Workload-sensitive
Timing Behavior Analysis
for Fault Localization
in Software Systems

Matthias Rohr

Dissertation
zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften
(Dr.-Ing.)
der Technischen Fakultat
der Christian-Albrechts-Universitat zu Kiel
eingereicht im Jahr 2014

1. Examiner: Prof. Dr. Wilhelm Hasselbring
Kiel University

2. Examiner: Prof. Dr. Lars Grunske
University of Stuttgart

Date of the oral examination (disputation): October 2nd, 2014

Please cite as:

Matthias Rohr. Workload-sensitive Timing Behavior Analysis for Fault
Localization in Software Systems. Dissertation (PhD thesis), Faculty
of Engineering, Kiel University, Kiel, Germany, Jan. 2015.

@phdthesis{rohr201l5workloadSensitiveTimingBehaviorAnalysis,
author = {Matthias Rohr},

title = {Workload-sensitive Timing Behavior Analysis
for Fault Localization in Software Systems},
type = {Dissertation ({PhD} thesis)},
address = {Kiel, Germany},
school = {Faculty of Engineering, Kiel University},
month = jan,
year = {2015},
isbn = {978-3-7347-4516-4},
}
© 2015 by Matthias Rohr

Herstellung und Verlag: BoD — Books on Demand, Norderstedt

ii

Abstract

Software timing behavior measurements, such as response times, often
show high statistical variance. This variance can make the analysis diffi-
cult or even threaten the applicability of statistical techniques. This thesis
introduces a method for improving the analysis of software response
time measurements that show high variance.

Our approach can find relations between timing behavior variance
and both trace shape information and workload intensity information.
This relation is used to provide timing behavior measurements with
virtually less variance. This can make timing behavior analysis more
robust (e.g., improved confidence and precision) and faster (e.g., less
simulation runs and shorter monitoring period). The thesis contributes
TracSTA (Trace-Context-Sensitive Timing Behavior Analysis) and WiSTA
(Workload-Intensity-Sensitive Timing Behavior Analysis). TracSTA uses
trace shape information (i.e., the shape of the control flow corresponding
to a software operation execution) and WiSTA uses workload intensity
metrics (e.g., the number of concurrent software executions) to create
context-specific timing behavior profiles.

Both the applicability and effectiveness are evaluated in several case
studies and field studies. The evaluation shows a strong relation between
timing behavior and the metrics considered by TracSTA and WiSTA.
Additionally, a fault localization approach for enterprise software systems
is presented as application scenario. It uses the timing behavior data
provided by TracSTA and WiSTA for anomaly detection.

iii

Zusammenfassung

Die Analyse von Zeitverhalten wie z.B. Antwortzeiten von Software-
Operationen ist oft schwierig wegen der hohen statistischen Varianz.
Diese Varianz gefdhrdet sogar die Anwendbarkeit von statistischen Ver-
fahren. In dieser Arbeit wird eine Methode zur Verbesserung der Analyse
von Antwortzeiten mit hoher statistischer Varianz vorgestellt.

Der vorgestellte Ansatz ist in der Lage, einen Teil der Varianz aus dem
gemessenen Zeitverhalten anhand von Aufrufsequenzen und Schwan-
kungen in der Nutzungsintensitit zu erklaren. Dadurch kann praktisch
Varianz aus den Messdaten entfernt werden, was die Anwendbarkeit
von statistischen Analysen in Bezug auf Verldsslichkeit, Prazision und
Geschwindigkeit (z.B. kiirzere Messperiode und Simulationsdauer) ver-
bessern kann. Der Hauptbeitrag dieser Arbeit liegt in den zwei Verfahren
TracSTA (Trace-Context-Sensitive Timing Behavior Analysis) und WiSTA
(Workload-Intensity-Sensitive Timing Behavior Analysis). TracSTA ver-
wendet die Form des Aufrufflusses (d.h. die Form der Aufrufsequenz,
in die ein Methodenaufruf eingebettet ist). WiSTA wertet die Nutzungs-
intensitdt aus (z.B. Anzahl gleichzeitig ausgefiihrter Methoden). Dies
resultiert in kontextspezifischen Antwortzeitprofilen.

In mehreren Fall- und Feldstudien wird die Anwendbarkeit und die
Wirksamkeit evaluiert. Es zeigt sich ein deutlicher Zusammenhang zwi-
schen dem Zeitverhalten und den von TracSTA und WiSTA betrachteten
Einflussfaktoren. Zusétzlich wird als Anwendungsszenario ein Ansatz
zur Fehlerlokalisierung vorgestellt, welcher von TracSTA und WiSTA
bereitgestellte Antwortzeiten zur Anomalieerkennung verwendet.

Table of Contents

Abstract iii
Zusammenfassung v
1. Introduction 1
1.1. Motivationand Problem 1
1.2. Contributions and Evaluation 3
1.3. ThesisStructure L. 6
1.4. BibliographicalNotes 6
2. Foundations 9
2.1. Software Timing Behavior 9
2.2. Software Faults and Dependability of Software Systems . . 23
2.3. Automatic Fault Localization for Software Systems 27
2.4. Anomaly Detection, 32
2.5. Software Application Monitoring 35
3. Fault Localization Approach 39
3.1. Approach Overview and Fault Localization Assumptions . 39
3.2. Software System Model and Monitoring Model 43
3.3. Instrumentation and Trace Synthesis 46
3.4. Trace-Context-Sensitive Timing Behavior Analysis 48
3.5. Workload-Intensity-Sensitive Timing Behavior Analysis . . 49
3.6. Anomaly Detection 52
3.7. Anomaly Correlation and Visualization 58

TracSTA: Trace-Context-Sensitive Timing Behavior Analysis 63

4.1.
4.2.
4.3.
44.

Correlation between Timing Behavior and Trace Context . 64

Trace-Context-Sensitive Timing Behavior Analysis 67
Empirical Evaluation 78
Summary 89

vii

5. WISTA: Workload-Intensity-Sensitive Timing Beh. Analysis 91
5.1. Correlation btw. Timing Behavior and Workload Intensity 92
5.2. Workload-Intensity-Sensitive Timing Behavior Analysis . 96

5.3. Empirical Evaluation 103
54. Summary 111
6. Related Work 115
6.1. Context-sensitive Timing Behavior Analysis. 115

6.2. FaultLocalization & Failure Diagnosis for Software Systems132

7. Conclusions 145
71, Summary 145
7.2, DIiscussion e e 148
73. Threatstovalidity 152
74. FutureWork 154

Appendices

Appendix A. Timing Behavior Distribution Examples 159

Appendix B. Standard Deviation Reduction 167

Appendix C. Listing Example Chapter 5 169

Appendix D. Call Graph Profiling Tools 171
D1 Gprof 172
D.2. Google’s Perftools CPU Profiler 173
D.3. Valgrind’s Call Graph Generator Callgrind 174
D.4. Java’s HPROF Profiler 174
D.5. NetBeans 6.9 JavaProfiler 176

Appendix E. Garbage Collection Analysis 179

List of Figures 183

List of Tables 187

Bibliography 189

Index 223

viii

1. Introduction

This thesis introduces a timing behavior analysis method for distributed
enterprise software systems and an online fault localization approach
that uses it. This chapter starts by motivating the thesis. Section 1.2 states
its contribution and presents how it is evaluated. The structure of the
thesis and bibliographical notes follow in Sections 1.3 and 1.4.

1.1. Motivation and Problem

Many companies depend on enterprise software systems, especially if
these systems provide services and products, such as online banking,
online stores, and online auction sites. This thesis is in the domain of
automatic management of availability and performance of such systems.
Both are essential requirements: Low availability and outages can lead to
significant loss of revenue. Insufficient performance can also motivate
customers to choose a competitor and it can be a waste of computational
resources and IT costs.

One strategy for improving the availability and performance of en-
terprise software systems is based on the monitoring and analysis of
software timing behavior. For optimizing performance, there are auto-
matic approaches that adapt the systems during runtime (e.g., Arlitt et al.,
2001, Garlan et al., 2003, Diaconescu et al., 2004, and van Hoorn, 2014),
and methods to optimize performance, such as profiling [Graham et al.,
1982], localization of bottlenecks [Smith and Williams, 2001b; Hoffman,
2005], workload characterization [Menascé et al., 1999], and regression
benchmarking [Kalibera, 2006]. For improving availability, several auto-
matic failure diagnosis approaches have been proposed, such as provided
by Chen et al. [2002], Aguilera et al. [2003], Agarwal et al. [2004], and
Yilmaz et al. [2008]. This thesis primarily aims to support approaches for
automatic failure diagnosis based on software timing behavior monitor-
ing. The automation of failure diagnosis can potentially reduce repair
times and therefore improve availability (see Page 25), as manual failure
diagnosis of software faults is time-consuming and error-prone [Rohr,

Chapter 1 - Introduction

1e+06

_1_sgcz;na__O_____@______________g__________________ ""g""
[0:1'seconds | ""E"" """" J: """""" E B I

1e+04
I
2
T
|
[
|
|
|
00
|
|
|

Response time in microsecon
1e+02
I
13
(0]
Q
o
=1
Q
h-m#mm
-I‘T

5 micro— I
—| seconds —

1e+00

Operation

Figure 1.1.: Response times of ten internal software operations of an online store.

2007; Marwede et al., 2009]. The ongoing trend of increasing system
complexity [Lyu, 2007] additionally motivates the automation of failure
diagnosis.

This thesis addresses the problem that software timing behavior has
statistical properties that makes it difficult to analyze for the purposes
described above. For instance, software timing behavior tends to show
very high variance [Mielke, 2006; van Hoorn, 2007], which challenges
the applicability and robustness of several statistical methods. Possible
explanations are for instance varying workload, as well as deterministic
and non-deterministic mechanisms, such as scheduling and caching. An
example for the high variance is shown in the boxplot of some internal
software response times of an online shopping platform (Case Study 3,
in Section 5.3.3) in Figure 1.1: The operation response times spread over
several levels of magnitude; for instance the response times of the 8th
operation from the left (an operation that provides price information)
spreads between 62 microseconds and 400 milliseconds (factor 6451).
Note, these are response times of internal software operations and are not
end-to-end response times. In addition to high variance, the distribution
of software timing behavior often shows heavy tails and multimodality.
These and other characteristics are closer described in Section 2.1.3 and
an example for a multimodal distribution can be found in Figure 2.5 on
Page 19.

The relevance of the problem described above arises from the general
statistical consequences and consequences to concrete application scenar-
ios. A general consequence of high variance is that it makes it more diffi-
cult to draw statistical conclusions from single measurements [Menascé

1.2 Contributions and Evaluation

and Almeida, 2001, pp. 168]. This reduces the quality of results (e.g., in
terms of lower confidence and accuracy) or more measurement values
are needed [Mitrani, 1982]. Multimodality and heavy-tailed distributions
can question the applicability of timing behavior analysis approaches,
such as failure diagnosis, online performance management, and regres-
sion benchmarking. Additionally, many approaches internally rely on
foundational statistical methods that assume simple distributions or use
the mean value as representative value for the complete distribution.
Approaches that use simulation would require more simulation runs for
scenarios with high variance for achieving the same confidence [Jain,
1991; Mitrani, 1982]. Especially for anomaly detection, high variance,
multimodality, and heavy-tailed distributions could lead to high false
alarm rates and bad anomaly detection quality. This is valid for mod-
ern research approaches and also for classical monitoring and control
systems that allow the administrators to define thresholds. For instance,
a classical way to determine thresholds goes back to Shewhart [1931]’s
foundational work on quality control: an upper and lower control limit
are defined by a range of three standard deviations around the mean
value of historical observations.

We see two applicability requirements for practical solutions to the gen-
eral problem of this thesis (high variance and multimodality in software
timing behavior):

Rq.1 A solution should be able to continuously operate in production
systems with a suitably low overhead.

Rq.2 It should be easily applicable to large software systems. This in-
cludes that only small changes have to be made to the system
(e.g., non-intrusive monitoring) and that the configuration effort
is relatively low (e.g., not many parameters, architectural model
automatically learned).

1.2. Contributions and Evaluation

This thesis has primary and secondary contributions as illustrated in
Figure 1.2. The two highlighted elements are the primary contribu-
tions, consisting of the two novel timing behavior analysis methods
TracSTA (Trace-Context-Sensitive Timing Behavior Analysis) and WiSTA
(Workload-Intensity-Sensitive Timing Behavior Analysis). Both TracSTA
and WiSTA are quantitatively evaluated in industry- and lab-studies. The

Chapter 1 - Introduction

Primary contribution:
Timing Behavior Analysis Methods
Evaluation:

Quantitative empirical evaluation in industry studies

" Trace-Context- Workload-Intensity- Anomaly
Izzguh%enr;ttg::zn' Sensitive Timing Sensitive Timing S\ nto m;aly correlation and Visualization
9 Behavior Analysis Behavior Analysis etection Fault Localization
I]
1

ISecondary contribution: Fault localziation approach
Evaluation: Proof-of-concept demonstration in lab-studies and application of the monitoring infrastructure in industry systems

Figure 1.2.: Overview of the fault localization approach and the two central
contributions of this thesis.

secondary contribution consists of a new approach to fault localization.
This approach embeds both WiSTA and TracSTA, and extended our mon-
itoring instrumentation Kieker [Rohr et al., 2008c; van Hoorn et al., 2009].
The applicability of the fault localization approach is evaluated in indus-
try systems, while the fault localization capabilities are demonstrated in
a lab study.

The two primary contributions TracSTA and WiSTA both analyze tim-
ing behavior in the context of workload information. In both cases,
the workload information is extracted from control flow information of
application-layer monitoring data. Both TracSTA and WiSTA add annota-
tions to the monitoring data. These annotations categorize each response
time according to their workload contexts. These annotations can be used
as additional information in an analysis of the response times to reduce
the problem with high variance and multimodality described above. This
follows Menascé and Almeida [2001]’s general suggestion to “reduce the
variability of measurements” by dividing timing behavior measurements
into classes that correspond to similar requests [Menascé and Almeida,
2001, p. 168].

The combined hypothesis of TracSTA and WiSTA has two parts:

Hrw: A significant part of the variance in software operation response
times of multi-user enterprise software systems is correlated to the
full trace shape and workload intensity.

Hrw, This correlation can be used in practice to “reduce” the variance
from the perspective of subsequent timing behavior analysis steps
(see Figure 1.2), such as anomaly detection.

More detailed hypotheses for TracSTA (Hr1a, Hrip, Hre) are in Chapter 4
and for WiSTA (Hw1, Hw) in Chapter 5. The wording “in practice” of
Hrw» corresponds to the requirements Rq.1 and Rq.2 of Page 3.

1.2 Contributions and Evaluation

TracSTA categorizes software operation response times based on the
trace shape. The timing behavior of software operations can be quite
different depending on the type of a call, as demonstrated later in this
thesis. The type of a call may be specific for instance in the identity of
the caller, or in whether subcalls are made or not. Our TracSTA method
extends the profiling research presented by Ammons et al. [1997] and
Graham et al. [1982]. The empirical evaluations of TracSTA demonstrate
in industry systems that our trace contexts relate to significantly more
variance than the concepts provided by related work. Furthermore,
our evaluation shows that TracSTA in some cases splits a multimodal
distributions into multiple unimodal distributions.

WIiSTA is based on the observation that operation response times in
enterprise software systems depend on the amount of workload. Typi-
cally, software operation response times increase with increasing work-
load [Jain, 1991], as parallel requests compete for shared resources (e.g.,
CPU, or memory access). WiSTA distinguishes timing behavior by work-
load intensity. As with TracSTA, the empirical evaluation of WiSTA was
also performed in industry systems. This demonstrates that WiSTA’s
metrics corresponds to a significant part of variance in the timing be-
havior of real systems. Workload intensity analysis is a common part in
the domain of queueing network analysis and other analytical perfor-
mance analysis methods (e.g., Menascé and Almeida, 2001; Smith and
Williams, 2001b; and Jain, 1991) and some authors use such analytical
models also for online analysis during system operation (e.g., Nou et al.,
2008). WiSTA does not use analytical performance analysis methods, and
therefore, it has relatively low computational resource requirements even
in large systems. Furthermore, WiSTA introduces a new metric for work-
load intensity that can be automatically derived by typical monitoring
frameworks, without requiring hardware resource monitoring. WiSTA
automatically addresses that in a distributed system, software operations
usually consume directly only local resources and that parallel software
operation executions may have different operation-individual resource
sharing issues.

The secondary contribution of this thesis is a new fault localization
approach based on timing behavior monitoring. This contribution is
secondary in the sense that no empirical evaluation was performed, it
is less focused than the primary contribution, and it partly assembles
existing methods. The fault localization approach uses TracSTA and
WISTA to isolate variance and multimodality before anomaly detection.
In case of a failure detection, all anomalies are correlated in the context

Chapter 1 - Introduction

of their architectural correspondence to compute for each component
instance a probability for containing a fault for a failure. The approach
visualizes the fault localization result with colors according to fault prob-
ability in a 3-layer architectural visualization. WiSTA and TracSTA can
both significantly improve the anomaly detection quality and the fault
localization quality through the reduction of variance and multimodality.
An empirical evaluation of the complete fault localization approach is out
of scope of this thesis, because of the large number of controlled variables
for each conceptual step of the fault localization approach (Figure 1.2)
and the challenge to specify realistic fault load and workload for several
systems. Nonetheless, the fault localization approach is demostrated in a
distributed system in the lab that is exposed to artificial fault load.

1.3. Thesis Structure

Chapter 2 provides the required foundational background for the re-
mainder.

Chapter 3 presents our approach for fault localization, which provides
the application scenario for the two primary contributions. Further-
more, it defines basic terminology and a software execution model
for the later chapters.

Chapters 4 and 5 introduce the two main contributions TracSTA and
WIiSTA. Both chapters contain the empirical evaluation for each
timing behavior analysis method.

Chapter 6 presents the related work for all contributions of the thesis.

Chapter 7 concludes the thesis with a summary, a discussion, and po-
tential future work.

1.4. Bibliographical Notes

Parts of this thesis have been published before in publications that have
been authored or co-authored by the writer of this thesis:

o The research on trace-context-sensitive timing behavior analysis
Chapter 4 was published in Rohr et al. [2008b] and Rohr et al.
[2008a].

1.4 Bibliographical Notes

o The research on workload-intensity-sensitive timing behavior anal-
ysis of Chapter 5 was published in Rohr et al. [2010]. The research
on workload intensity and on workload generation was supported
by the master thesis of van Hoorn [2007], which was supervised
by the author of this thesis.

e Our concept for timing behavior anomaly detection with a focus on
considering workload of Chapter 3 was initially published in Rohr
et al. [2007]. Some failure diagnosis concepts of Chapter 3 are based
on our joint work in Marwede et al. [2009] and were addressed by
the diploma thesis of van Hoorn [2007], which was supervised by
the author of this thesis. Research on the visualization of failure
diagnosis results and on fault localization have been conducted in
the context of the master thesis of Marwede [2008], which was also
supervised by the author of this thesis.

e The concepts on timing behavior monitoring in distributed software
systems were published in Focke et al. [2007b] and Rohr et al.
[2008¢]. Some of this research was conducted and implemented
in the context of the master thesis by Focke [2006], which was
supervised by the author of this thesis.

e Parts of the foundations on software reliability and software faults
have been coauthored and published in Eusgeld et al. [2008] and
Ploski et al. [2007].

The following additional student theses and master theses have been
supervised and conducted in the context of this thesis:

o Stransky [2006] explored failure diagnosis using neural networks.

e Sommer [2007] applied timing behavior anomaly detection for
intrusion detection.

o Schwenkenberg [2007] contributed fault injection techniques.

2. Foundations

2.1. Software Timing Behavior

The ISO/IEC 9126-1 [2001] standard’s taxonomy of quality characteristics
provides the term efficiency for what is called performance in the soft-
ware performance engineering community. Efficiency is further divided
into time behavior and resource utilization [Jung et al., 2004; Sabetta and
Koziolek, 2008], as illustrated in Figure 2.1. A common definition in the
software performance evaluation community defines performance as “the
degree to which a software system or component meets its objectives for
timeliness” [Smith and Williams, 2001b]. This document uses the term
timing behavior instead of time behavior, with a focus on timeliness, and
without considering non-timing aspects such as memory consumption.
The collection of software timing behavior is relatively easy, but its anal-
ysis can be very complex, as it results from processes on all the system
layers from the hardware layer to the application layer [Yilmaz et al.,
2008; Lashari and Srinivas, 2003; Stewart and Shen, 2005].

In the remainder of this section, major concepts of timing behavior
metrics, timing behavior modeling and analysis methods are outlined.
Additionally, statistical characteristics of monitored software timing be-
havior and its major influences (e.g., workload) are presented.

Efficiency

Resource
Utilization
CPU Utilization,

Memory Utilization,
1/O Utilization,

Time
Behavior

Response Time,
Throughput,

Figure 2.1.: Efficiency in the ISO/IEC 9126-1 [Sabetta and Koziolek, 2008].

Chapter 2 - Foundations

2.1.1. Timing Behavior Metrics

In the following, definitions for several timing behavior metrics are
provided, before timing behavior modeling and analysis methods are
presented in Section 2.1.2.

2.1.1.1. Response Time and Execution Time

In general, response time is defined as the duration between a request and
the corresponding response [Jain, 1991, p.37, and Smith and Williams,
2001b, p.3]. A request and response can be between a system user and a
system, or between system components. This definition can be refined
by considering the time to start computing the result, and to deliver the
response, as illustrated in Figure 2.2. Response time (1) only focuses on
the time required to create the response from the request, without the
initial reaction time. Response time (2) and (3) both include the reaction
time, but differ in including the time to deliver the response to the caller.
Response time (3) is also called end-to-end response time [Jain, 1991].

This thesis focuses on operation response times in conformance to
Figure 2.2’s response time (1). The term operation refers to the software
programming language concept, also called method (e.g., in Java and
C#), routine, and procedure. The term operation response time is defined
as the duration between the start and the end of an operation execution,
including the time spent in other operation executions that are invoked
by the execution, and without the time required to start the operation’s
execution and with the time to deliver its response. For simplicity, this
thesis uses the term response time for operation response time (1). Not
all operations have a response time, as an infinite loop can be part of
operation.

We define the execution time of an operation as the fraction of the
response time that is spent for the operation execution itself, without both
the time spent for interacting with subcalls and without the response
time of subcalls [van Hoorn, 2007; Rohr et al., 2010]. Therefore, the
response time of an operation execution is the sum of its execution time,
and the response times of all nested operation executions. Note, this
definition is similar but not identical to definitions for instance by Musa
et al., 1987 and Patterson and Hennessy, 2008 that define the execution
time as the time actually spent by the CPU for executing instructions of a
program, which is also termed CPU time [Smith and Williams, 2001b]. In
the following, only the first definition is used in this thesis, as it uses the

10

2.1 Software Timing Behavior

User or User or System, System, System or User or caller
caller caller component component operation starts next
starts finishes or operation or operation completes request

request request starts starts response

1 l execution response 1 l
! ! >
 Reaction Time! ; ! Think Time: TMe
— —>

Response Time 1

Response Time 2

Response Time 3

Figure 2.2.: Response time metrics. Illustration based on Jain [1991].

Figure 2.3.: Response times and execution times.

perspective of software application layer monitoring, in contrast to the
second definition’s viewpoint of lower system layers or resources.

An example for the above definitions of response time and execution
time are provided in the sequence diagram in Figure 2.3: The response
time of operation a() is the sum of a()’s execution time before and after
the execution of b() (t1 and t5), the time to call b() (t2) and return from b’s
execution (t4), and the execution time of b() itself (t3). The execution time
of b() is equal to its response time, since b() has no subcalls, from the point
of view of this monitoring instrumentation. The sloped operation call
notations in Figure 2.3 indicate time durations needed by the execution
environment to start or to end executions.

11

Chapter 2 - Foundations

As mentioned above, some timing metrics are from the perspective of
resources, such as CPU, I/O devices, or processes [Smith and Williams,
2001b]. These metrics explicitly consider details of scheduling and
software-hardware interaction, such as transmission time, service time,
waiting time, queueing time, and residence time. For instance, the liter-
ature on queueing network analysis (e.g., Menascé and Almeida, 2001;
Jain, 1991) uses these metrics. Hardware resource monitoring requires
deep instrumentation [Woodside, 2008], which has typically too much
overhead for continuous application in large software systems.

Resource-oriented metrics are not presented here in detail, as this thesis
focuses on analyzing measurements on software application layer and
abstracts from resource consumption details. This abstraction has the
advantages that no hardware resource monitoring is required, and that
the timing behavior models are smaller and simpler.

2.1.1.2. Throughput and Utilization

Throughput can be defined as the number of requests processed within
some time interval [Smith and Williams, 2001b, p.3, and Jain, 1991, p.38].
While a system’s user might be primarily interested in a short response
time, the system owner might aim for high throughput to minimize costs
per usage [Cheng, 2008].

The utilization of a resource is the fraction of time in which the resource
is busy providing service [Jain, 1991, p.39 and Menascé and Almeida,
2001, p. 109]. An example is CPU utilization. Resource utilization is, for
instance, used in sizing, i.e., selecting a suitable amount of hardware for
a particular system and workload. SAP typically targets an average CPU
utilization of 65 % [Cheng, 2008].

2.1.1.3. Workload, Workload Intensity, and Scalability

The workload of a system is the set of all inputs received from the envi-
ronment [Menascé and Almeida, 2001, p. 205]. Workload can be struc-
tured into workload intensity and individual request characteristics (com-
pare [Sabetta and Koziolek, 2008]).

Workload intensity is the amount of usage during a time period. In this
context, usage may be requests [Smith and Williams, 2001a, p. 139], trans-
actions, processes, or customers [Menascé and Almeida, 2001, p. 502].
Examples for workload intensity metrics are arrival rate, request arrival
burstiness, inter-arrival time [Jain, 1991], the percentage of saturation

12

2.1 Software Timing Behavior

throughput [Stewart and Shen, 2005], and the number of user requests
within a system.

Individual request characteristics are timing behavior relevant characteris-
tics that are specific to a class of requests, such as particular request types,
the shape of the corresponding trace, the size and values of operation
call parameters (e.g., Koziolek et al. [2008]), and its service demands.
Such characteristics can be valuable information for a timing behavior
analysis: for instance, software that computes a digital signature for files
would have typically larger response times for videos than for images, as
images are typically smaller than videos. The service demand is defined as
the total amount (of time or other resource usage metric) that a request
or operation execution requires from a particular resource [Menascé and
Almeida, 2001, p.69, and Smith and Williams, 2001a, p. 139]. Note, the
above definition of individual request characteristic is more general than
the service demand (as for instance defined by [Sabetta and Koziolek,
2008]), because it includes general characteristics of a request type and
not only its resource requirements.

Scalability is the ability of a system to meet its response time or through-
put objectives as the workload intensity increases [Smith and Williams,
2001b, p. 5]. Alternatively, scalability can be considered as a system’s
ability to be successfully sized for different workloads [Cheng, 2008;
Marquard and Gotz, 2008].

2.1.2. Timing Behavior Modeling and Analysis Methods

Herzog [2000] divides software systems into real-time systems and resource-
sharing systems: the timing behavior of real-time systems is usually an-
alyzed using deterministic models (e.g., worst case models) with fixed
time intervals, while resource-sharing systems require stochastic timing
models due to contention and non-deterministic scheduling. The empha-
sis in this thesis is on resource-sharing systems (e.g., enterprise software
systems, and Web applications).

Furthermore, performance analysis techniques can be distinguished
based on whether they are measurement-based techniques, analytical ap-
proaches, or use simulation [Woodside, 2008]. These classes overlap and
are combined in practice, as for instance the parameters of an analytical
model may be determined by measurement. Measurement techniques
are typically data-centric, while the analytical and simulation approaches
are model-centric, i.e., abstraction is used to capture the essence of a
systems performance [Woodside, 2008].

13

Chapter 2 - Foundations

Major measurement-based techniques are workload characterization,
timing behavior monitoring, and monitoring data analysis. Classes of
monitoring data analysis approaches are, for instance, bottleneck iden-
tification, anomaly detection, and performance tuning. It is a classical
measurement-based analysis to break down end-to-end response times
into component response times [Cheng, 2008].

Analytical performance analysis approaches focus on typical perfor-
mance models (for non-real-time systems), such as queueing networks,
layered queueing networks [Rolia and Sevcik, 1995; Franks et al., 2009],
stochastic Petri nets, and Stochastic Process Algebra [Herzog, 2000].
These models can be solved analytically for many purposes such as pre-
dicting the mean response time for different design alternatives, and to
determine bottleneck resources. Queueing networks and layered queue-
ing networks are formalisms to model performance relevant (physical
and logical) resources and their usage within a system. Analytical per-
formance analysis models can be difficulty to apply (e.g., Thereska and
Ganger [2008]) because of high resource consumption. Many analytical
approaches make strong assumptions and strong simplifications, such
as the exponential distribution of response times, to be mathematically
tractable. Many recent model-based performance prediction methods are
based on queueing networks [Balsamo et al., 2004].

Simulation techniques provide an alternative to solving performance
models analytically, as analytical models can easily become mathemati-
cally intractable if common model simplifications cannot be made. Simu-
lation methods can be more adequate than analytical methods to evaluate
design alternatives [Bause et al., 2008], as simulation models can be ex-
tended to include specific details.

Performance analysis techniques can be further distinguished based
on the phase of the software life cycle in which they are primarily ap-
plied, although there are some approaches that span all phases. Some
approaches address the early design time of a system, while other tech-
niques, such as the approach presented in this thesis, are performance
analysis approaches, which are used after the software is released in its
production environment.

A typical example of a technique used during early design is perfor-
mance prediction. Performance prediction estimates performance metrics,
such as average response time, throughput, and resource utilization for
an expected workload (e.g., by Balsamo et al., 2004, and Becker et al.,
2007). Liu et al. [2005] reported a low performance prediction error of
often less than 10 % for a component-based (Java Enterprise Edition)

14

2.1 Software Timing Behavior

software application.

Much later in the software life cycle than prediction is profiling. Pro-
filing refers to approaches that record execution profiles for quantifying
the fraction of time and resources used in parts of a software program
(e.g., Smith and Williams, 2001b, p. 312 and Spivey, 2004). Profiling
methods are for instance presented by Viswanathan and Liang [2000],
Graham et al. [1982], Xie and Notkin [2002], and Hauswirth et al. [2004].

Examples for profiling with several tools such as gprof, Google’s
perftools, Valgrind, and Java’s HPROF are in Appendix D on Page 171.
The performance evaluation technique software regression benchmark-
ing [Bulej et al., 2005] aims at detecting regressions in software perfor-
mance between different versions of a software system.

More comprehensive reviews of performance analysis topics, such
as timing behavior modeling, measurement, and analysis are provided
by Jain [1991]; Herzog [2000]; Smith and Williams [2001b]; Balsamo et al.
[2004]; van Hoorn et al. [2009]; and Sabetta and Koziolek [2008].

2.1.3. Characteristics of Software Timing Behavior

Modern software systems have complex timing behavior. It is challeng-
ing to characterize the timing behavior of typical enterprise Java soft-
ware applications and multi-user Web applications [Lashari and Srinivas,
2003; Stewart and Shen, 2005]. Technologies such as garbage collection
and just-in-time compilation make it difficult to determine and under-
stand performance down to hardware resources [Hauswirth et al., 2004].
Enterprise software applications are usually deployed in middleware
environments that do not provide real-time properties and show non-
trivial scheduling and queueing behavior. Such software applications
are multi-user systems with concurrent and heterogeneous user requests
competing for computational resources (see Herzog, 2000). The resulting
response time distributions often show high variance and do not follow
simple distribution families, such as exponential or normal distributions
(e.g., Mielke, 2006; van Hoorn, 2007; Sambasivan et al., 2011).

Statistical properties of the timing behavior of real world software
systems are not well-researched: For instance, Mielke [2006] states that
there is a lack of detailed knowledge of relevant statistical timing behavior
properties for Enterprise Resource Planning systems, and Harchol-Balter
[2008] explains that relatively little is known about the timing behavior
of server farms.

15

Chapter 2 - Foundations

Response time measurements often are well-described by log-normal
distributions or Pareto distributions (e.g., Mielke, 2006). Timing behavior
distributions consisting of right-skewed (i.e., mode < median < mean),
long and heavy-tailed distribution elements have been reported for Java-
based Web applications [van Hoorn, 2007]. TELNET connection dura-
tions showed response times (data transfer times included) that well-fit
log-normal distributions [Paxson, 1994]. Mielke [2006] demonstrated that
log-normal and Generalized Lambda distributions fit well to the response
times for Enterprise Resource Planning systems. Our measurements [van
Hoorn, 2007] suggested that operation response times are well described
with log-normal distributions. Response time distributions can also be de-
scribed using Generalized Lambda Distributions, which actually can be
parameterized to follow the shape of log-normal distributions [Au-Yeung
et al., 2004]. An example for the fitting of a log-normal distribution (2
and 3 parameters) to measurement data, here from a simple Java Servlet,
is displayed in Figure 2.4. In this example, the 3-parameter log-normal
distribution fits better to this right-skewed data than the 2-parameter
log-normal distribution, especially since it provides the possibility of a
right-shift to address that the minimum response time seems to be at 1
second.

