OCB summer workshop, Woods Hole, 2014

Autonomous sensors to quantify remineralization rates and the mesopelagic C flux

GEOMAR

Henry Bittig, Björn Fiedler, Arne Körtzinger (GEOMAR)
Antoine Poteau, Catherine Schmechtig,
Hervé Claustre (OAO–LOV)
Ken Johnson (MBARI)

Remineralization & C Flux

Chemical approach

Optical approach

Chemical Approach: General Concept Showcase 1: Labrador Sea Argo-O₂

Evolution of Tracer vs. Time → **Respiration Signal**

- Central Labrador Sea (April December 2005)
- Boundary current (July November 2006)
- Deeply mixed water column after deep convection (vertically homogenized)
- AADI optode 3830 calibrated against deployment CTD-O₂ cast

after C. Kihm, PhD thesis

Chemical Approach: General Concept Showcase 1: Labrador Sea Argo-O₂

Respiration Signal

 \rightarrow C Flux

- O₂ utilization along isopycnals
- Assumed O₂:C ratio (e.g., -1.34:1, Körtzinger et al., 2001)
- fit to (differentiated) Martin curve
- Integration of C respir. rate → C flux

• b exponent higher using OUR than other techniques (Martz et al. 2008)

after C. Kihm, PhD thesis

Chemical Approach: Utility

Available Sensors

- Oxygen
- Nitrogen
- Carbon

O₂ sensors most mature, air sea gas exchange

ISUS/SUNA nitrate sensor

pH, pCO_2 , indirectly: local $A_T - S$ relationship

Sea-Bird Optode SBE 63

MBARI Deep-Sea DuraFET

Aanderaa (AADI) Optode 4330

Chemical Approach: Utility

Available Sensors

• Oxygen O₂ sensors most mature, air sea gas exchange

Nitrogen ISUS/SUNA nitrate sensor

• Carbon pH, pCO_2 , indirectly: local $A_T - S$ relationship

Caveat

- Give only <u>net</u> biological signal → sum of production & respiration
- Affected by biology and ocean physics (advection, mixing, entrainment)!

Requirement: separate Ocean Physics

- Seasonal reset (deep mixing)
- "Simple" hydrographic setting

Showcase 2a: Temporal Aspect North Atlantic Subtropical Gyre

Bio-Argo Floats (MBARI/UW) @ 31°40' N / 064°10' W (BATS)

- 1 Convective overturn homogenizes water column
- 2 Seasonal net O₂ increase (SOM)
- 3 Seasonal net O₂ decrease

Johnson & Riser (2014), submitted.

Showcase 2a: Temporal Aspect North Atlantic Subtropical Gyre

- Bio-Argo Floats (MBARI/UW) @ 31°40' N / 064°10' W (BATS)
- Quantify both production & respiration

Johnson & Riser (2014), submitted.

Showcase 2b: Temporal Aspect North Atlantic Subtropical Gyre

- Bio-Argo Floats (remOcean) @ 20° N / 040° W
- Shallower mixing, deeper nitracline/productive zone

- 1 Convective overturn
- 2 Seasonal net O₂ increase (SOM) No seasonal net O₂ decrease

"steady-state"
biological respiration
vs.
physical diffusion/mixing

Showcase 2b: Temporal Aspect North Atlantic Subtropical Gyre

Bio-Argo Floats (remOcean) @ 20° N / 040° W

← Productive zone

← Respiration zone!

Ocean physics superimposed to biological signal (continuously mixed)

Showcase 3: Spatial Aspect Cyclonic Eddy (CE) off Mauritania

- Bio-Argo float (WMO ID 6900632; O₂, c_p) trapped inside Cyclonic Eddy
- Isolated water body → simplified ocean physics

Fiedler, unpublished.

Showcase 3: Spatial Aspect Cyclonic Eddy (CE) off Mauritania

Remineralization & C Flux

Chemical approach

Optical approach

Optical Approach

General Concept

Establish proxy for POC
 → Follow C directly

Available Sensors

• Beam attenuation $c_p(650)$

Particle backscatter b_{bp} (700)

Requirements

- No seasonal system required
- Sensitivity

Showcase 1: Profile Focus Trace POC Export (NAB08 experiment)

- Separate profile data into baseline & spikes (Briggs et al., 2011)
- "Direct" POC observation

Showcase 2: Mixed Layer Focus Use Budget Imbalance (NAB08 experiment) GEOMAR

- Use mixed layer C inventory changes (Alkire et al., 2012):
 - TOC (POC & DOC) ~ POC proxy
 - Production ~ O₂ budget / O₂-NCP
- Difference between production and POC accumulation (in mixed layer)

= Export (out of mixed layer)

$$F_{sink} = F_{NCP} - dPOC/dt - dDOC/dt$$

 O_2 b_{bp} ./.

Alkire et al. (2012), Deep Sea Res. I, 64, 157–174.

Med Sea deep bloom → oligotrophic system

- Particles settle on transmissiometer: "in-situ sediment trap"
- Drift in c_p ~ particle flux

Claustre et al., in prep.

Med Sea deep bloom → oligotrophic system

- Particles settle on transmissiometer: "in-situ sediment trap"
- Drift in c_p ~ particle flux

Claustre et al., in prep.

remu

- Med Sea deep bloom → oligotrophic system
- Particles settle on transmissiometer: "in-situ sediment trap"
- Drift in c_p ~ particle flux

August

July

Claustre et al., in prep.

September

Med Sea deep bloom → oligotrophic system

- Particles settle on transmissiometer: "in-situ sediment trap"

Claustre et al., in prep.

Chemical approach

Optical approach

Trends: Extended Chemical Capabilities: Inorganic CFloat

- CO₂-system sensors (pCO₂, pH)
- Potential to reduce uncertainty in stoichiometric ratios (→ C-overconsumption)

• pCO₂ nicely anticorrelated to O₂

Fiedler et al. (2013), J. Atmos. Oceanic Technol., 30, 112-126.

Trends: Extended Chemical Capabilities: C:N:O Float

 Technological potential for C:N:O Float: simultaneous C, N, and O measurements

Trends: Chemical & Optical Approaches combined

• e.g., lovbio floats (capable to carry heavy load of sensors)

 Multitude of information from autonomous platforms

Summary

- Chemistry:
 - sum of production & respiration
 - if physics can be separated
 - feasible with deep winter mixing / otherwise simplified system (CE)
- Optics:
 - complementary approach
 - requires in-situ data for calibration

- advent of new / more mature technology to extend capabilities
- possibly smart way to separate physics in complex systems (modeling complement)

