quality decreases for lower power
consumptions. For a 30-minutes run we predicted the battery level of the device with an
Battery Level Prediction Error (BLPE) of 0.7 % to 1 % [Leil4].

4 Related Work

This chapter outlines related approaches that measure, compare or predict the energy con-
sumption of software systems.

Capra et al. [CFFG10] compared the energy consumption of customer relationship man-
agement (CRM) and database management systems (DBMS). The energy efficiency sig-
nificantly varied between the compared systems when processing the same workload.
They reasoned that energy efficiency should be considered when buying or developing
software. The extension for the PCM meta-model proposed in our work takes energy
efficiency into account as a key quality metric of a software system.

Jwo et al. [JWH™11] proposed to calculate the energy consumption of an enterprise ap-
plication by multiplying the time a transaction is processed by mean power consumption

Shttps://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler

185

of the host. The consumption therefore relies on the workload but still depends on the
deployment environment and can therefore not convey a general energy efficiency met-
ric. The extension in our work proposes a similar concept but based on resource demand
values instead of response time values.

Johann et al. [JDNK12] proposed energy efficiency measurement methods for software
systems. They define energy efficiency as the ratio of "useful” work relative to the energy
required to process it. The calculation is based on single methods or components and is
evaluated during the development process. They conclude that this method supports the
creation of energy efficient applications.

Honig et al. [HEKSP11] suggest a model-based approach for energy-aware software de-
velopment for mobile applications. The energy consumption is based on vendor profiles
provided by Android device manufactures. The accuracy of these models varies between
different manufactures and devices but provides a baseline for the energy consumption
calculation. Vendor profiles can be used to create resource environment models including
power consumption models for the extension presented in our work.

Josefiok et al. [JSW*13] compared power measurements on different Android devices and
OS versions. They discovered that the measurements and the Application Programming
Interfaces (API) for monitoring the power consumption differ between manufactures and
OS versions. They propose an energy abstraction layer to handle the multitude of APIs
and granularity levels. Such a generalized API would help to create resource environment
models including power consumption models and therefore predict the energy consump-
tion of mobile applications on a broader scale.

These different approaches show the growing importance of evaluating energy consump-
tion of software systems. Better measurements can help developers to decrease the energy
consumption of their systems and increase the overall efficiency. Comparisons help users
to choose the software with the best energy efficiency, which can also lead to lower oper-
ations costs. Energy consumption prediction capabilities can help to estimate the energy
consumption and subsequently efficiency of a system without owning the target environ-
ment.

5 Conclusion

This work proposed a PCM meta-model extension to predict the energy consumption of
software systems. This extension has been validated for server and mobile systems, for
different hardware environments and workloads. The results show that the power con-
sumption of these systems can be predicted with an error below 17.2 %. The evaluation
used the SPECjEnterprise2010 benchmark for server systems and the sports tracking ap-
plication Runtastic for mobile devices. The extension allows to specify the power con-
sumption of hardware resources relative to their utilization. Two additional processing
resource types have been added to the meta-model to represent mobile applications.

Constructing and analyzing energy efficient software is becoming an important research
area for the software engineering community. The extension proposed in this work allows

186

predicting energy consumption of an application and to predict battery life of a device
running a mobile application. The model extensions help developers to understand the
varying power demands of different devices and to optimize applications in order to save
battery power and reduce profiling effort [WBK14]. PCM meta-model instances for mo-
bile devices are created manually and with a limited number of resources. The calibration
application for mobile devices used in this work can create the power consumption model
automatically but lacks the means to automatically generate performance models. Such
model generators are already available for enterprise applications [BVK13, BHK11]. A
future challenge in this research area is to create accurate models for mobile applications
automatically.

References

[BHK11] F. Brosig, N. Huber, and S. Kounev. Automated Extraction of Architecture-Level Per-
formance Models of Distributed Component-based Systems. In Automated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on, pages 183—
192, Nov 2011.

[BKRO9] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio Component Model
for Model-driven Performance Prediction. Journal of Systems and Software, 82(1):3 —
22,2009.

[BVD+ 14] Andreas Brunnert, Christian Vogele, Alexandru Danciu, Matthias Pfaff, Manuel
Mayer, and Helmut Krcmar. Performance Management Work. Business & Information
Systems Engineering, 6(3):177-179, 2014.

[BVK13] Andreas Brunnert, Christian Vogele, and Helmut Krcmar. Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications. In Computer Perfor-
mance Engineering, pages 74—88. Springer, 2013.

[BWK14] Andreas Brunnert, Kilian Wischer, and Helmut Krcmar. Using Architecture-level Per-
formance Models As Resource Profiles for Enterprise Applications. In Proceedings of
the 10th International ACM Sigsoft Conference on Quality of Software Architectures,
QoSA 14, pages 53-62, New York, NY, USA, 2014. ACM.