Furthermore, empirical results show that workload is non-stationary
(e.g., mobile network traffic [D’Alconzo et al., 2009]) for instance due to
time-of-day variations with strong 24-hour seasonality. This suggests
that it can be more suitable to compare in anomaly detection measure-
ments with measurements of another day with the same time, instead of
comparing a measurement to its previous measurement of the same day.

2.1.3.1. Heavy tails and high variance

Workload and timing behavior distributions can have so-called heavy
tails [Menascé and Almeida, 2001; van Hoorn, 2007, p. 168]. Heavy-tailed
distributions have many observations in the so-called tails (i.e., the left or
right end of a distribution) [Field et al., 2012], and sample data is “char-
acterized by the presence of observations with very large magnitudes, a
phenomenon often referred to as high variability” [Kogon and Williams,
1998]. Additional mathematical definitions on heavy-tailed distributions
can be found in Harchol-Balter [2002], and in Crovella et al. [1998]. The
simplest heavy-tailed distribution is the Pareto distribution [Crovella and
Bestavros, 1997]. Strict definitions do not consider the log-normal distri-
butions as being heavy-tailed; however, log-normal distributions show

16

2.1 Software Timing Behavior

A .
K — - Log-normal fit
=3 I | S Log-normal fit (3-parameter)
S| — Measurement data
>
=
2 S
[o
©
>
2
=3
|8 s
o)
o
S
o [aV]
C)__
o
(=2 A -
S - et
o

1020 1040 1060 1080 1100 1120
Response time (milliseconds)

Figure 2.4.: Probability density estimate for response time measurements and
two fitted distributions.

similar characteristics in sample data that are typical for heavy-tailed
distributions [Crovella and Bestavros, 1997]. Typical characteristics are
for instance:

e Very high variance, especially compared with exponential dis-
tributions; Sample values can span over many orders of magni-
tude [Harchol-Balter, 2002]

e “Extreme” variability in workload of Web-based systems [Menascé
and Almeida, 2001]

e Many small and some very large values, but far less medium sized
values than for exponential distributions [Crovella et al., 1998]

Other examples for heavy-tailed distributions in computer systems are
provided by empirical studies on FTP data transfer size and duration [Pax-
son, 1994], Internet file transfer times [Downey, 2001], computer system
tasks sizes [Harchol-Balter, 2002], and HTTP response size [Menascé and
Almeida, 2001, p. 167].

Workload with heavy-tailed distributions can results in high variability
in timing behavior or heavy-tailed response times: For instance, Crovella

17

Chapter 2 - Foundations

and Bestavros [1997] and Vallamsetty et al. [2003] provid empirical evi-
dence for heavy-tailed response time distributions of Web applications
and e-commerce systems.

Heavy-tailed service request sizes lead to very long service times
in a typical single server system [Harchol-Balter, 2002]. Furthermore,
right-skewed heavy-tailed service size distributions can lead to a non-
negligible probability for the occurrence of very long jobs and if a sys-
tem’s scheduler cannot prevent that such long jobs block many small jobs,
then the average response time will be quite high (see Psounis et al., 2005).
Our measurements in a Java Web application showed right-skewed soft-
ware operation response time distributions with heavy tails [van Hoorn,
2007].

2.1.3.2. Multimodal distributions

Response time distributions can be multimodal, i.e., the probability density
function has more than one local maximum [Simon, 2006, p. 473]. An
example for this is provided in Figure 2.5, which shows a response time
distribution monitored in the DaCapo Eclipse Benchmark [Blackburn
et al., 2006] as described in Rohr et al. [2008a]. Multimodal distributions
are problematic for many timing behavior analysis approaches, as these
cannot accurately be described by a single simple distribution [Rohr et al.,
2008a]. Furthermore, multimodal distributions may have mean values
that are a bad representative for a typical sample value. For instance, the
mean in Figure 2.5(2) is located at a point of relatively low probability
density. An anomaly detection approach that assumes the mean value as
good representative for “normal” behavior is unsuitable in this case.

Other empirical examples for multimodality can be found in the work
of Bulej et al. [2005], Mielke [2006], and van Hoorn [2007]. Bulej et al.
[2005] observed multimodal response time distributions in different ver-
sions of CORBA middleware and used the term “cluster” for each group
of similar response times. These authors illustrate that clusters in timing
behavior measurements reduce the potential to detect changes in the
timing behavior of software.

2.1.4. Influences to Software Timing Behavior

In the following, influences to timing behavior are presented. The timing
behavior depends on many variables such as a system’s design, code, and
execution environment [Woodside et al., 2007]. Potential influences to

18

2.1 Software Timing Behavior

(2] —

28 o ! - - Mean17.73

3 T o |

o} N

£ 8- ° !

Eo | z |

B k3

@ g o !

£ w0 237 1

2 |

2 B

8— (=]

3~ 8 \

= S \ \ \
0 100 200 300 400 500 15 20 25

Observation Response time in milliseconds

(1) Response time scatter plot. (2) Probability density estimate.

Figure 2.5.: Multimodality of response times. (See Rohr et al. [2008a] for details.)

timing behavior can be on all system layers, such as hardware-, network-,
operating system-, middleware-, and software application layer. Timing
behavior propagates through the system by control flow [Kapova et al.,
2010]. Some of the influences to timing behavior are dynamic, i.e., vary
often during runtime, while others, such as a system’s general design
and hardware, can be considered static as they do not change frequently
and not during runtime. In the following, major categories of influences
are summarized. Especially the influence of workload intensity to timing
behavior is relevant for this thesis.

2.1.4.1. Middleware, Operating System, and Execution
Environment

The performance of component-based software systems can be strongly
determined by the implementation of the middleware that hosts the
components and its configuration [Gorton and Liu, 2003; Liu et al., 2005].
For instance, enterprise software systems are middleware-intensive, as
the structure and behavior of these systems are significantly demerited by
its middleware [Giesecke, 2008]. A significant part of the total execution
time is spent in the middleware, depending on the particular amount of
middleware service usage; for instance, 15-30 % of the execution time
was spent in the middleware for the benchmark scenarios used by Lashari
and Srinivas [2003]. The operating system itself is also a timing behavior
influence: the memory management of operating systems (physical page
allocation) is known to cause a non-deterministic varying influence on
software timing behavior [Hocko and Kalibera, 2010].

19

Chapter 2 - Foundations

Many software applications are executed in so-called managed exe-
cution environments, such as Java or C# software. Lashari and Srinivas
[2003] reported that it is very challenging to characterize the runtime
behavior of Java software applications, as the managed execution envi-
ronment spends much time for other activities than bytecode execution,
such as dynamic “ust-in-time” compilation, native code execution, and
execution of services of the operating system and execution environment.
Dynamic compilation typically uses non-deterministic optimization tech-
niques resulting in non-deterministic timing behavior [Georges et al.,
2008; Hocko and Kalibera, 2010]. Performance issues of automatic mem-
ory management (garbage collection) are summarized in Section 2.1.4.6,
on Page 22.

The middleware, the execution environment (e.g., Java virtual ma-
chine), and the operating system all contain scheduling algorithms. De-
pending on the scheduling strategy, a scheduler might optimize the mean
response times at the cost of variance [Sambasivan et al., 2011].

2.1.4.2. Software Architecture and Software Implementation

The architecture of a software system, i.e., its fundamental organization
and design principles [ISO/IEC 42010, 2006], and its implementation are
key performance factors of a software system. Examples for performance-
related design decisions in the software architecture are the organization
of data access and how the system is structured into interacting compo-
nents. On implementation level, scheduling algorithms, sort algorithms,
and principles and data structure of concurrent programming are exam-
ples for well-studied performance related topics. Typical software per-
formance patterns and anti-patterns can be found in Smith and Williams
[2001b,a, 2002].

2.1.4.3. State

Performance relevant state elements are for example cache content, data
state, software application state, and the state of the operating system.
A categorization of state and its relation to performance is presented in
detail by Kapova et al. [2010].

20

2.1 Software Timing Behavior

Response Time

Workload Intensity

Figure 2.6.: Typical relation between response times and
workload intensity. Illustration based on [Jain, 1991].

2.1.4.4. Individual Request Characteristics

Individual request characteristics (definition on Page 13) can have a
strong influence on software timing behavior. Therefore, some perfor-
mance analysis approaches explicitly consider request characteristics.
Examples for request characteristics that are explicitly addressed are
parameter values and value sizes [Koziolek et al., 2008], caller identity
of a request [Graham et al., 1982], and resource consumption metrics,
such as the number of accesses to persistence layers, CPU consumption,
memory consumption and the number of network accesses [Cheng, 2008;
Menascé and Almeida, 2001].

2.1.4.5. Workload Intensity and Timing Behavior

Response times often increase by increasing workload intensity (e.g., in
terms of the number of requests per minute; see definition on Page 12).
The typical relation between workload intensity and response times is
illustrated in Figure 2.6 [Jain, 1991]: Up to some first workload intensity
(left dotted line) the response time does not increase significantly while
the workload increases. After a second workload intensity level (right
dotted line) the response time increases rapidly. Already Scherr [1965]
reported a similar relation between response times and the number of
online users in multi-user systems [Herzog, 2000].

The line “measured results” in Figure 2.7 shows the relation between
workload intensity and average response times of two distributed JavaEE
applications [Stewart and Shen, 2005]. The average response times are

21

Chapter 2 - Foundations

N
o
[s]

—+— The base model
—&— The RI model
—— The full model
—+— Measured results

—+— The base model
—&— The Rl model
—o— The full model
—¥%— Measured results

()
o
S

a
=]
N
a
S

o

S
N
=]
S

o

=]
o
S

e

o
S

Average response time (milliseconds)
Average response time (milliseconds)
@
o

0 0 . . .
50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
Input workload (in proportion to the saturation throughput) Input workload (in proportion to the saturation throughput)

(1) RUBIS auction benchmark application. (2) StockOnline stock trading demo.

Figure 2.7.: Measured and predicted average response times in relation to
workload intensity. Images from Stewart and Shen [2005].

from measurements and three different prediction models, and follow
approximately the shape described by Figure 2.6.

Examples for research approaches that explicitly include workload in-
tensity in the evaluation of timing behavior measurements are by Maxion
[1990], Smith and Williams [2001a], and Zhang et al. [2007].

2.1.4.6. Automatic memory management (Garbage Collection) and
Timing Behavior

A major influence to performance and responsiveness for software sys-
tems implemented in programming languages, such as Java and C# is
automatic memory management, also known as garbage collection [Print-
ezis, 2004; Meier, 2007; Cheng, 2008; Blackburn et al., 2004].

Many garbage collectors (e.g., collectors released together with Java
versions 1.4, 5, and 6) are organized in garbage collection runs. Some
of the runs (minor collections) have shorter execution times than other
less frequent runs (major collections) [Printezis, 2004]. The collection
runs are not completely concurrent to normal program execution (e.g.,
Java SE 5’s Concurrent Mark-Sweep Collector, Serial Collector, and Paral-
lel Collector), so that the application is paused [Sun Microsystems, 2006].
Worst-case pause times of several seconds can occur [Printezis, 2004]. The
Garbage-First (G1) collector of Java 7 and Java 8 aims to limit pause times
to below 0.5 seconds [Oracle, 2013] and allows setting a not-guaranteed

22

2.2 Software Faults and Dependability of Software Systems

Fault System Service
(dormant / active) Error (S Failure \)
System

<<Component>> &_] <<Component>> & |
— 0

Figure 2.8.: Error propagation example in a component-based software system.

maximum pause time target [Oracle, 2014].
Own measurements on garbage collection activity during the case
studies of this thesis are presented in Appendix E.

2.2. Software Faults and Dependability of
Software Systems

The foundations on software faults and fault localization that are relevant
for this thesis are part of the research fields on dependability and on
fault tolerance. In particular the foundational concepts and terminology
related to faults, errors and failures are presented in the following. Addi-
tionally, empirical research results on software faults are summarized.

2.2.1. Faults, Errors, Failures, and Availability

Central terms in the field of dependable and fault tolerant computing are
fault, error, and failure. These terms are sometimes used synonymously
in the literature, but are carefully distinguished here to not confuse causes
and symptoms of failures. The most common definitions are provided by
AviZienis et al. [2004]: System failures are violations of the corresponding
system’s specification or of what the system is intended to do. Faults are
root causes of failures. Faults create errors upon activation. Errors are
invalid system states that can cause a system failure by propagating to
the outside of the system, e.g., by becoming visible to the system users.
Figure 2.8 shows an example for the so-called error propagation between
a fault and a corresponding failure.

23

Chapter 2 - Foundations

activation propagation causation
-« —3» fault ——— > error ——— > failure ——> fault—> -

Figure 2.9.: Fundamental chain of dependability threats [AviZienis et al., 2004].

These definitions of fault, error, and failure always refer to a system
boundary, which can be considered a frontier between the system and its
environment. This boundary depends on a viewpoint. For the viewpoint
of a system interacting with its users, a failure is an error that becomes
visible to the user, as illustrated in Figure 2.8. In a component-based
system, the terms fault, error, and failure can also refer to the context
of a component. From the viewpoint of a component, an error becomes
a failure if it propagates to the component’s outside, and violates the
component’s specification or what it is intended to do. For instance, the
symbol between the components A and B in Figure 2.8 can be considered
a failure from the perspective of component B.

The causality relationship between faults, errors, and failures is illus-
trated in Figure 2.9 [AviZienis et al., 2004]. The causality relation is open
ended at both sides, as other causal fault-error-failure relationships can
exist.

Software is pure design [Littlewood and Strigini, 2000] and therefore,
software faults are design faults [Musa et al., 1987, p. 7, and Musa, 2004,
p-36]. Software faults are introduced into software during any phase of
software development, such as specification, programming, or installa-
tion [Laprie et al., 1995, p. 48]. In practice, it is not feasible to develop
complex software systems that are free of faults [Eusgeld et al., 2008].

Many software dependability approaches are adopted from hardware
reliability approaches [Lyu, 2007]. Littlewood and Strigini [2000] state
that hardware systems failures tend to be dominated by random physical
failures of components. A central principle of (non-software) reliability
engineering is copy-redundancy [Eusgeld et al., 2008]: critical system
components are identically replicated such that the system does not fail
if single components fail. For instance, cooling facilities of nuclear power
plants have to be replicated several times to reduce the probability of
a complete system failure. While copy-redundancy is effective against
physical deterioration, it is ineffective against design faults [Eusgeld et al.,
2008]. Hence, many such hardware reliability methods cannot be used
to address software design faults (or hardware design faults). Another
particular characteristic of (software) design faults is that a successful
repair fixes a fault for all time [Musa et al., 1987, p. 7].

24

2.2 Software Faults and Dependability of Software Systems

Crash] Omission Timing Byzantine

Failures / Failures Failures Failures

Figure 2.10.: Failure class hierarchy based on Cristian et al. [1995].

Failure Domain

Content Timing Content and Timing
(Correct Timing) (Correct Content)
Early Late Halted Erratic
service service service service
[

Content Early Timing Late Timing Halt Erratic
Failures Failures Failures failures Failures

Figure 2.11.: Failure modes with respect to the failure domain
viewpoint [AviZienis et al., 2004].

Failures can be categorized, such as displayed in Figures 2.10 and
2.11: Cristian et al. [1995] (Figure 2.10) define failure classes according to
how efficient they can be compensated by fault tolerance mechanisms.
A mechanism that is able to tolerate failures of a higher class is able to
tolerate failures of a lower class as well. The most restricted class (i.e.,
“weakest”) in this model are Crash Failures, which are those failures that
occur when a component or system prematurely halts. Crash Failures
is a proper subclass of Timing Failures consisting of cases in which a
component answers a request too late, never or too early. Another cate-
gorization is provided by AviZienis et al. [2004], illustrated in Figure 2.11.
It distinguishes failures based on whether the content or timing behavior
of a system and its output deviates from the expected behavior.

Availability is commonly defined as “the average (over time) probability
that a system or a capability of a system is currently functional in a
specified environment” [Musa et al., 1987; Musa, 2004]. Alternatively, it
can be expressed as relation between the mean time to failure (MTTF)
(also called mean time between failure) and the mean time to repair
(MTTR) [Musa et al., 1987; Gray, 1986]:

MTTF
Availability = MTTF + MTTR

2.1)

25

Chapter 2 - Foundations

Therefore, availability can be improved through the reduction of the
mean time to repair and by increasing the time to a failure. The MTTR
can be further divided into separate times for failure detection, fault
localization, and fault removal [Giesecke et al., 2006]. Reducing any of
these times also improves availability.

2.2.2. Empirical Research on Failures and Faults in
Software Systems

In the following, empirical research on software faults is summarized.
In the context of this thesis, a more detailed overview was published in
Ploski et al. [2007].

Software faults are a significant cause of system and platform failures.
Kiing and Krause [2007] and Gray [1986] reported empirical results that
more software faults caused system failures than hardware faults. Both
studies also show that administration faults cause many failures; Many
administration faults can be considered software faults, as the faults are
present as configuration files. Schroeder and Gibson [2006] evaluated
failure data from several high-performance computing platforms, which
were used mainly for scientific computing. In this study, node crash
failures (special subclass of system failures) were caused in about 20 %
of the cases by software. Another study reported that more than 70 %
of the outages in several network and communication systems in the
telecommunication domain were software related [Network Reliability
Council, 1993; Lai and Wang, 1995].

Empirical research on software faults is often connected with research
on fault categorization, as there is no generally accepted categorization
schema. This lack of a generally accepted categorization schema was
reported by Marick [1990]. Knuth [1989] provided one of the first studies
on software faults. It was created over a period of 10 years during the
development of the typesetting system TgX. Knuth [1989] categorized
faults into classes such as “data structure debacle”, “forgotten function”,
and “trivial typo”. A later repeated categorization of these faults resulted
in 53 % missing entities and 41 % incorrect entities [DeMillo and Mathur,
1995]. Dallmeier [2010] analyzed a large bug report database for the
software tool Eclipse. A fraction of the faults was manually categorized.
The most common fault categories were related to missing or wrong null
checks, and to incorrect boolean and arithmetical expressions.

Some software faults are difficult to localize. So called Heisenbugs

26

2.3 Automatic Fault Localization for Software Systems

are known to be hard to find and remain for a long period of time even
in extensively tested production systems [Gray, 1986; Eisenstadt, 1997].
Heisenbugs seem to temporally disappear during the search for the bug
(e.g., when debugging tools are active) [Bourne, 2004]. A collection of
faults related to software vulnerabilities can be found in [CWE/SANS
2009, 2009]; Three categories for what were considered the most 25 sig-
nificant security-related faults were identified: insecure component inter-
action (e.g., improper input validation), risky resource management (e.g.,
unchecked string length in C), and porous defenses (misuse of defensive
techniques, e.g., hard-coded passwords). Grottke et al. [2010] categorized
the software faults from 18 space missions into Bohrbugs (61 %) and
Mandelbugs (37 %). Bohrbugs are easy to diagnose and easy to reactivate,
in contrast to Mandelbugs, which cannot be systematically reactivated as
they only cause under complex conditions a failure (e.g., time)[Grottke
etal., 2010].

The empirical studies of Ostrand and Weyuker [2002], Fenton and
Ohlsson [2000], and Adams [1984], and Nagappan et al. [2006] addressed
how faults are distributed among the software’s source files and mod-
ules. The results suggested that most faults are within a small part of
a software’s source code and that fault densities are not increasing by
source code file size and module size.

2.3. Automatic Fault Localization for Software
Systems

In practice, it is not feasible to develop complex software systems that are
free of faults [Eusgeld et al., 2008]. After a fault causes a failure, it is often
not considered sufficient to only address the failure, for instance by auto-
matically rebooting parts of the system [Candea et al., 2004]. Moreover, it
is desirable to prevent that the same fault is being activated again or a
problem is persistent and repair is needed to return to normal operation.
One part of fault removal is failure diagnosis, which identifies a failure’s or
error’s corresponding fault in terms of type and localization [AviZienis
et al., 2004, p. 25].

Fault localization and the synonym fault isolation can be defined as
identification of the location (e.g., a component) of a failure’s root cause
(compare with Bocaniala and Palade, 2006, p. 6). Others define these
terms less narrow and include the detection (Isermann and Ballé, 1997,

27

Chapter 2 - Foundations

and [Isermann, 2006, p. 413]) or the identification of the type of the
fault [Steinder and Sethi, 2004]. The term fault localization can be used
to refer to the localization of faulty statements in a software program
(also denoted debugging), and it can refer to the localization of faults in
running software system (that contains soft- and hardware). The focus of
this thesis is on the second meaning.

Fault localization approaches differ in result granularity: some ap-
proaches point to single statements within the software’s source code
(e.g., Tarantula Jones et al. [2002]; Jones and Harrold [2005]) while other
refer to larger blocks such as modules or components (e.g., Yilmaz et al.,
2008 and Kiciman, 2005).

A large number of approaches for the localization of faults in software
programs exists, which are surveyed for instance by Wong and Debroy
[2009]. Program-spectrum-based approaches (e.g., Reps et al. [1997],
Chen et al. [2002], and Tarantula [Jones et al., 2002; Jones and Harrold,
2005]) compare which parts of a program are active during passed runs
with which are active during failed runs [Abreu et al., 2007]. For instance,
a statement is a fault candidate, if it is executed in every failed run and
not in any passed run. Program-state-based approaches, such as Zeller
[2002]’s Delta Debugging analyze and modify variable values in test runs
to localize bugs [Wong and Debroy, 2009].

Automatic failure diagnosis can be motivated by pointing out that man-
ual failure diagnosis can be very time-consuming and error-prone [Mar-
wede et al., 2009]. The definition of availability on Page 25 shows that
a reduction of failure diagnosis time can improve availability. Katzela
and Schwartz [1995] argue that human operators are not efficient for
failure diagnosis in communication networks, because of the “amount
and complexity of status information generated by a fault, the increasing
size of and complexity of the network and the limited processing capacity
of a human operator”. Manual fault localization in software may result
in a search in space across program state to find infected variables, and a
search in time over millions of program states [Cleve and Zeller, 2005].
Debugging is especially a challenge if there is a large temporal and spatial
distance between causes and symptoms and for failures that are hard to
repeat during debugging (e.g., Heisenbugs) [Eisenstadt, 1997; Bourne,
2004].

Fault localization can be challenging because of the propagation pro-
cess between faults, errors, and failures (see Section 2.2.1 and Figure 2.9
on 24). Some faults lead to correlated failure manifestations in the entire
system [Pertet and Narasimhan, 2005]. Furthermore, symptoms can be

28

2.3 Automatic Fault Localization for Software Systems

Fault
localization
Fault symptom Fault Fault hypothesis
detection diagnosis testing
Anomaly Symptom pattern Classification Model traversing Fault propagation
detection methods matching methods methods methods model methods

Figure 2.12.: Fault localization in software systems: concepts and techniques.

ambiguous, inconsistent, redundant, and incomplete and may result from
unrelated faults that happen at the same time [Steinder and Sethi, 2004;
Katzela and Schwartz, 1995]. Additionally, a combination of undesired
conditions may lead to a failure, and this combination is considered as
the fault of the failure [Musa et al., 1987].

A basic and relatively old general method to localize faults is limit
checking. It dates back to the application in technical systems at the end
of the 19th century [Isermann, 2006, p. 8]. In limit checking, thresholds are
define as upper and lower limits on monitorable attributes. A violation
of the thresholds provides a signal corresponding to a particular location.
A classical way to determine thresholds goes back to Shewhart [1931]’s
foundational work on quality control: an upper and lower control limit
are defined by a range of three standard deviations around the mean
value of historical observations. There are new approaches based on
control charts: for instance the work of Amin et al. [2012] uses modern
control chart techniques for the early detection of quality of service vi-
olations. This can be used as trigger to automatically adapt the system
to achieve a high quality of service. Another basic approach is diagnostic
checking, which consists of regular status testing of components: A com-
ponent is tested with input parameters for which the correct output is
known to detect the presence of an error [Lee and Anderson, 1990, p.191].

We structure fault localization in software systems as illustrated in
Figure 2.12. This structure is combined from the three frequently-cited
sources listed in Table 2.1. The terminology has been adapted to the
standard terminology from the fault tolerance domain of AviZienis et al.
[2004] (see Section 2.2), which more clearly distinguishes between faults
and failures. The first layer of Figure 2.12 distinguished three steps in
fault localization:

o Fault symptom detection identifies symptoms and indicators caused

29

Chapter 2 - Foundations

Table 2.1.: Categorization schemes related to fault localization.

Domain Survey Categories Research Focus
Technical sys- [Isermann, 2006] Fault detection and Detection and diag-
tems fault diagnosis nosis
Computer net- [Steinder and Sethi, AI Techniques (incl. Diagnosis
works 2004] expert systems);

Model Traversing;

Fault Propagation

Models
Intrusion detec- [Axelsson, 2000] Anomaly detection; Detection
tion Misuse pattern

detection

by a fault. Sometimes, these symptoms can clearly be separated
from normal system behavior. However, especially fault tolerance
mechanisms can mask symptoms as a side effect [Maxion, 1990]. A
failure message is an easily detectable fault symptom. Nevertheless,
more information may be required for a particular fault localization
than just the externally visible failures [Steinder and Sethi, 2004;
Isermann, 2006].

o Fault diagnosis determines a fault based on the symptoms deter-

mined in fault diagnosis [Isermann, 2006]. For instance, event
correlation techniques (e.g., Gruschke, 1998a; Tiffany, 2002) are
used to determine faults from large amounts symptoms, status
information, events, and general monitoring data.

o Fault hypothesis testing evaluates whether a fault hypothesis is true

or false [Steinder and Sethi, 2004].

Fault symptom detection can be categorized into anomaly detection
methods and symptom pattern matching methods. This is analogous to
how intrusion detection literature, such as Kumar [1995], LaPadula [1999],
Axelsson [2000], and Patcha and Park [2007] structure the detection task.

30

o Anomaly detection methods aim to detect anomalies in observa-

tions [Axelsson, 2000]. For instance, a set of historic observations is
considered to be of normal behavior; these observations are used to
create a normal behavior profile, which than is used for assessing
whether new observations are normal or not. A weaknesses of
anomaly detection is that it can lead to high false alarm rates, as

2.3 Automatic Fault Localization for Software Systems

anomalies do not necessarily correspond to the desired detection
target (e.g., intrusions, or faults) [Axelsson, 2000]. High false alarm
rates can result in reduced attention to detections [Ghosh et al.,
1998]. More foundations on anomaly detection are presented in
Section 2.4, on Page 32.

o Symptom pattern matching methods, also denoted signature-based
detection or misuse pattern detection in the intrusion detection
domain, use specifications of correct and/or incorrect system state
or behavior to identify the state transition that turns correct into
incorrect system state (cp. Axelsson, 2000). The component that
initialized this transition is considered to be responsible for the
failure (e.g., Kumar, 1995). Signature-based methods can only
detect known faults or intrusion [Kruegel and Vigna, 2003]. This is
problematic for dealing with intrusions such as the Internet worm
W32.SQLExp.Worm. Already ten minutes after its release, it had
compromised 90 % of all vulnerable systems [Farshchi, 2003].

Fault diagnosis can be further structured into techniques analog to a cate-
gorization for diagnosis from the domain of computer networks [Steinder
and Sethi, 2004; Tiffany, 2002]:

o Fault classification methods are dominated by expert system ap-
proaches that use typical classification techniques from artificial
intelligence research. A typical approach would use a knowledge
base created from human experience or understanding represented
as if-then rules [Steinder and Sethi, 2004].

o Model traversing analyzes a formal system model of behavioral
or structural relationships to determine faults for observed symp-
toms [Steinder and Sethi, 2004]. Examples for these models are
software architecture models, such as call dependency graphs. A
summary of model traversing techniques is provided by Steinder
and Sethi [2004].

o Fault propagation model methods, also denoted inference methods in
the technical systems domain, explicitly represent relations between
fault and symptoms. An example for such models are graph-based
models, such as fault trees [Steinder and Sethi, 2004; Isermann,
2006].

31

Chapter 2 - Foundations

2.4. Anomaly Detection

This section presents some basic anomaly detection concepts that are
relevant for Chapter 3. Comprehensive surveys can be found in the work
of Chandola et al. [2009], Patcha and Park [2007], and Hodge and Austin
[2004].

2.4.1. What are Anomalies?

Anomalies can be defined as objects or observations that are unusual or in
some way inconsistent with most other objects of a data set [Tan et al.,
2006, p. 651]. The term outlier is sometimes used synonymously [Chan-
dola et al., 2009]. A common definition for the term outlier is by Hawkins
[1980], defining it an observation which deviates so much from other
observations that it suggests that is was “generated by a different mecha-
nism”. Grubbs [1956] defines outliers within a sample as observations
appearing to “deviate markedly from other members of the sample in
which it occurs”. In other words, anomalies can be considered deviations
from the normal. What is considered normal may be manually specified,
or learned from training data. In some cases it is the task to “clean” data
from outliers as preprocessing (e.g., Jain [1991, p. 19]), while in other
cases, it is the target to study especially the outliers (e.g., for intrusion
detection or failure diagnosis).

Three types of anomalies can be distinguished [Munoz-Garcia et al.,
1990; Tan et al., 2006]: Atypical observations, erroneous observations, and
observations from a different class. Atypical observations are the con-
sequence of inherent variability, i.e., such observations are inconsistent
with most other observations of a data set as natural result of the charac-
teristics of the observed population. Erroneous observations can result
from measurement errors, experiment design errors, and data processing
errors. Observations that correspond to another class of objects than the
class of the “normal” objects may also differ in their characteristics. For
instance, immune system data (e.g., number of white blood particles) of
a sick patient might be atypical and inconsistent to those measurements
of patients that belong to the class of healthy people [Munoz-Garcia et al.,
1990; Tan et al., 2006].

Timing behavior anomalies could be defined as deviations from nor-
mal timing behavior. Timing behavior anomalies can have many possible
reasons. It has been observed that also faults often have an influence
on timing behavior [Kao et al., 1993]. Other examples for fault localiza-

32

2.4 Anomaly Detection

tion based on timing behavior are provided by Yilmaz et al. [2008] and
Agarwal et al. [2004].

2.4.2. Training Data Labels

Many anomaly detection approaches learn what can be considered nor-
mal or anomalous from training data, instead of requiring a formal
specification or thresholds. Training-data-based approaches can be dis-
tinguished by the existence of training data labels [Hodge and Austin,
2004; Chandola et al., 2009]:

o Supervised anomaly detection requires training data with instances la-
beled as anomalous and normal. A basic method is to compare new
observations to both the models obtained from training data, to
decide which model fits better [Chandola et al., 2009]. In many do-
mains, it is difficult to get accurate and representative anomaly data
for training, especially if new types of anomalies can occur [Chan-
dola et al., 2009].

o Semi-supervised anomaly detection only requires training data for ei-
ther anomalies or normal observations. Most approaches of this
category use training data with instances labeled for being normal,
as accurate and representative training data for normal observa-
tions can typically easier be obtained than for anomalies [Chandola
et al., 2009; Hodge and Austin, 2004].

o Unsupervised anomaly detection does not require training data for
neither anomalies nor normal observations [Chandola et al., 2009;
Hodge and Austin, 2004]. Instead, those observations are consid-
ered anomalies that differ from most observations within a data set.
It is implicitly assumed that most observations within this data set
are normal [Chandola et al., 2009]. As mentioned above, the classi-
cal approach of Shewhart [1931] assumes that normal observations
are within the range of three (or more) standard deviations of the
data around the data’s mean value.

2.4.3. Anomaly Detection Result

Typically, anomaly detection approaches produce either a binary result
or a score [Chandola et al., 2009]. A binary result is “positive” (observa-
tion is considered anomalous) or “negative” (observation is considered

33

Chapter 2 - Foundations

normal). Non-binary anomaly detection provides scores, for instance
from [0, 1], can express the confidence that an observation is considered
an anomaly. Advantages of scores are for instance that scores can be
ordered [Chandola et al., 2009] and scores provide more possibilities for
aggregation.

Binary results can be correct or incorrect. There are two types of correct
and two types of incorrect results for binary anomaly detectors based on
whether a true anomaly was presented to the approach (e.g., [Fawcett,
2006]):

o Correct: a positive output in presence of an anomaly (“true-positive”)
and a negative output when no anomaly is present (“true-negative”).

e Incorrect: a positive output in absence of anomalies (“false-positive”,
false alarm) and a negative result in presence of an anomaly (“false-
negative”).

