Institute of Software Technology
University of Stuttgart

UniversitatsstraRe 38
D-70569 Stuttgart

Bachelor’s Thesis Nr. 140

Dynamic Instrumentation in
Kieker Using Runtime Bytecode

Modification
Albert Flaig
Course of Study: Softwaretechnik
Examiner: Prof. Dr. Lars Grunske
Supervisor: Dr.-Ing. André van Hoorn
Commenced: 2014/05/05
Completed: 2014/11/04

CR-Classification: D.4.8

Abstract

Software systems need constant quality assurance — this holds true in the development
phase as well as the production phase. An aspect of quality is the performance of specific
software modules. Kieker provides a framework to measure and diagnose runtime infor-
mation of instrumented software methods. In its current state, Kieker only allows inserting
probes before application start.

This thesis proposes an alternative concept to extend the functionality of Kieker regard-
ing instrumentation. The alternative approach allows inserting probes during runtime.
This is done using a technology known under the term Bytecode Instrumentation (BCI)
which enables to change the binary code of classes during execution. Thus the software
is "reprogrammed" during runtime to provide the measurement logic. The approach is
carried over of another monitoring framework called AIM (Adaptable Instrumentation
and Monitoring), which already features an established implementation of this technology.
Hence, this thesis aims to connect the benefits of both frameworks.

This alternative concept is compared against Kieker’s traditional way of performance
measurement by the means of an experimental evaluation. The evaluation aims to investi-
gate the impact on, (1) the overhead, (2) the turnaround time and (3) the reliability in terms
of lost transactions. The results show a reduction of overhead, unfortunately at the cost of
turnaround time. The reliability also drops due to an increase of lost transactions.

1ii

Zusammenfassung

Software-Systeme benétigen eine stindige Qualitdtskontrolle — sowohl in der Entwick-
lungsphase als auch in der Produktionsphase. Ein Aspekt das die Qualitdt von Software
ausmacht, ist die Performanz bestimmter Software-Module. Kieker bietet an dieser Stelle
ein Framework an, um Laufzeitdaten von instrumentierten Methoden messen und aus-
werten zu konnen. Im aktuellen Stand kénnen Messsonden (Monitoring Probes) in Kieker
lediglich vor Programmstart eingesetzt werden.

Diese Thesis zeigt ein neues Konzept das die Funktionalitdt von Kieker in Bezug auf
die Instrumentierung erweitert. Dieser alternative Ansatz erlaubt es Messsonden wahrend
der Laufzeit einzusetzen. Dies wird mit einer Technologie umgesetzt die bekannt ist
unter dem Begriff Bytecode Instrumentation (BCI). Sie ermoglicht den Bindrcode von
Klassen wihrend der Ausfiithrung zu verdndern. Somit wird die Software mit der Logik der
Laufzeit-Messung versehen, indem sie zur Laufzeit ,neu programmiert” wird. Der Ansatz
wurde aus AIM (Adaptable Instrumentation and Monitoring), einem weiteren Monitoring
Framework, tibernommen. Dieses weifit eine bereits bestehende Implementierung dieser
Technologie auf. Daher zielt diese Thesis darauf ab die Vorteile beider Frameworks zu
verbinden.

Der Overhead von diesem alternativen Konzept wird verglichen mit der herkémmli-
chen Art die Kieker nutzt um Performanz zu messen. Der Vergleich wird mithilfe einer
experimentellen Evaluation durchgefiihrt. Die Evaluation untersucht die Auswirkungen
auf (1) den Overhead, (2) die Turnaround-Zeit und (3) die Zuverlassigkeit in Hinsicht
auf Lost Transactions. Die Ergebnisse zeigen eine Verringerung des Overheads, leider auf
Kosten der Turnaround-Zeit. Die Zuverldssigkeit sinkt ebenfalls aufgrund einer erhchten
Anzahl an verloren gegangenen Transaktionen.

Contents

1 Introduction 1
1.1 Motivation e e e 1
1.2 Goals e e 1
1.3 Document Structure 2
2 Foundations and Technologies 3
2.1 Kieker Monitoring Framework 3
2.2 Dynamic Instrumentation 7
2.3 AIM Framework for Adaptive Instrumentation and Monitoring 8
3 Related Work 11
3.1 Stateofthe Art 11
3.2 Distinction e e e 11
4 Development of Dynamic Instrumentation Support for Kieker 13
4.1 Similarities and Differences between AIM and Kieker 13
42 Approach. 16
4.3 Challenges and Limitations 20
5 Experimental Evaluation 23
51 Approach. 23
52 Conduction e 25
6 Conclusion 43
6.1 Summary e 43
6.2 DISCUSSION v v o i e e e e e e e e e 43
6.3 Future Work e 44
Glossary 45
Bibliography 47

vii

Chapter 1

Introduction

This chapter will give a brief overview on this thesis by giving a motivation (Section 1.1),
listing the achieved goals (Section 1.2), and outlining the document structure (Section 1.3).

1.1 Motivation

Modern software needs a means to be monitored continuously in order to assure a certain
standard of quality, e.g., in terms of stability and error detection rate. Approaches within
the development phase are quite overhead-heavy on the tested software and can influence
the test result. However, this overhead can be tolerated as any revealed malfunctions can
usually still be fixed within development phase. This does not apply to the production
phase of the product. In this phase, software needs to be as stable as possible. Any overhead
can be fatal in this phase. Therefore, approaches in the production phase must be a lot
more lightweight in terms of overhead. The monitoring software Kieker [Kieker Project,
2014; Rohr et al., 2008; van Hoorn et al., 2009, 2012] is one such approach which is open
source and emphasizes on low overhead. It provides an adaptive monitoring feature which
can turn on and off monitoring capabilities on certain components within the software
depending on the needs. Thus the overhead can be determined on a per-component-basis
and regulated to the very minimum.

However, this feature needs the components to be pre-instrumented. No new methods
can be added dynamically during runtime. Also the pre-instrumented methods still have
a check whether to execute monitoring or not, which also consumes a certain amount of
computing power. This thesis aims to investigate an alternative approach for dynamic
instrumentation and conducts a quantitative comparison between both approaches to
resolve these drawbacks. The proposed approach is to use dynamic bytecode modification
of the classes to inject the monitoring code during execution time of the software. Thus
monitoring capabilities can be turned on and off on-demand. Normal execution will not
be altered in any way as long as the monitoring capabilities are turned off.

1.2 Goals

This thesis consists of two parts: (1) the development of dynamic instrumentation support
using AIM in Kieker and (2) a quantitative comparison between the traditional approach

1. Introduction

in Kieker and the proposed alternative approach.

Development of Dynamic Instrumentation Support for Kieker

The first goal is to develop the dynamic instrumentation support by integrating Kieker
into AIM . AIM is a similar monitoring framework like Kieker with emphasis on different
aspects, which is covered in detail in Chapter 2 and Chapter 4. However, it possesses the
capability to dynamically instrument Java applications during runtime through BCI. Its
approach is transfered to Kieker in the development phase. Changes to the existing API in
Kieker should be kept at a bare minimum. Optimally, the API would not change at all. The
research questions to be investigated are: How can Kieker be integrated into AIM? How
efficiently can it be integrated without increasing complexity or changing the architecture
too much? How will the dynamic instrumentation behave on certain special cases?

Experimental Evaluation

The second goal is to assess the usefulness of the developed methods in comparison to
Kieker’s existing approach. For this purpose, an approach is worked out to conduct the
evaluation. The following questions should be answered in the evaluation: Is there going
to be a significant improvement in terms of overhead? Is the approach reliable? How does
it behave in terms of scalability?

1.3 Document Structure

The remainder of this document is structured as follows.

Chapter 2 (Foundations and Technologies) presents vital background information on
foundations and technologies which are essential for the comprehension of this thesis.
Chapter 3 (Related Work) shows similarities with related work and differences. Chapter 4
(Development of Dynamic Instrumentation Support for Kieker) describes the established
architecture of the development phase as well as challenges, limitations, and pitfalls.
Chapter 5 (Experimental Evaluation) describes the evaluation process and its results.
Chapter 6 (Conclusion) discusses the result of this thesis and future work.

Chapter 2

Foundations and Technologies

This section gives a brief overview of concepts and technologies that will be used in this
thesis. Section 2.1 gives an overview of Kieker’s architecture its capabilities and strengths.
Section 2.2 explains the principle behind dynamic instrumentation in Java and presents the
techniques needed to achieve that. Section 2.3 gives brief information about the origin of
AIM as well as its abilities and differences to Kieker.

2.1 Kieker Monitoring Framework

Kieker, is a Java-based monitoring framework [Kieker Project, 2014; Rohr et al., 2008;
van Hoorn et al., 2009, 2012]. It is extensible and developed in regard to low overhead.
Kieker consists of two main components: Monitoring and Analysis. Figure 2.1 shows
their relationship. This thesis concentrates on the Monitoring component of Kieker that
is responsible for instrumentation and data gathering. The Monitoring Probes collect
data, e.g., execution time and control flow of instrumented methods. Figure 2.2 shows an
example of control flow data which has been visualized by the Kieker Analysis component.

