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ABSTRACT
Workload specifications are required in order to accurately
evaluate performance properties of session-based application
systems. These properties can be evaluated using measure-
ment-based approaches such as load tests and model-based
approaches, e.g., based on architecture-level performance
models. Workload specifications for both approaches are
created separately from each other which may result in dif-
ferent workload characteristics. To overcome this challenge,
this paper extends our existing WESSBAS approach which
defines a domain-specific language (WESSBAS-DSL)
enabling the layered modeling and automatic extraction of
workload specifications, as well as the transformation into
load test scripts. In this paper, we extend WESSBAS by the
capability of transforming WESSBAS-DSL instances into
workload specifications of architecture-level performance
models. The transformation demonstrates that the
WESSBAS-DSL can be used as an intermediate language
between system-specific workload specifications on the one
side and the generation of required inputs for performance
evaluation approaches on the other side. The evaluation us-
ing the standard industry benchmark SPECjEnterprise2010
shows that workload characteristics of the simulated work-
load match the measured workload with high accuracy.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques,
modeling techniques
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1. INTRODUCTION
In order to validate whether non-functional performance

requirements like given response times of application sys-
tems can be met, measurement- and model-based perfor-
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mance evaluation approaches are applied [15]. Workload
specifications are required for both approaches. Workload
specifications serve as input for measurement-based
approaches in order to generate synthetic workload to the
system under test (SUT), i.e., executing a set of consecutive
and related customer requests within a session [9, 10]. Ad-
ditionally, these specifications are taken into account in for-
malisms for model-based approaches to predict performance
properties early in the software development cycle [3, 8, 15].

To ensure that the measured and predicted performance
characteristics of the SUT are similar, corresponding work-
load specifications must be used. However, there is a lack
of approaches enabling the common automatic extraction
and specification of workloads for both approaches. The ex-
traction and specification of workloads is done separately
for each approach and each tool. This results in additional
specification and maintenance effort. The reasons for this
are, that these approaches are not integrated and that work-
load specifications are defined on different levels of detail.
Measurement-based approaches need detailed system-
specific information like protocol data, whereas model-based
approaches are specified on a more abstract level.

In response to these challenges, this paper extends our
WESSBAS approach1 [12, 13], originally developed to au-
tomatically extract probabilistic workload specifications for
load testing session-based application systems. So far, WESS-
BAS comprises a (i) domain-specific language (WESSBAS-
DSL), intended to be a system- and tool agnostic intermedi-
ate modeling language for workload specifications, and (ii)
a transformation to load test scripts. The contribution of
this paper is the extension of the WESSBAS approach for
model-based performance evaluation. Therefore, we propose
a transformation of the WESSBAS-DSL into workload spec-
ifications of the Palladio Component Model (PCM) [3], rep-
resenting an architecture-level performance modeling lan-
guage. Along with the existing WESSBAS-DSL extraction,
this transformation can be exploited by model-based ap-
proaches. We focus on architecture-level performance mod-
els as they allow to model system architecture, execution en-
vironment, and workload specification separately from each
other [4]. We evaluate the approach using the SPECjEn-
terprise2010 benchmark. The developed tools, models, and
results of this paper are publicly available online.2

1WESSBAS is an acronym for Workload Extraction and
Specification for Session-Based Application Systems
2http://markov4jmeter.sf.net/lt15
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Figure 1: Overview of WESSBAS approach and its exten-
sion (bold rectangle), adapted from [13]

2. RELATED WORK
In order to automate the extraction of workload specifica-

tions for session-based applications systems, several measu-
rement-based approaches [1, 2, 10] were introduced. These
approaches generate workload specifications in tool-specific
formats which are not envisaged for model-based approaches.

To evaluate performance properties with architecture-level
performance models several approaches were introduced en-
abling the automatic generation of these models [4, 5]. These
approaches focus on the automatic extraction of the system-
specific details of the SUT, like the system components, the
relationship between the components, the component allo-
cations, and the resource demands. However, the workload
specifications must still be modeled manually, which requires
a lot of effort for the performance expert.

To reduce the complexity of generating different kinds of
analytical performance models from architecture-level per-
formance models several intermediate languages such as
PUMA [16] or Klaper [6] were introduced. These approaches
only focus on model-based performance evaluations and do
not support the definition of workload specifications for
session-based software systems.