2.4.4. Anomaly Detection Categories

Anomaly detection techniques can be grouped into the following four
partly-overlapping categories [Chandola et al., 2009]:

o Classification-based techniques identify one or more classes in training
data and test observations against these classes. There are many
different methods within this group, such as approaches based on
Neural Networks and Support Vector Machines (SVMs) [Chandola
et al., 2009]. Classification-based techniques are in particular suit-
able, if the normal data consists of multiple classes. An example for
multi-class anomaly detection is illustrated in Figure 2.13.

o Nearest-neighbor-based technigues consider objects to be normal that
are close to neighbors. In contrast to classification and clustering
techniques, the number of classes or clusters does not need to
be known [Chandola et al., 2009]. Some approaches take more
than one nearest neighbor into account, as the nearest may be an
anomaly itself, as illustrated in Figure 2.13.

o Clustering-based techniques assume that normal objects are clustered.
Similar to the nearest-neighbor-based approaches, distance mea-
sures are used, but in reference to clusters (e.g., a cluster’s centroid)
instead in reference to neighbors [Chandola et al., 2009]. The two
anomalies in Figure 2.13 should be detected by a clustering-based
approach, as both anomalies are clearly outside the clusters.

34

2.5 Software Application Monitoring

A Anomalies

Mo,
{ WM Opo

Class1

.'
Size

Figure 2.13.: Anomaly detection example with three classes of normal behavior
and two characteristics. An anomaly detector for this scenario
should consider both weight and size for reliable detection. Image
inspired by [Breunig et al., 2000].

o Statistical-based techniques detect anomalies based on statistical mod-
els. Observations that are considered an anomaly if they do not fit
to the statistical model of normal behavior [Chandola et al., 2009].
For example, box plots define anomalies based on interquartile
distances [Montgomery and Runger, 2003, p. 207]. A probability
density model for Figure 2.13 would have low probability density
at the area of the anomalies (if those are not within the training
data); therefore the anomalies would be detected.

2.5. Software Application Monitoring

Monitoring supervises, records, analyzes, or verifies the operation of a
system or of a component [IEEE Standards Board, 2002]. A monitor “is a
tool used to observe the activities on a system” [Waheed and Rover, 1995].
The terms logging, and profiling are often not clearly distinguished from
monitoring.

The term logging is often used in the context of software logging frame-
works. Logging frameworks provide an API to record messages from
within a software program. The recorded messages are often stored into
standardized log files. Logging can be used to store precise context infor-
mation about application execution for debugging [Gilcii, 2003]. A focus
of logging is debugging [Giilcti, 2003; Kernighan and Pike, 1999], but
it can also be used for recording internal software application states or
for recording data for performance analysis [Gupta, 2005]. Furthermore,

35

Chapter 2 - Foundations

Business Process Business process cycle time and rate, ...

Application Throughput, response time, #users ...

Execution Environment Memory consumption, active threads, ...

Operating System Sytem processes, CPU utilization, ...

| Middleware | Message queue size, active jobs, ...

Hardware CPU cycles, network statistics, ...

Figure 2.14.: Software system layers and monitoring targets. Image based
on Focke [2006].

logging can be used for monitoring, for instance by providing logs to a
service for automatic supervision [Gupta, 2005].

As stated earlier in this Chapter on Page 15 and demonstrated in Ap-
pendix D, profiling refers to approaches that create execution profiles for
quantifying the fraction of time and resources used in parts of a software
program [Smith and Williams, 2001b, p. 312]. In contrast to monitoring, it
is usually more intrusive and provides deeper insights in the execution of
a system. Profiling provides a more detailed view on dynamic behavior
which allows developers to identify performance bottlenecks or memory
leaks. Software is usually developed, tested and operated in different
environments (development, test, production) (see e.g., Dustin, 2002,
p-47 and Humble and Farley, 2010). In contrast to monitoring, profiling
is classically a technique to be used in the development and in the test
environment and not within production environment, as the overhead is
usually to large for continuous operation in production [van Hoorn et al.,
2009]. It is also mainly a tool for developers, while monitoring is more
used by system administrators.

Many different software monitoring frameworks, such as DTrace, In-
fraRed [Govindraj et al., 2006], and Kieker [van Hoorn et al., 2009] are
available to monitor software runtime behavior. Several approaches,
such as Dapper [Sigelman et al., 2010], Stardust [Thereska et al., 2006],
and Kieker [van Hoorn et al., 2009] support monitoring request traces in
distributed systems and are used for problem diagnosis.

Monitoring tools and approaches exist for each system layer. Fig-
ure 2.14 illustrates examples for typical monitoring metrics for each
layer [Focke, 2006; Woodside, 2008]. Horizontal approaches focus on a
particular system layer, while vertical monitoring approaches, such as

36

2.5 Software Application Monitoring

the approach of Hauswirth et al. [2004], monitor on multiple layers.

Enterprise software systems can consist of multiple execution environ-
ments. Therefore, monitoring technology for enterprise systems should
be able to deal with the issue of local clocks in a distributed system. Each
physical node of a distributed system has a local clock. Different local
clocks usually differ, even if time synchronization mechanisms, such as
NTP, are used. This makes it difficult (or even impossible) to ensure
correct temporal order in monitoring data [Lamport, 1978]. Monitoring
approaches such as Kieker [van Hoorn et al., 2009] ensure the correct
order of monitored events within a Trace, which can be defined as a se-
quence of synchronous operation executions corresponding to a single
external request. Note, this definition is more restrictive than definition of
trace as sequence of time stamped runtime observations (e.g., Dallmeier,
2010, p.14).

Monitoring can be categorized into event driven or timer driven [Jain,
1991, p. 95]: Event driven monitoring is activated only upon events, such as
an execution of a software operation, a change of a state, and an arrival
of an external service request. Timer driven monitoring creates an observa-
tion at particular times, independently of the occurrence of events. For
instance, the status of a variable or register may be observed every 50 mil-
liseconds. Timer driven monitoring is suitable to monitor very frequent
events. It is also denoted sampling since not all state changes are observed.
For instance Dapper [Sigelman et al., 2010] and Stardust [Thereska et al.,
2006] use sampling to reduce overhead [Sambasivan et al., 2011].

Event driven monitoring can be further categorized into the monitoring
of control flow events, data flow events, and process-level events [Bem-
merl and Bode, 1991; Mansouri-Samani, 1995]. Control flow monitoring
may observe for example that a software operation is called, and that a
return value is passed to a caller. Data flow event monitoring focuses on
observing access and changes to variables and objects.

The integration of monitoring frameworks typically requires the instru-
mentation of the software application with so-called monitoring probes [van
Hoorn, 2007]. Instrumentation involves several application-specific de-
sign decisions, such as regarding what to monitor and where to place
probes in the architecture [Focke et al., 2007a]. A summary of soft-
ware monitoring tools and a discussion of instrumentation issues for
distributed enterprise software applications is provided by van Hoorn
et al. [2009].

Monitoring data provides input data for further analysis, such as capac-
ity management and QoS (quality of service) management [Diaconescu

37

Chapter 2 - Foundations

et al., 2004], the identification of performance bottlenecks [Hoffman,
2005], failure detection and fault diagnosis [Chen et al., 2002], and work-
load characterization [Menascé et al., 1999].

38

3. Fault Localization Approach

This chapter introduces an automatic fault localization approach for
distributed multi-user software systems. It assumes that faults can be
located based on software timing behavior measurements. As motivated
in the Introduction and in Foundations 2.3, automatic fault localization
could reduce repair times and improve availability.

The two primary contributions of this thesis, presented in detail in
Chapters 4 and 5, are part of the fault localization approach. The fault lo-
calization serves as application example and the case study demonstrates
its applicability of our two main contributions in a fault localization set-
ting. The fault localization approach itself is not empirically evaluated,
because this would require extensive controlled experiments.

The fault localization uses monitoring to learn a system’s normal tim-
ing behavior. When a failure is detected, the timing behavior before the
failure is compared with historical timing behavior to detect anomalies.
These anomalies are analyzed in the context of the software’s architecture
to find the root cause of the failure. Finally, a graphical visualization
shows the administrator the fault localization results in the context of the
software architecture. The fault localization can be invoked after a failure
was detected; the failure detection itself is not part of the approach.

The following section includes an overview of the steps of our fault
localization approach and presents fault localization assumptions. The
underlying software system model and monitoring model are described
in Section 3.2; these are also the base for Chapters 4 and 5. The single
steps of the fault localization are described in Sections 3.3-3.7.

3.1. Approach Overview and Fault
Localization Assumptions

Figure 3.1 shows the conceptual parts of the complete fault localization
approach. Instrumentation and Monitoring (Section 3.3) provide the
required monitoring data. The next two steps create context-sensitive

39

Chapter 3 - Fault Localization Approach

Instrumentation Trace-Context- Workload-Intensity- A : N I
and Monitorin Sensitive Timing Sensitive Timing Dntomt‘a y K norlna:.y PR
s Behavior Analysis Behavior Analysis etection orrelation

Figure 3.1.: Conceptual steps of the fault localization approach.

timing behavior models from the monitoring data (Sections 3.4 and 3.5).
In Anomaly Detection (Section 3.6), the timing behavior models are used
as reference models to identify deviations from normal behavior. The
Anomaly Correlation (Section 3.7) evaluates all detected anomalies to-
gether in their architectural context to localize their root cause. The results
are visualized in architectural diagrams for the system administrators
(Section 3.7).

As illustrated in Figure 3.2, our approach localizes faults in a component-
based system: First, anomaly detection computes anomaly scores for each
component independently, as illustrated in Figure 3.2(1). For this, the
anomaly detection algorithm compares current timing behavior with
expected behavior based on historical observations. Fault localization ap-
proaches, such as Time Will Tell [Yilmaz et al., 2008], R-Capriccio [Zhang
et al., 2007], and Spectroscope [Sambasivan et al., 2011] stop at this point
and list the components ordered by the relative anomaly strength. Our
and other approaches, such as Tiresias [Williams et al., 2007] and Pin-
point [Kiciman and Fox, 2005], additionally analyze the anomalies of all
components together; the anomalies are only understood as symptoms in
this case and further analysis derives the root cause from the symptoms.
This step, denoted anomaly correlation, uses the structural software ar-
chitecture in combination with rules that reflect knowledge on how both
anomalies and errors propagate through the system. Separating anomaly
correlation (or denoted event correlation) from the identification of symp-
toms is a common practice in general failure diagnosis systems and
in communication network system (e.g., see Isermann, 2006; Gruschke,
1998b; Steinder and Sethi, 2001).

A general assumption of our fault localization approach is that active
faults and errors can influence timing behavior. Support for this assump-
tion comes from the work of Kao et al. [1993] and Mielke [2006]. As
detailed in the foundations on software faults in Section 2.2, faults can
cause errors, these can propagate and can create additional errors, and
errors become failures by passing some system boundary, as illustrated
in Figure 2.8 on Page 23. Figure 3.3 extends this propagation model to
timing behavior anomalies. It can be argued that active faults and er-

40

3.1 Approach Overview and Fault Localization Assumptions

||
Anomaly
detection

....................

—"—
f"
o"
4"

-
5
.

....................

Component
I Anomaly I

~

System System detection ' y ;
influences System behavior L ——1 ' | :
: I Anomaly I 1
Qgtgr;ﬁ)l% i detection '

(1) System as a black box. (2) Component-based system.

Figure 3.2.: Anomaly analysis considering the system a black-box and composed
out of components. (Illustrations inspired by Isermann [2006])

rors can cause changes in system behavior (otherwise there would never
be failures) and these changes can also be reflected in timing behavior
changes, as timing behavior “reflects everything that happens during an
execution” [Yilmaz et al., 2008].

This general assumption is shared or even empirically supported by
the failure diagnosis approaches in our related work that are based on
timing behavior analysis (see Section 6.2.1, Page 133). For instance,
Yilmaz et al. [2008] conclude from case studies that timing behavior
“can be used to effectively reduce the space of potential root causes
for failures”. Another empirical support is provided by Williams et al.
[2007]’s research, which compares several metrics in detecting changes
in system behavior that observed failures. Response times performed
best in their comparison against other metrics, such as CPU utilization,
memory utilization, context switches, and protocol metrics.

More specific assumptions are made for parts of our approach besides
our general assumption that faults and errors tend to influence timing
behavior:

e The software system and its monitoring have to confirm to the
model assumption described in Section 3.2. In summary, these
requirements are not too strict so that it is still applicable to typ-
ical Java or C# enterprise software systems, as demonstrated in

41

Chapter 3 - Fault Localization Approach

42

Structural architecture Request
e O— Compl —@— Comp2 —@— Comp3
Response

Functional behavior with error propagation

7. 7 7
P #
5(=R ot O[O

Timing behavior
with anomalies

*\
B

Figure 3.3.: Error propagation, errors cause anomalies, and anomaly
propagation.

our case studies. However, it may not be suitable for software
that is much different from enterprise software systems, such as
high performance computing software, software of embedded soft-
ware systems, real-time software systems, and operating system
software.

The two timing behavior analysis steps assume similar timing be-
havior to what is described by the corresponding foundational
research presented in Foundations 2.1 on Page 9. For instance,
response times of enterprise software systems tend to follow distri-
butions such as the log-normal distribution.

The anomaly correlation defines additional assumptions to those
presented above, on how faults, errors and timing behavior prop-
agate through the system. These are detailed in Section 3.7. The
central idea behind these assumptions encoded as rules is that
the propagation goes along call dependencies in the software ar-
chitecture. For instance, if a particular software operation shows
anomalies, then callers may also show anomalies.

3.2 Software System Model and Monitoring Model

3.2. Software System Model and Monitoring
Model

This section presents assumptions on the software-system-under-analysis
and monitoring requirements for both the fault localization approach
and the two timing behavior analysis contributions of Chapters 4 and 5.
The assumptions on the software system model are wide enough for
application to common enterprise software systems and multi-user Web
applications. The monitoring requirements presented in this section
define a viewpoint on software and specify a conceptual model for the
monitoring data. This model abstracts from concrete monitoring tools,
so that different monitoring frameworks for the software application
layer can be used, if these are able to monitor response times and request
traces.

3.2.1. Software System Model

It is assumed that the software-system-under-analysis is composed out of
components hosted on execution environments. The components provide
operations, e.g., implemented as Web services or plain Java methods that
can be requested by other components, external users, or other systems.
When a request is received by the system, the execution environment
assigns a free execution thread for answering the request, which even-
tually executes the first corresponding operation. Distributed systems,
i.e., systems with more than one execution environment connected via a
network, are explicitly supported by our approach.

In this thesis, the scope is limited to synchronous call actions between
operation executions in the system-under-analysis. Asynchronous call
actions may also occur in the system, but the corresponding caller-callee
relations will be ignored. According to the UML [Object Management
Group (OMG), 2007], a synchronous call actions temporarily stops the exe-
cution of the calling operation, denoted caller, and starts with executing
the called operation, denoted callee. In other words, the caller of an op-
eration is blocked and has to wait until the callee returns a result before
it continues its own execution. Asynchronous call actions do not require
that the caller has to wait for an answer, and hence can directly continue
operation. This execution model is used by most modern programming
languages such as Java, C#, and Python. However, these languages often
provide additional execution concepts, besides this synchronous inter-

43

Chapter 3 - Fault Localization Approach

operationo\ /O trac.:;ald
startTime o— Execution o vm .
) [0 executionOrderindex
endTime o1 \o) .
executionStackSize

Figure 3.4.: Schema for a monitored software operation execution.

actions and asynchronous interactions. For instance, Java’s exception
handling mechanism can stop operation executions without letting them
provide a return value.

3.2.2. Monitoring Model

Our approach requires a monitoring instrumentation that monitors exe-
cutions of software operations. For simplicity, the term execution is used
for a monitored software operation execution in the remainder of this the-
sis. The monitoring data for a time period is a multiset of such executions.
We define an execution e as tuple (o, st, nt, traceid, vmid, eoi, ess) for an
operation o, its start time st, and end time nt. A schematic illustration of
an execution is in Figure 3.4.

The traceid is a unique identifier for a trace. Let a monitored trace, in
the following just called trace (symbol ¢r), be defined as a sequence of
operation executions that are connected via synchronous call actions that
correspond to the same request. Traces result from user requests, and
from requests of external systems or external components. As described
on Page 43, the scope is limited to synchronous communication between
executions: the caller of an operation is blocked and has to wait until the
callee returns a result before it continues its own execution. In our model,
a single user request might cause multiple such traces if asynchronous
call actions are involved.

Alternative terms for concepts that are similar or identical to what we
denote trace are causal path [Aguilera et al., 2003], request flow [Sambasi-
van et al., 2011], request path [Kiciman, 2005], path [Ball and Larus, 1996;
Ammons et al., 1997], and transaction [Chanda et al., 2007].

Our approach only considers completed traces, which means that the
initial operation execution has finished and that no monitoring data in
between is lost. Consequently, incomplete traces and its executions are
ignored. This also means that traces from infinite loops are ignored.

vmid, eoi, and ess are used for monitoring in distributed systems. The
vmid (virtual machine identifier) distinguishes different execution envi-

44

3.2 Software System Model and Monitoring Model

ronments, such as instances of the Java Virtual Machine, or Microsoft’s
Common Language Runtime. An operating system can host multiple
execution environments at the same time and a physical computer can
host multiple operating system instances via virtualization. The eoi (exe-
cution order index) is a counter for operation executions of a trace. The
ess (execution stack size) of an operation execution is defined as the num-
ber of monitored operation executions that are on the stack during the
execution’s operation is called. Both eoi and ess enable the reconstruc-
tion of a trace from monitoring data. In systems with a single execution
environment, these additional attributes do not need to be monitored, as
clock times in a non-distributed system can reliably define the order of
executions.

Conforming to the definitions of response time (1) in th Foundations
on Page 10, the response time rt of an execution is defined as the number of
time units (e.g., milliseconds) between the start time and the end time of
an execution: 1t = nt— st. The execution time is the fraction of the response
time that is not spent in monitored subcalls. Our response time metric
does not distinguish CPU time for the operation execution from other
times, such as I/O processing time, resource waiting time, and response
times of invoked operations (subcalls). Hence, this metric does not
directly describe resource demands (e.g., CPU and I/0O). The advantage
of this response time metric is that it can be efficiently monitored and
it does not require platform-specific monitoring functionality such as
hardware performance counters.

Example In the following, an example illustrates monitoring that con-
firms to the description above. A bookstore software system with three
components is assumed; each instrumented with a monitoring probe.

As indicated in the component diagram in Figure 3.5(1) by the blue
“M” boxes, monitoring probes are integrated such that each component
service request is monitored. The corresponding sequence diagram in
Figure 3.5(2) shows that the monitoring logic is activated at the start
and end of the activity for a service request. Table 3.1 shows example
monitoring data for such a monitoring instrumentation. It lists four
executions of in total three different operations within a single trace. The
timestamps are provided in milliseconds reduced by some offset.

45

Chapter 3 - Fault Localization Approach

:Bookstore ‘ ’ :CRM ‘ ’ :Catalog ‘
o I I I
<<Component>> : # I
:Catalog K e EE— ;
3 g |
{l |-
O{0 <<Component>>
:Bookstore o1 o
<<Component>> CRRRCELPLPEREEN] | |
‘CRM < @ 1 1
(1) Component diagram (2) Sequence diagram

Figure 3.5.: Bookstore example. “M” boxes indicate monitoring probes.

Table 3.1.: Example monitoring data for a request to the bookstore.

Operation o traceid Starttime End time vmid eoi ess
Catalog.getBook(boolean) 1 44.86 47.00 nodel 1 1
Catalog.getBook(boolean) 1 48.87 69.53 nodel 3 2
CRM.getOffers() 1 48.85 69.56 nodel 2 1
Bookstore.searchBook() 1 42.38 69.60 nodel 0 0

3.3. Instrumentation and Trace Synthesis

In the following, it is briefly outlined how monitoring can be imple-
mented that confirms to the monitoring model specified in the section
above. Additionally, the raw monitoring data needs to be transformed
into trace models by trace synthesis.

3.3.1. Instrumentation for Monitoring using Kieker

We use the monitoring framework Kieker for monitoring and instrumen-
tation. Various other monitoring frameworks could provide suitable
monitoring data for our approach with minor or no extension. Kieker is
an open-source monitoring framework maintained by the software engi-
neering group of the University of Kiel. Details on Kieker are published
by van Hoorn et al. [2009]; Rohr et al. [2008c]; Focke et al. [2007a,b].

We limit the instrumentation of a software system to a subset of all
operations. Our fault localization approach aims to provide failure diag-
nosis support; it estimates which parts of the software system contain a

46

3.3 Instrumentation and Trace Synthesis

failure’s fault. At least each major component should be instrumented to
be able to draw failure diagnosis on component level. A full instrumen-
tation of all operations might cause a non-acceptable or non-reasonable
monitoring overhead for continuous monitoring during regular opera-
tion [Focke et al., 2007a]. Full instrumentation also leads to the highest
computational demands for analysis, and makes the usability of visual-
ization more challenging.

We suggest instrumenting at least entry-points of major components, so
that the resulting architectural model shows the major software structure.
Furthermore, we suggest avoiding operations of little internal logic, such
as “getter” and “setter” operations, and not to instrument data transport
objects (see discussion in Section 7.2, Page 149).

So far, our approach does not support monitoring that changes the
number of monitoring points during runtime. This would especially
require an extension of our anomaly detection concept to avoid that
changes in the monitoring infrastructure are flagged as anomalies.

3.3.2. Trace Synthesis

An essential step in preparing the monitoring data for our approach is
the reconstruction of unambiguous traces from monitoring data, called
trace synthesis, based on our previous work in Rohr et al. [2008c]. This
produces message traces which are defined as finite sequences of messages.
A message itself is defined as tuple (e, ¢’, a € {Call, Return}). The execu-
tions e and e’ with e # €’ are connected related by a call or return action a.
For the raw monitoring data from Table 3.1 the resulting single message
trace is illustrated in Equation 3.1.

((8, Bookstore.searchBook(), Call),
(BOOkstore searchBook(), Catalog.getBook(boolean),, Call),
(Catalog.getBook(boolean),, Bookstore.searchBook(), Return),
(Bookstore.searchBook(), CRM .getOffers(), Call),
(CRM .getOffers(), Cuatalog.getBook(boolean),, Call),
(Catalog.getBook(boolean),, CRM .getOffers(), Return),
(CRM .getOffers(), Bookstore.searchBook(), Return),
(Bookstore.searchBook(), $, Return))
3.1)

The $ represents the origin of the call to the first execution within the
trace. The operation names (e.g., CRM .getOffers()) represent executions

47

Chapter 3 - Fault Localization Approach

$

Bookstore.searchBook()

N

Catalog.getBook(...) CRM.getOffers()

Catalog.getBook(...)

Figure 3.6.: Dynamic Call Tree for monitoring data of Table 3.1.

and Catalog.getBook(boolean), is the first of the two executions of that
operation. A message trace is both complete and well-formed if it starts
with a call from $, and ends with a return to $. Each call (e, ¢/, Call) has a
successor with an invert return (', e, Return), there are no returns with-
out corresponding calls, and each element (¢, ¢”, a) is directly succeeded
by (e”, e, a’) except e’ = 8.

A dynamic call tree (DCT) is an ordered tree that represents executions
of a trace as tree nodes labeled by its operation names [Ammons et al.,
1997]. An edge from one node to another corresponds to a caller-callee
relation within the trace. Figure 3.6 on Page 48 shows the DCT for the
message trace of Equation 3.1, belonging to the data in Table 3.1 (Page 46)
and to the sequence diagram of Figure 3.5(2) (Page 46).

Our trace synthesis creates message traces and dynamic call trees from
monitoring data. Our approach is in particular designed for distributed
systems. In practice, even proper time synchronization using NTP (net-
work time protocol) is not precise enough to reliably identify caller/callee
relationships between operation executions. Therefore, our analysis uses
the two counters eoi and ess to ensure the correct order and nesting of
operation executions. Our stack-machine-based implementation is part
of the open Kieker sources.

3.4. Trace-Context-Sensitive Timing Behavior
Analysis

After monitoring and trace synthesis, the response times are categorized
according to their trace shape. For this, our approach uses the full trace

48

3.5 Workload-Intensity-Sensitive Timing Behavior Analysis

shape information. We denote this information the trace context. In
the following, our approach Trace-Context-Sensitive timing behavior
analysis (TracSTA) is summarized — a detailed description of TracSTA
with an empirical evaluation can be found in Chapter 4.

TracSTA anticipates that software operation executions having the
same trace shape tend to have similar timing behavior. Therefore, Trac-
STA splits single response time distributions into trace-shape-specific
datasets to provide response time distributions with less variance. Less
variance usually improves anomaly detection quality, as it better de-
scribes what is normal and what an anomaly is.

The example in Figure 3.7 illustrates this using artificial data. In this
example, a catalog interacts with a database via a cache. Two types of
traces exist: The first one in the upper part of the sequence diagram
corresponds to a cache hit, i.e., the requested data can be found within
the cache and is directly returned. The second one, shown in the lower
part of the sequence diagram, corresponds to a cache miss; the data has to
be fetched from the database. The response time of “Cache” will be quite
different depending on whether a database access is required, as reflected
in the response time distribution in the top right. TracSTA provides from
the one multimodal distribution the two unimodal trace-shape-specific
probability density distributions illustrated in the lower half of Figure 3.7.

3.5. Workload-Intensity-Sensitive Timing
Behavior Analysis

After timing behavior is categorized into partitions based on trace con-
texts, WiSTA is applied, which results in a second categorization based
on workload intensity.

Changes in workload intensity, such as in the number of concurrently
active users, can significantly influence the timing behavior of software
systems (see Foundations 2.1.1.3, on Page 12). Typically, response times
tend to grow with increasing workload intensity. The workload intensity
of many systems shows periodic patterns over the day and over the week,
such as that there is for instance high workload intensity during working
hours and low workload on weekends and on public holidays. An
example is illustrated in Figure 3.8 (details in [Rohr et al., 2010]) showing
the number of active users over five days of an online photo printing
service that has an opposite periodic workload: High workload intensity

49

Chapter 3 - Fault Localization Approach

Response time distribution for Cache (both scenarios)

Prob.
density

[Catalog] [Cache] [Database
[I

" aly Y Il Il Il Il
0 -
Tag, Response time

5

* mmus®
wmns .
polammunnre® .
Q

wnus
Lansun® R

Response time distribution for Cache in Response time distribution for Cache in
trace context "no database access" trace context "with database access"

Prob.
density

Prob.
density

. n
0 Response time Q
Response time

Figure 3.7.: Example: Different trace shapes can correspond to different timing
behavior.

occurs in the evening with up to 200 % of the average. As indicated by
workload measurements of two other photo printing services shown in
Figure 3.9, a second seasonal pattern exists over the year.

As both workload intensity changes over time and it influences timing
behavior, an anomaly detection approach should evaluate timing behav-
ior in the context of the workload intensity or it will also implicitly be
an anomaly detector for workload intensity changes. Ignoring workload
intensity can reduce anomaly detection quality during periods of unusual
high or low workload intensity.

At this point we apply WiSTA, presented in detail in Chapter 5, to
distinguish software timing behavior based on workload intensity. More
precisely, the response times belonging to trace contexts provided by
the previous section, are further split into partitions that correspond to
different levels of workload intensity. A special characteristic of WiSTA is

50

3.5 Workload-Intensity-Sensitive Timing Behavior Analysis

200

100%%-f-----

o L fA\H
VARVEN

u W
Wednesday Thursday Friday Saturday Sunday
12:00 22:00 08:00 18100 04:00 14:00 00:00 10:00 20:00 06:00 16:00

Figure 3.8.: Workload curve (active user sessions) of an online photo printing

service.
Unique Visitors shutterfly.com snapfish.com
&M
SM \-
an
012010 022010 032010 042010 O0S2010 082010 072010 02010 082010 102010 112010
) compete

Figure 3.9.: Unique visitors of two online photo printing services.
Graph by compete.com.

its workload metric that addresses also the configuration of the workload
(i-e., which operations are executed) besides the amount of workload. The
motivation behind this is that concurrent executions of some operations
might compete for the same resource (e.g., CPU, network), which results
in strong timing behavior interferences, while concurrent executions of
other operations that do not compete for the same resources might have
low timing behavior interferences.

Figure 3.10 demonstrates WiSTA with lab measurement data. Fig-
ure 3.10(1) shows the timing behavior distribution for all response times
of one trace context. WiSTA defines three partitions of workload-intensity-
specific timing behavior; the resulting distributions after splitting the data
into low, medium, and high workload are displayed in Figure 3.10(2).

51

Chapter 3 - Fault Localization Approach

©
©
>
2
a°
o
o Tt T T T
2 5 10 20
Response time in milliseconds
(1) All workload intensities.
- S 7
_ ho, AN — = Low Workl.Int.
2 'l U - = Medium Workl.Int.
3 IR NN - =+ High Workl.Int.
/ \ .
8 1 ,l‘ \ \
— ‘,l"\ \\ S
. = :/ '\\— E\A-\#;\g;m-_ i oa
2 5 10 20 50 100

Response time in milliseconds

(2) Three workload intensity levels.

Figure 3.10.: Response time distributions specific to workload intensity.

3.6. Anomaly Detection

In the previous three sections, software operation executions and their
timing behavior were monitored and categorized into partitions based
on trace shapes and workload intensity. This section describes how this
is used for anomaly detection.

We use the straight forward anomaly detection paradigm of comparing
new timing behavior measurements to historical ones. This assumes that
the historical data is free of anomalies or that anomalies are at least rare
(see Eskin, 2000).

Our anomaly detection is executed in three steps: preparation of train-
ing datasets, initialization of anomaly algorithms, and computation of
anomaly scores.

3.6.1. Preparation of Training Datasets

As demonstrated in Table 3.2, trace shapes and workload intensity are
used to define training datasets that are subsets of the full training data.

52

3.6 Anomaly Detection

Table 3.2.: Example for training data sets.

Training Operation Trace = Workload Response
dataset context intensity times (ms)
1 Opl Tcl [—o0; 1.7] 3.3,3.0,2.9,3.2,...
2 Opl Tcl 11.7;2.8] 9.0,4.1,5.0,3.1,...
3 Opl Tcl 12.8;00] 8.4,3.5,6.4,26.3,...
4 Opl Tc2 [—00; 4] 0.3,0.4,0.5,04,...
5 Opl Tc2 14; oc] 0.9,2.3,9,2.0, ...

More precisely, each training dataset belongs to a single trace context
and to a specific workload intensity interval. First TracSTA defines trace
contexts; next, each trace context dataset is split by WiSTA into workload-
intensity-specific datasets.

In the example in Table 3.2 on Page 53, there are three workload inten-
sity intervals defined for trace context Tcl in the first three table rows.
These intervals correspond to the low-, medium-, and high workload
intensity distributions of Figure 3.10(2). If the response times of a trace
context show no correlation to workload intensity, then only the interval
[—o0; +00] exists.

For anomaly detection each workload intensity interval should be large
enough, so that the resulting training dataset contains at least several
hundred response times. Our default number of different workload
intensity bins is set to 5, and overlapping intervals are allowed. More
bins lead to higher precision, but also to an increase in requirements for
storage and computation. Figure 3.10(2) on Page 52 shows the resulting
response time statistics for three bins; for the same data, Figure 3.11(2)
indicates that 10 bins might even be a better choice, since the bins still
show individual distribution characteristics: for each workload-intensity-
based bin the mean response time and the standard deviation of the
corresponding response times are different to those of other bins.

3.6.2. Initialization of the Anomaly Detectors

We use multiple anomaly detection algorithms for computing anomaly
scores. Each algorithm is instantiated for each training dataset. Therefore,
each instance, denoted anomaly detector AD, is specific to a workload
intensity interval, a trace context, and an anomaly detection algorithm.

53

Chapter 3 - Fault Localization Approach

. Q14— Mean =
[5) . £
@ -4~ Standard deviation B
2 © TN .E
= - £
g o=
£ o] S
2 - S
£ Lo 8
& 3
c - kel
Q - <]
3 o _ == -N-‘é
) = 5
o ~ p

a F—
1.0 15 2.0 25 3.0
Bin
(1) 3 bins.

Q]

. ©]-e—= Mean [8=
b5} -4~ Standard deviation s
L / c
= / Lo
E g Al N “3
c , -A | EE*

©
= o _A/ e oS
[OREA A- o [0}
2] [d ©
5 A7 o—o0 B
o3 INGE FN g
3 o o, c20—0 =
o /A- A -3

o
2 4 6 8 10
Bin
(2) 10 bins.

Figure 3.11.: Response time distribution characteristics for two different
numbers of bins.