Kieker.Monitoring Kieker.Analysis

Kieker.
TraceAnalysis

Monitoring gl
Probe

Analysis EI .
Plugin

Analysis SI
Controller

Monitoring SI
Controller

Monitoring I
Record

Monitoring Log/Stream

Monitoring @
Reader

Monitoring gl
Writer

Figure 2.1. Overview of the Kieker framework components [Kieker Project, 2014]

The Monitoring Controller employs the JMX interface, controls the monitoring probes
and passes the collected data to the Monitoring Writer. The monitoring writer writes the

2. Foundations and Technologies

<<assembly component>>
@2:de.test.simple.Office
<<assembly component>>

@3:de.test.simple.Main 5 getBoss() <<assembly component>>
L= 5 | @lde.test.simple.Person
AT B
getEmployee() > getSalary(..)

Figure 2.2. An operation dependency graph as generated by the Kieker Trace Analysis component
showing various runtime information like execution count and call hierarchy. A similar illustration is
depicted in the Kieker userguide [Kieker Project, 2014]

collected data to the stream which can be a variety of different outputs like file system,
JMX, or a database.

Kieker does also provide samplers. Sampling works inherently different from instru-
mentation. Basically the stack trace is fetched in periodic time intervals, usually within
range of several dozen nanoseconds. Analyzing the data, one can make out which methods
the thread is executing most frequently. Thus a metric is presented showing the perfor-
mance of methods. This approach needs no tinkering with the classes and can be used to
find rough performance problems. However depending on the scan interval it may or may
not miss methods [Heiss, 2005].

The next subsections will go more in detail to the inner workings of monitoring probes
and controlling them via Kieker’s adaptive monitoring APL.

2.1.1 Monitoring Probes

Monitoring Probes can be deployed through various techniques. The most simple form is
manual insertion. However the more advanced (and useful) techniques employ interception
techniques provided by Aspect] [Asp], Java EE Servlet [Oracle, 2011], Spring [SpringSource,
2011] and Apache CXF [The Apache Foundation, 2011]. Listing 2.1 shows the most simple
usage of Aspect] by the use of annotations.

The detailed procedure of a general monitoring probe can be seen in Figure 2.3. Each
probe has a before part and an after part. Both parts register the current time which get
passed on into a new monitoring record which in turn is then send to the monitoring
controller. Having the time of the start and the end of the method body, one can calculate
the execution time the method demands. However, the method collectData() not only
collects execution data but also other data like the signature of the monitored method, the
trace id, tree data, etc. The actual data collected depends on the type of probe that has
been deployed.

2.1. Kieker Monitoring Framework

MonitoredClass MonitoringProbe MonitoringController
T T T
monitoredMethod() 1 beforePart() 1 isMonitoringEnabled() 1
- - >I:|
(____________
isProbeActivated() 1

collectData()

Body afterPart() !

collectData()

1
< —

— -)[r : MonitoringRecord

newMonitoringR'ecord(r)

|

|

|

|

|

e — e e |
Actual Method [! !
|

|

|

|

|

|

|

|

|

|

(== —————

Figure 2.3. Sequence of a deployed Monitoring Probe Waller and Hasselbring [2012]

Kieker provides two concepts to deploying monitoring probes: Aspect Oriented Pro-
gramming (AOP) and manual instrumentation of classes. The term Aspect Oriented
Programming is the technique to describe a certain behavior which is common to a set
of specific classes or components. In this case the behavior is to collect execution data.
Once the monitoring probes have been deployed they can be activated and deactivated
dynamically during runtime using Kieker’s Adaptive Monitoring APIL In the following
listing one can see how to deploy a probe using the concept of AOP. In this case we use the
implementation of Aspect] in Kieker.

The usage is simple. The monitored method is simply annotated with the specific
annotation. Aspectj weaves the corresponding probe. More on this can be looked up in the
user guide [Kieker Project, 2014]. The next listing shows an equivalent form of deploying a
probe by manual insertion.

2. Foundations and Technologies

3 private String name;
4
5 @OperationExecutionMonitoringProbe
6 public String updateProduct(int productId) {
7 String product = Products.get(productId);
8 name = product;
9 return name;
10 }
Listing 2.1. Monitored Class and its Monitored Method instrumented with Aspect]
3 private static final MC = MonitoringController.getInstance();
4
5 public String updateProduct(int productId) {
6 // Before Part
7 final boolean instrumented = MC.isMonitoringEnabled() && MC.isProbeActivated();
8 if (instrumented) {
9 data = collectDataBefore();
10 }
11 // Actual Method Body
12 String product = Products.get(productId);
13 // After Part
14 if (instrumented) {
15 data = collectDataAfter(data);
16 MC.newMonitoringRecord(new MonitoringRecord(data));
17 }
18 return product;
19 }

Listing 2.2. Pseudo Java Code of a manually instrumented method. Semantically equivalent to
Listing 2.1.

2.1.2 Kieker’s Adaptive Monitoring API

Adaptive monitoring in Kieker works by providing the ability to select which compo-
nents of the software have to be monitored. This can be selected very fine granularly.
However these components (currently) still have to be pre-instrumented. When using
AOP one can easily deactivate certain probes using the Monitoring Controller. Provid-
ing a pattern to the deactivateProbe(...) or activateProbe(...) methods will activate
or deactivate the probes matching that specific pattern. Listing 2.2 shows a call to the
isProbeActivated() which reflects whether the specific probe is activated or not and thus
whether to collect monitoring data or not. How such a pattern should look like is described
in the kieker.monitoring.adaptiveMonitoring.conf which is included in the Kieker binary
release. As the Monitoring Controller provides an interface to JMX, one can activate and

2.2. Dynamic Instrumentation

deactivate specific monitoring probes locally or remotely with an external tool. The concept
will be described in-depth in Chapter 4.

Additionally to the Monitoring Controller Interface there is a second method to activate
and deactivate certain probes. That goes by modifying the kieker.monitoring.adaptiveMon-
itoring.conf file. Kieker reads this file in regular intervals and synchronizes its internal
patterns with the content. The interval and the used file for adaptive monitoring can be
configured. More information is available in the Kieker User Guide [Kieker Project, 2014].

2.2 Dynamic Instrumentation

Dynamic instrumentation describes the ability to instrument classes and their method
bodies while the application is running by the means of bytecode modification. However to
achieve that a few techniques are needed. For example, Java provides means to introspect
data structures within classes like methods, fields, or class members. This is called the
reflection mechanism. However it lacks the ability to modify the behavior of these classes.
Therefore, many different libraries exist which allow direct modification of the bytecode of
Java classes. Examples are SERP [ser], ASM [asm] and Javassist [jav]. ASM and SERP can
instrument methods when provided with the direct Java bytecode snippet. On the other
hand javassist supports instrumentation provided by source code snippets. Various libraries
support one or both of these methods. As AIM uses Javassist for bytecode modification,
this library will be focused on right now.

2.2.1 Javassist

Javassist [jav] is a powerful library which has many uses. Its primary function is however to
provide means for runtime BCL It has support for both methods of bytecode modification:
Injecting direct Java bytecode and providing Java source files which are compiled on the fly
and subsequently injected. Listing 2.3 shows the usage of the library.

9 public class HellowWorld {

10 public static void main(String[] args) throws Exception {

11 CtClass cc = ClassPool.getDefault().get("de.test.HelloWorld$SayHello");
12 CtMethod cm = cc.getDeclaredMethod("printHelloWorld");

13 cm.insertAfter("{ System.out.println(\"Hello World!\"); }");
14 cc.toClass();

15 SayHello inst = new SayHello();

16 inst.printHelloWorld();

17 }

18 static class SayHello {

19 public void printHelloWorld() { }

20 }

21}

Listing 2.3. Most simple application to demonstrate the javassist BCI.

2. Foundations and Technologies

Notice that there is no class reloading used in the example. It relies on the fact that the
class SayHello is not loaded until cc.toClass() is executed, which completes the BCL

2.2.2 Hotswap

Even though we can modify classes during runtime, we cannot simply exchange classes
which reside in working memory. The Hotswap technique is needed for that. It is part of
the Java Instrumentation API which has been introduced in Java JDK 5.0 [Oracle, a]. Java
Hotswap works by swapping classes which reside in the JVM with a new class. The class
definition in itself has to be provided as bytecode. The current Hotswap implementation
in the JVM supports only swapping of method bodies. After a Hotswap occurred, only
the latest class version will be used. The old class version ceases to exist within the JVM
working memory. At this point it will be important to evaluate what exactly will happen
when a class needs to be swapped which is currently executing. Listing 2.4 shows the
previous example modified with a Hotswap execution. Notice however, the instrumentation
attribute has to be set by deploying a javaagent. See also [jav, 2006].

14 public class HelloWorld {

15 public static Instrumentation instrumentation;

16

17 public static void main(String[] args) throws Exception {

18 CtClass cc = ClassPool.getDefault().get("de.test.HelloWorld$SayHello");
19 CtMethod cm = cc.getDeclaredMethod("printHelloWorld");

20 cm.insertAfter("{ System.out.println(\"Hello World!\"); }");
21 Class<?> ¢ = cc.toClass();

22 ClassDefinition cd = new ClassDefinition(c, cc.toBytecode());
23 instrumentation.redefineClasses(cd);

24 SayHello inst = new SayHello();

25 inst.printHelloWorld();

26 }

27 static class SayHello {

28 public void printHelloWorld() { }

29 }

30}

Listing 2.4. Most simple application to demonstrate Hotswap with javassist.