3. TRANSFORMING WESSBAS-DSL
INSTANCES INTO PCM

Before describing the transformation from WESSBAS-DSL
instances into PCM workload specifications (Section 3.3), we
introduce the required concepts of the WESSBAS approach
(Section 3.1) and PCM (Section 3.2).

3.1 WESSBAS Approach
The WESSBAS approach, depicted in Figure 1, intro-

duces a (i) domain-specific language (DSL) for layered mod-
eling of workload specifications, (ii) an automatic extraction
of WESSBAS-DSL instances from session logs, and (iii) a
transformation from these instances into load test scripts
[13]. The performance model generation process, which is
the contribution of this paper, is detailed in Section 3.3. The

WESSBAS-DSL represents a modeling language for work-
load specifications of session-based systems. The specifica-
tion is based on our previous work on the definition and
extraction of probabilistic workload specifications [12, 13]
for session-based systems. It describes a formalism of work-
load specifications based on Menascé et al. [10] and Krish-
namurthy et al. [9]. The advantage of using this DSL is that
it defines the structure of valid workload specifications for
session-based systems.

The WESSBAS-DSL enables the modeling of all aspects
of a workload model for session-based systems: Workload
Intensity, Application Model, Behavior Models, and Behav-
ior Mix [12, 13]. The Workload Intensity defines the arrival
rates of new sessions as a function over time. The Applica-
tion Model includes a Session Layer and a Protocol Layer.
The Session Layer specifies the allowed sequences of service
invocations and SUT-specific details to generate valid re-
quests as extended finite state machine (EFSM). The Pro-
tocol Layer models the sequence of protocol-level requests
to be executed on the real system. Behavior Models are a
probabilistic representation of user sessions in terms of in-
voked services, associated with Markov States. Transitions
between Markov States are labeled with think times and
call probabilities. The Behavior Mix specifies the relative
frequencies of different Behavior Models representing differ-
ent customer groups, e.g., Behavior Models for heavy users
and/or occasional buyers. These customer groups are identi-
fied in the WESSBAS approach using clustering algorithms.

WESSBAS-DSL instances are extracted from recorded ses-
sion logs of the SUT. From these instances, the test plan gen-
erator generates load test scripts for the common load test-
ing tool Apache JMeter3 including the extension Markov4-
JMeter [12]. Further details on the WESSBAS approach can
be found in [13].

3.2 Palladio Component Model
PCM is a modeling language enabling the prediction of

quality-of-service attributes (QoS) like response times, uti-
lization, and throughput [3]. PCM is composed of five com-
plementary model types. The central model type is the
Repository Model. It models the software components, com-
ponent operations, and the relations between them. The
modeled components are then assembled in a System Model
to represent the application system. Resource containers
(e.g., servers) and their associated hardware resources are
modeled in the Resource Environment Model, whereas the
Allocation Model defines the allocation of assembled compo-
nents to the resource container. The Usage Model defines
the workload of the system.

As our proposed approach focuses on the generation of
PCM workload specifications, the system-specific parts of
the model must be created in a separate step. As manual
modeling requires too much effort, approaches which auto-
matically extract PCM instance from design specification or
running applications (e.g., [4, 5]) can be used to generate
the system-specific part of the SUT.

3.3 Transformation
The PCM Usage Model offers only basic support for mod-

eling complex workloads. For example, they grow in com-
plexity for larger workloads due to the lack of reuse con-

3http://jmeter.apache.org/



Table 1: Mapping of WESSBAS-DSL concepts to PCM
model elements

WESSBAS-DSL PCM Model Elements

Behavior Models Repository Model (Basic Component, RDSEFF)
Session Layer FSMs not required
Protocol Layer FSMs not required
Workload Intensity Usage Model (Closed Workload)
Behavior Mix Usage Model (Branch)

cepts. Consequently, we cannot transform the WESSBAS-
DSL solely to the usage model. As the Repository Model
offers this kind of structuring, we generate parts of the work-
load specification into the Repository Model (cf. [14]). This
violates the clear separation of the PCM models but reduces
the complexity of the transformation considerably. Further,
this way we do not need to extend the PCM meta-model.