We define an anomaly score € [0;1] C R as the degree to what extend
the observation is considered an anomaly. A score of 0 means that the
execution has a quite normal timing behavior; a score of 1 means that
this execution is considered to be very anomalous. In contrast to binary
anomaly scores (i.e., an observation is classified an anomaly or not), non-
binary scores offer more mathematical possibilities, such as expressing
confidence and sorting potential causes by the strength of anomalies, as
described in Foundations 2.4.3.

Each anomaly detector needs memory at runtime and CPU time for
initialization. Too many anomaly detectors might impose a too large
overhead or too high resource costs. To reduce the number of anomaly

54

3.6 Anomaly Detection

detectors, trace contexts can be merged by the method described in
Section 4.2.4, fewer anomaly detection algorithms can be used, fewer
software operations can be instrumented, and fewer workload intensity
intervals can be defined.

The anomaly detection algorithms used by our approach are not spe-
cific to timing behavior distributions. To suite the distribution character-
istics of software timing behavior (see Section 2.1.3, Page 15), we apply
the algorithms only on log-transformed response times. The following
three anomaly detection algorithms are used:

e Normalized LOF (Local Outlier Factor) [Breunig et al., 2000]: LOF
computes an anomaly score based on both distance and density. In
contrast to other approaches, it can detect anomalies in data sets
that have varying local density. We approximated the LOF’s param-
eter k in several experiments with varying class size |C| between
200 and 20,000 observations with k£ = 1.92/9(€D Furthermore,
the LOF values are normalized to [0; 1]. The software library ELKI
0.3 [Achtert et al., 2010] provides a Java implementation for both
LOF and LoOP.

e LoOP (Local Outlier Probability) [Kriegel et al., 2009]: LoOP ex-
tends LOF by using probabilistic distance and it automatically
provides anomaly scores in [0; 1]. As with LOF, we approximated in
several experiments with varying class size between 200 and 20,000
observation the parameter k with k = 1.92/9(¢D) For instance,
k = 142 for 2,000 observations and k = 639 for 20,000 observations.

e Normalized inverse probability density: A probability density func-
tion produces a high output value for a common input value and a
low or zero output value for an uncommon input value. With sim-
ple mathematics, its output can be normalized to [0; 1] and inverted,
such that 0 corresponds to very common input values and 1 for very
uncommon input values. To estimate the density, we use Silverman
[1986]’s kernel density estimation method in its implementation
provided by GNU R!. Since timing behavior can be multimodal
and right-skewed, we perform kernel density estimation at 5,000
equally spaced points and use kernels scaled to 25 %.

An evaluation of these different anomaly detection algorithms is out
of the scope of this thesis. An exemplary comparison of the different

Thttp:/ /www.r-project.org

55

Chapter 3 - Fault Localization Approach

anomaly detection algorithm is shown in Figure 3.12. Figure 3.12(1)
shows the response times of a single software operation of a real sys-
tem with real workload. The monitoring data is from a single calendar
day. The scatter plot displays that two clusters of timing behavior exist.
Furthermore, response times of over 5 seconds occur; this is several mag-
nitudes larger than the average response time of about 60 milliseconds.
These response times are not untypical, as multimodal log-normal dis-
tributions with right heavy-tails have been reported in the literature on
software timing behavior (see Foundations 2.1.3, Page 15).

Figure 3.12(2) shows which anomaly scores would be computed for
new response time observations by the three anomaly detection algo-
rithms after trained with the data of Figure 3.12(1): for instance a re-
sponse time of 0.02 ms would be scored 0.9, 0.76, and 0.98; this results in
a median score of 0.9. Therefore, a response time of 0.02 ms would be con-
sidered an anomaly, which confirms to the scatter plot of Figure 3.12(1),
in which response times of 0.02 ms are between the two common clusters.
A response time of 0.1 ms would get low anomaly scores by all three
algorithms.

3.6.3. Computation of Anomaly Scores

After the initialization, the anomaly detectors can be used to compute the
anomaly scores. From time to time or continuously, the training datasets
should be renewed and the anomaly detectors reinitialized as the normal
timing behavior of a system can change over time.

The anomaly detectors can be used for failure detection and/or for
fault localization. As stated in the beginning of this chapter, we address
fault localization.

The anomaly detection for fault localization works as follows: After a
failure has been detected, the monitoring data from the time of the fail-
ure and some time before is evaluated by the anomaly detectors. More
precisely, each monitored operation execution is first preprocessed by
TracSTA and WiSTA to determine the trace context and workload inten-
sity. Next, the trace context and workload intensity are used to identify
the initialized anomaly detectors that fit to the context of the execution.
In our case, each execution’s response time is evaluated by three anomaly
detectors. Finally, the median of the three resulting anomaly scores is
then annotated to its execution and the data is provided to the anomaly
correlation, described in the next Section 3.7 on Page 58.

56

3.6 Anomaly Detection

o
S -
0 [e]
8 _|--- Mean0.06 o
S 2500 sample o
2 § observations 9% o O S
E IS] o
£
[0
£ 3 -
< Q
8 o
c
o
o
®
x 8
o
\ \ \ \
10:00 AM 3:00 PM 8:00 PM 1:00 AM
Calendar time
(1) Scatter plot of response times.
e[- - ————— =
2 ~ — Ty R =t —————
n ! /—/./._ \ ’ Il P
@ ANE N H"/\ \'.] v
© Nb- Y RN P Y
o A N SN / 4
<] \ e Yl 7
ge W ST
> by t,“. v
< I\ ° I h "] !
g = 1 H . ,l"
2° |" Nl o
< N Y A H
g " ','| ,‘, ..AI'\ .l === Norm. LOF on log(rt)
“l. ’U' AN - - LoOP on log(rt)
o | N AN L O .= Inv. dens. on log(rt)
o

\ \ \ \ \ \ T T T T
0.005 0.010 0.020 0.050 0.100 0.200 0.500 1.000 2.000 5.000
Response time in milliseconds

(2) Anomaly scores for response times using different anomaly detection functions.

Figure 3.12.: Demonstration of different anomaly detection functions.

This computation of anomaly scores for fault localization is illustrated
in Table 3.3 that shows results for three evaluated executions. The first
two columns are provided by monitoring. The third and fourth column
are computed by TracSTA and WiSTA. The anomaly scores in the last
column are the medians of three anomaly detection results.

In failure detection, the anomaly detectors and the preprocessing
would regularly or immediately be applied to new monitoring data.
If anomaly scores grow beyond some predefined level, an alarm would
be raised. Failure detection based on timing behavior can significantly

57

Chapter 3 - Fault Localization Approach

Table 3.3.: Example for anomaly score computation.

Opera Response Trace Workload Anomaly
-tion time (ms) context intensity score
Opl 3.0 Tel 3.0 median(0.3,0.2,0.0) = 0.2
Opl 7.1 Tel 3.0 median(0.1,0.1,0.2) = 0.1

Opl 7.1 Tcl 0.2 median(0.8,0.7,0.8) = 0.8

reduce the time to detect failures, as timing behavior always shows a
very up-to-date view on the system. However, it is a challenge to pre-
vent that the high level of noise in timing behavior causes many false
alarms. Even in our controlled lab experiments, high single anomaly
scores occurred regularly during “normal” operation. Authors such as
Maxion [1990], Williams et al. [2007], Avritzer et al. [2006], Jiang et al.
[2006], and Bielefeld [2012] use aggregation operations, such as mean or
median filters over time windows, to reduce noise.

3.7. Anomaly Correlation and Visualization

The fault localization finishes by computing for each part of a software
system an anomaly rating that quantifies the assumed likeliness that it
contains the failure’s cause. In the previous section, anomalies where
detected and represented by the anomaly scores; one score for each moni-
tored software operation execution. Anomaly scores can be understood
as symptoms of a failure. These symptoms may be at the same location
as their origin, but they can also spread by propagation of timing behav-
ior anomalies, faults, and errors, as described in Foundations 2.2.1 on
Page 23 and illustrated in Figure 3.3 on Page 42. A software component
might just show anomalous behavior because one of the components that
it uses returns faulty results and shows anomalous behavior.

The remainder of this section summarizes our anomaly correlation
concept and its visualization. The concrete algorithms together with a
case study can be found in our separate publication Marwede et al. [2009].
Anomaly correlation is itself an extensive topic. Its detailed presentation
and especially its evaluation highly depend on faults assumptions and
system settings; therefore, it is not within the scope of this thesis.

58

3.7 Anomaly Correlation and Visualization

3.7.1. Computation of Anomaly Ratings

We define an anomaly rating € [0; 1] as the estimate that a software entity
contains a failure’s cause. We compute anomaly rates for several levels of
software granularity - more precisely for instances of software operations,
software components, and for execution environments. A high rating
expresses the estimate that this entity contains a failure’s fault.

The computation of anomaly ratings is performed in several steps.
The basic idea is to apply rules that compensate propagation effects of
anomalies along connections of the call dependency graph. Examples
for other approaches that localize faults using dependency graphs are
by Gruschke [1998b], Choi et al. [1999], and Agarwal et al. [2004]. The
steps to compute the anomaly ratings are:

1. Architecture model construction: Both the call dependency graph
and the information on how operations, components, and execution
environments map to each other are retrieved from the monitoring
data. This results in a call dependency graph that uses nodes for
software operations and directed edges to represent call actions
between operations. Additionally, the graph is hierarchical: op-
erations are mapped to its components and components to their
execution environments.

2. For each software operation, all corresponding anomaly scores are
aggregated into a single anomaly rating. In our case studies, the
power mean provided better results as aggregation operator than
the arithmetic mean.

3. Rules are applied to the software operation’s ratings that are based
on knowledge on how the timing behavior anomalies typically
propagate within the architectural model. Examples for these rules
are:

o If callers of an operation have in average a high anomaly
rating, then the software operation’s rating is increased.

o If any callee of a software operation has a higher anomaly
rating than the software operation itself, then the software
operation’s anomaly rating is reduced.

4. The anomaly ratings for the components and execution environ-
ments are determined by aggregating the software operation’s rat-
ings. Again, we experienced better results with the power mean
than with the arithmetic mean in aggregation.

59

Chapter 3 - Fault Localization Approach

Vitual Machine 'lotz/ .

(Orertea Cateogbeen] [GanBean

¥ N 4 X
‘client.OrderService‘ ‘ client.CatalogService ‘ ‘ client.AccountService ‘

serverCataogServios
OrderSqglMapDao ltemSqglMapDao ProductSglMapDao AccountSqglMapDao

Virtual Machine 'puck’ Virtual Machine 'tier' Virtual Machine 'scooter'

(1) A fault in ItemSqlMapDao caused high anomaly scores (symptoms) indicated
by red and orange colors in depending components.

Vitual Machine otz
ActionServlet J&--------""""""""

IO s N Teeal
OrderBean ‘CatalogBean‘ ‘CartBean‘ AccountBean

y4 A 4
‘client.OrderService‘ ‘ client.CatalogService ‘ ‘ client.AccountService ‘

e v ay

server CatalogServioe
OrderSqglMapDao IltemSqglMapDao ProductSqlMapDao AccountSglMapDao

Virtual Machine 'puck’ Virtual Machine 'tier' Virtual Machine 'scooter'

(2) Anomaly correlation removed propagation effects.

Figure 3.13.: Anomaly correlation compensates propagation effects to identify
root causes instead of symptoms.

3.7.2. Visualization

The results of the automatic fault localization are provided to admin-
istrators as list of anomaly rating for the architectural elements and as
graphical architecture visualization. Similar to the architectural model in
correlation, the visualization is hierarchical with execution environments,
components, and software operations. The hierarchy levels can be used
to provide visualizations with different levels of granularity. In our visu-
alization case studies, we did not distinguish between components and
classes; this might be additionally required for larger systems to provide
a good overview.

60

3.7 Anomaly Correlation and Visualization

Virtual Machine 'klotz' 2057 —
[0510] e

org.apache.struts.action AttionServiet
[0:449] 7

‘doPosi{HtipServietRequest HitpServietResponse) I
[0513] I

13143 1086 ! 38455

vvmwuswm[.:

est HttpServietResponse)
241)

e | T

~T200 lors poas Z
F |

presentation CartBean _ ~ v ! P
[i [0523] - v .
L N y
viewProduct() viewCategory() viewltem() [
[0893] [0515] 10.556] [0523] ‘ [0618]
uk. el u |
h 7 T TS ~ N =
~ 1086 9045 Pl Ji =~ 18090 ~ 68 a3 <237
- ~o 7 \ service hessian.client CatalogService N N
.7 Sy ° [0524]6,85% " « N N
A s § Ny Ny Y
fring) ‘getProduciLisiByCategory(String) gelCategory(String) gelltemistBy
104331 105477 [0542] [0550] (04991
v - \ e v

Figure 3.14.: Failure diagnosis visualization example with operation-level
granularity. The failure diagnosis suspects the fault in the operation
viewProduct() in component presentation.CatalogBean.

Figure 3.13 on Page 60 shows an example where only the execution
environments, components, and call dependencies are visualized. Colors
are used to indicate the estimated likeliness that an architectural element
contains the fault. Green colors represent that an architectural element
has a relatively low anomaly rating compared with the other architec-
tural elements of the same granularity; red colors indicate high anomaly
ratings. The box with the “$” represents the source of external calls. The
differences between Figures 3.13(1) and 3.13(2) are discussed on Page 62.

Figure 3.13 hides details to provide a quick overview. For more details,
an administrator can switch to a more detailed view as illustrated (for
a different fault scenario) in Figure 3.14. Figure 3.14 shows in addition
to the elements of Figure 3.13 software operations, the number of calls
along an edge, the final anomaly rating, and for each software operation
a histogram of the anomaly scores.

3.7.3. Anomaly Correlation Case Study
In a distributed software system, we injected faults, applied probabilistic

multi-user workload, instrumented the software with monitoring probes,
detected anomalies and correlated these with the algorithms described

61

Chapter 3 - Fault Localization Approach

above. The software system for this case study is the iBATIS JPetStore?
divided into components and deployed to five servers. We generated
probabilistic multi-user workload using Apache JMeter® extended by
Markov4]Meter [van Hoorn et al., 2008]. Two classes of faults are injected
based on previous work by Schwenkenberg [2007] in our research group:
programming faults and database slowdowns. Each experiment run
consists of 5 minutes warm-up, 15 minutes monitoring, and 5 minutes pre-
and post-processing steps, such as restarting the servers. After several
experiment runs, this resulted in 1.7 GB of monitoring data with 7 million
executions in total and about 370,000 executions for each experiment run.

Two metrics were selected for evaluation: accuracy in localizing the
fault and clearness in visualization. An accurate result is provided if the
software entity in which the fault was injected has the highest anomaly
rating. The clearness quantifies how focused the localization is on the
part of the software that contains the fault, since faulty and non-faulty
elements should be easily distinguishable based on their color by human
administrators.

All five fault scenarios were accurately localized by the correlation. In
one scenario, a correct localization is provided only after anomaly corre-
lation. In the other cases, omitting correlation provides an accurate result,
but the visualization does not clearly point to the faulty component.

The two failure diagnosis visualizations shown in Figure 3.13 on
Page 60 are an example for differences in clearness of results from the
different algorithms. It displays the results for a “database connection
slowdown” scenario, with and without anomaly correlation. A fault had
been injected into ItemSqlMapDao. This caused high anomaly scores in
the faulty component itself, but also in components that use the faulty
component. In both Figures 3.13(1) and 3.13(2) the faulty elements are
highlighted correctly with red color. Figure 3.13(1) shows more yellow
and orange color. Figure 3.13(2) provides a better result using correlation
— it successfully compensated a timing behavior anomaly propagation to
the presentation layer (Virtual Machine “klotz”).

thtp: / /ibatis.apache.org/
3http://jakarta.apache.org/jmeter/

62

http://jakarta.apache.org/jmeter/

4. TracSTA:
Trace-Context-Sensitive
Timing Behavior Analysis

This chapter introduces the first of the two primary contributions of
this thesis for dealing with high variance and multimodality in timing
behavior analysis.

As motivated in Chapter 1, high variance and multimodality can make
it difficult to analyze software operation response times for purposes,
such as anomaly detection and performance regression benchmarking.
We observed that the variance and the multimodality of response times
often correlate to the shape of the corresponding request traces. This
variance in response times can be of several magnitudes. Therefore, trace
shape is relevant information in response time analysis. An anomaly de-
tection question, such as whether a particular response time is normal or
not, should be answered “It depends on the corresponding trace shape”.
Similarly, one would evaluate an apartment’s price by considering rele-
vant information, such as the location (e.g., country, city, street) and the
apartment’s size.

Classical profiling tools (e.g., gprof [Graham et al., 1982]) and other
research, for instance by Ball and Larus [1996] and Ammons et al. [1997]
analyzed response times in the context of parts of the trace shape. We
contribute a novel method, called TracSTA (trace-context-sensitive timing
behavior analysis) that goes beyond current profiling practice and other
research. TracSTA analyzes software operation response times in the
context of their full trace shape. This also includes trace elements such as
subcalls and operation calls that are much later within the trace than the
software operation execution that is to be analyzed. Our approach helps
to control more variance than earlier approaches.

The empirical evaluation shows in lab studies and industry studies
that TracSTA returns response time distributions with significantly lower
standard deviation compared with using less or no trace shape infor-

63

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

mation. Additionally, it is demonstrated in an industry system that
multimodal timing behavior distributions can be replaced by multiple
unimodal distribution using TracSTA.

Section 4.1 describes the correlation between timing behavior and
trace shape information. Section 4.2 presents our approach to analyzing
timing behavior in the context of its trace and the hypotheses behind the
approach. The empirical evaluation follows in Section 4.3. The chapter is
summarized in Section 4.4. The related work and the discussion can be
found in Chapter 6 and Section 7.2.

4.1. Correlation between Timing Behavior and
Trace Context

In the following, the observed correlation between timing behavior and
trace shapes will be described in more detail and illustrated by an exam-
ple. Furthermore, several possible underlying causes for this correlation
are outlined.

Similar to other authors, listed in the Foundations (Pages 16), we ob-
served high variance and multimodality in software operation response
times of enterprise software. We identified in several systems a strong
correlation of this variance to the corresponding trace shape. Addition-
ally, several connections between multimodality in response times and
trace shapes were in our monitoring data.

As defined on Page 44, a trace is a sequence of operation executions
connected via synchronous call actions (i.e., calls or returns) that cor-
respond to the same request. We define trace shape as the sequence of
operations and the call and return actions between successive operations.
Therefore, a trace shape is an abstraction of a trace — it excludes specific
details of the internal operation executions of the trace (e.g., each exe-
cution’s start time, end time, and response time) and excludes the trace
identifier. This definition of trace shape matches to what is visualized in
a dynamic call tree (see Section 3.3.2 on Page 48).

Figure 4.1 shows the correlation between response times and trace
shapes. This example uses monitoring data of the iBATIS JPetStore!,
which is part of case study CS-4.1 in Section 4.3.1. Both the blue crosses
and the red circles in Figure 4.1(1), which will be explained later, are
response times of a single software operation (newOrder()) during two

1http: / /ibatis.apache.org/

64

4.1 Correlation between Timing Behavior and Trace Context

minutes of monitoring. This scatter plot and the probability density
distribution in Figure 4.1(2) both show multimodal response times with
clusters near 0 milliseconds and around 20 milliseconds.

A study of the traces revealed that the operation newOrder() occurs
in two trace types, visualized in the sequence diagrams 4.1(3) and 4.1(4).
Only the second trace type contains a subcall to insertOrder(). The
source code of newOrder() includes a call to insertOrder() within nested
if-statements that check for a shipping address, an order confirmation,
and whether the order was already created before. This explains why
a subcall to insertOrder() exists only in some traces. A distinction of
the two response times based on the trace shapes of the sequence dia-
grams resulted in the response time distributions shown in Figures 4.1(5)
and 4.1(6); the response time of newOrder() is in average about three mag-
nitudes larger (from about 0.01 milliseconds up to 10-40 milliseconds)
in presence of a subcall to insertOrder(). The source code explains this
with a database interaction within insertOrder(), which is relatively time-
consuming action compared with the other in-memory operations. Both
distributions in 4.1(5) and 4.1(6) match to the two clusters in Figure 4.1(1):
the red circles correspond to the first sequence diagram, and the blue
crosses to the second one. Especially the variance of the distribution in
Figure 4.1(5) is much lower than the variance of the one in Figure 4.1(2);
this demonstrates that distinguishing based on trace shape can effectively
isolate variance.

To avoid the negative effects of high variance and multimodality, it can
be beneficial to first reduce the variance by considering trace shape before
performing subsequent statistical analysis. This would for instance allow
an anomaly detection algorithm to compare a new observation with one
of the two trace-shape-specific distributions (Figures 4.1(5) and 4.1(6))
instead comparing a new observation with the combined distribution
(Figure 4.1(2)) that does not distinguish both cases.

Many constellations in software architecture and implementation can
cause correlations between trace shapes and response times. In the
following, some causes are outlined.

e As in the example above, software operations can contain sub-
calls that are only sometimes executed, if these are nested in if-
statements. The monitoring traces will show which paths are taken.

o A cache can significantly reduce response times, but leads to vari-
ance. In case of a cache miss, data has to be fetched from some
storage or external source. Typically, a cache hit is magnitudes

65

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

T
e

» et e 0

24+ N ﬁ;ﬁ? %hﬁﬁi *++ @3 el

8 4+I +F +++ ;& i ++ +

g * @m i

=84 4 Skl g**#**wﬁg it ze

= % <

S ﬂgipﬁ# b 4#1 Ht f g o

£ g £ i 3

o QA >

£ : 38

2o o) g3

Eo | alkmtiiaden Soastm s 8

c T T T T T T T

44100 45.00 46:00 0 5 10 15 20 25 30
Calendar time of execution start (minutes:seconds) Response time in milliseconds

(1) Response time scatter plot (2) Probability density distribution

newOrder(). newOrder().
‘ $ | [ActionServiet| [OrderBean | [OrderService
‘ $ ‘ ‘ ActionServlet ‘ ‘ OrderBean ‘ L . | L . | L . | L . |
L] L] L I} L 1 1
T T T newOrder() I
doPost(..) | | doGe(.) insertOrder(..) |
newOrder() ! JT
(3) Sequence diagram newOrder()1. (4) Sequence diagram newOrder()2.
2
e Trace context Trace context
newOrder()1 > newOrder()2
2> 9o 2
B 2 7 i)
=4 =
(o} [}
© o
z 2
3 9 - 3
g © 8
s s
a I
o -
I I I I
0.00 0.02 0.04 0.06 5 10 15 20 25 30 35 40
Response time in milliseconds Response time in milliseconds
(5) Probability density distribu- (6) Probability density distribution
tion newOrder()1. newOrder()2.

Figure 4.1.: Trace-shape-specific timing behavior: operation newOrder().

faster than a cache miss. A hit and a miss could be distinguished if
the implementation uses a subcall during a cache miss.

e Good programming practice suggests to avoid code clones and to
reuse software code. For this reason, a particular software operation
may be called from multiple other software operations and be

66

4.2 Trace-Context-Sensitive Timing Behavior Analysis

reused in different use cases. The parameter types, parameter
values, and parameter size can strongly vary between use cases.
For instance, an online store for music, e-books, and videos can
have shared operations (e.g., downloading, CRC-checking, and
digital rights management) for all media types. The response times
of shared operations can strongly correlate to the media type, which
itself correlates to other properties such as file size.

e A service might be implemented such that the answer to a request
varies depending on the current workload and depending on the
user type (e.g., normal or premium). An example for the first is
described by Arlitt et al. [2001] — this system changes the personal-
ization depending on server utilization. Similarly, search engines
might only provide personalized results if a user is logged in. Ac-
tive personalization could be visible in traces by the occurrence of
particular methods (e.g., “getPersonalizedNews(...)” or “getUser-
Region(...)”). Personalized results can computationally be more
expensive, which typically increases response times.

Some of the scenarios above may also correlate to other runtime character-
istics, such as parameter values, system state, and parameter size besides
correlating to trace shape. However, in these examples, trace monitoring
is sufficient and no monitoring probes for those other characteristics are
required.

4.2. Trace-Context-Sensitive Timing Behavior
Analysis

This section explains our approach TracSTA for reducing variance in
monitored operation response times by using trace shape information
in detail. Three types of trace shape information are defined in this
Section: caller context, stack context, and trace context. The concepts
of caller contexts and stack contexts were used in performance analysis
and profiling by Graham et al. [1982] and Ammons et al. [1997] before.
TracSTA contributes the concept of trace contexts, which uses the full trace
shape, while caller- and stack contexts use less trace shape information.

TracSTA creates trace-context-specific partitions of the response times
of a software operation. We assume a system model as specified in
Section 3.2.1 on Page 43. In short, this assumes that the software is

67

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

Table 4.1.: Simplified monitoring data for the ongoing TracSTA example.

Entry Operation TraceID Experiment time (us) Resp. time (us)

1 d() 1 3576447911 12941
2 a() 1 3576453978 6821
3 £() 1 3576460283 334
4 £() 1 3576460675 65
5 £() 2 17259672261 1551
6 d() 3 21035692614 13534
7 a() 3 21035698342 7753
8 £() 3 21035705542 365
9 £() 3 21035705966 67
10 £() 4 26439447513 304
11 £() 5 34265513905 300
12 £() 6 36016539674 363

composed out of components that contain software operations. These
operations can be called by other operations, external users, or systems.

The refined hypotheses of TracSTA of the combined hypothesis (Sec-
tion 1.2) are:

Hria A significant part of the variance in software operation response
times of enterprise software systems is correlated to the full trace
shape (i.e., the trace contexts).

Hrp This correlation is significantly stronger than the corresponding
correlation to caller contexts and stack contexts.

Hr, This correlation can be used in practice to “reduce” the variance
from the perspective of subsequent timing behavior analysis steps
(see Figure 1.2 in Section 1.2), such as anomaly detection.

The three essential steps of TracSTA are trace monitoring, trace shape
abstraction, and partitioning. An optional fourth step, described in
Section 4.2.4, further optimizes the result by reducing the number of
partitions. The fourth step is not part of the empirical evaluation.

68

4.2 Trace-Context-Sensitive Timing Behavior Analysis

SD1 SD2
Eope

] f()é O !

< -5 [
f(): -

< -

<7

Figure 4.2.: UML sequence diagrams for the monitoring data of Table 4.1.

4.2.1. Step 1 - Trace Monitoring

The software is monitored according to Section 3.3 on Page 46. This
monitoring concept defines operations, operation executions, response
times, and traces.

Table 4.1 shows monitoring data from a partially instrumented telecom-
munication signaling system, which is also used in the second case study
of this chapter (Section 4.3.2 on Page 85). The monitoring attributes
vmid, eoi, ess (see Section 3.3) are omitted, because it is a single node
system, which makes the timing data sufficient to correctly reconstruct
the traces. Figure 4.2 visualizes the sequence diagrams corresponding to
the six traces of Table 4.1. The traces 1 and 3 correspond to the sequence
diagram SD1; traces 2, 4, 5, and 6 correspond to the sequence diagram
SD2.

4.2.2. Step 2 - Trace Shape Abstraction

Next, for each trace, the trace shape is extracted. As defined on Page 64, a
trace shape is the sequence of operations and the call and return actions
between successive operations. In other words, it is only the shape of the
trace — individual attributes, such as response times, execution ID, trace
ID start times, and end times are omitted.

A trace shape is well-illustrated by a dynamic call tree. As described
in Section 3.3.2, a dynamic call tree (DCT) [Ammons et al., 1997] is an
ordered tree. Its nodes represent operation executions by its operation
names and the directed tree edges correspond to the caller/callee relation
within the trace. Different trace shapes imply different dynamic call trees
and vice versa. In van Hoorn et al. [2009], we describe in detail how to

69

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

DCT1 $ DCT2
$
| |
d()
| ()
a()
RN
() f()

Figure 4.3.: Dynamic call trees for the sequence diagrams of Figure 4.2.

construct dynamic call trees from monitoring data and how to implement
this.

Figure 4.3 shows the two DCTs for the ongoing example: DCT1 visu-
alizes the trace shape of traces 1 and 3, which correspond to sequence
diagram SD1. DCT2 shows the trace shapes of traces 2, 4, 5, and 6, which
correspond to sequence diagram SD2.

4.2.3. Step 3 - Partitioning using equivalence relations

In this step, we split the response times of each operation into trace-
shape-specific partitions. This partitioning is defined by one of the three
following equivalence relations. TracSTA uses the third one. The two
others use less trace shape information and are used for a comparison to
related work and for optimizing the model size in step 4 (Section 4.2.4).

o Caller context equivalence: Two executions of the same operation are
caller context equivalent if they have the same caller operation.

o Stack context equivalence: Two executions of the same operation are
stack context equivalent if the paths from the corresponding nodes
to their roots are equal.

o Trace context equivalence: Two executions of the same operation are
trace context equivalent if the corresponding dynamic call trees are
equal and the corresponding positions of the executions within the
trees are identical.

70

4.2 Trace-Context-Sensitive Timing Behavior Analysis

Table 4.2.: Trace shape contexts for the ongoing example.

Entry Operation TraceID Caller Stack Trace Response

context context context time (us)
1 d() 1 d(1 d(1 d(1 12941
2 a() 1 a()l a()1 a()1 6821
3 £() 1 f()1 f(1 f()1 334
4 £() 1 f01 fO01 f02 65
5 £() 2 f()2 ()2 ()3 1551
6 d() 3 d(1 d(1 d(1 13534
7 a() 3 a()1 a()1 a()1 7753
8 £() 3 f()1 f(1 f()1 365
9 £() 3 f01 fO01 f02 67
10 £() 4 ()2 ()2 ()3 304
11 f() 5 f()2 ()2 ()3 300
12 £() 6 f()2 ()2 ()3 363

Trace context equivalence implies stack context equivalence and stack
context equivalence implies caller context equivalence. Each of the three
equivalence relations specifies response time partitions. In the following,
we use the terms caller-, stack-, and trace context to refer the equivalence
class on executions or their response times.

The trace shape contexts for each monitored execution of the ongoing
example are listed in Table 4.2. For instance, caller context “f()1” in
column “caller context” represents one of the two caller context partitions
for operation f(). The columns for caller contexts and stack contexts
are identical in this example. There is one more trace context than the
other two context types: Entry 4 and entry 9 correspond both to the
second subcall of operation f() from operation a(), as shown in the
sequence diagram SD1 (Figure 4.2, Page 69) and in the dynamic call tree
DCT1 (Figure 4.3, Page 70). Both calls from a() to f() are caller context
equivalent, because both are called from a(), and both are stack context
equivalent, because the stack contains in both cases $ and a(). However,
both calls from a() to f() are not trace context equivalent — they have
the same dynamic call tree, but the f() has different positions within the
dynamic call tree.

A visualization of all contexts for operation f() are in Figure 4.4 on
Page 72. In 4.4(1), the two colored areas in the left box are caller context

71

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

Caller context f()1 Caller
context
$ $ f()2
I I
s[¢] d()
fO 0

(1) The two caller contexts of f().

Stack context f()1 Stack
context
f()2

(2) The two stack contexts of f().

Trace Trace Trace
context f()1 context f()2 context ()3

(8) The three trace contexts of f().

Figure 4.4.: All trace shape contexts for operation f(). The highlighted areas
indicate the scope of the equivalence relations.

equivalent. This is also the case for the stack contexts in 4.4(2): both in the
left box are equivalent. Only the three trace contexts of f() (Figure 4.4(3))
can be distinguished, as the two left contexts have different relative
position of f() within the tree.

72

4.2 Trace-Context-Sensitive Timing Behavior Analysis

I

700
|
&
o]
o]
o
o
S
0.008

|

|

500

|

300

|
|

Probability density
0.004

Response time in microseconds
100

0.000
L

T T T T T T T T T
14:18 14:20 14:22 14:24 0 100 200 300 400 500 600

Calendar time (hour:minute) Response time in microseconds
(1) Response times. (2) Probability density distribution.

Figure 4.5.: All monitored response times of operation f().

The benefit of partitioning in the context of trace shape can be demon-
strated by a look at the response times of operation f(). A scatter plot
and probability distribution of response times of operation f() are shown
in Figure 4.5 on Page 73. This multimodal distribution has a standard
deviation of 136.47.

Figure 4.6 shows the probability density distributions for the partitions
defined by stack context equivalence. As mentioned above, in this exam-
ple caller context equivalence produces the same result. The stack context
()1 still shows a multimodal distribution (Figure 4.6(1)) like all response
times of f() (Figure 4.5(2)). The standard deviation for stack contexts
f(land f()2 are 155.54 and 49.74. The average standard deviation for
both stack contexts, weighted by the observed calling frequency, is 120.13.
This is 11.97 % less standard deviation than without partitioning.