2.3 AIM Framework for Adaptive Instrumentation and Mon-
itoring
AIM is an abbreviation of Adaptable Instrumentation and Monitoring. It has been de-

veloped by researchers at the Karlsruhe Institute of Technology and has recently been
released as open source software [Wert and Heger, 2014]. Like Kieker it is also a monitoring

2.3. AIM Framework for Adaptive Instrumentation and Monitoring

framework. However the internal architecture and external interface differ from Kieker fun-
damentally. Most importantly, AIM has capabilities for dynamic bytecode instrumentation
while Kieker has not. Furthermore, AIM is equipped with its comprehensive instrumenta-
tion description. However Kieker shines with its extensive adaptive monitoring regular
expression matching which is particularly based on the use wildcards. Further, Kieker is
a monitoring framework which has been developed to be highly extensible. Kieker also
possesses strong analysis capabilities, however that is out of scope of this thesis.

In contrast to Kieker, AIM strictly isolates the application under test from the main
monitoring and instrumentation component by having a server-client model. Thus the
usage is inherently different from Kieker. The application under test is started with a
specific command line argument which fires up the AIM Service Interface. This interface
acts as a server whilst the main monitoring and instrumentation component acts as a
client. The client can issue instrumentation commands to the server and receive monitoring
records. Section 4.1 also describes more similarities and differences especially in terms of
internal architecture.

Chapter 3

Related Work

This Chapter discusses the work that has been done in the field of performance measure-
ment. Section 3.1 discusses state of art tools which are currently used most commonly
whilst Section 3.2 focuses on research done in this field and distinguishes it from this thesis.

3.1 State of the Art

In the field of performance measurement, dynamic instrumentation is not new. VisualVM
for instance, a profiling tool which comes with the JDK straight off the bat, provides
a sampler and a profiler capable of dynamically instrumenting classes. Its dynamic
instrumentation capabilities are based on the NetBeans profiler [Sedlacek, 2008]. The
NetBeans profiler is in turn based on the work of JFluid [Dmitriev, 2003; Heiss, 2005].
VisualVM however has a trimmed down version of the NetBeans profiler. It is not very
flexible as it cannot select to instrument specific methods of certain classes. A class can
either be instrumented wholly or not at all. Kieker is more flexible in this regard because
of its adaptive monitoring APL

BTrace provides a plugin for VisualVM which enables more flexible and extensive
dynamic instrumentation capabilities. BTrace, like AIM, possesses the ability to instrument
during runtime using BCL

3.2 Distinction

Little research has been done in comparing compile-time instrumentation and dynamic
instrumentation in Java. Although there has already been a hybrid approach [Iskhodzhanov
et al., 2013], it is not focused on Java.

Kieker is a monitoring framework which has been focused on in research papers since
its creation. An evaluation of overhead of the Kieker monitoring framework has already
been conducted several times [Ehlers et al., 2011; Ehlers and Hasselbring, 2011; van Hoorn
et al., 2009; Waller and Hasselbring, 2013, 2012]. However none of these have evaluated
Kieker in accordance with dynamic BCI.

A dynamic BCI support for Kieker has already been developed by [Wert, 2012; Heger,
2012]. An experimental evaluation has also been done by [Wert, 2012]. However, Kieker

11

3. Related Work

has since evolved and has gotten the adaptive monitoring API with release 1.6 [Kieker
Project, 2014].

This thesis therefore aims to investigate the differences between compile-time instru-
mentation and dynamic instrumentation. Kieker does compile-time instrumentation with
the help of Aspect]. However, Aspect] has little to no overhead compared to manual
instrumentation [Dufour et al., 2004; Hilsdale and Hugunin, 2004]. Hence, the investigation
on the compile-time instrumentation is rather done on manually instrumented methods.
The dynamic instrumentation part is something Kieker lacks and needs to be developed.
Afterwards the evaluation will take place.

12

Chapter 4

Development of Dynamic
Instrumentation Support for Kieker

This chapter will describe the developed dynamic instrumentation support for Kieker.
The goal is to incorporate the dynamic instrumentation functionality of AIM into Kieker.
Therefore an overview is created to get a general idea of the differences and similarities
between AIM and Kieker. The first step is to identify the part of AIM which employs the
wanted functionality. The second step is to compare the architecture of both frameworks and
identify the point at which existing components are to be modified and new components
are to be created. An overview of these steps is shown in Section 4.1 and described in detail
in Section 4.2. Section 4.3 describes challenges and limitations of the developed dynamic
instrumentation support.

4,1 Similarities and Differences between AIM and Kieker

The AIM Client sends an Instrumentation Description to the AIM Service Interface. The
Instrumentation Description contains various information about the experiment in question.
It is like a request to the Application under Test to query specific data about it. Included is
information about to be deployed probes, its scopes, certain samplers, specific restrictions,
and some JVM events to be used in the experiment. Samplers fetch periodically in
certain time intervals data about the underlying system like disk and memory usage, CPU
utilization, etc. The locations of probes are described within so-called Scopes. Kieker’s
corresponding feature is the use of patterns within the Adaptive Monitoring API. AIM has
certainly a lot of potential in gathering data.

However most of this functionality is not needed to integrate the Dynamic Instrumen-
tation support in Kieker. Figure 4.1 shows the components which are relevant to this
thesis. It depicts the related components for dynamically deploying monitoring probes in
AIM. The AIM Client can roughly be translated to the JMX interface in Kieker. Both can
be used to determine which methods are to be instrumented. AIM uses Scopes for this,
while Kieker uses patterns. The AIM Client sends the Instrumentation Description to the
Instrumentation Agent. The Instrumentation Agent acts as a Server within the Application
under Test. Unlike Kieker, AIM uses two separate processes on the operation system level.
Receiving Instrumentation Descriptions the Instrumentation Agent transfers the command

13

4. Development of Dynamic Instrumentation Support for Kieker

to the Method Instrumentor. The Method Instrumentor uses the Java Instrumentation API
to get a list of all currently loaded classes in the JVM. Having this list, it evaluates which
classes are to be instrumented. The resulting sublist is forwarded to the BCInjector. The
BClnjector uses the Probe Snippets which are built from the Probe Builder and instruments
the given classes using Javassist. The resulting classes are then forwarded to the Java
Instrumentation to be hotswapped in the JVM. AIM is, however, unable to instrument
classes which are not yet loaded in the JVM.

Adaptive Instrumentation and Monitoring Java Process | ——» Data flow
AIM Client Instrumentation | | Component
. Description
| ; Piece of Data

Application under Test Java Process

Y

Probes Instrumentation Agent

Y

Probe Builder Instrumentor < Instrumentation

|—> BClnjector [«
Y
Classes to J ist Instrumented
instrument @VaSSlS Classes

Figure 4.1. Overview of the components involved for BCI in AIM.

Methods to
instrument

Hotswap

Looking at the architecture of Kieker, one can see a few similarities to AIM. Especially
when considering the case of using Kieker through the JMX Interface (Figure 4.2). The
Monitoring Controller consists of several components, each having a distinct function. The
JMX Controller initializes the MBeanServer for accessing the Monitoring Controller through
the JMX Interface. When sending a Pattern to the JMX Controller the call is delegated
to the Probe Controller. The Pattern may be either an activating or a deactivating one.
Listing 4.1 shows examples of activating and deactivating patterns. The Probe Controller
adds the new pattern to its managed list of patterns.

Unlike AIM, Kieker needs the classes of the Application under Test to be preinstru-
mented. This can be done upon startup of the application using Aspect Oriented Program-
ming (AOP) or the instrumentation code can be inserted manually to the source code before

14

4.1. Similarities and Differences between AIM and Kieker

Process of External Tool ——» Data flow

JMX Client Pattern ; |:| Component

; Piece of Data

Application under Test Java Process

Monitoring Controller \
JMX Controller

isProbeActivated()
Probe Controller = I

Preinstrumented
Patterns Classes

Y

Figure 4.2. Overview of the components involved for enabling a Probe using Adaptive Monitoring
through the JMX Interface in Kieker.

+ org.apache.commons.io.CopyUtils.x(..)

— org.apache.commons.io.DirectoryWalker.x(..) throws Exception

+ org.apache.commons.io.EndianUtils.x(..)

+ org.apache.commons.io.FileCleaner.x(..)

+ org.apache.commons.io.lOUtils.x(..)

— public static byte[] org.apache.commons.io.lOUtils.toByteArray(java.io.InputStream)

Listing 4.1. Examples of Instrumentation Patterns to feed Kieker’s Adaptive Monitoring API.

compilation. Each probe checks whether it is activated using the Monitoring Controller.
This sequence has already been depicted in Figure 2.3. The call is delegated to the Probe
Controller. The Probe Controller sequentially checks the signature of the probe with all
patterns in the pattern list from the newest to the oldest. The first match will determine
whether the probe is activated or not, depending whether the pattern was an activating or
deactivating one.

All in all one can highlight these differences in both frameworks:

> AIM does not have as an extensive pattern matching system like Kieker. The instrumen-
tation description allows for simple regular expression matching though.

> The instrumentation in AIM is on demand. The monitoring code is injected when the

15

4. Development of Dynamic Instrumentation Support for Kieker

probe is activated and removed when deactivated.

> Kieker has the monitoring code in the application since startup and checks whether to
execute it or not depending whether the probe is activated or not.

> AIM does not manage a history of instrumentation descriptions, while Kieker does
manage a history of patterns in the pattern list.