[CFFG10] Eugenio Capra, Giulia Formenti, Chiara Francalanci, and Stefano Gallazzi. The Impact
of MIS Software on IT Energy Consumption. In ECIS 2010 Proceedings, 2010.

[ERKRO06] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ranganathan.
Full-system Power Analysis and Modeling for Server Environments. In Workshop on
Modeling, Benchmarking, and Simulation, Boston, Massachusetts, USA, 2006.

[FWB07] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power Provisioning for a
Warehouse-sized Computer. In Proceedings of the 34th Annual International Sympo-
sium on Computer Architecture, ISCA *07, pages 13-23, New York, NY, USA, 2007.
ACM.

[GJJW12] Marion Gottschalk, Mirco Josefiok, Jan Jelschen, and Andreas Winter. Removing
Energy Code Smells with Reengineering Services. In GIl-Jahrestagung, pages 441—
455, 2012.

187

[HEKSPI11] Timo Honig, Christopher Eibel, Riidiger Kapitza, and Wolfgang Schroder-Preikschat.

[HSB12]

[JDNK12]

[GIt12]

[ISWT13]

[JWH™11]

[Leild]

[PLL14]

[RSRT07]

[SNPT09]

[WBK14]

SEEP: Exploiting Symbolic Execution for Energy-aware Programming. In Proceed-
ings of the 4th Workshop on Power-Aware Computing and Systems, HotPower 11,
pages 4:1-4:5, New York, NY, USA, 2011. ACM.

Hagen Hopfner, Maximilian Schirmer, and Christian Bunse. On Measuring Smart-
phones’ Software Energy Requirements. In /ICSOFT, pages 165-171, 2012.

Timo Johann, Markus Dick, Stefan Naumann, and Eva Kern. How to Measure Energy-
efficiency of Software: Metrics and Measurement Results. In Proceedings of the Inter-
national Workshop on Green and Sustainable Software, pages 51-54, Zurich, Switzer-
land, 2012.

Jan Jelschen, Marion Gottschalk, Mirco Josefiok, Cosmin Pitu, and Andreas Winter.
Towards Applying Reengineering Services to Energy-Efficient Applications. In Soft-
ware Maintenance and Reengineering (CSMR), 2012 16th European Conference on,
pages 353-358, March 2012.

Mirco Josefiok, Marcel Schroder, Andreas Winter, et al. An Energy Abstraction Layer
for Mobile Computing Devices. In 2nd Workshop EASED@ BUIS 2013, page 17,
2013.

Jung-Sing Jwo, Jing-Yu Wang, Chun-Hao Huang, Shyh-Jon Two, and Hsu-Cheng
Hsu. An Energy Consumption Model for Enterprise Applications. In Proceedings of
the IEEE/ACM International Conference on Green Computing and Communications,
pages 216-219, Washington, DC, USA, 2011. IEEE.

Johannes Leimhofer. Predicting the Energy Consumption of Mobile Applications using
Simulations. Bachelor’s thesis, Technische Universitit Miinchen, October 2014.

Giuseppe Procaccianti, Patricia Lago, and Grace A Lewis. A Catalogue of Green
Architectural Tactics for the Cloud. In Proceedings of 8th International Symposium on
the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems, pages
29-36. IEEE, 2014.

S. Rivoire, M.A. Shah, P. Ranganathan, C. Kozyrakis, and J. Meza. Models and Metrics
to Enable Energy-Efficiency Optimizations. Computer, 40(12):39-48, 2007.

Lutz Stobbe, Nils Nissen, Marina Proske, Andreas Middendorf, Barbara Schlomann,
Michael Friedewald, Peter Georgieff, and Timo Leimbach. Abschitzung des En-
ergiebedarfs der weiteren Entwicklung der Informationsgesellschaft. Abschlussbericht
an das Bundesministerium fiir Wirtschaft und Technolgogie. Berlin, Karlsruhe, 12,
2009.

Felix Willnecker, Andreas Brunnert, and Helmut Krcmar. Model-based Energy Con-
sumption Prediction for Mobile Applications. In Jorge Marx Gémez, Michael Son-
nenschein, Ute Vogel, Andreas Winter, Barbara Rapp, and Nils Giesen, editors, Pro-
ceedings of Workshop on Energy Aware Software Development (EASED) @ Envirolnfo
2014, pages 747-752. BIS-Verlag, 2014. ISBN 978-3-8142-2317-9.