The distributions for the three trace contexts for operation f() are
shown in Figure 4.7. The multimodal distribution is replaced by three
unimodal distributions. The standard deviation corresponding to trace
contexts f()1-f()3 are 53.83, 2.20, and 49.74. Weighted by the calling fre-
quency, the average standard deviation is 35.94. This means that 73.66 %
of the standard deviation is connected to trace context information. In
other words, most of the variance in the response time distribution of this
particular operation can be removed by making trace context dependence
explicit.

73

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

©
8 S
28 zS
£ 2 23
=4 =
o o |
o el
> >
=« =
=3 =3
=l €S
o ° a°
°© <]
[$ e |
o T o
o o
1S3 1S3
L Q
o T T T T I o T T T T T I

(1) Probability density distribution for stack

100 200 300 400
Response time microseconds

context f()1.

500

200 250 300 350 400 450
Response time in microseconds

(2) Probability density distribution for stack
context f()2.

Figure 4.6.: Stack context analysis identifies two stack contexts for operation f/().

— N
g
S 2o
o N — 2] .
c o
[} o ©
© ° 84
2 Zo
a8 e o
2357 83
[} o S
2 I o
o — o
=3
o
S
< S
< T T T o

65

70

—— Trace context 1
- - Trace context3

Response time in microseconds

(1) Probability density distribution for trace
context f()2.

T T T T
200 300 400 500
Response time in microseconds

(2) Probability density distribution for trace
context f()1 and f()3.

Figure 4.7.: Trace context analysis identified three contexts for operation f().

74

4.2 Trace-Context-Sensitive Timing Behavior Analysis

4.2.4. Step 4 (optional) - Model Size Optimization

The trace context analysis can produce in some cases results with unde-
sired characteristics. For this case, we present in the following an optional
optimization step. It structures the results from caller-, stack-, and trace
context analysis into a tree structure and iteratively applies optimization
operators.

Possible undesired result characteristics

The trace shape analysis may produce a partitioning of software response
times with undesired properties:

e Trace contexts with an insufficient number of measurements: Many
statistical methods require a minimum number of observations in
each partition to provide robust results.

e Too many trace contexts: The efficiency and feasibility of subse-
quent performance analysis steps can depend on the number of
contexts and may perform badly for too many contexts. This cor-
relates often with the previous undesired property. An example
for too many trace contexts can be found in case study CS-4.3 on
Page 87.

o Contexts may be distinguished that have very similar timing be-
havior distributions. This unnecessarily reduces the efficiency of
subsequent analysis steps, such as anomaly detection.

e Trace context analysis is used in cases for which the computation-
ally cheaper stack- or caller contexts produce equal results.

o For some software operations, there might be no benefit from using
trace context analysis over the computationally cheaper caller- or
stack context analysis.

Construction of the trace shape context tree

To get a response time partitioning free of the undesired properties pre-
sented above, the results of trace share context analysis are first structured
into a tree, denoted trace shape context tree (TSCT) as illustrated in Fig-
ure 4.8:

75

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

Monitored response times RT=[..]
of all instrumented
software operations o

Partitioning based
on operation name equality

°
1\

Partitioning based
on caller context equivalence T\ .\
Partitioning based ® 0 o

on stack context equivalence

Partitioning based
on trace context equivalence

/1 1IN

Figure 4.8.: The trace shape context tree organizes the response times by trace

shape.

The tree’s root represents all monitored observations from all oper-
ations.

Each monitored software operation and (its response times) are
represented by a node on the first level of the TSCT.

The nodes of the second level of the TSCT represent the caller
contexts. Based on the callee’s operation name, each second level
node is connected to its corresponding first level node.

The third tree level is defined by stack context equivalence. Each
third level node is connected to its corresponding second level
node.

The fourth level of the TSCT is the partitioning defined by trace
context equivalence. Each trace context node has an edge to its
corresponding stack context node.

The tree’s leafs together are a complete partitioning of all monitored ob-
servations. These partitions are provided to subsequent timing behavior

analysis steps, such as anomaly detection.

Optimization of the trace shape context tree

We define three tree operators to remove or at least minimize the unde-
sired characteristics. The three operators are illustrated in Figure 4.9.

76

4.2 Trace-Context-Sensitive Timing Behavior Analysis

Leaf nodes without o o o Leaf nodes without a sufficient
siblings are removed amount of observations are

|\ \ /ine 0 an ancestor node
V ® o linked t t d
fl | IN)
® o
AN

Leaf nodes with similar distribution
characteristics are merged

Figure 4.9.: Tree optimization operators: Node merging, removing, and linking.

1. Aleaf node is merged to the most similar sibling if it has less than a
user-specified minimum number of observations. Similarity can be
defined by any user-defined similarity metric for multisets, such as
the reciprocal of the distance between the median response times
of two partitions.

2. Leaf nodes that have no siblings are removed from the tree. This
reduces the size and computational costs in subsequent analysis.
For instance, a trace context node that has no siblings is removed,
since it makes no sense to compute and evaluate the complete
trace for trace context analysis, while stack context analysis already
provides the same response time partitioning.

3. Nodes in the TSCT without a sufficient number of observations
and no similar siblings are linked to an ancestor node that has a
sufficient number of observations. The linking semantics is that all
corresponding response times of the linked node are used for the
node that links to it.

These three operators are repeatedly applied in random order to the
TSCT until no further application of the operators is possible or a user-
defined stop criterion is satisfied. Possible stop criteria are for example a
maximum number of contexts and a minimum number of observations
per partition. The final context-sensitive timing behavior model is given
by the leaf nodes of the TSCT. Case study CS-4.3 on Page 88 applies this
model size optimization.

77

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

4.3. Empirical Evaluation

This section provides empirical results from several case studies. The
evaluation focuses on the following research questions to address the
hypotheses for TracSTA stated on Page 68:

1. How large is the standard deviation reduction in response times by
using TracSTA’s trace context analysis?

2. Is there a significant benefit from using the full trace shape informa-
tion compared with using less trace shape information (i.e., stack
context analysis and caller context analysis)?

3. Can multimodality in response time distributions be related to trace
shape information?

4. How does the number of monitoring points relate to the number of
resulting contexts?

5. Is TracSTA applicable in real enterprise software systems for re-
ducing standard deviation from the perspective of subsequent tim-
ing behavior analysis steps (see Figure 1.2 in Section 1.2), such as
anomaly detection?

Research questions 1, 2, and 3 address the effectiveness for dealing
with high variance and multimodality in software timing behavior. Re-
search question 3 is evaluated in the case studies by providing positive
examples. Research question 4 is about efficiency — too many trace shape
contexts require too much computational resources and threaten statis-
tical robustness. Research question 5 is about the applicability of the
approach.

Research questions 1, 2, and 4 use the metric standard deviation reduction
to quantify the effect of using trace shape information for partitioning
response times. The standard deviation itself is a common variance
metric to characterize the dispersion of data and it quantifies the (root
mean square) error in the context of prediction or estimation. For each
software operation, the original standard deviation of all response times
is compared with the standard deviations of all the response times of
all partitions weighted by the frequency of the partitions (partition size).
The resulting metric is denoted standard deviation reduction for a single
operation; a formal definition of this metric is provided in Appendix B.

78

4.3 Empirical Evaluation

Table 4.3.: Summary of the settings of the three TracSTA case studies.

Case Study type Software system Workload ~ Mon. Research

study points questions

CS-41 Lab study iBATIS JPetStore Simulated 2-198 1,2,3,4

CS-42 Industry study Telecommunication Simulated 8 1,2,3,4,5
system

CS-43 Industry study Online photo Real 2-161 1,2,4,5

printing service

To make a statement about all operations in a system together, all oper-
ation standard deviation reductions are weighted by the call frequency
of each operation. This results in the standard deviation reduction over all
operations. A high standard deviation reduction corresponds to a good
partitioning, which usually promises better decisions (e.g., anomaly de-
tection) than without partitioning. A random partitioning tends to result
in average in a standard deviation reduction from about zero percent up
to a few percent depending on the distribution; a bad partitioning can
result in a negative standard deviation reduction.

Three case studies have been performed, as summarized in Table 4.3.
The evaluations took place in the lab with a demo software application
and in two real industry systems outside of our lab. The first industry
system is a software product installed at many client sides all over the
world. The second industry system is not a software product — it is
developed and used only by the same company. All three software
systems are modern distributed Java software enterprise applications.
In the first two case studies, workload generators were used during the
experiments; in the third case study, the monitoring was performed in
the production system, i.e., the workload is real user workload.

The optional step 4 of TracSTA for model size optimization (Sec-
tion 4.2.4) is not part of the empirical evaluation.

4.3.1. TracSTA Case Study CS-4.1
Setting

The software application analyzed in this case study is the iBATIS? JPet-
Store 5 Web application which represents an online shopping store that

2http://ibatis.apache.org/

79

http://ibatis.apache.org/

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

offers pets. It is an implementation of the Sun Java Pet Store Demo ap-
plication scenario [Sun Microsystems, Inc., 1994-2006]. The software is
deployed in the Apache Tomcat Servlet container (version 5.5.23) run-
ning on a desktop computer equipped with an Intel Pentium 4 3 GHz
hyper-threaded CPU, 1 GB physical memory, Linux 2.6.17, and Sun Java
SE 1.6.0_03. Business data is stored in the database management sys-
tem MySQL 5.0.18 running on Linux 2.6.15 system with two Intel Xeon
3GHz CPUs and 2 GB physical memory. The application server and the
database are connected via 100 Mbit Ethernet. A workload generator
runs on a separate desktop computer equivalent to the application server.

The workload is generated by the workload driver Apache JMeter
2.2 extended by the probabilistic workload driver Markov4]Meter [van
Hoorn et al., 2008]. This tool emulates users based on an application
model and a mix of corresponding probabilistic user behavior models
specified as Markov chains. The number of concurrent users is set to 10,
which is a load that can be handled without any performance problems
by the system under monitoring. A detailed workload description can be
found in van Hoorn et al. [2008].

The open-source framework Kieker [van Hoorn et al., 2009] was used
for monitoring. The evaluation abstracts from the problem selecting
monitoring points by evaluating many random partial instrumentations
of the 299 possible partial instrumentations. The first 3 minutes are
considered the warm-up period and are ignored in the evaluation. Three
instrumentation scenarios are used:

E1 Partial instrumentation: 18 manually selected monitoring points (see
van Hoorn, 2007).

E2 Full instrumentation: All operations and application entry points are
monitored. This results in 199 different instrumented operations.

E3 Random instrumentation: 95,000 random instrumentations are cre-
ated that have 2 to 198 monitoring points. The traces for these
instrumentations are generated from the monitoring run of the full
instrumentation by ignoring random subsets of monitoring points.

Table 4.4 outlines characteristics of the monitoring data of CS-4.1.

Results Reduction of Standard Deviation

Table 4.5 shows the standard deviation reduction from using the three
different types of trace shape information for the first two instrumen-

80

4.3 Empirical Evaluation

Table 4.4.: CS-4.1: Summary of the instrumentation scenarios and monitoring

data.
Instrumentation Partial (E1) Full (E2) Random (E3)
Instrumented operations 18 199 2-198
Monitored executions 121,323 2,032,573 2-2,032,573
Traces 36,190 36,036 1-36,036

Table 4.5.: CS-4.1: Standard deviation reduction results for E1 and E2.

Standard deviation reduction
E1 (18 mon.pts.) E2 (199 mon.pts.)

Caller context analysis 0.2% 6.8 %
Stack context analysis 0.6 % 11.0%
Trace context analysis 3.3% 42.2%

tation scenarios. With E1, only a small standard deviation reduction
is achieved for all context types. The strong benefit from the example
on Page 66 plays a minor role in these numbers, because only 1,748 of
121,323 executions are for operation newOrder().

The results for E2 are quite different to those for E1: Trace context
analysis results in 42.2 % standard deviation reduction in average over
all operations. Additionally, trace context analysis clearly shows better
results than stack context analysis and caller context analysis. A detailed
analysis (see [Rohr et al., 2008a]) reveals that most operations (more than
75 %) benefit from trace context analysis in E2; most operations have at
least a standard deviation reduction of 10 %. E2 has much better results
than E1 because too few operations are instrumented in E1.

Figure 4.10 presents the results for E3’s 95,000 random instrumenta-
tions. For certain numbers of monitoring points, many different random
instrumentations have been simulated. This allows us to determine for
the relation between monitoring points and the average, the first quartile,
and the third quartile of all standard deviation reductions. Figure 4.10
shows that caller context analysis results in 6.8 % standard deviation
reduction for full instrumentation. If half of the operations are instru-
mented, 75 % of the instrumentations result in a standard deviation
reduction of more than 6.2 % using caller context analysis. Stack context

81

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

50
|

20
|

10
|

5
|

" e = Trace context analysis
‘1 —4&— Stack context analysis
—+— Caller context analysis
" - - - 1stand 3rd quartile

T : T T T T
0 50 100 150 200
Number of monitoring points

Average relative st.dev. decrease in %

2
|

Figure 4.10.: CS-4.1: Standard deviation reduction for different numbers of
monitoring points.

analysis shows better results than caller context analysis; especially for
a high number of monitoring points. The standard deviation reduction
rises up to 11 % for full instrumentation. Trace context analysis performs
best in the comparison, independently from the number of monitoring
points. This suggests that more standard deviation is connected to trace
context information than to the other two context types. 40 % of average
standard deviation is removed for more than the half of the evaluated
instrumentations with around 40 monitoring points. For most (> 75 %)
instrumentation scenarios with more than 50 monitoring points, more
than 40 % standard deviation reduction was observed.

In summary, a large part of the standard deviation in this system is
connected to trace context information. This is valid for the majority of
all possible random instrumentations. Stack context analysis performs
slightly better than caller context analysis. If only a few operations are
instrumented, such as for instrumentation scenario E1, only a minor
benefit may occur.

Results on the Number of Contexts

Table 4.6 presents the number of contexts for each instrumentation sce-
nario. Similar to the results in standard deviation reduction, there are

82

4.3 Empirical Evaluation

Table 4.6.: CS-4.1: Distinct trace shape contexts per instrumentation and context

type.
Instrumentation Partial (E1) Full (E2) Random (E3)
Instrumented operations 18 199 2-198
Caller contexts 20 290 2-312
Stack contexts 21 368 2-368
Trace contexts 31 7,021 2-7,021

some more stack contexts than caller contexts and the number of trace
contexts is much larger than the other both numbers. This data indicates
that the number of trace contexts, caller contexts, and stack contexts
grow by the number of monitoring points. The number of trace contexts
increases faster with the number of monitoring points than both other
trace shape contexts.

For full instrumentation, there are many trace contexts to define trace-
context-specific partitions for most operations. As illustrated in Fig-
ure 4.11, 25 % of the operations have more than 25 trace contexts, 50 %
of the operations have more than 13 trace contexts, and 75 % of the oper-
ations have more than 3 trace contexts. 39 operations (about 20 % from
80 % to 100 % in the graph) have one trace context. The average number
of trace contexts per operation is 35.3 in this instrumentation scenario.

The random instrumentation scenario (E3) explores the relation be-
tween the number of monitoring points and the resulting number of
contexts, as displayed in Figure 4.12. The number of stack contexts and
caller contexts both tend to grow linearly with a similar rate by the num-
ber of monitoring points. In most cases (82 %), there are more stack
contexts than caller contexts for an identical instrumentation, in the other
cases the numbers are equal. Figure 4.12(2) visualizes the numbers of
trace contexts resulting from random instrumentation scenarios. The
number of trace contexts linearly increases much faster than the number
of stack contexts and caller contexts.

1,344 of the 7,021 trace contexts of the full instrumentation scenario
E2 had only one response time in the monitoring data. This mainly
resulted from traces that contained initialization methods which were
only executed once during an experiment run. Section 4.2.4 presents a
method to iteratively merge similar partitions to ensure a desired parti-
tion size. However, an anomaly detection algorithm could benefit from

83

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

Number of operations with at least
y trace contexts
0 50 100 150 200
| | | | |

1000 —

o
<]
S

|

|
g &

12}
=
3
S 100 %
o
Q
(s}
£ 50 @
= 0]
o
= O oo
8 25 —
: N
c
!'.10 ©
> B)
[e)
Q
e}
5 — le)
o

3

2 -

. - o

I I I I T I I 1
0 10 30 50 70 90

Percent observations with at
least y trace contexts

Figure 4.11.: CS-4.1: Trace contexts per operation for full instrumenation.

keeping these 1,344 response times separate if these belong to an ini-
tialization phase, since these may else trigger false alarms because of
“normal unusual” timing behavior.

Results on the Relation to Multimodality

Section 4.1 on Page 64 already presented a positive example for a positiv
answer to research question 3 (whether multimodality can be connected
to trace context information): The operation newOrder() has multimodal
timing behavior as displayed in Figure 4.1(2) on Page 66. In this case,
instrumentation E1 is used (18 monitoring points). Trace context analysis
defines partitions that “split” the original multimodal distribution into

84

4.3 Empirical Evaluation

o
o
o
X Stack contexts @ | + Trace contexts
» 2 A Caller contexts » O 0 Stack- and caller contexts
287 %S
o QL ©
c e
Sg- 8g
o °g
8 8
£ S £ 8
S S ©
P4 Z A
o — o
T T T T T
0 50 100 150 200 0 50 100 150 200
Number of monitoring points Number of monitoring points
(1) Stack- and caller contexts (2) Trace-, stack- and caller contexts

Figure 4.12.: CS-4.1: Number of monitoring points in relation to the number of
contexts.

the two unimodal response time distributions, shown in Figures 4.1(5)
and 4.1(6). Caller- and stack context analysis cannot distinguish both par-
titions in this scenario, as the distinction between two cases of newOrder()
is within a subcall of newOrder(): only one of the two cases involves
a database subcall, which results in much larger timing behavior. This
shows that multimodality can be related to trace contexts and that Trac-
STA can “remove” in such cases the multimodality from the perspective
of a subsequent timing behavior analysis.

4.3.2. TracSTA Case Study CS-4.2
Setting

Case Study CS-4.2 is in a telecommunication signaling system product
of Nokia Siemens Networks. Eight monitoring points have been placed
in one particular module of the large system that provides management
and billing services for mobile telecommunication. Two load-balanced
identical execution environments were monitored.

The workload was generated by Nokia Siemens Networks” workload
driver. In total, 2.5 million software operation executions were recorded
in 450 thousand traces.

85

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

Table 4.7.: CS-4.2: Standard deviation reduction and number of contexts.

Average st.dev. reduction # Contexts

Caller context analysis 0.2% 10

Stack context analysis 0.2% 10

Trace context analysis 17.8% 88
Results

Table 4.7 presents the results for this case study. Caller contexts and stack
contexts correspond to the same very small standard deviation reduction
of 0.2 %. Both caller- and stack context analysis are unable to distinguish
many contexts —just 10 contexts for 8 monitoring points. This explains
the low results in standard deviation reduction.

Trace context analysis results in a standard deviation reduction of
17.8 % based on 88 partitions for the 8 monitoring points. Similar to the
first case study, trace context analysis distinguishes more partitions than
the other two types of trace shape information.

Dividing the 2.5 million measurements into 88 partitions still provides
a suitable number of observations per partition for most additional sta-
tistical analysis steps. Concerning research question 4 (effectiveness),
trace context analysis provides for this system and this instrumentation
enough but not too many contexts. For caller- and stack context analysis,
more monitoring points should be added, as this possibly increases the
number of contexts per monitoring point. The computation of the caller-,
stack-, and trace contexts took for all 450.000 traces about 30 seconds on
a standard laptop with one CPU core.

The connection between multimodality and trace contexts (research
question 3) is described in the ongoing example of Section 4.2. The
multimodal distribution of operation f(), shown in Figure 4.5(2) on
Page 73, is divided into the three partitions by trace context analysis,
which have unimodal distributions, as shown in Figures 4.7(2) and 4.7(1).
In contrast to trace context analysis, caller context analysis and stack
context analysis were unable to resolve multimodality in this case. For
this operation f(), trace context analysis reduced the standard deviation
by 74 %. The sequence diagrams in Figure 4.2 on Page 69 explain the
three different trace contexts for f(); the multimodality arises from the
two subsequent calls of f() in the first sequence diagram. The second

86

4.3 Empirical Evaluation

Table 4.8.: CS-4.3: Standard deviation reduction and number of contexts.

Average st.dev. reduction # Contexts

Caller context analysis 1.11% 207
Stack context analysis 1.12% 208
Trace context analysis 39.01 % 271,372

call is much faster than the two other calls of f(), most likely because of
caching in the execution environment or in the CPU.

4.3.3. TracSTA Case Study CS-4.3
Setting

This case study took place in an online service of CeWe Color AG, Eu-
rope’s largest digital photo service provider. Customers use the online
service to order photo prints and other related photo products. In a
part of this system, we instrumented many of the software operations
and monitored the production system for several days under real user
workload.

This case study uses the monitoring data of a single day, which consists
of 1.5 million operation executions for the 161 instrumented software
operations. Monitoring was performed using the monitoring framework
Kieker. A single execution environment of the production environment
was instrumented.

Results

Table 4.8 shows the results for this case study. Trace context analysis
provides a strong standard deviation reduction of 39 % in average over
all observations. Only a small benefit of standard reduction results from
caller- and stack context analysis.

The strong standard deviation reduction for trace context analysis
falls together with a very large number of trace contexts: trace context
analysis distinguishes 271,372 trace contexts for 161 monitoring points.
These are too many trace contexts compared with the total number of
monitored observations (1,232,112); having only 4.5 observations per
class is unsuitable for providing robust statistical results in additional
analysis steps. For instance, experiments with the workload intensity

87

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

Table 4.9.: CS-4.3: Standard deviation reduction and number of contexts with
model size optimization.

Average st.dev. reduction # Contexts

Caller context analysis 1.11% 207
Stack context analysis 1.12% 208
Trace context analysis 23.13% 633

analysis introduced in Chapter 5 suggest that at least several hundred
observations are required. Furthermore, a high number of classes leads
to high resource consumption, such as demand for memory and CPU.

A detailed analysis of the software system and the monitored traces
explained that the instrumentation of looped methods produces the large
number of trace contexts: Several software operations (e.g., getPrice, get-
Product) are called in a loop n-times during a trace, with n as the number
of items in a user’s shopping card. Two traces are not equivalent from
the perspective of trace context equivalence if they differ in the number
of calls within the loop. The instrumented loops in this system resulted
in very long monitoring traces (e.g., 400 executions). This problem could
have been avoided by not instrumenting operations that are within a
loop, but this also reduces the level of detail in monitoring.

To reduce the number of trace contexts after monitoring, we introduced
in Section 4.2.4 an additional optimization step. For instance, it iteratively
merges small trace contexts to similar ones. Table 4.9 shows the results
with applying this model size optimization by setting the minimum par-
tition size to 600 response times. This merged 271,372 trace contexts into
633 contexts. After the model size optimization, still a strong standard
deviation reduction of 23.13 % exists.

Regarding research question 5 (applicability), the additional model
size optimization is required for this system to have a reasonable parti-
tioning (in terms of number of contexts and observations per context).
Alternatively, the monitoring instrumentation could be adapted, such
that the software operations within those loops that vary according to
shopping card size are not instrumented. The trace analysis without
model size optimization took for monitoring data of a day of a single exe-
cution environment 15 seconds on a normal desktop PC. The prototypical
implementation of the model size optimization took about 15 minutes.

88

4.4 Summary

4.4. Summary

This chapter presented our approach TracSTA to partition response time
measurements in dependence to their trace shape for reducing the stan-
dard deviation. For this, we introduced trace context equivalence, which
extends the related work and profiling practice of equivalence in caller
context and stack context.

The empirical evaluation supports in three case studies our hypoth-
esis Hry, that a significant part of the variance of operation response
times is correlated to trace contexts. It also supports hypothesis Hryp,
(and research question 2) that this correlation is significantly stronger
than the corresponding correlation to caller contexts and stack contexts.
Furthermore, the evaluation showed that our trace shape analysis signifi-
cantly reduced the standard deviation in all three case studies (research
question 1, Page 78), which supports subsequent statistical analysis steps,
such as anomaly detection. Our trace shape analysis TracSTA strongly
outperformed related work (i.e., the caller- and stack context analysis) in
reducing the standard deviation. Additionally, the case studies showed
that there are cases in which multimodal distributions can be related to
trace shape contexts and can be removed by trace context analysis. This
positively answers research question 3.

The applicability of the approach in practice was demonstrated in two
real enterprise software systems from the telecommunication and photo
service domain. This supports hypothesis Hr, and provides a positive
answer to research question 5 (applicability). One of the case studies was
even executed in the real production system with live user workload.
The overhead was suitably low to be not a major issue for applicability:
TracSTA required about 15 seconds for computing trace contexts for a
complete day of real workload monitoring data in C5-4.3. An overhead
of this magnitude seems to be acceptable for many application scenarios,
as it allows continuous application during regular operation. (A more
detailed discussion of the overhead is in Section 7.2).

There results from CS-4.1 provides an answer for research question
4: The number of trace contexts, caller contexts, and stack contexts tend
to grow by the number of monitoring points and the number of trace
contexts increases faster with the number of monitoring points than both
other trace shape contexts.

In some cases, the software architecture and the selection of monitoring
points leads to very long traces which can result in too many trace con-
texts. This can cause too fine grained partitioning, too few observations

89

Chapter 4 - TracSTA: Trace-Context-Sensitive Timing Behavior Analysis

per partition, and reduce efficiency. To improve the applicability, Trac-
STA has a model size optimization step, for compensating those possible
“over-partitioning” of trace context analysis. This optimization, demon-
strated in case study CS-4.3, organizes the trace shape contexts into a
tree structure (called trace shape context tree) and iteratively applies tree
operators to merge similar trace contexts.

90

5. WiSTA:
Workload-Intensity-Sensitive
Timing Behavior Analysis

This chapter introduces the second of the two primary contributions of
this thesis for dealing with high variance in software timing behavior. The
first contribution analyzed traces shapes; this chapter analyzes workload
intensity.

As mentioned before, software timing behavior is of high variance
(see Foundations on Page 16), which can make it more difficult to draw
statistical conclusions from measurements [Menascé and Almeida, 2001,
pp- 168]. The author of this thesis expects that workload intensity, i.e., the
amount of usage exposed to the system, is a major cause of variance in
multi-user enterprise software systems. Software response times are typi-
cally longer during times of high workload intensity than during times
of low workload intensity, as result of resource sharing (see Foundations
on Page 21). However, workload intensity is often ignored in timing
behavior analysis, such as by profiling tools or in anomaly detection.

This chapter introduces the WiSTA (Workload-Intensity-Sensitive Tim-
ing Behavior Analysis) approach for coping with varying workload in-
tensity in software timing behavior. WiSTA quantifies the workload
intensity during the execution of a software operation to create workload-
intensity-specific timing behavior partitions.

The empirical studies of this Chapter quantify the influence of work-
load intensity on timing behavior variance in real world systems and in
the lab, and show that this variance can be efficiently reduced using our
approach compared with not considering workload intensity. This can
be beneficial in typical timing behavior analysis applications, in terms
of higher confidence, requiring fewer or shorter simulation runs [Jain,
1991], and increased statistical robustness.

This chapter is structured as follows. Section 5.1 presents an example
to demonstrate that considering workload intensity can be required for

91

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

=&+ .
% - - Linear regression » —— RT median
Qo —— Polynomial regression ° 8] — RTmean
E Sk 8 N | - - RT 1st quartile
8 Q — — RT 3rd quartile
i= = O

S Q = 3

2 E-

k] c

= o £

£ © T @ =

£ ES

0o ©

£7 2

b =

3 8

c Q - 2

o N

Q o

3 o

14 T T T T

20 40 60 0 20 40 60
Platform workload intensity (median) Platform workload intensity

(1))

Figure 5.1.: Relation between response time statistics and workload intensity.

suitable timing behavior anomaly detection. Section 5.2 presents a new
approach to workload-intensity-sensitive timing behavior analysis and
presents the hypotheses of WiSTA. An empirical evaluation of the method
is presented in Section 5.3. A summary of the chapter is in Section 5.4.
Related work and the discussion are in the Chapters 6 and 7.2.

5.1. Correlation between Timing Behavior and
Workload Intensity

In the following, the correlation between timing behavior and workload
intensity in enterprise software systems is described in more detail and
illustrated in an anomaly detection example.

As defined in the Foundations 2.1.1.3, the term workload intensity is
used to refer to the amount of usage in a software system during some
time period. Jain [1991] explains that response times of computer systems
often increase as a function of the workload intensity. Besides this, there
are other timing behavior distribution characteristics that are individual
for different levels of workload intensity.

In the following, an example is provided on how workload intensity
and software timing behavior are related. Figure 5.1 displays the relation
between workload intensity and response times for operation Action-
Servlet.doGet() of the iBATIS JPetStore Demo application (see the case

92

5.1 Correlation btw. Timing Behavior and Workload Intensity

studies in Sections 4.3.1 and 5.3.1). The metric platform workload intensity
(pwi) will be explained later in this Chapter; higher pwi-values represent
higher workload intensity. Figure 5.1(1) shows that the response times
of this operation follow a similar curve as the one characterized by [Jain,
1991, p.38], described in Foundations 2.1.4.5 on Page 21. The curve’s
shape indicates a nonlinear relation.

Figure 5.1(2) displays polynomial regressions for the first and third
quartile, the median, and the mean response time in relation to workload
intensity. 12 of the 19 operations of this case study showed similar
relation curves (see Appendix A) and similar curves were observed in
other systems in the context of creating this thesis. Our observations can
be summarized in the following points:

e The mean response time is often above the third quartile. Such an
order is typical for right-skewed heavy-tailed distributions, such as
the log-normal distribution.

e The mean, median, first quartile, and third quartile of the response
times tend to increase by increasing workload intensity.

e The first quartile only slowly increases by increasing workload
intensity. This means that some small response times still occur
during high workload intensity.

e The standard deviation tends to increase by increasing workload
intensity, as indicated by the increasing distance between first and
third quartile.

These points were present in most software operations of the systems
that were analyzed. However, there were also software operations that
showed different behavior. Therefore, their usage for purposes such
as improving anomaly detection should be tested in each application
scenario.

There are many possible explanations for the connection between work-
load intensity and varying timing behavior characteristics in software
systems. For instance:

e The execution of software operations uses hardware resources,
such as CPU, network, or physical storage. In multi-user systems
resources are shared. Internal wait times for resource access in
the lower system layers could appear as longer software response
times on higher system layers.

93

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

e Similarly to the sharing of hardware resources, some software re-
sources may cause wait times. These wait times result in longer
response times. For instance, many software data types do not
support real concurrent writing; an execution environment may
organize simultaneous writing by defining a sequential order.

o The sharing of hardware and software resources itself needs some
computational resources. During times of high workload intensity,
scheduling algorithms may have to perform non-trivial coordina-
tion to provide acceptable system performance.

e Some systems adapt depending on workload intensity. At least
three subcategories can be distinguished:

— Adaptation of the amount of available (virtual) hardware re-
sources. Cloud Computing can be used to provide computing
resources on-demand [Armbrust et al., 2010].

- Adaptation of the software architecture (e.g., Garlan et al.
[2004]; Huber et al. [2012]; van Hoorn [2014])

- Adaptation of the level of service that is provided to users.
For instance, Arlitt et al. [2001] introduced a concept to reduce
personalization during times of high workload intensity.

In the following, the possible consequences of ignoring workload in-
tensity are demonstrated in an anomaly detection scenario. Figures 5.2
and 5.3 illustrate an anomaly detection example without and with in-
creasing workload-intensity. Figure 5.2 shows simulated response times
(following a normal distribution, with exponentially distributed interar-
rival times). Circles represent normal response times and two groups of
anomalies with increased response times are represented by triangles. A
basic anomaly detector called Plain anomaly detector (PAD) detects anoma-
lies if response times exceed some predefined threshold value. The solid
red line in Figure 5.2 represents a possible categorization by PAD that
would result in an error rate of 0 %.

In Figure 5.3, the scenario is extended by linearly increasing the work-
load intensity over the experiment time (by decreasing the interarrival
times). The response times are modeled to increase linearly by increasing
workload, which is a very simplified model of the relation between work-
load intensity and response times. A detector like PAD cannot provide
suitable results in this case: the red line represents a threshold with the
minimal error rate (8 %), which has the flaw that it does not detect any

94

5.1 Correlation btw. Timing Behavior and Workload Intensity

n

kel] JA

c MAA

S o 2ok Bpa

O < —

2 ~

z

£

28 8w0% ‘ol °09%, B oy

E”] > 8 o 8 08
S:u'; 8 A Anomaly (increased response time)
8 o Normal response time

n Q- :

&a © === Plain anomaly detector

T T T T T
0 20 40 60 80
Experiment time in seconds

Figure 5.2.: Anomaly detection with constant workload intensity.

n o
T © —
e -
Q
®
2 8- "
€
£ o o
2 9 _.-="" g B
E g &
884.°%
s~ |©° © | A Anomaly (increased response time)
3 o Normal response time
O O _| .
¥ © == Plain anomaly detector
==« Workload-intensity-sensitive anomaly detector

T T T T T
0 10 20 30 40
Experiment time in seconds

Figure 5.3.: Anomaly detection scenario with changing workload intensity.

of the anomalies. A lower threshold could correctly detect anomalies,
but would consider normal values as anomalies, which would lead to
a higher error rate than 8 %. A workload-intensity-sensitive anomaly
detector which learns the relation between timing behavior and response
times could model a threshold like the dotted blue line in Figure 5.3 with
an error rate of 0 %.