> AIM cannot instrument classes which are not yet loaded in the JVM. Neither statically (at
startup) nor dynamically (during runtime). The reason is that the Java Instrumentation
API does not provide a list of classes residing in the classpath but rather only the classes
loaded in the JVM.

4.2 Approach

Comparing Kieker’s architecture against the architecture of AIM the differences can be
highlighted. Subsequently the point at which to start the development can be deducted.
The approach is segmented in two parts: The First Implementation and the Second Imple-
mentation. The First Implementation is a proof of concept prototype, whilst the Second
Implementation mitigates the pitfalls and limitations introduced in the First Implementa-
tion.

4.2.1 First Implementation

In AIM the crucial component is the BCInjector. It takes two inputs: An AIM instrumenta-
tion description (describes which methods of which classes are to be instrumented) and a
corresponding AIM probe.

For the first input a new monitoring probe needs to be developed which mimics the
interface to the BClnjector, however still reports its collected data to the Kieker Monitoring
Controller. On the other hand Kieker’s probe instrumentation patterns need to be translated
to AIM instrumentation descriptions and be used as the second input to the BCInjector. To
achieve that the Instrumentor needs to be rewritten to be compatible with Kieker’s adaptive
monitoring APL In other words, the rewritten component needs a direct interface to the
Probe Controller.

So in the first attempt we have two new components: (1) one component equivalent
to AIMs Instrumentor, onward called KiekerInstrumentor, and (2) another to be compatible
to the interface to the BClnjector, onward called OperationExecutionProbe. The pattern list
which is used by the Probe Controller is discarded. Figure 4.3 illustrates the first attempt.

The process is now altered that the instrumentation pattern is directly delegated to
the KiekerInstrumentor without saving it anywhere. KiekerInstrumentor receives all loaded
classes from the Java Instrumentation API and checks each class against the pattern. The
resulting list represents the classes which are to be instrumented. This list is forwarded

16

4.2. Approach

Process of External Tool Data flow
i Component
JMX Client Instrumentation I:l p
Pattern
; Piece of Data

Application under Test Java Process

Monitoring Controller Y

JMX Controller

v

Probe Controller

- : Loaded
OperationExecution Classes
Probe | Pattern ;
] + v
| Kiekerlnstrumentor| | Instrumentation |

Probe Builder

BClnjector

Methods to | Hotswap |
instrument *

- Instrumented

Classes

Classes to

Figure 4.3. First attempt integrating Kieker into AIM. Two new components are introduced.

to the BClnjector, Along with the code snippet of the OperationExecutionProbe that is built
through the Probe Builder. Having both inputs, the BCInjector calls Javassist to instrument
the classes and consequently hotswap them in the JVM.

In the end this attempt proved to be incorrect. Take for example Listing 4.1 which
was shown above. If the user inputs these lines sequentially from top to bottom there
will be an error. The next to the last line tells KiekerInstrumentor to instrument the class
org.apache.commons.io.I0Utils and all of its methods. The last line tells KiekerInstrumentor
to not instrument one specific method. The expected result would be that all methods
in I0Utils are instrumented except for the specific one. However the actual result is that
no classes are instrumented at all. Firstly Kieker does indeed instrument all methods cor-
rectly. However having no memory of previous instrumentation patterns, all instrumented
methods of the class are discarded as the original class definition is used for dynamic BCL

The next problem in this attempt is the lack of the ability to instrument classes which

17

4. Development of Dynamic Instrumentation Support for Kieker

are not yet loaded in the JVM. This is due to a limitation in the Java Instrumentation APL It
does neither provide an interface to get all class definitions within the classpath, nor does
it allow to hotswap classes which are not yet loaded. If it did provide that functionality it
would be a contradiction to the Java Virtual Machine Specification though [Lindholm and
Yellin, 2013]. The Java Virtual Machine loads classes lazily, only as needed. So to eliminate
this drawback a component needs to be established which listens on every class load the
JVM conducts. This is introduced in Section 4.2.2.

4.2.2 Second Implementation

The second attempt tends to eliminate the two drawbacks from the previous attempt: (1)
To correctly instrument classes depending on the instrumentation patterns and (2) to allow
for instrumentation of classes which are not yet loaded. The resulting process is depicted
in Figure 4.4.

Correct Instrumentation

To deal with the first objective, the Kieker patterns list has to be reintroduced. Whenever
a new pattern (activating or deactivating) the Probe Controller sends a request to the
KiekerInstrumentor to reinstrument all loaded classes. No matter the pattern incoming,
the Probe Controller always sends the whole pattern list to the KiekerInstrumentor. The
KiekerInstrumentor in turn evaluates all loaded classes against the pattern list to determine
the classes which are to be instrumented. This is done by checking each method signature
of each class against the whole pattern list.

The chronology of the instrumentation pattern list is crucial at this point. Each method
signature is checked against every pattern in the pattern list in historical order, from the
pattern added most recently to the oldest one. The first match determines whether to
instrument that specific method or not, depending on whether the matched pattern was an
activating or deactivating one. For example, having one entry in the pattern list:

+ org.apache.commons.io.lOUtils.x(..)

This clearly instruments all methods in the class IOUtils. Now adding another entry (which
deactivates all methods in this class starting with to) makes it obvious that the newest
pattern is the most relevant one and has higher priority than older ones.

+ org.apache.commons.io.lOUtils.x(..)
— org.apache.commons.io.lOUtils.tox(..)

A class which does not have any methods activated is not going to be instrumented. The
resulting list of methods is as usually propagated to the BCInjector and then instrumented,
etc.

18

4.2. Approach

Instrumentation of classes not yet loaded

The second objective involves developing a new component to listen for whenever the JVM
loads a new class. This call is to be intercepted and propagated to the KiekerInstrumentor.
However, Java does not provide such an interface. Conventionally there is no way to do
that.

So a custom class loader is developed. The custom class loader, onward called Kieker-
ClassLoader, features a listening pattern to enable the missed functionality. The application
under test is started with a specific command line argument to JVM to specify to use the
said class loader. The KiekerClassLoader listens on class loads and propagates the call to the
parent class loader (Figure 4.4).

Process of External Tool — » Dataflow
. Instrumentation I:I Component
JMX Client Pattern J
’7 Piece of Data

Application under Test Java Process

Monitoring Controller y Kieker Class Loader
Instrumentation JMX Controller

Patterns ‘

! ; Class

| _ _Probe Controller _ | _ Loaded

: 1

]
|

OperationExecution Patternlist
Probe
| '

Loaded
Classes

Probe Builder

| Kiekerlnstrumentor | -
Instrumentation

_ Methods to | Hotswap |
instrument *

- Instrumented

BClnjector

Classes to
Classes

Figure 4.4. Second attempt integrating Kieker into AIM. Instrumentation pattern list is restored and
KiekerClassLoader introduced.

However using propagation to the parent class loader will not work as hoped. The
reason lies within the way Java class loaders work. Chapter 5.3 of the Java Virtual Machine

19

4. Development of Dynamic Instrumentation Support for Kieker

Specification says: [Lindholm and Yellin, 2013]

Class or interface creation is triggered by another class or interface D, which
references C through its run-time constant pool. [...] If D was defined by the
bootstrap class loader, then the bootstrap class loader initiates loading of C.

In other words if the KiekerClassLoader propagates the event to the parent class loader it
will not get word of any classes referenced by the loaded class. E.g., if a small application
consists of three classes: Main, Office and Person. The Main class starts and calls Office
which in turn calls Person. In this case the only class the KiekerClassLoader would get word
off is the Main class. The Main class would have been defined by the parent class loader
and its references would not even know about KiekerClassLoader.

So the solution is to write a custom class loading code. The class definition is read
from the file system and then defined in KiekerClassLoader. The path on the file system is
determined by the package of the to be loaded class. This method has also its drawbacks:
Having a custom class loading code which overwrites the native class loading code is not
stable.

As of now the KiekerClassLoader does not load classes which reside in jar files. In order
to achieve that the classpath has to be parsed and every jar file in the classpath needs
to be searched. Such an operation has a heavy impact on performance. So the paths of
the various jar files need to be cached to reduce the performance impact which, however,
increases complexity. Thus the additional functionality has not been implemented. A
further information is discussed in Future Work (Section 6.3).

The KiekerClassLoader successfully delegates class loading events to the Probe Controller
now. Each time a new class is loaded by the JVM, the Probe Controller sends another
request to the KiekerInstrumentor. However, in this case it is known that only a single class
needs to be reinstrumented. Thus there is no need to fetch all loaded classes from the
Java Instrumentation API. Nevertheless, the pattern list still needs to be forwarded to the
KiekerInstrumentor to ensure whether the class actually needs to be instrumented or not.

Using this attempt both pitfalls have been overcome — yet with deficiencies. Still this
attempt clearly shows a proof of concept.

4.3 Challenges and Limitations

Kieker’s adaptive monitoring architecture was clearly not designed for dynamic instru-
mentation support. Having to check all loaded classes and each of their methods against
all instrumentation patterns in the pattern list of the Probe Controller, has a drastic impact
on the turnaround time. For this reason a simple heuristic has also been developed which
splits the instrumentation patterns into two parts: A class instrumentation pattern contain-
ing the fully qualified class name, and the rest of the pattern. This allows to check for the
fully qualified class name and not further check each and every method of this class if the
class name does not even match. A better heuristic is discussed in Section 6.3.