The transformation maps elements of the WESSBAS-DSL
to elements of PCM as described in Table 1. First, the ex-
isting PCM Repository Model is loaded and for each Be-
havior Model of the WESSBAS-DSL a component with a
corresponding interface used to represent the relationships
between the components is generated. For each Markov
State of a Behavior Model a component operation, rep-
resented as RDSEFF (Resource Demanding Service Effect
Specification) [3], is created. RDSEFFs describe the behav-
ior of component operations in a way similar to the Unified
Modeling Language. Within each RDSEFF, the transitions
of the current Markov State to the next states are repre-
sented. This way, the allowed sequence of service invoca-
tions is controlled by the Markov States themselves. An
example can be found in Figure 2. The RDSEFF for the
View Items Markov State of the generated Behavior Model
component gen behavior model3 has a probability branch
with two branch transitions, each representing a transition
to the next Markov State. The left and the right transitions
have a call probability of 92.9 % and 7.1 % respectively. This
branch transition specifies the call probability and contains
three different actions:

• First, the think time of this transition is modeled as speci-
fied in the WESSBAS-DSL using an InternalAction either
as mean value or as normal distribution with mean and
deviation. In our example, the think time is specified with
a mean value of one time unit for both transitions.

• Second, the matching system operation of the modeled
SUT is called as an ExternalCallAction. This call models
a request to the system, e.g., clicking a link of a web page.
To identify the corresponding system operation we use a
name mapping between the name of the system opera-
tion and the name of the Markov State. Only the oper-
ations of components providing external system calls will
be matched with the Markov State names. In the left
transition of our example the operation View Items of the
system component with the name app is called as it has
the same name as the next Markov State.

• Third, the RDSEFF of this Behavior Model component
representing the next Markov State is called as Exter-
nalCallAction; in the left transition of our example, the
View Items state is called again and in the right transition
the state home is called. In this way, each Behavior Model
component calls itself until a RDSEFF without successor
is reached. In this case no further call is modeled and the
sequence terminates.

Figure 2: Generated RDSEFF example

Having created the Behavior Model components in the
Repository Model, each newly created component is allo-
cated to the System Model and correspondingly to the Allo-
cation Model. A new Usage Model is generated with one
probabilistic branch representing the Behavior Mix. For
each Behavior Model, a branch transition with the rela-
tive frequency as call probability is created. Within this
transition the initial Markov State of the Behavior Model is
called. Finally, the workload intensity is modeled as closed
workload with (i) the population representing the number of
active sessions and (ii) the think time between the end and
the start of a new session. The generation of open workloads
will be examined in the future.

The Session and the Protocol Layer are not mapped to
PCM elements. The Session Layer could be modeled as
an additional abstraction layer to the SUT. However, this
would increase the complexity of the model and has no im-
pact on the simulation results as the allowed sequences of
service invocations are already specified in the representa-
tion of the Behavior Models. The Protocol Layer is not used
in performance models.

4. EVALUATION
In this section, the practicality and the prediction accu-

racy of transformed workload specifications will be exam-
ined. First, the SPECjEnterprise20104 benchmark is briefly
explained and then the accuracy of transformed workload
specifications is summarized.

SPECjEnterprise2010 represents a Java EE industry ap-
plication of an automobile manufacturer whose main users
are automobile dealers. This benchmark contains a work-
load specification and a dataset required for load test ex-
ecutions. In this work, we use the Orders domain of the
benchmark as the SUT. The Orders domain represents a
web-based e-commerce application. SPECjEnterprise2010
defines three different transaction types and in total 13 dif-
ferent HTTP request types. It enables customers purchasing
and selling cars (Purchase), managing their accounts and in-

4
SPECjEnterprise is a trademark of the Standard Performance Evalu-

ation Corp. (SPEC). The SPECjEnterprise2010 results or findings in
this publication have not been reviewed or accepted by SPEC, there-
fore no comparison nor performance inference can be made against
any published SPEC result. The official web site for SPECjEnter-
prise2010 is located at http://www.spec.org/jEnterprise2010/.