95

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

: ’\ :' ‘,‘, '\. — - Low Workl.Int.
2> ,l ‘. ‘\ \ - = Medium Workl.Int.
2] AN - =+ High Workl.Int.
= I N N
’l “~ ‘. ~c..
d.=d D S . L N
2 5 10 20 50 100

Response time in milliseconds

Figure 5.4.: Probability density distributions for low, medium, and high
workload intensity of operation get ItemListByProduct (..) of
case study CS-1.

5.2. Workload-Intensity-Sensitive Timing
Behavior Analysis

This section presents our new approach WiSTA (Workload-Intensity-
Sensitive Timing Behavior Analysis), to consider workload intensity in
timing behavior analysis. WiSTA’s general idea is to create partitions
of timing behavior that correspond to different workload intensity lev-
els. These partitions are defined based on the values provided by our
workload intensity metrics. Each partition contains the timing behav-
ior observations for which the corresponding workload intensity is in a
particular interval.

Figure 5.4 illustrates this principle for the three partitions correspond-
ing to low, medium, and high workload intensity. The three probability
density functions (PDF) for these partitions uncover workload-intensity-
specific timing behavior (e.g., distribution shape, mode, median, and
standard deviation).

The refined hypotheses of WiSTA of the combined hypothesis (Sec-
tion 1.2) are:

Hw: A significant part of the variance in software operation response
times of multi-user enterprise software systems is correlated to
workload intensity.

Hyw, This correlation can be used in practice to “reduce” the variance
from the perspective of subsequent timing behavior analysis steps
(see Figure 1.2 in Section 1.2), such as anomaly detection.

The key element of WiSTA is a workload intensity metric, denoted pwi

96

5.2 Workload-Intensity-Sensitive Timing Behavior Analysis

Table 5.1.: pwi metrics overview.

Metric Time base Execution Operation

environment weighting
pwiy Response times Non-distributed No weighting
pwisy Execution times Non-distributed No weighting
pwis Execution times Distributed No weighting
pwiy Execution times Distributed Learned

(platform workload intensity). We introduce four alternative workload
intensity metrics (pwi; — pwi4), ordered by complexity: pwi; is relatively
simple by being defined as the number of concurrently executing traces
in a system, while pwi, is the average weighted sum of all concurrently
executing operations over a time period within the same execution envi-
ronment. All four pwi metrics use only basic control flow information to
quantify workload intensity, such that these metrics and its monitoring
can be implemented efficiently. Therefore, it can continuously be applied
in real world software systems without causing too much overhead and it
does not lead to requirements that typical monitoring infrastructures can-
not satisfy. Furthermore, no platform-specific concepts (e.g., particular
hardware performance counters) are used.

After computing the pwi value for each observation (using one of the
four metrics), partitions of timing behavior are formed based on the pwi
values. In Figure 5.4 three partitions are defined such that each partition
has the same number of observations, which results in the pwi intervals
in the upper-right corner of Figure 5.4. Also other binning methods are
possible, such as creating bins with an equal pwi interval. However,
each bin (i.e., class) should have a sufficient number of observations
for subsequent analysis steps. In our anomaly detection context, the
partition size is at least 100 observations to create robust probability
density distributions for anomaly detection and usually we use 10 to 15
bins.

In the following, our four alternative pwi-metrics are introduced more
precisely. Table 5.1 compares the metrics in terms of whether they use
response- or execution times, whether they consider a measurements
location in a distributed system, and whether concurrent executions of
other operations are all equally weighted.

97

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

2 88

o O o

(1) Trace 1 (2) Trace2 (3) Trace 3

Figure 5.5.: Example traces as UML sequence diagrams.

5.2.1. pwi,

The pwi; metric is defined as the average number of all concurrent traces
(i.e., execution sequences) during the time period between the start (call
action) and the end of an operation execution. Using the monitoring
model of Section 3.2.2, for an execution e = (o, st, rt) with both start time
st and response time rt € N (i.e., discrete time), the platform workload
intensity function pwi; is defined in Equation 5.1.

st+7f

pwiy (e Z |AT(t) (5.1)

tst

with |AT'(t)| as the number of elements of AT () as
AT(t) :={tr | Fe' = (o, st',rt') etr:t € [st',st' +rt']}. (5.2)

In words, for a point in time ¢, AT () is the set of traces containing at
least one execution that has been started and has not yet been completed.
Hence, pwiy(e) : e — [1,00] C R denotes the average number of traces
executing during the execution time period of e. The values of pwi; start
at 1 since an execution has always its own trace in the set AT

Examples for the computation pwi; can be found in the timing dia-
grams in Figures 5.6 and 5.7 for operation executions of the traces of
Figure 5.5. The x-axis of Figures 5.6 and 5.7 represents the elapsed time
relative to the trace start time and bars are drawn for each execution
aligned to the y-axis, similar to timing diagrams. All executions of the
same trace are connected by directed edges and the gray shading indi-
cates which of the executions of a trace is currently active.

98

5.2 Workload-Intensity-Sensitive Timing Behavior Analysis

execution | trace eé(r?\f' pwi, | pwi, | [Active [] Not active
a() 1 1 15|15 F1{ I
b() 1 1 14 (1.33F---+ B ---

o

)L T T I B B R I R e e P

o

(
(
(
(

)2 1 1 |15 (15 F-cmcccmeeeeeee e - - - - -

Q

(

e(

)
)

Figure 5.6.: pwi example 1: Multiple traces within the same execution
environment.

5.2.2. pwi,

pwiy differs to pwi; by using the execution time period instead of the
response time period. Is uses the simplified assumption that an operation
execution does not compete for resources while waiting for a subcall to
finish. Therefore, pwi; ignores the time periods in which the execution
to be evaluated e is waiting for the results of subcalls. This extends
Equation 5.1 to

st+7t

pwis(e Z |AT(¢)| - et(e,t) (5.3)

tst

with the function et(e, t) — 0,1 with et(e, t) = 0 if the execution e waits
at time ¢ for a subcall to complete and 1 else.

Examples for the computation of pwi; can be found in Figures 5.6 and
5.7. For instance in the pwi, for the execution of operation b() in Figure 5.6

results in 5 (28 2) + 35(28 1) = 3. For b()’s execution in Figure 5.7

50 80 90
pwis is 55 (340 3) + 35 (370 2) + 35 (g0 1) = 2.

5.2.3. pwi;

In contrast to pwi; and pwisy, the following pwi metrics consider the
structure of a distributed system. pwis and pwis assume that mostly
the active executions within the same execution environment (e.g., a

99

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

server node of a distributed system) compete for the same computational
resources. For instance the CPU is only used by local operation executions
on the same execution environment. However, there is also resource
competition that is not covered by the assumption of pwis (and pwiy): for
instance, the access to a remote database can be a competition over the
network.

From the definition of a trace as sequence of operation executions
(see Section 3.2), it follows that a trace can only be active in one of the
execution environment at the same time, although it may contain execu-
tions of operations of more than one execution environment. Therefore,
computing an execution’s pwi should include only the activity within its
corresponding execution environment, while the activity in the other exe-
cution environments must be ignored since they do not directly compete
for the same resources.

Mathematically, the Equations 5.3 and 5.2 are extended for pwis as fol-

lows:
st+rt

pwis(e) := é > IAT(t,ev)]| - et(e,t) (5.4)

t=st

with

AT (tyev) :={tr | ' etr:et(e,t) =1
A ev(e') = ev}. (5.5)

where ev(e) provides the execution environment ev on which an execu-
tion e executes. In words, AT (¢, ev) is the number of traces having an
execution ¢’ that executes in the execution environment at time ¢ without
waiting for subcalls.

Examples for the computation of pwiz can be found in Figures 5.7,
which has one execution of operation k() in a separate execution environ-
ment. For b()’s execution, pwis is 35 (o 2)+35(it 2)+35(201) = 1.6.
The execution of i() has a pwis value of 1 since it is in a separate execu-
tion environment, where no other executions are active, while pwi; and

pwis for h() ignore mapping to execution environments.
5.2.4. pwi,

pwiy, pwia, and pwiz account for each operation execution equal resource
demands. pwis uses weights to account different resource demands for

100

5.2 Workload-Intensity-Sensitive Timing Behavior Analysis

Zs:gittiigrr:' trace g’;slc' pwi, | pwis| pwis | [Active [Not active
a() 1 1 |22 2 |15F] 1
b() 1 1 |22 2 |1.66F---- R S _—-
c().1 1 1 33 |3 F---1 F--------d-cccmimmemaaaaa
c(),2 1 1 25|25 |15p----mmmmmee- I - - -
d() 2 1 3 | 3 |2.25F---1 Teoccoacaoocoo
e() 2 1 3 (3|2 Feccccccccccc- R ---------cccauan
a() 3 1 (27125 |25F---1 Loooooa
h() 3 2 |28028| 1 }-------Dl77 70707000000 - - - -

R R R
0 10 20 30 40 50 60 70 80 90 100
Time

Figure 5.7.: pwi example 2: Trace 3 involves multiple execution environments.

each operation. This weighting addresses that some operations interfere
in timing behavior more than others during concurrent execution.

Let W be defined as the weight matrix, where w, , € R is the weight
for considering concurrent executions of operation p during an execution
of o. A relatively high value of w, , indicates that executions of p have a
strong influence to executions of o, for example because of sharing same
resources.

The pwi, is computed by aggregating and weighting operation-specific
pwi values as defined by Equations 5.6 and 5.7. Let e be an execution of
operation o with its execution time et, then pwi,(e) is defined as:

pwig(e) Zwo’p pwis(e,p) (5.6)
st+rt

pwiy (e, p) Z |AT (t,ev,p)| - et(e,t). (5.7)
t=st

pwiy (e, p), defined by Equation 5.7, extends Equation 5.4 with a reference
to the operation p. AT (¢, ev, p) is the set of traces having an execution of
operation p that is active at time ¢ deployed in ev:

AT (t,ev,p):={tr | I’ etr:et(e’,t)=1 A
ev(e) =ev A

op(e') = p}. (5.8)

101

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

Table 5.2.: Example: Two weight vectors (columns).
Wwait Wwork

wait() 1 1
work() 0.36 18.4

The determination of the weight matrix W is a n dimensional optimiza-
tion problem, with n as number of operations in the system. The search
space is smaller in a distributed system, since only the operations in
the same execution environment are considered relevant. For efficient
processing, W is heuristically determined from historical observations by
iteratively refining the weights randomly to determine those weights that
result in the highest standard deviation reduction. Our implementation
prevents overfitting by early stopping: training is halted when the results
for a validation dataset stop to improve.

Example pwi, Leta program consist of the two operations wait() and
work(). Operation wait() waits for some time without requiring much
resources during the wait period (non busy wait) and operation work()
performs some CPU intensive computation. Example source code for this
scenario can be found in Appendix C in Listing C.1. It can be expected
that executing wait() has less impact to other concurrent executions than
executing work(), since executing work() requires more resource sharing
with other executions than wait().

An analysis of monitoring data determined the weight vectors shown
in the two columns in Table 5.2. The 18.4 in Figure 5.2 is much larger
than the other weights. This shows that executions of work() have the
strongest timing behavior influence to other concurrent executions of
work(); executions of wait() have less influence to other executions of
work() or wait().

The standard deviation reduction for pwiy is 19 % for operation wait()
and 73 % for operation work(). The results of pwiy, pwis, and pwis are
equal at 16 % and 22 % for the two operations, as it is a non-distributed
system and both operations have no subcalls. The larger benefit for
work() results from the higher and longer resource demand than wait().
In this case 15 bins were used. The benefit of each additional bin becomes
relatively small for more than 10 bins in this scenario.

Figure 5.8 supports the claim that pwi, correlates to timing behavior

102

5.3 Empirical Evaluation

- a9
) —e— Execution time \ =
& Q|4 Standard deviation /' \ 5
é’ o] lo E
E R
2] o <
= b] \ s
o S
IS A \ [RB
= 2] S
c b A-A ! 8
o / N o ! -
S / a8, AL
8 3] / _o-° 2
-~ C
u>j //o <
- A= - »n
ol san 6= 6:8 .
10 15 20
Pwi 4 wait
(1) Operation wait()
]
. ™ |—e— Execution time /o\ ,,e &g 13
8 1-& Standard deviation ° S, o
8 _ /., A of
= i A Fo =
: 8 I A 85
c s ey
= o ’ Q5
0] o/ =
£ o e A g
= S /O 7 o 3
g ® o ’ S ©
5 g o A= a-4 g
3 ZAa-47 o S
2 o 8- o &
w21 a7 o
a’
100 200 300 400
Pwi 4 work

(2) Operation work()

Figure 5.8.: Example pwi4: Timing behavior characteristics correlate to pwis.

characteristics (here mean execution time, and mean standard deviation).
Therefore, it can be beneficial to consider the pwiy in timing behavior
analysis.

5.3. Empirical Evaluation

This section provides empirical results from case studies. The evalu-
ation focuses on the following two research questions to address the
hypotheses of WiSTA that are stated on Page 96:

103

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

Table 5.3.: Summary of the settings of the WiSTA case studies.

Case Study Workload User % CPU Mon. System type

study type Intensity behavior util. points

CS-5.0 Example Linearly incr. Constant 10-80 2 Two-method

example

CS-5.1 Lab Adapted from Markov 0-80 34 iBATIS JPetStore
real system Model

CS52 Lab Test Constant 0-20 8 Telecommunication
scenarios scenarios signaling system

CS-53 Field Real Real 0-15 161 Online photo

printing service

1. How large is the standard deviation reduction in response times by
using workload-intensity-specific context analysis?

2. Is WiSTA applicable in real multi-user enterprise software systems
for reducing standard deviation from the perspective of subsequent
timing behavior analysis steps (see Figure 1.2 in Section 1.2), such
as anomaly detection.

Research question 1 is answered by a quantitative analysis evaluation
of the effectiveness using WiSTA; research question 2 is answered by a
demonstration of the applicability.

As in the previous section and in the evaluation of Chapter 4, the av-
erage relative standard deviation reduction is the quantitative evaluation
metric for the first research question. This metric is presented in more
detail on Page 78 and in Appendix B on Page 167. To achieve statistically
robust evaluation results, operations with less than 600 monitored obser-
vations were excluded from the evaluation and were accounted with a
standard deviation reduction benefit of 0 %.

The case studies are summarized in Table 5.3. CS-5.0 denotes the
running example used in the previous section. Case studies CS-5.0 and
CS-5.3 involve only one execution environment. Case studies CS-5.1,
(CS-5.2, and CS-5.3 use the same software systems than the evaluation of
Chapter 4. The software systems are only summarized here, while more
details can be found in the previous chapter.

104

5.3 Empirical Evaluation

«execution environment» «execution environment»
«component» «component»
Account _“CO“ Account
Database
«execution environmery« /(’ «execution environment»
«component» _@_ «component»
: T | Catalo ~ «component»
Presentation g O} Catalog
Database
\(6\<<execution environment»
«component» «component»
O:)der H(O4{ _Order
Database

Figure 5.9.: CS-5.1: Deployment architecture of the distributed JPetStore.

5.3.1. WiSTA Case Study CS-5.1
Setting

Case study CS-5.1 uses the iBATIS JPetStore 5 Web application (see
Page 79). In contrast to the setting in Section 4.3.1, a workload with
varying workload intensity and a partial instrumentation of 14 software
operations is used. Furthermore, the JPetStore was divided the JPetStore
into four software components as illustrated in Figure 5.9. Each of the
components is deployed to a dedicated machine and the components
store data in a database management system (MySQL) on a fifth machine.
The component communication is implemented via Web-Services.

The workload is generated by the workload driver Apache JMeter!
extended with Markov4JMeter? [van Hoorn et al., 2008]. The user behav-
ior model is identical to the one used in Section 4.3.1; it is probabilistic,
specified by a Markov model. The workload intensity curve is created
from measurements in a real production system, as illustrated in Fig-
ure 5.10. More precisely, it uses the shape of 24 hour monitoring data
from an online customer portal of EWE TEL, a German telecommuni-
cation company. The curve is scaled to a maximum of 78 concurrent
users, which corresponds to 80 % of the maximum overall system ca-
pacity, as determined in preparation experiment runs with a linearly
increasing number of concurrent users. The experiment was executed 5
times; each 18-minute-run created about 740,000 response times from the

1http://jakarta.apache.org/jmeter/
2nttp://markovdjmeter.sourceforge.net/

105

http://jakarta.apache.org/jmeter/
http://markov4jmeter.sourceforge.net/

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

—— Workload specification

0 20 40 60 80

Number of concurrent users

0 5 10 15
Experiment time in minutes

Figure 5.10.: CS-5.1: Workload intensity specification based on 24 hour
measurements of a real customer portal.

& 1A Mean [

1L

PW|1 PW|2 PW|3 Pv;/i4
Platform workload intensity metric

60

20

Standard deviation reduction (%)
40
|

Figure 5.11.: CS-5.1: Standard deviation reduction.

34 monitoring probes in the system.

Results

Figure 5.11 shows the standard deviation reduction results in a boxplot.
Each bar summarizes many standard deviation reductions achieved by
using one of the four pwi metrics. Table 5.4 lists the exact values for
average standard deviation reduction in the second row for all four
metrics (average over all operations, weighted by operation execution
frequency). pwi, performs best in the comparison, but all four methods
strongly reduce standard deviation — in average from 35 % for pwi; up to
57 % for pwiy.

As shown in Figure 5.12 and listed in the last row of Table 5.4, log-

106

5.3 Empirical Evaluation

Table 5.4.: CS-5.1: Average standard deviation reduction (in %).

Logarithm used pwiy pwis pwis pwiy

No (Non-log.) 3545 3631 37.61 56.56
Yes (Log.) 46.36 47.29 52.67 64.60

A Mean

X

)

c

oo_ -

D 0 - 1

1%} [

=

co_| :

00

C

co_|

S

i

>

vo_| !

oN !
1

° [

(] 1 -

o ° ~ — ~

S pwil pwi2 pwi3

-

0

Platform workload intensity metric

Figure 5.12.: CS-5.1: Log-transformation increases standard deviation reduction.

transforming the pwi values before defining bins additionally improves
the standard deviation reduction by 29 % in average. For pwiy, this results
in an average standard deviation reduction of 65 %.

5.3.2. WiSTA Case Study CS-5.2
Setting

CS-5.2 uses the telecommunication signaling system of Nokia Siemens
Networks, which is also used in case study CS-4.2 in Section 4.3.2 on
Page 85. Eight operations were monitored and the workload was gener-
ated by special workload driver for that system. The experiment created
2.5 million monitored executions.

Figure 5.13 displays the workload intensity specification, CPU usage,
and average load during system execution. The workload intensity in-
creases from 0 to 100.000 BHCA (i.e., busy-hour call attempts, a workload
intensity metric from the telecommunication systems domain), as shown
in Figure 5.13(1). Figure 5.13(2) shows the CPU utilization during the case
study provided by the Linux platform; it indicates that this is a scenario
of low workload intensity, as the CPU utilization does not exceed 20 %.

107

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

o Qo
S o§ TQE
o =
-~ o - ©
T o o— of
& o] -0 R
= [e) >
3 o -3
Is o) o) o o o
0 Q- o° 2
o ©
oo —XD . . ——ov
0 2000 4000 6000 8000
Time in seconds
(1) Workload intensity specification
Node 2
w_]J
T [-e— User 2
S [-4- l0wai 00°
< + Kernel oo
o 2] —
(=) (0]
8 [¢]
=1 o
i Lot .
Oo. +# + 4+
& @ - A o
& - $++ + t‘ + +H
oAl--- A--AMAN-B TR - ANBAK
0 2000 4000 6000 8000
Time in seconds
(2) CPU usage in one execution environment
Figure 5.13.: CS-5.2: Workload intensity specification and CPU usage.

Table 5.5.: CS-5.2: Average standard deviation reduction (in %).

Logarithm used pwi; pwis = pwis pwiy
No (Non-log.) 10.34 10.15 20.45
Yes (Log.) 14.75 14.83 32.34

Results

Figure 5.14 and Table 5.5 show the standard deviation reduction results
for CS-5.2. In this setting and in CS-5.3, pwi, and pwis are equal, since
the traces monitored in CS-2 never span over multiple execution environ-
ments. As in CS-5.1, pwi, performs best in the comparison of the four
alternative methods (20 %). For all the different pwi metrics presented, the
average standard deviation is additionally improved by more than 48 %,
if the logarithm of the pwi values is used for defining timing behavior
classes. Log-transforming the pwi, values before binning results in 32 %
standard deviation reduction.

108

5.3 Empirical Evaluation

20
E’\i'\ = Non-log. A Mean -
S —+ 0O Log. I
.9 1
TCo_| |
SN |
s} L
o

—
53 A
: - = .
—— -T 1 - 1
q>) ! ! 1
.m g =
o
E . - — -
ho =)
g pwil pWi2&3 pwid
2 Platform workload intensity metric

Figure 5.14.: CS-5.2: Standard deviation reduction.

5.3.3. WiSTA Case Study CS-5.3
Setting

The monitoring data in CS-5.3, is from a portal for ordering photo prod-
ucts, which was also used in case study 4.3 (Section 4.3.3, Page 87). The
system contains image processing functionality with relatively high com-
putational requirements.

The system was not under high load during the monitored days. The
CPU utilization was most of the time between 0 % and 15 % for executing
the operation executions. 161 software operations have been instru-
mented using the Kieker monitoring framework in a single execution
environment of the production environment. The workload (shown in
Figure 5.15) is the real workload intensity (active user sessions) from
the production system. The 100 % line indicates the average of the main
order time of Friday. The evaluated monitoring period is one day with
about 1.5 million operation executions.

Results

Figure 5.16 and Table 5.6 show the standard deviation reduction results.
pwiy performs best in the comparison of the four alternative methods
(26 %). For all the different pwi metrics presented, the average standard
deviation is additionally improved in average by 14 % if the logarithm of
the pwi value is used for defining timing behavior classes. Again, pwis
equals to pwis, as only a single execution environment was monitored.
Several of the instrumented operations had too few executions in the

109

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

200%

100%-f-----

50% [
Wednesday Thursday Friday Saturday Sunday
12:00 22:00 08:00 18:00 04:00 14:00 00:00 10:00 20:00 06:00 16:00

Figure 5.15.: CS-5.3: Workload curve (active sessions).

g%— @ Non-log.| | A Mean | —
O Log. , |

go § o ! '

g |2 o L

2gdo T o T A

(% - ! - !

= | ! | !

co_| | ' 1

on ' ! ' !

©

(] 1 |

e 1 1

TOo | . | o —_ —_

—_ —_ 1

©

o — .. —

S pwil pwi2&3 pwi4

& Platform workload intensity metric

Figure 5.16.: CS-5.3: Standard deviation reduction.

Table 5.6.: CS-5.3: Average standard deviation reduction (in %).

Logarithm used pwi; pwis =pwis pwiy

No (Non-log.) 7.98 8.09 26.46
Yes (Log.) 9.27 9.35 29.15

monitoring data for statistically robust computations. For these opera-
tions, a standard deviation reduction of 0 % was accounted in computing
the average relative standard deviation reduction.

110

5.4 Summary

5.4. Summary

The results of the evaluation support the two hypotheses of WiSTA
(Page 96) and answer WiSTA’s two research questions on effectiveness
and applicability on Page 103: in the three case studies, WiSTA success-
fully used workload intensity to reduce the variance in response times.

The evaluation quantified WiSTA's effectiveness in all three case stud-
ies with strong standard deviation reduction. This result is valid for all
four pwi metrics and for the largest part of the software operations. In
some cases, more than 50 % of the standard deviation was reduced. Case
studies CS-5.2 and CS-5.3 were in real systems. Case studies CS-5.2 and
(CS-5.3 performed less strong than CS-5.1 but still with some significant
benefit of about 10 % to 30 % standard deviation reduction, which can
be explained with the relatively low utilization during the monitoring
period (0 % — 20 % capacity). In case of CS-5.2, a network policy prohib-
ited to send more requests to the system under analysis. The system in
(CS-5.3 is sized for a seasonal business (photo product ordering) and the
monitoring was performed during off-season.

pwiy performed best in all the case studies. In fact, pwiy was 60 %
to 230 % better than pwi;. These better results of pwis requires a more
complex implementation, additional analysis overhead (not within the
monitoring system), and an additional training phase for determination
of the weights of pwi,. For the domain of timing behavior anomaly
detection, the additional effort of pwis may be acceptable for the ex-
pected improvements in anomaly detection quality. The results in CS-5.1
show small benefits by using the pwiz metric in a distributed system
over pwi; and pwiy. Therefore, in this system, most timing behavior
inter-dependencies between concurrent software executions are between
executions within the same execution environment of a distributed sys-
tem. In non-distributed systems, pwis is equal to pwis. The results from
the case studies indicate only slight benefits by preferring pwi, over pwiy,
i.e., by using execution times and execution time periods instead of using
response times and the response time period.

The three case studies of the previous section demonstrated the ap-
plicability in non-trivial multi-user enterprise software systems. This
answers research question 2 (Page 103). Especially, field study CS-5.3
demonstrated the applicability in a large real world production system
with real user workload. One limitation in the applicability is that WiSTA
is unsuitable for software operations that are rarely executed, such as
initialization methods which are executed only once. The application

111

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

Bin size (observations)
5000

100 500

1 SDQDDDQDQD%—E
e (baced o i)

Figure 5.17.: Size of bins (i.e. classes) without log-transformation (operation
work()).

of WiSTA in these systems was relatively easy, since only very general
application-layer monitoring is required that can be provided by sev-
eral monitoring frameworks — no operating system metrics or resource
monitoring are required.

In all case studies, it was beneficial to log-transform the pwi values
before binning (or alternatively to specify logarithmic bin ranges). This
improved the standard deviation reduction in average over all metrics
between 13 % and 40 %. One possible explanation is in the distribution
of the pwi values, which tends to follow a right-skewed distribution; if
bins are defined using a simple equal-size-value-range method and no
log-transformation is performed, than most pwi values will be in the first
bins, as illustrated in Figure 5.17 for the two-method example.

The vertical box size in the boxplots, for instance in Figure 5.11, is rela-
tively large. This means that the distance between the 1°¢ and 3"¢ quartile
of the reduction of the operations is relatively large — in other words,
some operations have a strong benefit from WiSTA while others have
a small benefit. An explanation could be provided by the two-method
example (Page 100): Some operations, such as work() in that example,
require a large amount of computing resources and have a strong com-
petition with other operations or executions of the same operation. This
strong requirement for resources and the resource competition leads to
a stronger influence of varying workload intensity on timing behavior,
and provides possibilities for methods such as WiSTA to reduce large
amounts of standard deviation. For operations with less resource compe-
tition, such as operation wait() in the two-method example, and trivial
operations, such as getter- and setter methods, the execution is less de-
pendent on the workload intensity. WiSTA requires workload intensity
dependence for reducing standard deviation.

112

5.4 Summary

The case studies showed a strong relation between timing behavior
and workload intensity, which was used for WiSTA to reduce standard
deviation. However, this relation is more complex than “low workload
intensity causes low response times; high workload intensity causes
high response times”; illustrations such as Figure 2.6 on Page 21 by Jain
[1991] or Figure 5.18(1) on Page 114 can lead to such oversimplified
assumptions. This can result, for instance in high false alarm rates in
anomaly detection. Important details for Figure 5.18(1) are shown in
Figure 5.18(2) and Figure 5.18(3): Even at high workload intensity levels,
relatively small response times can be still common. There can be several
reasons for small response times at high workload intensity levels:

1. In an application under high workload intensity, the caches (e.g.,
CPU) might be more used for application relevant data than for
other operating system tasks. This increases the chance of a cache
hit.

2. Mechanisms such as load-balancers, CPU power saving, virtual-
ization, and connection pools often adapt the amount of available
resources depending to the amount of workload. For instance,
power management adapts the CPU frequency. The adaptation
of CPU frequency is relatively slow (e.g., seconds) compared with
changes in the number of concurrent executions (milliseconds).

3. In the Java systems that were studied in the context of this thesis,
the scheduling mechanisms tended to avoid interrupting small
operations (typical response times of only a few microseconds),
even during high workload intensity.

An additional discussion of selected aspects, of the applicability, and
threats to validity can be found together with TracSTA in Sections 7.2
and 7.3.

113

Chapter 5 - WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis

] . . X
§ | % Mean response time per bin .
£ w -+ Median response time per bin
E
£ o |
>
g . o -+
[0] L. x° : - - -
g 0 - I,
o -
7] x° -
g +— T T T T T
2 3 4 5 6
Platform workload intensity
(1) Workload intensity vs. mean and median response time.
— pwi [1.00, 2.00]
=) - - pwi[2.00, 2.79]
2 c=- pwi[2.79, Inf]
[0
a ~. _
15 20
Response time in milliseconds
(2) Probability distribution for three classes.
o .
o o o pwi[1.00, 2.00]
28 o pwi[2.00, 2.79]
g« Ol o pwi[2.79, Inf]
i - g 2
€ o |
gw
(0]
E o |
= N
[0}
2o |
S -
Q.
(7]
O 1O —
« .’

Platform workload intensity

(3) Scatterplot of pwi; and corresponding response times.

Figure 5.18.: Relation between pwi and response times (operation viewProduct of
CS-5.1).

114

6. Related Work

Related work to this thesis is in the areas of statistical analysis of soft-
ware timing behavior measurements, and fault localization and failure
diagnosis for software systems. The first area contains the related work
for this thesis’s primary contribution from Chapters 4 and 5:

e Section 6.1.1 addresses research that analyses software timing be-
havior measurements in context to traces, similar to our approach
in Chapter 4.

e Section 6.1.2 discusses the related research that connects software
timing behavior to some notion of workload intensity, as in Chap-
ter 5.

e Section 6.1.3 compares our work (both from Chapters 4 and 5) with
research that performs software timing behavior analysis with other
context information than traces and workload intensity.

The related work to this thesis’s secondary contribution, i.e., the fault
localization approach in Chapter 3, is divided into two parts:

e Section 6.2.1 presents fault localization approaches that use timing
behavior measurements, similar to our work.

e Section 6.2.2 discusses fault localization approaches that use run-
time measurements other than timing behavior measurements.

6.1. Context-sensitive Timing Behavior
Analysis
The analysis approaches in this section relate software timing behavior to

context information. Our work uses both traces (i.e., software execution
sequences) and workload intensity as context information.

115

Chapter 6 - Related Work

6.1.1. Trace-context-sensitive Timing Behavior
Analysis

As defined in Section 3.2.2 (Page 44), we consider traces in our work as
sequences of software operation executions that correspond to a system
or user request. This section also considers research that uses other event
sequences or control flow. This related work is from research on per-
formance profilers, automatic performance diagnosis, and more general
research on monitoring and automatic analysis of runtime behavior.

Graham et al. [1982] provided foundational work on profilers that con-
nects timing behavior (e.g., CPU time, execution times, and response
times) to trace shape information. These authors introduce the dynamic
call graph concept as model for caller-callee relationships. A dynamic call
graph’s nodes represent software operations. The graph’s directed edges
represent calls between software operations. This research resulted in
the call graph profiler called gprof. An application example with gprof is
in Appendix D.1. Each observed software operation is annotated with
estimated execution times.

Graham et al. [1982]'s work is the first approach that performs what we
denote caller-context-specific timing behavior analysis (see Page 70). In
short, caller-context-specific timing behavior groups software operation
timing behavior by callers. Our work extends this concept by considering
the complete software operation execution sequence (i.e., our complete
trace), instead of only considering callers. In contrast to gprof, our timing
behavior analysis approach does not aggregate the times of the single
calls, but forms groups of timing behavior for later analysis steps, such
as anomaly detection.

Many profilers implement this call graph profiling today [Xie and Notkin,
2002], such as Intel’s VTune Amplifier, Google’s perftools, Valgrind,
NetBeans profiler, and Java’s HPROEF. Some of these profilers are applied
to a running example in Appendix D.