20

4.3. Challenges and Limitations

As already explained the class loader is a custom implementation that is not stable.
Normally a class loader should ask its parent class loader whenever a class is to be loaded.
However this custom implementation does not follow this convention and instead first
checks if it can load the class itself and only if it fails it will delegate the call to the parent
class loader. Applications may put a precondition on a clean class loader implementation
to work.

Interesting to note, is that running methods are not instrumented and not altered in
any way. New executions will be executed on instrumented classes, however the classes
which are currently executing will stay alive until no method of it is executing anymore.
This behavior is also described in the javadoc of the Java Instrumentation API [Oracle, b].

21

Chapter 5

Experimental Evaluation

This chapter will describe the experiment that is conducted as well as any results which
have come forth. The goal is to evaluate the usefulness of the developed method. The Goal
Question Metric (GQM) approach is used to determine the needed metrics in Section 5.1.
In Section 5.1.2 MooBench, an overhead measuring tool, is introduced. In Section 5.1.1 a
suitable strategy is selected on how to conduct the experiment. Section 5.2 conducts the
experiment.

5.1 Approach

The developed method is assessed in terms of usefulness. The GQM approach is used to
achieve that goal [Ludewig and Lichter, 2007]. The established research questions are:

> RQ-1 How does it fare in terms of performance?
> RQ-2 Does it scale well?

> RQ-3 Is it reliable?

Figure 5.1 shows the resulting metrics which are raised in order to answer the research
questions. How well the approach performs and how well it scales is measured by the
overhead and the turnaround time. Its reliability is measured with the amount of lost
transactions.

The data for the metrics is gathered by performing experiments. Each experiment is
performed for both approaches, BCI and manual instrumentation. Finally the metrics are
established by the use of the data and compared against each other to see whether an
improvement can be observed.

5.1.1 Strategy

This section uses the guide on choosing the kind of test depicted by Field and Hole [2014].
In the experiment, data is gathered which resembles a score on how well the approach
behaves. The data is a unit of time which is a ratio type of data and also parametric.
The experiment for determining the overhead has only one independent variable which
is also the condition: Either conducting the experiment trough BCI or trough manual

23

5. Experimental Evaluation

[G: Assess the usefulness of the approach]

How does it fare in terms . . .
. . ') . ’)
[Q1. of performance?] [QZ. Does it scale well.] [Q3. Is it reliable?]

Turnaround . Lost

LiHE CYERiEEE M2: Time * Transactions

Figure 5.1. GOM plan used to achieve the evaluation goal [Ludewig and Lichter, 2007]

instrumentation. So according to Field and Hole [2014] a repeated measures t-test is
conducted.
The t-test is conducted with the help of a calculator [Andrefs, 2003].

5.1.2 MooBench - Overhead Measurement

There is a need for a tool which conducts the experiment and gathers the needed data.
MooBench has a lot of potential in this field. It specializes in the field of measuring
overhead of monitoring tools [Waller and Hasselbring, 2013; Waller, 2013]. Not only does it
collect data, but it also analyses and illustrates the data with the help of R [R Project]. It
has also out of the box support for Kieker.

MooBench accounts for Java Just in Time Compilation (JIT) by repeating the experiment
very often until no more optimizations are deployed. It divides the recorded data in two
halves and rates only the second one, as the first one has heavier fluctuations than the
second one. Waller and Hasselbring [2013] recommend having 2, 000, 000 iterations of the
experiment. In some cases JIT may even recognize a method as dead code and eliminate it
completely. MooBench also accounts for these cases by calculating dummy values. It also
mitigates the performance fluctuations of garbage collections by doing a warm up phase in
which memory is being reserved for the experiment.

24

5.2. Conduction

The performance and overhead evaluation will be conducted with the help of this
library, as it fits most.

5.2 Conduction

The experiment is segmented into four parts: Overhead Analysis, Turnaround Analysis,
Scalability Analysis and Reliability Analysis. Each with its own experiment procedure
and results. Overhead Analysis answers RQ-1, Scalability Analysis RQ-2 and Reliability
Analysis RQ-3.

5.2.1 Overhead Analysis

Figure 5.2 shows an extended version of Figure 2.3. It shows the sequence of a manual
instrumentation of the monitored method which is used in this experiment. It is annotated
similarly like in the paper by Waller and Hasselbring [2013]. The sequence diagram is
extended by the turnaround time which will be important in the next section.

Note that T; is executed exactly once for every monitored method. At this point, the
Probe Controller caches whether the signature of the monitored method is to be monitored or
not. This is done to avoid executing this expensive query multiple times. As the experiment
only contains one class and one method, T, will not be covered in I.

e M is the actual method time.

e C; + C; = C is the time spent collecting monitoring data.

e W is the time spent writing the recorded data.

o [is the instrumentation time (does not include T;).

e Ty, + Tmi, = Twmr is the turnaround time of the manual instrumentation
approach.

e Tpc; is the turnaround time of the BCI approach.

To measure the actual method time M, the experiment is also conducted without any
monitoring at all. C is measured by conducting the experiment with a no-operation record
writer and subtracting M. W can be measured by conducting the experiment with an
active record writer and subtracting C + M. I is the time it takes to determine whether to
collect monitoring data or not. It can be measured by conducting a BCI experiment and
subtracting C + M + W (see Figure 5.3).

Figure 5.3 depicts the process of the BCI of the monitored method. In contrast to the
manual instrumentation process it does not contain I. Thus I is the actual overhead which
is to be assessed. The performance of the monitoring writer can heavily fluctuate due to
hard drive slowdowns etc. Also both approaches contain W and it does not influence the
result in any way, so it will be neglected in the analysis part.

The experiment is conducted with the following settings in MooBench:

> Sleep time of 5

25

5. Experimental Evaluation

[MonitoredClass] [MonitoringProbe] [MonitoringControIIer] [ProbeController]

T ; T T T
1 activateProbe() 1 _ | activateProbe() 1
1 1 o >

1 1 T | I

1 1 ! e e e =
= —————— F-mm s — - - Im=——————— - 1
monitoredMethod() ! beforePart() 1 isMonitoringEnabled() 1 1
> >l >l !
1
I 1
isProbeActivated() I isProbeActivated() 1
2 el 2 el
| opt matchesPattern()

T, [Not Cached]

(___________
1
M :I: afterPart() |

C =
2 1
= - r'a MonitoringRecord

newMonitoringRecord(r)

collectData()

._______________________L

Figure 5.2. The process of manual instrumentation for evaluation [Waller and Hasselbring, 2013]

> Single loop

> Single thread

> Recursion depth of 10

= 2 000 000 method calls

> Having a method time of 0 ms

> No quickstart

> Java HotSpot Server VM

> Maximum of 4 GB allocated RAM

The experiment is conducted on the following machines:

26

5.2. Conduction

MonitoredClass MonitoringProbe [MonitoringControIIer] [ProbeController]

activateProbe() | : activateProbe() !

\ 4

reinstrument()

monitoredMethod()

»
>

collectData()

1

1

1

1

1

1

1

1

DA ——— - - 1
1 1

M afterPart() 1 1
> 1
1

1

1

1

1

1

1

1

1

ff collectData()

(__I

- - r : MonitoringRecord

newMonitoringRecord(r)

Figure 5.3. The process of BCI for evaluation

Emulab Machine Personal Machine | University Machine
Ubuntu 12.04 LTS Windows 7 Gentoo
OpenJRE/Oracle JRE 1.7 Oracle JRE 1.7 OpenJRE 1.7

Figure 5.4 shows the result of the experiment. The left side shows the the BCI approach,
the right side shows the manual instrumentation approach.

The BCI approach shows a slight increase in execution time as soon as the method is
instrumented. When activating the monitoring record writer the execution time increases
hugely and also fluctuates hugely as expected. In comparison the manual instrumentation
results however show a massive increase in execution when the method is instrumented.
It seems very strange that even deactivating the Monitoring completely won’t reduce the
execution time significantly. Thus the experiment has been repeated with the Oracle JRE.
However the bizarre result remains (Figure 5.5).

Only after deactivating JIT the results started to seem plausible (Figure 5.6). The
experiment was then repeated with two other machines, a Windows 7 machine and a Linux
Gentoo machine, which both gave more plausible results (Figure 5.7). Unable to find a
valid explanation, the weird result is discarded.

Using the data of the experiment (ignoring the emulab experiment) the values deter-
mined are shown in Figure 5.8

27

5. Experimental Evaluation

o
< Mean execution time of ...
— Writer —— No Probe
—— Collecting Data
o
3 4
-
@
=)
[}
E
= o
g =
5
[
2
i I
o |
Yo} M
o 4 w
T T T T T T
0 200 400 600 800 1000
Executions
(a) BCI results
o
& 7 Mean execution time of ...
— Writer —— Deactivated Probe
—— Collecting Data —— No Probe
o
3 4
—
w
2
[}
g L"
[o
g = | M
: L
3
m ‘Lﬁ_l ,,,,,, Anr T S S S S N S S P D N S — S N
Q |
wn
o 4 w
T T T T T T
0 200 400 600 800 1000

Executions

(b) Manual instrumentation results

Figure 5.4. Overhead experiment results on Ubuntu 12.04 LTS with Open]RE 1.7

28

Execution Time (us)

Execution Time (us)

200

150

100

50

200

150

100

50

5.2. Conduction

Mean execution time of ...