Table 2: Evaluation Results
Orig. 2 Behavior Models 3 Behavior Models 4 Behavior Models

Request MRC SRC PE% SRC PE% SRC PE%

1 add to cart 63,761 64,943 1.82% 61,812 3.15% 60,986 4.55%
2 cancel order 632 609 3.78% 661 4.39% 625 1.12%
3 clear cart 6,047 6,178 2.12% 5,927 2.02% 5,846 3.44%
4 defer order 6,782 6,873 1.32% 6,524 3.95% 6,606 2.66%
5 home 59,934 61,146 1.98% 58,747 2.02% 58,744 2.03%
6 inventory 30,596 30,539 0.19% 29,574 3.46% 29,405 4.05%
7 login 61,500 61,156 0.56% 58,747 4.69% 58,745 4.69%
8 logout 59,934 61,146 1.98% 58,747 2.02% 58,744 2.03%
9 purchase cart 8,360 8,388 0.33% 7,976 4.81% 7,836 6.69%

10 remove 3,027 2,986 1.37% 2,876 5.25% 2,949 2.64%
11 sell inventory 66,679 66,131 0.83% 63,185 5.53% 63,914 4.33%
12 shopping cart 9,074 9,164 0.98% 8,803 3.08% 8,795 3.17%
13 view items 498,601 491,812 1.38% 470,392 6.00% 475,000 4.97%∑

874,927 871,071 0.44% 833,971 4.91% 838,195 4.38%

ventory (Manage), and browsing the catalogue of available
cars (Browse).

To evaluate the accuracy of the extracted workload spec-
ification we employ the evaluation methodology used in our
previous paper [13]. The number of simulated requests for
the different HTTP request types are compared with the
originally measured request counts to the SUT. In our pre-
vious work we extracted [13] WESSBAS-DSL instances from
session logs of a SPECjEnterprise2010 benchmark run with
800 users, a duration of ten minutes (600 seconds), and the
original benchmark Behavior Mix (25 % Purchase, 50 %
Browse, and 25 % Manage). Afterwards, we selected three
different WESSBAS-DSL instances for that evaluation; one
with two, one with three, and one with four Behavior Mod-
els. These instance were extracted using different clustering
settings; however the resulting workload characteristics are
the same [13]. To ensure the comparability with workload
specifications of performance models, we evaluate whether
the same results can be achieved. We generate a PCM in-
stance representing the SPECjEnterprise2010 system using
the approach proposed by [5]. Then, each of the three in-
stances is transformed into this PCM instance. This PCM
instance is then simulated for 600 time units corresponding
to the ten minutes of the original benchmark run.

The results of the measured request counts (MRC) and
simulated request counts (SRC) per HTTP action can be
found in Table 2. In addition, for each simulation run the
relative prediction error (PE) compared to the measured
data is given. The original workload includes 61,500 ses-
sions and in total 874,927 HTTP requests. The relative
counts of the request types are very similar for all predicted
workloads. Further, the PE of the request types are at max-
imum 6.69% for purchase cart with four Behavior Models.
Thus, from the server-side perspective the SRCs are repre-
sentative compared to the MRC. As this was the case for
load tests extracted from WESSBAS-DSL instances as well
[13], the suitability of the WESSBAS-DSL as intermediate
language for workload specifications could be demonstrated.

5. CONCLUSION AND FUTURE WORK
Several authors describe the need to integrate measure-

ment and model-based approaches to evaluate the perfor-
mance of software systems [11, 15]. To close this gap for
workload specification, our WESSBAS approach [13] is ex-
tended. In this paper, the existing WESSBAS-DSL is used
as an intermediate language for the transformation to work-
load specifications of architecture-level performance models.
The evaluation using WESSBAS-DSL instances extracted

from the Java EE benchmark SPECjEnterprise2010 demon-
strates that representative PCM workload specifications com-
pared to the original workload can be generated. To the best
of our knowledge no other approach generates model-based
workload specifications for session-based systems from ex-
tracted data.

In our future work, we plan to investigate the impact of
the extracted workload specification on the measured and on
the predicted performance. Furthermore, we plan to evalu-
ate the proposed approach by transforming the WESSBAS-
DSL into other architecture-level performance models such
as the Descartes Modeling Language [7]. The prioritization
of load test cases using the generated performance models
will be investigated [14]. Moreover, we plan to implement
the transformation between the WESSBAS-DSL and PCM
in a bidirectional way. The advantage is when the test cases
are analyzed and prioritized within PCM corresponding load
test scripts can be generated using the WESSBAS-DSL.
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