Hall [1992], Ball and Larus [1996], and Ammons et al. [1997] ex-
tended call graph profiling to (call) path profiling. Hall [1992] instruments
LISP programs to determine the resource consumption of software op-
erations within the context of a particular trace of connected software
operation calls. Ammons et al. [1997] model a trace as direct acyclic
graph, called dynamic call tree. Modern profilers provide path profiling to

116

6.1 Context-sensitive Timing Behavior Analysis

precisely identify full traces, as for instance demonstrated by the output
of the Java Virtual Machine’s profiler HPROF in Appendix D.4.

Hall [1992] and Ammons et al. [1997] introduced profiling in the con-
text of trace shapes. This associates a metric (e.g., CPU time, cache misses)
with a trace shape. Besides a more accurate computation of caller specific
timing behavior, Ammons et al. [1997] present stack-context-sensitive
timing behavior analysis. Two software operation executions are stack
context equivalent, if the execution stack contains the same sequence of
operations. Executions that are stack context equivalent are always caller
context equivalent.

Our work extends call path profiling and the stack-context-specific
timing behavior analysis of Hall [1992] and Ammons et al. [1997]. More
precisely, we use the full trace shape as context information, in contrast
to using only the path to a call in the call graph.

Aguilera et al. [2003] presented call path profiling in distributed sys-
tems. It follows requests beyond the borders of single system nodes, as
illustrated in Figure 6.1. The strategy to analyze timing behavior in the
context of call paths, also known as transactional profiling [Chanda et al.,
2007], was reused for instance in the approaches named Magpie [Barham
et al., 2003], Whodunit [Chanda et al., 2007], Stardust [Thereska et al.,
2006], and in our work.

Aguilera et al. [2003]’s approach called Project 5 combines request trace
fragments into end-to-end traces based on precise clock synchronization
between the different system nodes. Our and other approaches propagate
tokens between trace parts to correctly reconstruct a full trace, as alterna-
tive to clock synchronization. Aguilera et al. [2003]’s approach is suitable
for black-box components that cannot be internally instrumented as it
only requires monitoring of inter-component communication. Therefore,
it requires less intrusive monitoring than our and other approaches that
look into components.

Both this and our approach analyze timing behavior in the context of
traces, but this work analyzes end-to-end response times, while our work
analyzes operation response times. Our work can only model request-
response communication; Project 5 additionally covers message-based
communication.

Barham et al. [2003] and Barham et al. [2004] proposed the Magpie
approach for call path profiling in distributed systems. Figure 6.2 illus-

117

Chapter 6 - Related Work

| client | | client | | client | | client | client

— N\

| web server | | web server

applicati t.*' authenticatipn!
pplication | Pplicatio: server
5erve | server /
NI
databaie database database database
server server server server

Figure 6.1.: Tracing a path through a distributed multi-tier system
(Source: [Aguilera et al., 2003]).

trates an example trace visualization for a single request. Magpie collects
more metrics than most call path profiling approaches. Magpie’s traces
include general event sequences (e.g., disk reads, network activity, and
low-layer signals) from the operating system layer, with no focus on
application-layer software operations. This requires operating-system-
specific monitoring features.

Our approach is limited to application-layer metrics and is more fo-
cused on timing behavior analysis. Both our work and Magpie apply
some kind of clustering on traces. However, Magpie’s clustering is on the
event order and resource consumption within a trace, while our approach
addresses clusters in operation response times.

Chanda et al. [2007]'s Whodunit also extended call path profiling for
application in distributed systems, similar to Aguilera et al. [2003] and
Barham et al. [2003]. Particular contributions of this approach are to
support a special communication type within call paths, i.e., shared
memory communication, and that resource consumption measurements
are mapped to program source code. This work uses the term transactional
profiling for call path profiling in distributed systems.

Whodunit goes beyond our approach in monitoring, as it tracks more
than call-return communication. In timing behavior analysis, our Trac-
STA goes beyond this transactional profiling: It considers the complete
dynamic call tree and the position of a particular call in the tree.

118

6.1 Context-sensitive Timing Behavior Analysis

Syno=i

W wxvisual lH x
[Conn=0x2b03340f] Lq -
=l N

[Conn=0xf60c5000)
2 B -

[Ftp [9=0x28306015) = = A o

o0 E kL

8
&
=3

qLHeIShad
SsuBdrisanbandiH
auusasigdy

oY

PR [IR e doeyd

ELLULCE It
A2

-} e S e R

TS
2 Ty

ELUEE L)
5
T
& -
[=]
puzide

i alfy
o
| 0

Print Setup \ Page Setup \ Print Preview Fint \

TIMESTAMP TIMELINE EVENT DESCRIPTION 22.984ms 2200795278352286 : 220079834730542¢

Figure 6.2.: Magpie’s visualization of a single request’s trace (Source: [Barham
et al., 2004]).

Yilmaz et al. [2008] present a response time analysis approach and its
application to fault localization. Its fault localization is discussed in the
related work section on fault localization on Page 133. The timing behav-
ior analysis compares software operation execution times with learned
models of normal behavior. The approach, called Time Will Tell, creates
for each software operation a Gaussian Mixture Model (GMM). This is a
multi-dimensional probability density model, where the dimensions for
an operation’s model correspond to the execution times for the callees
of the operation. In contrast to our work, this approach only considers a
part of the dynamic call tree of a trace. However, this approach is the only
one that shares the idea to include operation executions that start after
the start of the execution (e.g., subcalls) to be evaluated. The approach
does not explicitly consider workload intensity, in contrast to our work.
The GMM might implicitly tolerate workload intensity changes, as it
evaluates timing behavior in the context of times of callers and callees,
which are also influenced by workload intensity changes.

Kelly [2005] detects performance anomalies in software systems, such as
large Web stores. The approach relates to our work in considering both
workload intensity, as well as trace shape in timing behavior analysis.
In the following, the description focuses on the part that relates trace
information to timing behavior analysis, while its relation to workload-
intensity-sensitive timing behavior analysis is discussed on Page 124.

119

Chapter 6 - Related Work

Kelly [2005] distinguishes timing behavior according to transaction
types, which refer to end-to-end trace classes similar to use cases. Ex-
amples for transaction types are “check out”, and “add to shopping cart”.
These transaction types are related to what we denote trace contexts in
Chapter 4. For most software systems (e.g., in the iBATIS! JPetStore 5
Web application), we expect that one transaction type corresponds to
multiple trace contexts. Therefore, our approach is more fine-grained.
For example, a transaction “add to shopping cart” might initialize a user
session within the first call of a user. This may correspond to different
trace contexts for the same transaction type, if it involves additional
subcalls.

Our trace context analysis requires more computational resources and
more detailed monitoring than Kelly [2005]'s work. We reduce computa-
tional resource demands in our approach by merging trace contexts that
show similar timing behavior. Kelly [2005]s approach could also benefit
from this merging to avoid distinguishing transaction classes that have
identical timing behavior.

Kelly [2005]’'s approach aggregates response times using relatively
large time windows (e.g., 5 minutes) into a single number per transaction,
such as the sum or the average. This can “smooth out” relevant details;
additionally, aggregation operators such as the sum can be unstable if
the underlying data follows a heavy-tailed distribution. The foundations
in Section 2.1.3 show that this is typical for software timing behavior.

Sambasivan et al. [2011] presented Spectroscope for regression bench-
marking. Regression benchmarking detects and localizes performance
changes during software development (e.g., between two software ver-
sions) [Kalibera, 2006]. Spectroscope detects changes based on the oc-
currence frequency of trace types and based on end-to-end response
times.

The trace-based change detection first categorizes traces according to
their internal event sequence. Next, the relative frequency of trace types
over a time period defines the reference behavior profile. For instance,
it might be normal in a system with two trace types that the first has a
relative frequency of 60 % and the second of 40 %. A change is detected if
the distribution changes, for example to 50 % /50 %.

To detect changes in response times, the end-to-end response times
of each trace type are compared with historical measurements. This

http://ibatis.apache.org/

120

http://ibatis.apache.org/

6.1 Context-sensitive Timing Behavior Analysis

comparison uses the distribution-based Kolmogorov-Smirnov test.

Our work and Spectroscope both perform diagnosis using trace anal-
ysis and response times. However, there are major differences between
the trace analysis of these authors and our trace analysis:

o Our traces are software operation execution sequences. In contrast,
Spectroscope’s traces are more general event sequences.

e Spectroscope evaluates end-to-end response times, whereas we
evaluate response times of software operation.

e Spectroscope assumes a similar workload mix during the historical
period and new observation period. This difference to our work
results from different goals: Spectroscope is for regression bench-
marking in a controlled experiment and our work analyzes timing
behavior of production systems.

Our change localization (Chapter 3) also differs from Sambasivan et al.
[2011]'s approach: Our work analyzes anomaly ratings (using dependency-
graph-based rules) to derive causes from symptoms (i.e., the anomalies).
Additionally, Spectroscope detects anomalies both in the trace type distri-
bution and in timing behavior distributions, while our failure diagnosis
only detects anomalies in timing behavior and not in traces.

Ehlers and Hasselbring [2011] and Ehlers [2012] presented call path
profiling with a self-adaptive monitoring instrumentation for timing
behavior analysis and anomaly detection. It contributes a rule-based, au-
tomatic adaptation of monitoring instrumentation during runtime. This
reduces unrequired monitoring overhead and overhead from processing
the measurement data. Most other approaches and also our work, require
the manual replacement of monitoring points and an application restart
for changes in monitoring. The contribution of these authors to failure
diagnosis is addressed on Page 135.

These authors apply stack context analysis (Chapter 4), i.e., timing
behavior measurements are correlated to the stack of all callers of a
software operation, such as introduced by Ammons et al. [1997]. Our
work extended the stack-context-sensitive timing behavior analysis by
using the full trace as context for timing behavior analysis. This requires
more computation during analysis, but provides more precision in timing
behavior analysis than stack context analysis, as indicated by empirical
results in Chapter 4. Both this and our work use the Kieker monitoring
framework [van Hoorn et al., 2009].

121

Chapter 6 - Related Work

Hrischuk et al. [1995] and Hrischuk et al. [1999] monitor traces (called
angiotraces) in early prototypes of a software system. These traces are
used to create layered queueing network models for performance predic-
tion. This prediction enables one to evaluate design alternatives and to
detect performance problems during design.

Hrischuk et al. [1995]’s approach is similar to our work in the monitor-
ing trace format and in generating a software architectural model from
the traces. However, we use the traces and architecture for timing behav-
ior analysis and anomaly detection for production systems, in contrast to
generating formal prediction models for software development.

Hrischuk et al. [1999]’s later work additionally supports asynchronous
communication and message forwarding, while the earlier work and our
approach only support call-return communication.

Bond and McKinley [2007] presented a method to efficiently track the
stack context during software execution. This uses a heuristic called
probabilistic calling context, which represents a stack context by a single
number. A major contribution of this work is on the technical implemen-
tation of trace monitoring. Our work could use the technical method
of Bond and McKinley [2007] to monitor trace shape information more
efficiently in large software systems.

Other Trace Analysis Approaches and Commercial Tools

There are several research approaches that are weakly related to our trace
analysis. Stardust [Thereska et al., 2006] provides call path profiling for
data storage software systems. WAP5 [Reynolds et al., 2006b] extends
Aguilera et al. [2003]’s work in practical issues of trace monitoring. Chen
et al. [2002]’s, and Kiciman and Fox [2005]’s approach, called Pinpoint,
also monitors and analyzes traces but without correlating it to timing
behavior. Pinpoint is discussed in detail in the related work on fault
localization in Section 6.2.

Furthermore, there are several trace monitoring and analysis approaches
used for program comprehension. These techniques apply high levels of
abstraction on traces to achieve compact models for large traces. This is
not directly related work, as it does not focus on correlating timing behav-
ior and traces. Hamou-Lhadj and Lethbridge [2004] and Hamou-Lhad;
[2005] provide surveys on program comprehension techniques.

Two types of commercial tools are related: application performance
management (APM) software and profilers. APM software operates in

122

6.1 Context-sensitive Timing Behavior Analysis

production contexts to operate large multi-user software systems. A
comprehensive market overview of commercial tools in this domain is
provided by Gartner (see Cappelli and Kowall [2011], and Gartner [2010]).
Typical features are user experience monitoring (e.g., end-to-end response
times) and recording traces corresponding to user requests through all
tiers of large software applications [Cappelli and Kowall, 2011]. These
commercial APM tools relate to our trace-context-sensitive analysis by
usually providing means to monitor request traces in distributed sys-
tems. However, these tools do not provide trace-context-specific timing
behavior analysis.

Profiling tools provide a detailed view on the timing behavior and
resource demands of a software program (see Foundations 2.1.2). This
enables developers to identify bottlenecks and potential optimization
points. Xie and Notkin [2002] provide a summary and comparison of
commercial profiling tools. Some profiling tools, such as gprof, Google’s
perftools, Valgrind, NetBeans profiler, and Java’s HPROF are demon-
strated in Appendix D.

6.1.2. Workload-intensity-sensitive Timing Behavior
Analysis

Related work for the WiSTA workload-intensity-sensitive analysis, intro-
duced in Chapter 5, automatically relates timing behavior monitoring
data to workload intensity metrics. This assumes that workload intensity
is a significant influence to timing behavior.

The literature on formal performance models and performance pre-
diction are more foundations (Section 2.1.2) than related work for this
thesis. However, formal performance models often consider workload
intensity metrics as input parameter. These techniques are often based
on queueing theory, which requires strong mathematical simplifications
(e.g., simple distribution families, and only focus on mean values) to be
mathematically tractable. Our work statistically analyzes measurement
data without these simplifications. Additionally, our work is not on per-
formance prediction, but on the timing behavior of software systems that
already exist.

This discussion of related work excludes profiling approaches that do
not automatically analyze the relationship between workload intensity
and timing behavior.

123

Chapter 6 - Related Work

Maxion [1990] evaluated network characteristics in the context of work-
load intensity changes by considering the time of the day. Additionally,
weekdays and weekend days are modeled separately. The approach is
based on the observation that these two time metrics correlate to work-
load intensity patterns.

Our approach differs from Maxion [1990]’s work by addressing soft-
ware timing behavior instead of network characteristics. Furthermore,
Maxion [1990]’s approach only covers workload intensity changes di-
rectly related to the time of day and day type (i.e., weekend or not). Our
work indirectly covers these changes also to some extent, because time of
day and day type often correlate to the input for our input metrics (e.g.,
number of parallel requests, and type of requests). Maxion [1990]'s work
has lower monitoring requirements than our approach.

A similar approach to Maxion [1990]’s work is by Frotscher [2013].
These authors observed weekly patterns in the response times of a large
business-oriented social networking service and use this observation in
anomaly detection. The approach is discussed in more detail on Page 136.

Zhang et al. [2005] correlated different types of monitoring data from
lower system layers for diagnosing service level objective (SLO) vio-
lations. The authors argue that the combination of multiple types of
low-layer sensors (e.g., operation response times and CPU utilization) is
necessary in diagnosis because single low-layer sensors are inadequate to
model SLO states for complex workload. Workload changes are explicitly
considered in this analysis by using different combinations of low-layer
sensors depending on the workload. Our work uses application-layer
monitoring instead of monitoring on lower layers and does not change
sensors depending on workload.

Kelly [2005]’s timing behavior anomaly detection approach, which is
also related work on trace-context-sensitive timing behavior analysis (see
Page 119), indirectly uses workload intensity in timing behavior analysis.
A central metric in this approach is the sum of response times during
a time window (e.g., of 5 minutes). This sum is an indirect workload
intensity metric, because the sum obviously depends on the amount of
workload. Kelly [2005]'s approach differs in workload intensity analysis
from our work mainly in three points:

1. We use a non-linear relationship for workload intensity and re-
sponse times,

124

6.1 Context-sensitive Timing Behavior Analysis

2. we allow different response time probability distributions for each
workload level and each operation, and

3. we use workload intensity to evaluate single response times, in-
stead of using a sum of response times.

Concerning the first point, our approach uses a non-linear relationship,
in contrast to this work, because a linear relationship between workload
intensity and timing behavior is a strong simplification (see foundations
on Page 12).

Regarding the second point, our work uses independent timing behav-
ior distributions for each workload level (i.e., each workload-intensity-
level has a specific distribution of how likely short and long response
times are). This assumes that the timing behavior distribution can change
for different workload levels. For instance, some virtual machine environ-
ments are able to change the amount of available resources for different
workload intensity levels. The empirical data shown in Figures 5.8(1)
and 5.8(2) (Page 103) indicates that the standard deviation of timing
behavior measurements increases by increasing workload intensity.

Cheung et al. [2011] predict response times for high workload intensity
scenarios only based on measurements from low and medium workload
intensity scenarios. This is motivated by the costs of high-workload
intensity tests in production systems, especially in combination with
third party Web services. It joins regression techniques with queueing
network modeling for performing the prediction. Cheung et al. [2011]
demonstrated that a combination of regression techniques with queueing
network analysis outperformed both techniques alone.

Similar to our approach, it only uses response times without modeling
resource demands, as these may be unavailable for third-party Web
services. Our WiSTA approach assumes that most workload intensity
scenarios are within the historical monitoring behavior. If this cannot
be sufficiently satisfied or if too many false alarms in anomaly detection
in rare workload situations occur, then our approach should integrate
Cheung et al. [2011]'s work. However, this work only predicts average
response times, but our approach requires response time distributions
for each workload intensity level. We avoid using the average response
time in timing behavior anomaly detection, as it could be an unsuitable
representative value: Timing behavior distributions can have heavy tails

125

Chapter 6 - Related Work

and multimodality (see Foundations 2.1.3), which can strongly influence
the mean response time and reduce its robustness.

D’Alconzo et al. [2009] present an anomaly detection approach for 3G
mobile network traffic. It categorizes monitoring data according to the
time of day (e.g., one bin for 5 p.m. to 6 p.m.). To identify anomalies, new
observations are compared with historical observations of equivalent
bins (e.g., the same time of the previous day). This assumes that the time
of day correlates to workload intensity or to other relevant workload
changes, such as the type of usage.

The comparison is based on the distributions of historical and current
timing behavior, similar to our work. A major difference in analysis is
that our work does not use the time of day at all. We monitor workload
intensity and directly use this in timing behavior analysis to deal with
varying workload intensity.

Zhang et al. [2007]’s approach R-Capriccio shares many elements with
our work, but uses different metrics and techniques. It also detects
anomalies in distributed software systems based on performance mea-
surements.

R-Capriccio monitors workload and CPU utilization, and creates a
statistical model to estimate CPU-utilization for a given workload mix.
The workload metric is the number of transactions, which are the end-
to-end traces through one execution environment (e.g., an application
server). These transactions are identified for instance by URL addresses in
middleware log files. The statistical model makes the anomaly detection
resistant to workload intensity changes: It can be distinguished whether
high CPU-utilization arises from the workload, or whether it indicates a
performance problem. This shares the general motivation with WiSTA
(Chapter 5).

Both the concrete input and output metrics are different in our workload-
intensity-performance model of WiSTA: Our workload metric consists
of the number and type of parallel software operation executions and
the resulting output are software operation response times partitioned
by workload intensity. TracSTA’s input metric (Chapter 4) for estimat-
ing response time partitions are software operation execution sequences
corresponding to a trace shape. Both our metrics require more intrusive
monitoring instrumentation than R-Capriccio’s black box metrics, but
provide a look into a software application.

126

6.1 Context-sensitive Timing Behavior Analysis

R-Capriccio aggregates measurements into time windows (e.g., one
hour), while we avoid aggregating input data. Furthermore, R-Capriccio’s
anomaly detection is without an explicit fault localization step, i.e., no
event correlation or fault localization technique supplements the anomaly
detection, in contrast to our work.

Finally, R-Capriccio creates a layered queueing network model, which
is a formal model for analytical performance analysis (see Foundations,
at Page 14). In contrast, we use statistical- and measurement-based
performance analysis. R-Capriccio uses the queueing network model
for capacity planning and performance prediction, which are both not
addressed by our work.

Herbst et al. [2014] present a forecasting approach for workload inten-
sity. The time-series-based approach for instance predicts the workload
intensity in terms of the number of request per hour and the number
of transactions per 30 minutes in the evaluation. A major contribution
of this work is that it dynamically selects the most adequate forecasting
method for each point in time. The selection is based on the characteris-
tics of the time series for which prediction are to be created. Examples for
these characteristics are the length of the time series, the burstiness (based
on maximum and median), and the number of consecutive monotonic
values.

This approach shares with our work that the timing behavior analysis
is workload-intensity-specific. The workload intensity metrics in our
work and in this work differ: Our pwi metrics quantify the amount of cur-
rent usage in terms of (weighted) parallel software operation executions
during a software operation execution (i.e., usually a very short duration,
such as 10 milliseconds). The workload intensity metrics of Herbst et al.
[2014] are time series of request arrival rates and transactions per time
unit over time periods of minutes and hours. Our work neither uses time
series analysis nor forecasting. Herbst et al. [2014] provide a forecast of
workload intensity while our work provides workload-intensity-specific
software response times.

6.1.3. Other Related Context-Sensitive Timing Behavior
Analysis

In the following, timing behavior approaches are presented that are simi-
lar to our work in considering context information, but without a focus on

127

Chapter 6 - Related Work

trace shape information or workload intensity. This includes for instance
timing behavior approaches that explicitly consider workload charac-
teristics (e.g., file sizes and parameter values), platform metrics (CPU
utilization, and other resource demands), relative service call frequency,
and calendar time for improving analysis results.

Bailey and Soucy [1983] group service requests into three complexity
classes: trivial, intermediate, and complex. This categorization aims
to differentiate resource demands, such as CPU, network, and storage.
Each class has a predefined response time objective, defined as the 90th
percentile of the corresponding historical response times.

Bailey and Soucy [1983] only distinguish three requests classes, while
we distinguish requests based on workload intensity and trace contexts
which provides much more fine grained analysis. Furthermore, their ap-
proach disregards workload intensity changes within the system. There-
fore, the occurrence of an unusually high number of users would raise a
false alarm.

Menascé and Almeida [2001] use cluster analysis to identify workload
classes as preprocessing for performance analysis. The authors see the
requirement to separate classes to compensate the large variability in Web-
based workload characteristics (e.g., file sizes). Otherwise, this variability
“reduces the statistical meaning of measurements” [Menascé and Almeida,
2001, p. 168]. A small example demonstrates the clustering of requests
to a Web server based on file size and access frequency [Menascé and
Almeida, 2001, p. 243 f£.].

This shares with our work the strategy to categorize measurements
before applying performance analysis. The major difference to our ap-
proach is that our classes are defined by different metrics. In detail,
in Chapter 4 classes are defined by an execution’s corresponding trace
context (preceding and succeeding operations) and in Chapter 5 execu-
tions are categorized using workload intensity metrics. Furthermore,
we present an empirical evaluation, while these authors demonstrate by
example.

Menascé and Almeida [2001]’s clustering is an alternative to our work-
load intensity binning method. However, this requires the additional
assumption of significant clusters in workload intensity.

Our approach in Chapter 4 also uses a clustering method. However, we
cluster trace contexts and timing behavior, instead of clustering workload.

128

6.1 Context-sensitive Timing Behavior Analysis

More precisely, our approach iteratively merges trace contexts to reduce
the total number of trace classes. For this, it uses a different similarity
metric than the one used by these authors: Only classes are merged that
are both in a particular relation in the trace shape context tree and show
similar timing behavior characteristics.

Koziolek [2008] and Koziolek et al. [2008] consider the parameter val-
ues of requests to increase performance prediction precision. This ap-
proach focuses on performance prediction during early software design,
while our focus is on the evaluation of measurement data from software
systems in production environments. Our trace context analysis and
workload-intensity-sensitive timing behavior analysis are different to the
work of these authors, besides the general idea to use context information
of a call.

These authors provided empirical evidence for a correlation between
parameter values and timing behavior. This suggests that our analysis
could benefit from considering parameter values as well.

From the same research group Palladio, Becker et al. [2007] allow one
to specify different timing behavior for different types of calls of the same
operation (or service). The main focus is on timing behavior modeling
for performance prediction before implementation, but it may be also
useful in the context of analysis of monitoring data.

Bulej et al. [2005] and Kalibera et al. [2005] analyze timing behavior
in the context of observed clusters in timing measurements. This timing
behavior analysis specializes in regression benchmarking. Regression
benchmarking can identify performance changes between two software
versions.

The clusters are identified by k-means clustering on timing behavior
measurements. This clustering could decompose multimodal timing
behavior distributions (see Foundations 2.1.3.2) into non-multimodal
distributions. Therefore, it is a heuristic alternative to our trace-context-
sensitive timing behavior analysis.

Our approach requires additional monitoring (trace shape monitoring)
for determining trace contexts and workload intensity information. The
approach of these authors requires no additional monitoring, because
the clustering operates on the timing behavior values that are monitored
anyway.

129

Chapter 6 - Related Work

Our approach uses the trace information as additional information in
analysis, which allows the precise distinction of timing behavior classes
(if there are correlations to the trace contexts). The k-means clustering ap-
proach is a heuristic that performs well, if the correct number of clusters
is known in advance and the values of the clusters are well separated.
Our method is more precise and accurate for clusters that correspond
to trace contexts. However, multimodality can also be caused by lower
system layers that are not covered by our application-layer monitoring.

Tan et al. [2010]’'s ALERT approach predicts anomalies using context-
sensitive prediction models. The prediction models are based on decision
trees and predicates (e.g., CPU utilization larger than 50 %) that evaluate a
large set of platform metrics, such as CPU utilization, memory utilization,
input data rate, and buffer queue length.

Similar to our approach, it motivates context-sensitive system behavior
analysis and it considers workload intensity. However, it is not focused
on software timing behavior. From the set of metrics, which are sampled
every 10 seconds, time windows are distinguished by clustering. In
other words, each time window belongs to a cluster that represents a
context. Such a context may for instance represent the low workload
period during the early morning and another context may correspond
to the afternoon with high workload intensity. Each context has its
own anomaly prediction model, which is therefore specialized for that
particular system behavior context.

The contexts of Tan et al. [2010] are valid for some time window and
cover during that time all evaluation activity. Our trace contexts and
workload intensity contexts are specific to software operation executions
and not to time periods. Our workload intensity metrics focus on parallel
application layer software operation execution activity, while Tan et al.
[2010] use many platform metrics.

Williams et al. [2007]’s approach called Tiresias is a failure prediction
approach. Failure prediction is different to our work on fault localization
and failure diagnosis in Chapter 3, but this approach also uses timing
behavior anomaly detection and it is able to tolerate workload intensity
changes. Tiresias predicts failures in two steps: (1) anomaly detection,
and (2) prediction failures from anomalies. The authors demonstrated the
prediction of some failure up to several hundreds of seconds in advance,
while spontaneous crash failures were not predicted.

130

6.1 Context-sensitive Timing Behavior Analysis

Several monitoring metrics are used and compared with each other,
such as network traffic metrics, application response time, platform
metrics (CPU utilization, memory utilization, context switches), and
protocol metrics. From these metrics, response time preformed best.

The anomaly detection is based on the approach of Maxion [1990],
which uses data smoothing with mean and median filters, and then identi-
fies upper and lower thresholds based on standard deviation (£3¢). Tire-
sias’s prediction applies the Dispersion Frame Technique (DFT), which
is commonly used to predict hardware disk drive failures. The DFT
analyzes the inter-anomaly-times.

The authors tolerate workload intensity changes by creating multi-
ple normal behavior profiles in correspondence to seasonal workload
changes. For instance, it uses different profiles for off-peak times and
peak times. We also recognize the need to deal with seasonality in per-
formance but use a different approach in Chapter 5: we always measure
the workload and have a generalized workload performance model that
can estimated the response times for a given workload intensity and
workload mix. Our approach can tolerate also non-seasonal changes in
the workload, e.g., when a new special time-based offer attracts many
customers to a Web store.

Our approach is similar in using timing behavior anomaly detection,
with an emphasis on response times to analyze failure processes. Tiresias
is different in using strong aggregation methods (mean and median)
before anomaly detection. It is argued that this avoids that strong discon-
tinuities “skew the data”[Williams et al., 2007]. However, it can also be
argued that smoothing at this stage can also remove too many outliers
and it adds additional parameters that could be wrong.

Rygielski and Tomczak [2011] present a change detection approach
that monitors workload intensity in terms of the call frequency of each
service. These relative service frequencies form a distribution for a time
window. A change is reported, if the current distribution is too different
to the historical distribution. It is assumed that changes in the distribution
of service usage indicate a context change that might require a system
reconfiguration for providing optimal service quality.

This approach basically detects changes in the workload mix. Our
approach explicitly aims to avoid detecting changes in workload - it
aims to detect timing behavior changes that are not caused by workload
changes. Therefore, we assume that changes in workload are normal

131

Chapter 6 - Related Work

behavior. Both viewpoints on anomalies are valid depending on the
types of anomalies to detect.

This work is similar to our approach in monitoring workload intensity
for request types, but it uses this information not for timing behavior
analysis.

Furthermore, Rygielski and Tomczak [2011]’s workload intensity met-
rics go not beyond counting the service requests within a time window.
Our metrics use operation-specific weights to address that some soft-
ware operations require more shared resources than others, if executed
in parallel.

6.2. Fault Localization and Failure Diagnosis
for Software Systems

This section discusses related work to our fault localization approach
presented in Chapter 3. First, research that analyzes timing behavior is
discussed in Section 6.2.1. Next, approaches that use other runtime be-
havior characteristics than timing behavior are addressed in Section 6.2.2.

The discussion of related work excludes high performance comput-
ing (HPC) approaches, approaches for fault localization by source code
analysis, and debugging techniques that analyze failed and passed test
runs.

Many failure detection approaches exist for HPC systems, such as
DIDUCE [Hangal and Lam, 2002], AccMon [Zhou et al., 2004], and DM-
Tracker [Gao et al., 2007]. These are distant related work, as they are
specific to HPC systems. The large class of approaches that localize bugs
in source code by code analysis is excluded, as these approaches use
static code analysis instead of dynamic analysis (i.e., monitoring). In
other words, runtime behavior is neither monitored nor analyzed. Exam-
ples for this class are the work of Wasylkowski et al. [2007], PR-Miner [Li
and Zhou, 2005], and FindBugs [Hovemeyer and Pugh, 2004]. Typical
software fault localization methods that analyze failed and passed test
runs to determine bugs in a software program, such as spectrum-based
fault localization [Reps et al., 1997], Tarantula [Jones and Harrold, 2005],
and the work of Zeller [2002] are not discussed as related work (see
Foundations on Page 28). These techniques focus on the development
time and localize faults in software programs, while our work is on run-
time analysis of software timing behavior monitoring data to localize

132

6.2 Fault Localization & Failure Diagnosis for Software Systems

problems in software systems. Additionally, our work differs to these
approaches by not using test casts and it is not known to our approach
whether a single run (or user request) has failed or not.

6.2.1. Fault Localization and Failure Diagnosis based
on Software Timing Behavior Analysis

In the following, related work is presented that analyzes timing behavior
for failure diagnosis and fault localization.

Bailey and Soucy [1983] is up to our knowledge the first approach to
diagnose failures in a software system using response times. As also
discussed on Page 128, Bailey and Soucy [1983] group requests into three
classes: trivial, intermediate, and complex.

Response time thresholds are determined for each class based on the
90th percentile of historical measurements. The response times are moni-
tored at client side and regularly transferred to a central server to enable
evaluation of actual data, for comparison to predefined profiles, and for
exception reporting. Our failure diagnosis approach goes beyond this
approach by:

1. using more context information: workload intensity and trace con-
text, instead of three manually defined complexity classes,

2. comparing current measurements to historical distributions, in
contrast to comparing current measurements to the 90th percentile
of historical measurements, and

3. in correlating anomaly scores in a fault localization step, in contrast
to just reporting response time objective violations.

Yilmaz et al. [2008]’s Time Will Tell (TWT) approach uses timing be-
havior analysis for fault localization, like our approach. Furthermore, it
also uses caller context information: execution times are evaluated in the
context of execution times of subcalls.

A Gaussian Mixture Model (GMM) statistically learns the normal tim-
ing behavior. TWT includes the execution times of callees into the GMM
model. This means that a software operation execution time is evaluated
in the context of execution times of callees. Our approach TracSTA also
looks at caller-callee dependencies, but uses the operation type and the

133

Chapter 6 - Related Work

relation of the executions in the corresponding dynamic call tree, and not
the timing behavior of those elements.

Yilmaz et al. [2008] do not explicitly consider workload intensity
changes, but the GMM might tolerate some of these. However, it may
be beneficial to integrate our workload intensity metrics as additional
parameter into the GMM, as it directly addresses workload intensity.

The fault localization algorithm in TWT returns a list of the methods,
ranked by a score that quantifies its deviation from normal timing behav-
ior. We use an additional analysis step by iteratively employing rules to
anomaly ratings. Such an event correlation step could also extend TWT
to derive root causes from symptoms.