—— Writer —— No Probe
Collecting Data

0 200 400 600 800 1000
Executions
(a) BCI results
Mean execution time of ...
—— Writer —— Deactivated Probe
Collecting Data —— No Probe
I

| k.
T T T T T T
0 200 400 600 800 1000

Figure 5.5.

Executions

(b) Manual instrumentation results

Manual instrumentation result on Ubuntu 12.04 LTS with OracleJRE 1.7

29

5.

Execution Time (us)

Execution Time (us)

30

Experimental Evaluation

o
§ . Mean execution time of ...
— Writer —— No Probe
Collecting Data
. I
8 - Yl o Awig g
-
o
S
n
o 4
T T T T T T
0 200 400 600 800 1000
Executions
(a) BCI results
o
§ T Mean execution time of ...
— Writer —— Deactivated Probe
Collecting Data —— No Probe
1
S At W I oy
o
S 4
n
o 4

0 200 400 600 800 1000

Executions

(b) Manual instrumentation results

Figure 5.6. Overhead experiment results on Ubuntu 12.04 LTS with Open]RE 1.7 without JIT

Execution Time (us)

Execution Time (us)

5.2. Conduction

S Mean execution time of ...
—— Writer —— No Probe
Collecting Data
o -
© -

~
o 4 ‘—
T T T T T T
0 200 400 600 800 1000
Buckets of Executions (each 2000)
(a) BCI results
T
S Mean execution time of ...
— Writer —— Deactivated Probe
Collecting Data —— No Probe
o — ‘ ‘
© -
* #WWW
~
LD
T T T T T T
0 200 400 600 800 1000

Buckets of Executions (each 2000)

(b) Manual instrumentation results. Similarities can be observed with [Ehlers et al., 2011]

Figure 5.7. Overhead experiment results on Windows 7 with Oracle JRE 1.7

31

5. Experimental Evaluation

M(us) | I+ M(us) C+M I+ C+ M(us)
Mean 0.0561 0.7160 2.0718 2.3389
Confidence Interval (CI) 95% 0.0005 0.0006 0.0353 0.0382
Median 0.0000 0.7890 1.9740 2.3680
Max 131.8410 71.0530 13086.6300 13955.8340

Min 0.0000 0.3940 1.5780 1.9730

Standard Deviation 0.2871 249.53 18.0090 19.4660

Sample Size 1,000,000 | 1,000,000 1,000,000 1,000,000

Figure 5.8. Overhead time experiment results

To perform the overhead analysis two hypothesizes are established [Field and Hole,
2014]. We compare the overhead caused by C + M and I + C + M which are the results of
BCI and manual instrumentation respectively.

Hy There is no significant change in the overhead
H 4 There is a significant reduction in overhead

Using the values from Figure 5.8 the t-test can be conducted:

n, = ny = 1,000,000

7, = 2.0718
7, = 2.3389
51 = 18.0090
5o = 19.4660

Ho=p1—p2=0
HA:]/ll—]/l2<O
a = 0.05

The resulting t value is —10.0721. The rejecting range is | — o0, —1.6449]. t does lie within
this range. It is shown that indeed a significant improvement can be made out, thus
eliminating Hy and proving H4.

5.2.2 Turnaround Analysis

When using the BCI approach there are two cases: (1) If a class has not been loaded yet and
(2) if a class has already been loaded by the JVM. The sequence of events that take place are
illustrated in Figure 5.9. In the case that a class has not been loaded yet, the JVM first loads
it and then checks if it needs to be instrumented. Then it is instrumented and reloaded
again. The other case does not have this step and thus fares a little bit better in terms of
turnaround time. Also class loading takes place by reading the class definition from the
hard drive which, as already stated in Section 5.2.1, being neglected in this evaluation.
Thus only the second case is considered.

32

Case A: Class not loaded yet

Load Class

Pattern Check

Instrument Class

Class Swap

Probe Before Part

Monitored Method

Probe After Part

Case B: Class already loaded

Search Class

Instrument Class

Class Swap

Probe Before Part

Monitored Method

Probe After Part

5.2. Conduction

Figure 5.9. The two cases when instrumenting

The experiment is conducted on a set of dummy classes. By the help of a macro,
10,000 dummy uninstrumented and preinstrumented classes are generated, each with
a single method. A sample dummy file is shown in Listing 5.1. This is necessary to
bypass the cache of the Probe Controller. The experiment is conducted to measure the
time T. The procedure in the case of the BCI approach is to instrument one class and
afterwards execute the instrumented method exactly one time. In the case of the manually
instrumentation approach the procedure is to activate the probe of one class and also
execute the instrumented method exactly once. The procedure is depicted in Figure 5.2
and Figure 5.2 from Section 5.2.1.

The results of this experiment are shown in Figure 5.10.
Using the data of the experiment the values determined are shown in Figure 5.11

Tpci(ps) | Tmi(ps)
Mean 38984.74 129.47
CI 95% 646.28 21.87
Median 37846.74 111.31
Max 190712.76 | 5510.88
Min 36867.00 62.36
Standard Deviation | 7373.26 249.53
Sample Size 500 500

Figure 5.11. Turnaround time experiment results

33

5. Experimental Evaluation

o _|
Yo}
o _|
<
@
E
g ®7
=
=}
c
3
§ R
£
2
o _J
—
o 4
T T T T T T
0 20 40 60 80 100
Buckets of Instrumentations (each 10)
(a) BCI results
o _|
n
o
<
@
£
o o _J
g "
[
=}
c
3
5 R
£
=]
o _J
—
o 4

0 20 40 60 80 100

Buckets of Instrumentations (each 10)

(b) Manual instrumentation results

Figure 5.10. Overhead experiment results on Windows 7 with Oracle JRE 1.7

34

© N U N

11
12
13
14
15
16
17
18
19
20
21

5.2. Conduction

public final class MonitoredClassBCITurnaround@0005 implements MonitoredClass {
final ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();

public final long monitoredMethod(final long methodTime, final int recDepth) {
if (recDepth > 1) {
return this.monitoredMethod(methodTime, recDepth - 1);
} else {
final long exitTime = System.nanoTime() + methodTime;
long currentTime;
do {
currentTime = System.nanoTime();
} while (currentTime < exitTime);
return currentTime;

Listing 5.1. Monitored dummy class uninstrumented

5.2.3 Scalability Analysis

After the turnaround analysis it is apparent that the turnaround time is tremendous in
comparison to the manual instrumentation. So an analysis is conducted to see how far the
BCI approach scales. The previous experiment is modified to instrument a certain amount
of dummy classes simultaneously. Afterwards the dummy method of every instrumented
dummy class is executed exactly once. On the manual instrumentation side, the probe is
activated for the same amount of preinstrumented dummy classes. Afterwards, like with
BCI, every dummy method is executed only once to induce the caching. This experiment is
first conducted with 5 classes. Then the experiment is conducted a total of ten times, each
with 5 more classes. Figure 5.12 show the results.

In case of the manual instrumentation the turnaround time is, as expected, almost
constant no matter the amount of classes. The BCI approach shows a static linear increase
in turnaround time. However this experiment is conducted with the best case scenario
for the BCI approach. There are three variables that affect the turnaround time during
BCI heavily: (1) the amount of loaded classes in the JVM, (2) the amount of methods in
the instrumented classes and (3) the amount of instrumentation patterns in the pattern
list. Because when starting the instrumentation, each loaded class is matched with each
pattern in the pattern list. If a class matches, every method of it will be matched against
the instrumentation pattern. This experiment was conducted with exactly one pattern in
the pattern list by the use of wildcards. The classes were preloaded before starting the
experiment. Also every instrumented dummy class had only a single method.

35

5. Experimental Evaluation

Turnaround Time (ms)

500

Turnaround Time (ms)

0.3

36

1500

1000

0.5 0.6

0.4

| | | | | | | |
15 20 25 30 35 40 45 50

of Classes

(a) BCI results

—_

'
'
'
'
'
'
'
'
'
'
'
'
'
'
v
'
'

—_

T T T T T T T T

15 20 25 30 35 40 45 50

of classes

(b) Manual instrumentation results

Figure 5.12. Scalability experiment results on Windows 7 with Oracle JRE 1.7

5.2. Conduction

5.2.4 Reliability Analysis

The reliability analysis will show how the turnaround time affects an application. For this
purpose, a simple HTTP server is created. All the HTTP server does, is sending a reply
with the content This is the response, when getting a GET request. Upon getting a POST
request the server instruments the method responsible for replying. Listing 5.2 shows a
simplified code snippet of it.

For workload Apache JMeter is used [Apache Software Foundation]. It constantly sends
a flood of requests to the HTTP server to simulate users accessing a website. The load
drive system is configured to send a POST request once every second. The POST request
makes the server activate instrumentation. This is done to simulate a webserver being
dynamically instrumented while under heavy work load.

JMeter is first calibrated on a no instrumentation server implementation. It is calibrated
to have as many simultaneous threads until the server is just about to start missing requests.
Figure 5.13 shows an experiment with no lost transactions. The determined value is 200
threads. These 200 threads are sequentially started throughout the first 30 seconds of
the experiment. The experiment runs then for another 180 seconds. JMeter checks every
request to be replied with This is the response. If a wrong reply arrives it will be count
as a lost transaction. Figure 5.14 show results with lost transactions.