188

	Abstracts of all SOSP 2014 Contributions
	The Descartes Modeling Language: Status Quo Samuel Kounev, Fabian Brosig, and Nikolaus Huber
	Evaluating the Prediction Accuracy of Generated Performance Models in Up- and Downscaling Scenarios Andreas Brunnert, Stefan Neubig, and Helmut Krcmar
	Investigating the Use of Bayesian Networks in the Hora Approach for Component-based Online Failure Prediction Teerat Pitakrat and André van Hoorn
	Predicting Energy Consumption by Extending the Palladio Component Model Felix Willnecker, Andreas Brunnert, and Helmut Krcmar
	Towards Modeling and Analysis of Power Consumption of Self-Adaptive Software Systems in Palladio Christian Stier, Henning Groenda, and Anne Koziolek
	Integrating Workload Specification and Extraction for Model-Based and Measurement-Based Performance Evaluation: An Approach for Session-Based Software Systems André van Hoorn, Christian Vögele, Eike Schulz, Wilhelm Hasselbring, and Helmut Krcmar
	6 years of Performance Modeling at ABB Corporate Research Heiko Koziolek
	Performance Challenges in a Mainframe System Stefan Fütterling and Michael Großmann
	Using the Free Application Performance Diagnosis Tool ``inspectIT'' Stefan Siegl
	LibReDE: A Library for Resource Demand Estimation Simon Spinner and Jürgen Walter
	Approaching the Cloud: Using Palladio for Scalability, Elasticity, and Efficiency Analyses Sebastian Lehrig and Matthias Becker
	Static Spotter for Scalability Anti-Patterns Detection Jinying Yu and Goran Piskachev
	CactoSim — Optimisation-Aware Data Centre Prediction Toolkit Sergej Svorobej, Henning Groenda, Christian Stier, James Byrne, and Pj Byrne
	Benchmarking Workflow Management Systems Marigianna Skouradaki, Vincenzo Ferme, Cesare Pautasso, Dieter Roller, and Frank Leymann
	Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Jan Waller, Florian Fittkau, and Wilhelm Hasselbring
	The DIN/ISO Definition and a Measurement Procedure of Software Efficiency Werner Dirlewanger
	Enabling Assembly of Systems and its Implications within the Palladio Component Model Misha Strittmatter
	Parallel Simulation of Queueing Petri Nets Jürgen Walter, Simon Spinner, and Samuel Kounev
	Adaptive Instrumentation of Java Applications for Experiment-Based Performance Analysis Henning Schulz, Albert Flaig, Alexander Wert, and André van Hoorn
	Using and Extending LIMBO for the Descriptive Modeling of Arrival Behaviors Jóakim v. Kistowski, Nikolas Roman Herbst, and Samuel Kounev
	Using Java EE ProtoCom for SAP HANA Cloud Christian Klaussner and Sebastian Lehrig
	Experience with Continuous Integration for Kieker Nils Christian Ehmke, Christian Wulf, and Wilhelm Hasselbring
	Towards Performance Awareness in Java EE Development Environments Alexandru Danciu, Andreas Brunnert, and Helmut Krcmar
	Identifying Semantically Cohesive Modules within the Palladio Meta-Model Misha Strittmatter and Michael Langhammer
	Evolution of the Palladio Component Model: Process and Modeling Methods Reiner Jung, Misha Strittmatter, Philipp Merkle, and Robert Heinrich
	Toward a Generic and Concurrency-Aware Pipes & Filters Framework Christian Wulf, Nils Christian Ehmke, and Wilhelm Hasselbring
	Evaluation of Alternative Instrumentation Frameworks Dušan Okanovic and Milan Vidakovic
	Cloud Application Design Support for Performance Optimization and Cloud Service Selection Santiago Gómez Sáez, Vasilios Andrikopoulos, and Frank Leymann
	Papers
	Using Java EE ProtoCom for SAP HANA Cloud Christian Klaussner and Sebastian Lehrig
	Towards Modeling and Analysis of Power Consumption of Self-Adaptive Software Systems in Palladio Christian Stier, Henning Groenda, and Anne Koziolek
	Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Jan Waller, Florian Fittkau, and Wilhelm Hasselbring
	Toward a Generic and Concurrency-Aware Pipes & Filters Framework Christian Wulf, Nils Christian Ehmke, and Wilhelm Hasselbring
	Evaluation of Alternative Instrumentation Frameworks Dušan Okanovic and Milan Vidakovic
	The DIN/ISO Definition and a Measurement Procedure of SW-Efficiency Werner Dirlewanger
	Benchmarking Workflow Management Systems Marigianna Skouradaki, Vincenzo Ferme, Cesare Pautasso, Dieter Roller, and Frank Leymann
	Evaluating the Prediction Accuracy of Generated Performance Models in Up- and Downscaling Scenarios Andreas Brunnert, Stefan Neubig, and Helmut Krcmar
	Using and Extending LIMBO for the Descriptive Modeling of Arrival Behaviors Jóakim v. Kistowski, Nikolas Roman Herbst, and Samuel Kounev
	Approaching the Cloud: Using Palladio for Scalability, Elasticity, and Efficiency Analyses Sebastian Lehrig and Matthias Becker
	Towards Performance Awareness in Java EE Development Environments Alexandru Danciu, Andreas Brunnert, and Helmut Krcmar
	Identifying Semantically Cohesive Modules within the Palladio Meta-Model Misha Strittmatter and Michael Langhammer
	Predicting Energy Consumption by Extending the Palladio Component Model Felix Willnecker, Andreas Brunnert, and Helmut Krcmar