Now, several metrics will be defined for this experiment.

e L7, amount of lost transactions for the manual instrumentation at experiment
i

e Lpcy; amount of lost transactions for the BCI at experiment i.

e S)y, amount of samples for the manual instrumentation at experiment .

e Spcy; amount of samples for the BCI at experiment i.

. 21121 Smi; = Sy sum of all the samples of all experiments for the manual

instrumentation.
o Y10 Spe 1; = Spcy sum of all the samples of all experiments for the BCI.
Ly, =~

e Symr S I’ = Ly, mean amount of lost transactions independent from amount

of samples for the manual instrumentation at experiment i.

Lpcy,
* Spci S

= Lpcy, mean amount of lost transactions independent from

amount of samples for the BCI at experiment i.

. 2}21 L Ml = L M number of mean lost transactions for the manual instrumen-
tation.

. 2321 EBC L= /L\BC ; number of mean lost transactions for the BCI.

The experiment is repeated on each approach 10 times and afterwards compared against
each other. As the amount of samples varies from experiment to experiment, the amount
of lost transactions are divided by the amount of samples, to get a value independent from
the number of samples. After all experiments have been conducted a mean value of all

37

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5. Experimental Evaluation

samples is calculated which, afterwards, is multiplied with the amount of lost transactions.
Figure 5.16 summarizes the result of the experiments. Figure 5.15 gives an illustration.

public class HandlerSimple implements HttpHandler {

38

public static final IMonitoringController CTRLINST = MonitoringController
.getInstance();

public static boolean instrumented = false;

private static final String CLAZZ = "test.HandlerMI";

public static final String SIGNATURE = "public void " + CLAZZ
+ ".handle(com.sun.net.httpserver.HttpExchange)";

public static final Runnable instrument = new Runnable() {
@Override
public void run() {
CTRLINST.activateProbe(SIGNATURE) ;

53
public static final Runnable uninstrument = new Runnable() {
@Override
public void run() {
CTRLINST.deactivateProbe (SIGNATURE) ;

+;

public void handle(final HttpExchange t) throws IOException {
final String response = "This is the response";
t.sendResponseHeaders (200, response.length());
OutputStream os = t.getResponseBody();
os.write(response.getBytes());
os.close();

if (t.getRequestMethod().equals("POST")) {
if (instrumented)
new Thread(uninstrument).start();

else
new Thread(instrument).start();
instrumented = !instrumented;

Listing 5.2. Simple HTTP server handler.

5.2. Conduction

Lost Transactions with no instrumentation

Legend
— Latency Transaction Lost

30 40
|

Latency (ms)

20
|

10
|

T T T T 1
0 50 100 150 200

Time (s)

Figure 5.13. Progression of latency over the course of the experiment with no instrumentation. No
lost transactions were registered. Conducted on Windows 7 with Oracle JRE 1.7

Ly Lpci Latp Latpcy

Mean 24.817 | 50.743 11.436 15.980

CI 95% 3.282 2.474 0.002 0.006

Standard Deviation | 26.385 | 28.444 6.549 12.746
Sample Size 10 10 26,105,373 | 15,655,600

Figure 5.16. Lost transactions and latency experiment results

39

5. Experimental Evaluation

Latency (ms)

Latency (ms)

40

50

40

30

20

10

50

40

30

20

10

Legend
— Latency Transaction Lost
T T T T T
0 50 100 150 200
Time (s)
(a) BCI results
Legend
— Latency Transaction Lost

0 50 100 150

Time (s)

(b) Manual instrumentation results

200

Figure 5.14. Result of one reliability experiment on Windows 7 with Oracle JRE 1.7

30

Latency (ms)
15 20

10

—_—

BCI

Mi

Transactions Lost

80 10

60

40

20

5.2. Conduction

'
'
'
'
'
'
'
0 |
I -
'
'
'
'
'
'
'
'
—_—
T
'
_—

|
BCI

|
Mi

Figure 5.15. Amount of lost transactions and latency in comparison with both methods.

To perform the reliability analysis, again, two hypothesizes are established.

Hy There is no significant change in lost transactions
H 4 There is a significant increase in lost transactions

Using the values from Figure 5.16 the t-test can be conducted:

ny =np =10

7, = 24.817
7, = 50.743
51 = 26385
5p = 28.444

Hoy=wp1—p2=0
HAZ]J1—“I/12<O

x = 0.05

The resulting t value is —2.1132. The rejecting range is | — 00, —1.7341]. t does lie within
this range and thus Hj is rejected. So there is a significant change in lost transactions.

41

Chapter 6

Conclusion

This chapter is to put a lid on this thesis. Section 6.1 summarizes the result of the evaluation.
Section 6.2 discusses the conduction of this thesis. Section 6.3 will give a showcase of future
work which can be done.

6.1 Summary

Kieker has been successfully integrated into AIM. The experimental evaluation shows a
reduction in overhead when using BCI. The turnaround time is increased heavily as a side
effect though. The turnaround time scales linearly given an efficient enough implementation
of the Kieker Instrumentor component. Improvements on the performance of this crucial
component are given in Section 6.3. The reliability analysis showed that the dynamic
BCI also has a negative impact on the amount of lost transactions, in contrast to manual
instrumentation. The impact is borderline significant, though. All in all the approach has
its advantages as well as its drawbacks.

6.2 Discussion

This thesis showed the feasibility of dynamic bytecode instrumentation using Kieker. Ini-
tially, this thesis consisted of three parts: (1) a survey of existing approaches for bytecode
modification during execution time (2), the development of an alternative dynamic instru-
mentation approach using the approach which came out of the survey (3) a quantitative
comparison between the approach using bytecode modification and Kieker’s existing one.
The goal of the survey of runtime bytecode manipulation techniques and technologies was
to identify various technologies which provide the capability of modifying Java classes
during runtime. Furthermore, the technologies should have been evaluated in terms of
functionality and feasibility to determine the right choice. However this part was neglected
after a properly working framework has been found [Wert and Heger, 2014]. So this thesis
consists now only of the two latter parts.

Dynamic BCI gives great capabilities to Java applications, however it also has its
drawbacks. A freshly instrumented class is in interpreter mode. It takes a few thousand
executions, until JIT does heavy optimization on it. So in most cases the reduction of the
overhead does not pay for itself. Rather its a better idea to use compile-time instrumentation

43

6. Conclusion

with AOP or manual instrumentation as much as possible. Dynamic BCI, however, comes
in handy when instrumenting methods not specified by AOP. A hybrid approach would
be most suitable for Kieker.

6.3 Future Work

This thesis showed a proof of concept to the usage of BCI in accordance with Kieker.
However this concept is not a full-fledged all-around solution. It has its deficiencies which
can be addressed in future work. One important point is to reduce the overhead during
instrumentation pattern matching. A optimal solution would be to use the patterns in
a hierarchical way. Top-level packages would be scanned first. This would improve the
turnaround time of the BCI a lot and would help scalability as well.

Also the current class loader implementation does not support loading class files from
within jars. An improvement could be done by using an established solution for class
loading like [Kamranzafar].

Another point to improve the performance is to directly instrument classes upon loading.
The current solution reads the class file from the file system, then loads the class into
the JVM. After this the check is done whether to instrument the class or not and is only
afterwards instrumented and reloaded yet again into the JVM. An improvement would be
to make class instrumentation happen upon reading the class file, before defining the class
within the JVM.

Also it would dramatically increase turnaround time to cache all classes loaded by the
JVM. Newly loaded classes are registered by the Kieker Class Loader which can then be
added to the cache and held in suitable data structure. This would eliminate the expensive
fetch to get all loaded classes from the Java Instrumentation APL

Furthermore a hybrid approach can be developed for Kieker. As of now Kieker’s
adaptive monitoring API was replaced by the dynamic BCI support. The hybrid approach
would decouple adaptive monitoring and dynamic BCIL. This would allow for quick
disabling and enabling of monitoring probes without the heavy turnaround of the BCI
approach. And still it would allow to dynamically instrument methods, which were not
preinstrumented during compile-time.

In regard to research, this thesis has done no experimental evaluation using macro
benchmarking. Every experiment is a micro benchmark. Thus evaluating the proposed
approach on a bigger piece of software would give more insight on the overhead of more
usual case scenarios.

44

Glossary

AIM Adaptable Instrumentation and Monitoring. A Java monitoring framework which
has the capabilities to dynamically instrument applications during runtime by the
means of BCL Developed by researchers of the Karlsruhe Institute of Technology and
released as open source software licensed under the Apache License, Version 2.0. iii,
1-3,7-9,11, 13, 14, 16, 17, 19, 43

AOP Aspect Oriented Programming. A technique to modularize a piece of software
by other means than by classes and components. Behavior which is common to a set
of certain classes is centralized in aspects. Usually used in monitoring, profiling and
logging frameworks.. 11, 14, 44, 45

BCI Bytecode Instrumentation. Describes the technique to modify the bytecode of classes
of an application either before or during its runtime. Commonly used in AOP, especially
to inject Monitoring Probes.. iii, 2, 7, 8, 11, 14, 17, 23, 25, 27-37, 40, 4345

CI Confidence Interval. A percentage value expressing the amount of samples which are
within the given interval. E.g., 100 numbers have a mean value of 50. In this example
having a 95% confidence interval of 10 will tell that 95 number lie between 40 and 60..
32,33, 39

GQM Goal Question Metric. An approach to define metrics by establishing research
questions which are answered with the help of metrics. Used to avoid gathering data
for unnecessary metrics. [Ludewig and Lichter, 2007]. 23, 24

JIT Justin Time Compilation. A technique Java employs to increase the performance of
frequently used components by compiling them during runtime into native bytecode.
Usually during runtime more optimization can be deployed than during compila-
tion time so it is very efficient. However it can falsify experiments if not taken in
consideration carefully.. 24, 27, 30, 43

45

Bibliography

[Asp] Aspect] language extension. URL http://www.eclipse.org/aspecti/.

[asm] ASM - Website. URL nttp://asm.ow2.0rg/.

[jav] Javassist - Website. URL http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/.
[ser] SERP - Website. URL http://serp.sourceforge.net/.

[jav. 2006] The -javaagent: Option, 2006. URL http://javahowto.blogspot.de/2006/07/

javaagent-option.html.

[Andrefs 2003] H.-J. Andrefs. T-Test fiir Mittelwertunterschiede zwischen zwei unabhingi-
gen Stichproben, 2003. URL http://eswf.uni-koeln.de/lehre/stathome/statcalc/v2401.htm.

[Apache Software Foundation] Apache Software Foundation. Apache JMeter. URL
http://jmeter.apache.org/.

[Dmitriev 2003] M. Dmitriev. Design of jfluid: A profiling technology and tool based on
dynamic bytecode instrumentation. Technical report, Mountain View, CA, USA, 2003.

[Dufour et al. 2004] B. Dufour, C. Goard, L. Hendren, O. De Moor, G. Sittampalam, and
C. Verbrugge. Measuring the dynamic behaviour of aspectj programs. In ACM SIGPLAN
Notices, volume 39, pages 150-169. ACM, 2004.

[Ehlers and Hasselbring 2011] J. Ehlers and W. Hasselbring. A self-adaptive monitoring
framework for component-based software systems. In I. Crnkovic, V. Gruhn, and
M. Book, editors, 5th European Conference on Software Architecture (ECSA '11), volume
6903 of Lecture Notes in Computer Science, pages 278-286. Springer-Verlag, 2011. URL
http://oceanrep.geomar.de/14429/.

[Ehlers et al. 2011] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring. Self-adaptive
software system monitoring for performance anomaly localization. In Proceedings of the
8th ACM International Conference on Autonomic Computing, ICAC "11, pages 197-200, New
York, NY, USA, 2011. ACM.

[Field and Hole 2014] A. Field and G. Hole. How to Design and Report Experiments. SAGE
Publications, Limited, 2014.

[Heger 2012] C. Heger. Automatische Problemdiagnose in Performance-Unit-Tests. February,
2012.

47

http://www.eclipse.org/aspectj/
http://asm.ow2.org/
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
http://serp.sourceforge.net/
http://javahowto.blogspot.de/2006/07/javaagent-option.html
http://javahowto.blogspot.de/2006/07/javaagent-option.html
http://eswf.uni-koeln.de/lehre/stathome/statcalc/v2401.htm
http://jmeter.apache.org/
http://oceanrep.geomar.de/14429/

Bibliography

[Heiss 2005]]J.]. Heiss. Better profiling through code hotswapping: A conversation with
jﬂuid project lead, misha dmitriev, 2005. URL http://www.oracle.con/technetwork/articles/java/
dmitriev-qga-138654.html.

[Hilsdale and Hugunin 2004] E. Hilsdale and J. Hugunin. Advice weaving in aspectj. In
Proceedings of the 3rd international conference on Aspect-oriented software development, pages
26-35. ACM, 2004.

[Iskhodzhanov et al. 2013] T. Iskhodzhanov, R. Kleckner, and E. Stepanov. Combining
compile-time and run-time instrumentation for testing tools. Programmnye produkty i
sistemy, 32224—231, 2013. URL http://swsys.ru/index.php?page=article&id=3593&lang=en.

[Kamranzafar | Kamranzafar. URL nttps://github.com/kamranzafar/JCL.

[Kieker Project 2014] Kieker Project. Kieker 1.9 User Guide. Software Engineering Group,
Kiel University, Kiel, Germany, Oct. 2014. URL http://kieker-monitoring.net/documentation/.

[Lindholm and Yellin 2013] T. Lindholm and E Yellin. Java SE 7 Virtual Machine Specification.
BOStOl‘l, MA, USA, 2013. URL http://docs.oracle.com/javase/specs/jvms/se7/html/index.html.

[Ludewig and Lichter 2007] J. Ludewig and H. Lichter. Software Engineering - Grundlagen,
Menschen, Prozesse, Techniken. dpunkt.verlag, 2007.

[Oracle a] Oracle. Java Instrumentation API, a. URL http://docs.oracle.com/javase/6/docs/

technotes/guides/instrumentation/index.html.

[Oracle b] Oracle. Java SE 1.5.0 API Specification, b. URL docs.oracle.com/javase/1.5.0/docs/api/

java/lang/instrument/Instrumentation.html.

[Oracle 2011] Oracle. Java Servlet Technology. http://www.oracle.com/technetwork/java/
index- jsp-135475.html, 2011.

[R Project] R Project. R. Free Software Foundation. URL http://www.r-project.org/.

[Rohr et al. 2008] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever, S. Giesecke,
and W. Hasselbring. Kieker: Continuous monitoring and on demand visualization of
Java software behavior. In Proceedings of the IASTED International Conference on Software
Engineering 2008 (SE’08), pages 80-85. ACTA Press, Feb. 2008.

[Sedlacek 2008] J. Sedlacek. Profiling with visualvm, 2008. URL https://blogs.oracte.com/

nbprofiler/entry/profiling_with_visualvm_part_1.
[SpringSource 2011] SpringSource. Spring. http://www.springsource.org/, 2011.

[The Apache Foundation 2011] The Apache Foundation. Apache CXF. http://cxf.apache.org/,
2011.

48

http://www.oracle.com/technetwork/articles/java/dmitriev-qa-138654.html
http://www.oracle.com/technetwork/articles/java/dmitriev-qa-138654.html
http://swsys.ru/index.php?page=article&id=3593&lang=en
https://github.com/kamranzafar/JCL
http://kieker-monitoring.net/documentation/
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/instrumentation/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/instrumentation/index.html
docs.oracle.com/javase/1.5.0/docs/api/java/lang/instrument/Instrumentation.html
docs.oracle.com/javase/1.5.0/docs/api/java/lang/instrument/Instrumentation.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.r-project.org/
https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_1
https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_1
http://www.springsource.org/
http://cxf.apache.org/

[van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey,
and D. Kieselhorst. Continuous monitoring of software services: Design and application
of the Kieker framework. Technical Report TR-0921, Department of Computer Science,
Kiel University, Germany, Nov. 2009.

[van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework
for application performance monitoring and dynamic software analysis. In Proceedings of
the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE 2012), pages
247-248. ACM, Apr. 2012.

[Waller 2013] J. Waller. Benchmarking the performance of application monitoring systems.
Forschungsbericht, November 2013. URL nttp://eprints.uni-kiel.de/22475/.

[Waller and Hasselbring 2012] J. Waller and W. Hasselbring. A comparison of the
influence of different multi-core processors on the runtime overhead for application-level
monitoring. In V. Pankratius and M. Philippsen, editors, Multicore Software Engineering,
Performance, and Tools, Lecture Notes in Computer Science, pages 42-53. Springer, Juni
2012.

[Waller and Hasselbring 2013] J. Waller and W. Hasselbring. A benchmark engineering
methodology to measure the overhead of application-level monitoring. In Proceedings of
the Symposium on Software Performance: Joint Kieker/Palladio Days 2013, pages 59-68. CEUR
Workshop Proceedings, November 2013.

[Wert 2012] A. Wert. Uncovering performance antipatterns by systematic experiments. PhD
thesis, Master’s thesis, Karlsruhe Institute of Technology, 2012.

[Wert and Heger 2014] A. Wert and C. Heger. Adaptable instrumentation and monitoring,
2014. URL nttp://sopeco.github.io/AIM/.

http://eprints.uni-kiel.de/22475/
http://sopeco.github.io/AIM/

Bibliography

Decleration

I declare that this thesis is the solely effort of the author. I did
not use any other sources and references than the listed ones.
I have marked all contained direct or indirect statements from
other sources as such. Neither this work nor significant parts of it
were part of another review process. I did not publish this work
partially or completely yet. The electronic copy is consistent with
all submitted copies.

place, date, signature

51

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Kieker Monitoring Framework
	2.1.1 Monitoring Probes
	2.1.2 Kieker's Adaptive Monitoring API

	2.2 Dynamic Instrumentation
	2.2.1 Javassist
	2.2.2 Hotswap

	2.3 AIM Framework for Adaptive Instrumentation and Monitoring

	3 Related Work
	3.1 State of the Art
	3.2 Distinction

	4 Development of Dynamic Instrumentation Support for Kieker
	4.1 Similarities and Differences between AIM and Kieker
	4.2 Approach
	4.2.1 First Implementation
	4.2.2 Second Implementation

	4.3 Challenges and Limitations

	5 Experimental Evaluation
	5.1 Approach
	5.1.1 Strategy
	5.1.2 MooBench - Overhead Measurement

	5.2 Conduction
	5.2.1 Overhead Analysis
	5.2.2 Turnaround Analysis
	5.2.3 Scalability Analysis
	5.2.4 Reliability Analysis

	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Future Work

	Glossary
	Bibliography