Wang et al. [2014] present a similar anomaly detection approach to our
work that shares the idea to analyze system behavior in the context of
workload. More precisely, both approaches use two types of context
information to address that system behavior depends on both the type
and amount of usage. Furthermore, other concepts, such as using the LOF
(local outlier factors) are shared. Wang et al. [2014] focus on anomaly
detection in (non-distributed) Web applications, without focusing on
software timing behavior.

We use WiSTA and TracSTA to achieve anomaly detection context-
specific to workload intensity (e.g., amount of concurrent execution
within the same execution environment) and trace shapes. These au-
thors use other workload intensity metrics (request arrival rate and the
time between requests within a session) and access patterns. The access
patterns are modeled from the usage of external access points of a Web
application. Additionally, our work looks deeply into the software ap-
plication by using information from application-layer monitoring, while
Wang et al. [2014] do not look inside the software application (i.e., only
the platform and external interfaces are monitored).

Another major difference is that Wang et al. [2014] aim to localize
the resource (CPU, memory, disk, network) as root cause, while our
approach aims to localize the root cause within the software architecture
of the software application under analysis. These are orthogonal views
on a system and could be combined. This difference is a reason for the
selection of metrics that are used for localization; in our case application-
layer metrics (software operation response times), while Wang et al.
[2014] use system-layer metrics.

134

6.2 Fault Localization & Failure Diagnosis for Software Systems

Agarwal et al. [2004] provide a fault localization approach based on
timing behavior and dependency graphs. A particular contribution
of this approach is to derive timing behavior thresholds for software
components-based on end-to-end SLA (service level agreement) viola-
tions. These component specific thresholds are used for failure diagnosis.
In contrast to our approach, the existence of end-to-end service level
agreements is assumed. The training requires historical data for both
violations and non-violations. Our approach and most other anomaly
detection approaches for failure diagnosis based on timing behavior only
use historical data that is assumed to be free of anomalies. A dependency
graph analysis uses the anomalies to localize the root cause from the
anomalies, similar to our approach. The final result is a ranked sequence
of components ordered by their likeliness to be the source of the problem.
The approach uses average response times as reference for normal and
anomalous timing behavior - our approach uses probability distributions
for defining normal behavior.

Ehlers et al. [2011]’s and Ehlers [2012]’'s work, also discussed on
Page 121, demonstrates an adaptive monitoring approach in the con-
text of timing behavior anomaly detection. Additionally, the authors
compare two ways (time-series forecasting and probability distributions)
to specify a normal behavior reference in anomaly detection. A ma-
jor difference between both is that distribution-based methods do not
use information about the order in which historical measurements oc-
curred and that trends and seasonality are not continued. The evaluation
showed similar performance for both methods [Ehlers, 2012].

Major differences to our work are that these works aggregate timing be-
havior over time windows, different anomaly detection algorithms, such
as population-mean-based hypothesis tests are used, and that forecasting
methods are applied. Furthermore, it uses different event correlation
methods to determine the root cause of an anomaly. Our approach’s
monitoring overhead could be optimized by Ehlers [2012]’s adaptive
monitoring.

Bielefeld [2012] introduces an online anomaly detection approach, called
©PAD for identifying anomalies in end-to-end response times. A focus is
on forecasting algorithms, such as ARIMA [Box and Jenkins, 1990] and
exponential smoothing [Hyndman and Khandakar, 2008].

It is demonstrated that forecasting methods can deal with workload

135

Chapter 6 - Related Work

;

Measurements

/ Forecast

time
-
>

Figure 6.3.: Response times during four days of seasonal data and a seasonal
forecasting (green line) for a window size of 24 hours. Image by
Bielefeld [2012].

intensity changes, as shown in Figure 6.3. This is an alternative to our
approach, which explicitly models this relationship at the cost of having
higher monitoring requirements than ©PAD. ©PAD’s case study showed
clearly seasonal patterns, as displayed in Figure 6.3 (i.e., the response
times highly depend on the time of day), but still it is relatively difficult to
achieve better anomaly detection with forecasting than by using historical
observations.

Major differences of our and their work are that both workload inten-
sity and trace context information are ignored in ©PAD, and it does not
contain a separate fault localization step (e.g., by using event correla-
tion). Our approach uses historical distributions instead of forecasting.
Additionally, our work considers single software operation response
times, in contrast to end-to-end response times aggregated over time
windows (i.e., of one minute). OPAD calculates anomaly scores based on
a threshold, while our approach computes the score based on probability
distributions without a threshold.

Frotscher [2013] approach called ©PADx extends Bielefeld [2012]'s
OPAD. Similar to ©OPAD, it applies time-series-analysis-based timing
behavior anomaly detection in a large social-network platform.
Compared with OPAD, ©PADx supports more performance metrics
and has improved applicability. A major difference to OPAD is that
collective anomalies are distinguished from point anomalies. Collective
anomalies are a number of consecutive (point) anomalies. These cause
false positives after a longer period of anomalies ends, if the anomalies
are considered normal behavior after a while and are used for forecasting.
After a collective anomaly is detected, Frotscher [2013]’s anomaly detector
switches from forecasting-based anomaly detection to a pattern matching

136

6.2 Fault Localization & Failure Diagnosis for Software Systems

anomaly detection. This compares current timing behavior to historical
measurements for the same day of the week and for the same time of the
day of previous weeks. ©PADx provides some improvements compared
with the earlier work of Bielefeld [2012], such as fewer false alarms
especially at the end of longer anomalies.

Most differences between this work and our work are similar to the
differences described in the discussed of the approach of Bielefeld [2012]
on Page 136. Compared with ©PAD, ©PADx is more similar to our work,
as it uses in some cases historical observation as reference.

Avritzer et al. [2005, 2006, 2007] use anomaly detection and timing
behavior analysis to detect performance degradation. Degradation can
be an early indicator of a failure and may be addressed by rejuvenation
means, such as a system restart, to prevent that a failure occurs.

Avritzer et al. [2006] analyze software response times with three dif-
ferent algorithms. These mainly use aggregation and the central limit
theorem for change detection. The authors average single response times,
based on the assumption that short-term effects of high response times
are normal. The central limit theorem states that if sufficiently many
values are used to compute a single average value, then the distribution
of the average values will tend to follow a normal distribution. This
approach detects an anomaly if an average value (i.e., a sample mean) is
above the 0.975 percentile of the normal distribution (of all averages). The
central limit theorem requires statistically independent values. Forecast-
ing methods that are also used by other approaches for timing behavior
analysis and anomaly detection approaches, such as Ehlers and Hassel-
bring [2011] and Bielefeld [2012], have contrary assumptions (trends and
seasonality). Avritzer et al. [2006] regard the self-correlation observed in
their experiments to be sufficiently low to apply the central limit theorem.

Both our and this approach use a distribution-based computation of
anomaly scores. A major difference between this and our approach is
that we evaluate each single response time independently in contrast to
response time averages. Another difference to our work is that work-
load intensity and trace shapes are not explicitly considered within the
anomaly detection by these authors.

Diaconescu and Murphy [2005] and Diaconescu et al. [2004] present
an approach for online software timing behavior analysis and automatic
reconfiguration. When a component is considered responsible for a

137

Chapter 6 - Related Work

performance problem, the system is automatically reconfigured, e.g.,
by using a functionally equivalent component that shows better per-
formance for the current workload. Various timing behavior anomaly
detection metrics are briefly discussed without evaluation.

In contrast to our work, both workload intensity variations and trace
context analysis are not addressed. The authors identify timing behavior
anomalies for instance by using static thresholds, while our approach uses
mainly distribution functions. It uses the COMPAS monitoring [Mos and
Murphy, 2004], which automatically adapts the monitoring infrastructure
during runtime, similar to the work of Ehlers [2012].

Pitakrat et al. [2014] and Pitakrat [2013] describe an online failure pre-
diction approach for component-based software systems, called Hora.
On the component layer (soft- and hardware), each component is moni-
tored (e.g., software response times) and a prediction model is created to
estimate the future quality of the service of the component. On the system
layer, the component layer predictions are combined into a 2nd-order
continuous-time Markov chain to predict if and when the component
layer problems lead to a system layer failure.

Both approaches share the general idea to start with a component
layer analysis of online monitoring data and combine the component
layer results into a system layer model that uses dependencies from
the structural system architecture. Hora goes beyond our approach
by focusing on failure prediction and supports architectural changes
while our approach focuses on fault localization and does not address
architectural changes. Our work focuses on response times, while Hora
is not limited to software timing behavior.

6.2.2. Fault Localization and Failure Diagnosis based
on other Runtime Behavior than Timing Behavior

In the following, failure diagnosis or fault localization approaches are
presented that perform the analysis on other runtime behavior character-
istics than timing behavior, such as trace shapes, component interaction
patterns, event sequences or heterogeneous metrics from all system layers
(e.g., CPU utilization, network statistics).

Chen et al. [2002] and Kiciman [2005] introduce an approach called
Pinpoint for failure diagnosis based on anomaly detection in enterprise

138

6.2 Fault Localization & Failure Diagnosis for Software Systems

systems. Chen et al. [2002] detect anomalies in trace shapes and use clus-
tering to determine the root cause of a failure. Kiciman [2005] extends
this work and detects and localizes anomalies from both component in-
teractions and path shapes. Path shapes are an alternative representation
for component execution sequences of requests. For anomaly detection,
statistical tools compare the current system behavior with a historical ref-
erence model. Kiciman and Fox [2005] combine three methods for failure
diagnosis: 1. request-path-based anomaly detection, 2. inter-component
interaction frequency anomaly detection, and 3. decision-tree-based
diagnosis.

In contrast to our work, these authors focus on component interac-
tion anomalies and trace shape anomalies, while our focus is on timing
behavior anomalies.

Chen et al. [2007] use component interaction patters for failure detec-
tion and diagnosis. Note, this strategy is similar to the work of Chen
et al. [2002] discussed above and even use the pinpoint approach for
monitoring, but the first authors of both works are different persons. This
approach represents component interactions as a matrix containing the
directed interaction frequencies. For n components the matrix size grows
to n?. Chen et al. [2007] introduce a way to find a subspace and particular
statistics that efficiently represent the component interactions during a
particular time (window) as density distribution. Failures are detected by
comparing the current distribution representing all current interactions
to a distribution corresponding to historical interactions. A final step
localizes faults by comparing each component’s current interactions to
its historical interaction frequencies.

As our and this approach use different fault indicators, both approaches
can be combined for improving diagnosis quality. The monitoring de-
mands of Chen et al. [2007] are a proper subset of our monitoring de-
mands.

Williams et al. [2007] diagnose failures in distributed systems by local
(i.e., for one node) anomaly detection and global anomaly correlation.
For each node of a distributed system, several metrics on the operating
system layer or protocol layer are monitored, such as available memory,
transferred packets per second, and context switches per second. Anoma-
lies are detected independently on each node by comparing the newest
observation for each metrics to a weighted combination of previous ob-

139

Chapter 6 - Related Work

servations. In more detail, upper and lower thresholds are based on the
mean and standard deviation of weighted previous observations. The
more recent observations have a higher weight than older observations.
For instance, the current packets/sec measurement is considered an ex-
treme anomaly if it is outside [— 60, it + 60]. To filter noise, anomalies
are only logged if at least 50 % of the values of some window (e.g., of 15
observations) are anomalies. Global failure diagnosis is automatically
triggered if at least 3 of 7 logged values are anomalies.

The authors present three different types of event correlation methods
to compute a global failure diagnosis from local anomaly detections.
The first is a heuristic approach based on rules (e.g., the node showing
anomalies in most of the metrics is considered to be faulty). The other two
metrics use variants of k-means clustering. Our approach in Chapter 3
also uses rules in this context.

This and our approach use disjunct monitoring data for diagnosis.
Therefore, both approaches can be combined to achieve better diagnosis
quality. Another major difference is that this approach uses o-based
thresholds (similar to Shewhart [1931]; see Foundations 2.3) to identify
anomalies while we determine anomaly scores based on probability
distributions.

Cohen et al. [2004, 2005], Zhang et al. [2005] support the diagnosis of
SLOs (service level objectives) violations using combinations of low-layer
metrics (below software application layer), such as CPU utilization and
memory utilization. The core of the approach is named metric attribution
[Cohen et al., 2004]. Out of many low-layer metrics, those with the
strongest correlation to the SLO violation are presented to administrators
as support in diagnosis. For instance, for a particular SLO violation, this
technique might present “available database connections” as diagnosis
advice.

Zhang et al. [2005] explicitly address workload changes. Depending
on the workload conditions, the diagnosis approach uses a different
combination of metrics. It is argued that a combination of multiple types
of metrics is necessary, because single metrics only perform best for
particular workload situations.

Cohen et al. [2005] recognize known system states based on combina-
tions of low-layer metrics. The metric combinations act as fingerprint for
the system state over a time window. A SLO violation’s corresponding
fingerprint may match to a historical fingerprint with a known diagnosis.

140

6.2 Fault Localization & Failure Diagnosis for Software Systems

This can reduce diagnosis time.

Both this and our work share the idea to statistically analyze moni-
toring data for improving diagnosis. Besides this, both approaches use
different strategies. A major difference is that these authors use many
low-layer metrics, while our approach focuses on software operation
response times and software operation execution sequences (i.e., the
traces).

Jiang et al. [2006] detect anomalies in changes in the relationship be-
tween measurement data from heterogeneous monitoring probes (e.g.,
the relationship between CPU load and the number of SQL queries
during 10 seconds). This differs from our and most other approaches
that detect anomalies directly in measurements. These linear pairwise
relationships are called invariants. The applicability of the approach
is demonstrated. However, no empirical evidence was provided that
invariants are superior to the classical approach.

A lab study with a three-node distributed system instrumented with
111 monitoring probes from all system layers (e.g., CPU load, number
of requests, number of SQL queries, network statistics) resulted in 975
sufficiently robust linear invariants for anomaly detection. The mea-
surement data is aggregated (10 second windows) to reduce overhead.
Furthermore, the anomaly detection uses time series forecasting.

The work of Jiang et al. [2006] shares general elements with our ap-
proach, such as applicability in distributed multi-user systems, consider-
ing workload intensity metrics, and automatic determination of normal
behavior in anomaly detection. However, in some aspects, it is orthogo-
nal to our work:

e The authors use heterogeneous monitoring probes from different
system layers. In contrast, our approach focuses on detailed anal-
ysis of a few application-layer metrics. Monitoring on multiple
layers should provide better direct fault coverage. However, timing
behavior metrics on the software application layer also cover lower
layers to some extent, as they are highly influenced by lower system
layer activity (see e.g., [Yilmaz et al., 2008]).

e Our work does not aggregate measurement data into time win-
dows. Jiang et al. [2006] claim that it is unrealistic to track all user
requests in large systems. However, we demonstrated this in the
Web portal of Europe’s largest digital photo service provider [Rohr

141

Chapter 6 - Related Work

et al., 2010]. Aggregation reduces the amount of data and may
filter noise. However, faults may also cause anomalies in single
requests and aggregation introduces additional potentially critical
parameters, such as the window size and the aggregation method.

e Jiang et al. [2006]’s does not consider individual trace shapes and
does not reconstruct a software architectural model. Such archi-
tectural models play an important role in many event correlation
methods for fault localization and in the visualization of anomalies.

Our timing behavior analysis contributions (Chapter 5 and 4) can be in-
tegrated into Jiang et al. [2006]’s approach, by using our timing behavior
analysis as source for workload-sensitive timing behavior expectations
in anomaly detection.

Brutlag [2000] extended the network and system monitoring tools RRD-
tool and Cricket with anomaly detection. It uses the Holt-Winters fore-
casting algorithm, which can cope with trends and seasonality, to define
a confidence band. An anomaly is detected, if more than a specified num-
ber of observations are outside of the band for a fixed-size moving time
window on the monitored time series data. This approach focuses on
network monitoring, in contrast to our focus on software timing behavior.
Another major difference is that our anomaly detection computes
anomaly scores for single observations and uses these for fault local-
ization under the assumption of an already correctly detected failure.
Brutlag [2000] mainly focuses on failure detection. Furthermore, mea-
surements are aggregated over a sliding window to achieve a suitably
low false alarm rate. If our approach is used for failure detection instead
of fault localization, it may require such an aggregation step as well.
Using (Hold-Winters) forecasting is an alternative to our workload-
intensity-sensitive timing behavior analysis for satisfying the relationship
between workload intensity and other system metrics, such as response
times. Our approach has the advantage that it avoids a false positive
for low response times caused by an unpredictable workload burst, for
which Brutlag [2000]’s approach may raise a false alarm. However, our
approach can only compute the workload metrics some time after moni-
toring, which makes it unsuitable for fast failure detection. Furthermore,
our approach only covers trends and seasonality that are visible in our
workload intensity metrics, which reflect the amount of workload in
terms of parallel software operation calls and traces. Other trends or sea-

142

6.2 Fault Localization & Failure Diagnosis for Software Systems

sonality (e.g., slower performance during a daily regular backup activity)
cannot be considered by our approach.

Elbaum et al. [2007] presented an anomaly detection approach for fail-
ure detection that analyzes the sequence of software operation executions
and the sequence of user interactions. Those sequences are compared
with the historical failure-free sequences using three algorithms:

1. Foreign symbol anomaly detection: An anomaly is alerted if a
software operation that was unseen during training is executed.
This algorithm was earlier used by Maxion and Tan [2000].

2. Symbol frequency-based anomaly detection: An anomaly is de-
tected if a window contains a particular symbol more or less fre-
quent than in any training data window.

3. Sequence-based or n-gram anomaly detection: Instead of analyzing
the sequence for single symbols, as the foreign symbol anomaly
detection, sequences of the length n are used to detect anomalies.
For instance, the 2-gram sequence (main, exit) is rated as anomaly
if not observed during training.

Elbaum et al. [2007]’s evaluation showed the highest true positive rate
for the sequence-based approach, while the foreign symbol approach
resulted in the lowest false alarm rate.

Our approach differs by detecting anomalies based on timing behavior,
in contrast to operation execution sequences and user action sequences.
However, before using timing behavior in anomaly detection, we apply
the trace-context-sensitive timing behavior analysis, which uses opera-
tion execution sequences. These sequences differ in being limited to the
operation executions corresponding to a user request, while Elbaum et al.
[2007] use the sequence of all executions of a program run. Furthermore,
this approach computes binary anomaly scores (i.e., yes or no), in contrast
to our continuous anomaly scores.

Forrest et al. [1996]’s work analyzes the sequence of system calls of a
software program. Therefore, no instrumentation is required within the
software application under analysis. The sequence analysis is slightly
more complex than the third algorithm of Elbaum et al. [2007] presented
above, as it computes an anomaly score instead of a binary rating. This

143

Chapter 6 - Related Work

sets the number of mismatches in a sequence in relation to the maximum
number of possible mismatches.

Timing behavior analysis, workload intensity, fault localization, and
analysis of internal software operation sequences are not part of Forrest
et al. [1996]'s anomaly detection approach, in contrast to our work.

Reynolds et al. [2006a] introduce a language for expressing expecta-
tions on request traces through distributed systems. These expectations
are specified manually, or created with help of a tool that records be-
havior from the system. The approach detects problems by monitoring
the system behavior during runtime and comparing this behavior to the
expectations.

Our request traces only contain software execution sequences, while
Reynolds et al. [2006a]’s traces also contain parallelism, messages (i.e.,
communication between system nodes or threads) and other events such
as log messages. In contrast to our work, timing behavior is not a focus
in this work, varying workload intensity is not addressed, and it uses no
trace information for context-sensitive timing behavior analysis.

Dallmeier et al. [2005] use the call/return action sequences of objects
for fault localization in object-oriented software systems. Similar to the
approach of Chen et al. [2004] discussed above, it needs for each request
(or program run) a label whether it was successful or it failed. Only parts
of the complete call action sequence are used, such as all subsequences
with a length of two. The localization step relates the subsequences of
the failed requests with those of the successful requests. Dallmeier et al.
[2005]’s approach can localize bugs that corresponds to particular object-
specific sequence, such as the execution of an operation “close” twice, or
before an “open”.

This approach analyzes operation execution sequences that correspond
to software objects, while ours analyzes operation execution sequences
that correspond to requests. We do this for refining timing behavior
analysis for improving anomaly detection, while these authors directly
use it for fault localization. The monitoring requirements of this approach
are a proper subset of our requirements, except that it must be known for
each request whether it failed or not.

144

7. Conclusions

This chapter concludes this thesis. A summary of the thesis and its key
insights is in Section 7.1. A discussion of the approach and threats to
validity follow in Sections 7.2 and 7.3, before future work is presented in
Section 7.4.

7.1. Summary

This thesis presents TracSTA and WiSTA for analyzing software timing
behavior of multi-user enterprise software systems in the context of trace
shape and workload intensity. Additionally, a fault localization approach
is presented that uses TracSTA and WiSTA in timing behavior anomaly
detection.

Software timing behavior shows characteristics, such as high variance
and multimodality that makes it often difficult to analyze [Menascé
and Almeida, 2001, pp. 168]. This could question the applicability of
timing behavior analysis approaches, such as failure diagnosis, online
performance management, and regression benchmarking. The combined
hypothesis of our two contributions (detailed in Section 1.2) is that a
correlation between timing behavior and both trace shape and workload
intensity can exists that this can be used to improve timing behavior
analysis. TracSTA and WiSTA create context-specific timing behavior
models that have lower variance and less undesired characteristics than
timing behavior models that ignore that context information. Our lab
studies and field studies provide empirical support for the effectiveness
and applicability of TracSTA and WiSTA.

In summary, the hypothesis of TracSTA is that a significant part of
the variance in software operation response times of enterprise software
systems is correlated to the full trace shape (i.e., the trace contexts) and
that this correlation can be used to “reduce” the variance from the per-
spective of subsequent timing behavior analysis steps, such as anomaly
detection. The precise hypotheses of TracSTA can be found in Section 4.2
on Page 68. TracSTA assumes that software operations exist in traces

145

Chapter 7 - Conclusions

with different shapes; for instance that an operation is used by more than
one caller operation, or that an operation has conditional subcalls. Earlier
approaches analyzed only parts of the trace shape (e.g., just the direct
caller [Graham et al., 1982] or the stack of callers [Ammons et al., 1997])
while our approach considers the complete shape of the trace — including
subcalls and operation executions that are later in the trace.

The empirical evaluation of TracSTA provided support for TracSTA’s
hypotheses, and indicated the effectiveness and applicability of our ap-
proach: Most software operations in three case studies had strong corre-
lations between response times and trace shapes. TracSTA reduced more
variance than related work approaches. Additionally, TracSTA replaced
some multimodal timing behavior distributions by multiple unimodal
distributions. Furthermore, the field studies demonstrated that TracSTA
can be applied in large software systems during real operation.

In summary, WiSTA’s hypothesis is that the variance in timing behavior
of multi-user software systems strongly correlates to workload intensity
and that this variance can be controlled by considering workload intensity.
WiSTA creates workload-intensity-specific partitions of software timing
behavior using our novel pwi metrics that purely base on application-
layer monitoring data. WiSTA learns how operations influence each
other’s timing behavior, if executed concurrently. This influence can
vary because different operations may compete for different resources.
The empirical evaluation supported the hypothesis and demonstrated
that WiSTA is efficient in controlling the influence of varying workload
intensity to software operation response times.

Possible benefits of TracSTA and WiSTA in measurement-based timing
behavior analysis are higher confidence, fewer simulation runs, shorter
simulation time, and increased statistical robustness. For instance in an
anomaly detection scenario, our approach compares a response time dur-
ing high workload intensity with other response times that correspond
to a similar workload intensity level. This prevents that a detector for
anomalous response times makes a false alarm because of unusual high
or low workload intensity.

The applicability of both TracSTA and WiSTA was demonstrated in
large software systems and it is indicated that the two applicability re-
quirements of Section 1.1 (Page 3) can be satisfied by TracSTA and WiSTA.
A major characteristic of our approach, which is critical to the contin-
uous operation in production systems, is the relatively low overhead
(see also Section 7.2). This mainly results from the low monitoring re-
quirements: only application-layer monitoring is required; lower-layer,

146

7.1 Summary

platform-specific monitoring is not required. An additional reduction of
overhead is still possible by not monitoring every trace (i.e., sampling).
Furthermore, only the instrumentation of a subset of all software op-
erations is sufficient for getting good results with TracSTA and WiSTA.
Additionally, our approach is suitable for the application in distributed
systems. Both TracSTA and WiSTA require little manual configuration,
except from the selection of monitoring points.

Both TracSTA and WiSTA can help software developers, software archi-
tects, and performance engineers to develop a deeper understanding of
the timing behavior of their software systems in the production environ-
ment with real usage. WiSTA reveals timing behavior that is specific to
workload intensity; TracSTA reveals the timing behavior that is specific
to trace share scenarios. Furthermore, TracSTA could be used as profiling
tool. In contrast to typical profiling tools (e.g., see Appendix D), TracSTA
can be continuously applied in production environments because of its
low monitoring overhead. In combination with a regression benchmark-
ing technique, WiSTA could enable a software developer to evaluate
whether software code changes results in performance changes in the
production system, without having to set up a controlled experiment to
minimize the impact of workload intensity changes.

We presented an automatic fault localization approach for enterprise
software systems based on timing behavior anomaly detection that in-
cludes TracSTA and WiSTA. The need for automatic fault localization
grows because many enterprise software systems are increasingly both
business-critical and complex. Additionally, manual failure diagnosis
is time-consuming and error-prone. The anomaly detection uses Trac-
STA and WiSTA to compare response times to context-sensitive timing
behavior partitions. This provides starting points to administrators for
additional diagnosis and repair. The fault localization results could also
be used in an automatic self-healing system — the localization result
could trigger a component micro-reboot [Candea et al., 2004] or a change
of components [Diaconescu and Murphy, 2005]. The applicability of
our fault localization approach was studied in a distributed Java Web
application, which was subject to fault injection of different types and
severity.

147

Chapter 7 - Conclusions

7.2. Discussion

In the following selected aspects and the applicability of our approach
are discussed.

Requirements on the software system under analysis. Our approach
is intended for enterprise software systems and multi-user Web appli-
cations, such as online stores. TracSTA and WiSTA require the presence
of concepts such as software operations, software operation response
times, and traces (e.g., sequences of software operation executions con-
nected by synchronous call actions and corresponding returns; details
on the conceptual requirements are in Sections 3.2, 4.2, and 5.2). Com-
mon programming languages, such as Java, C++, and C# support these
concepts and probably a large part of the software written in these lan-
guages uses these concepts. TracSTA and WiSTA are also applicable
but less effective, in systems that are dominated by opposing concepts,
such as asynchronous communication, message-based communication,
or Publish-Subscribe. WiSTA cannot provide a benefit in software with
no variation in workload intensity (e.g., single user software).

Application in distributed systems. Our approach explicitly supports
distributed systems. For this, it is required that the monitoring can follow
traces that span across multiple execution environments. We imple-
mented this by passing trace identifiers (i.e., markers that identify the
trace and the order within the execution sequence). A major applicability
issue (of the monitoring) is that the monitoring requires explicit support
for each distributed communication framework. The reason for this is
that distributed communication is usually implemented by particular
frameworks that are not part of the standard framework provided by
the platform that belongs to the programming language itself. For our
case studies, trace monitoring was implemented for several Web-Service
frameworks, such as the Hessian Web Service protocol! and parts of
Apache CXF2. Alternatively to instrumenting specific frameworks, one
could reconstruct distributed traces purely based on timestamps. For
instance, Aguilera et al. [2003] follow this approach. These authors as-
sume that both the NTP (Network Time Protocol) synchronization keeps
the timestamp deviation in a local network below a millisecond and that

!http:/ /hessian.caucho.com/
2http: / /cxf.apache.org/

148

7.2 Discussion

this is a sufficient timestamp resolution. Our experiments with a NTP-
synchronization showed that this can provide a good heuristic for trace
reconstruction. However, some experiment runs contained invalid traces
and it could not be guaranteed that all incorrect traces are identified.
Therefore, it was decided to use the reliable method of passing trace
identifiers at the price of a more complex monitoring instrumentation
with the need for communication-framework-specific extension.

Suitable number of observations. Both WiSTA and TracSTA define
context-specific classes by splitting monitoring data into subsets. For later
steps of statistical analysis (e.g., anomaly detection, regression bench-
marking, and scalability analysis for platform sizing), each class should
have a minimal number of elements. This number depends on the con-
crete statistical methods to be applied: For instance 10 response times
may be fine for determining a median, and at least 100 response times
were used for determining a probability density function. In the context
of the fault localization approach in Chapter 3, which applies TracSTA
and WiSTA in sequence, the author of this thesis suggests using at least
2500 response times per software operation. Typical multi-user enterprise
software systems should easily provide sufficient monitoring data for
many central software operations in hours or days of monitoring.

Selection of monitoring points. In production systems, a trade-off be-
tween monitoring overhead, monitoring coverage and monitoring detail
has to be satisfied. Full instrumentation of all operations is computation-
ally relatively expensive and produces very long traces in TracSTA. For
large software systems a partial instrumentation can be considered more
suitable than full instrumentation. We suggest instrumenting at least
the entry-points of major components, so that the resulting architectural
model shows the major structuring of the software. Furthermore, we
avoid software operations that are executed extremely often and software
operations with extremely small response times, such as getter- and setter
operations, and data transfer objects. This reduces relative overhead and
avoids very long traces. For fault localization, too few monitoring points
or monitoring points not well-distributed over the architecture may lead
to an imprecise localization.

Computational overhead and monitoring overhead. The overhead
is a critical applicability issue because TracSTA, WiSTA, and our fault

149

Chapter 7 - Conclusions

localization approach are all intended for continuous operation during
regular operation in production systems. The overhead can be divided
into four categories:

1. Monitoring overhead: In summary, our work requires timestamps

150

for the start and end of software operation executions and informa-
tion to reconstruct traces (see Section 3.2 for details). In a concrete
setting, the monitoring overhead depends on the number and posi-
tion of monitoring points, the execution frequency of the monitored
software operations, and the implementation of the monitoring
framework. Several monitoring frameworks can fulfill these re-
quirements in general. In summary, our monitoring framework
Kieker causes less than a microsecond overhead per software op-
eration execution [van Hoorn et al., 2009]. This corresponds to
less than 10 % overhead [van Hoorn et al., 2012]. Other compa-
rable tools have reported up to 10 % [Govindraj et al., 2006] and
3% [Chanda et al., 2007] in different settings.

. TracSTA computation: Our TracSTA implementation can evaluate

about 80,000 software operation executions per second on a stan-
dard desktop PC. Case study CS-5.2 required about 30 seconds for
2.5 million monitored executions in 447,471 traces that were mon-
itored during a system run of several hours. In all three TracSTA
case studies, the computation time for trace context analysis was
much lower than the actual monitoring period. TracSTA’s overhead
(for each monitored execution) increases linearly by the number of
distinct monitoring points.

. WiSTA computation: During runtime, 100,000 executions are ana-

lyzed within a minute on a standard desktop PC. It scales linearly
with the number of executions. A training phase is required for
learning the pwi, weight vectors. The training is a multidimensional
optimization with about quadratic computations by the number
of monitoring points within the same execution environment. Our
implementation required several hours training to determine the
weight vectors for case study CS-3 with in total 161 monitoring
points in the same execution environment. We consider this over-
head acceptable, since it is only required during training and a
couple of hundreds of monitoring points per execution environ-
ment is a minor limitation.

7.2 Discussion

4. Computation for anomaly detection and fault localization: The
anomaly detection and fault localization implementation can an-
alyze 41,000 traces containing 262,000 executions per minute on
a standard desktop PC. A scalability discussion of the selected
anomaly detection and fault localization algorithms is outside the
scope of this thesis.

In summary, it can be expected that the monitoring causes less than
10 % overhead on the production system. The processing and analysis of
the monitoring data can be executed on a separate system and requires
several minutes for hours of monitoring data. An additional training
phase of several hours is required once (with updates from time to time,
e.g., once a month or after large changes to the system). The primary
scalability factors are the selection and number of monitoring points and
the operation execution frequency.

Virtualization and Garbage Collection are two examples for influences
to timing behavior from below the software application layer. Both are
also addressed in the Future Work on Page 154. Some virtualization
technologies can dynamically change the amount of available hardware
resources and add an additional layer to hardware resource access. This
can have a strong influence on software timing behavior.

Garbage collection (i.e., automatic memory management) is part of
many modern software execution platforms, such as the Java Virtual
Machine and Microsoft’s Common Language Runtime. We studied in
more detail the timing behavior influences of Java’s default garbage
collection in Appendix E. Our experiments showed that the garbage
collection paused several times per hour all operation executions for
nearly a second. This demonstrates that the garbage collection can be
very relevant for approaches that make conclusions based on response
time measurements.

Failure diagnosis based on timing behavior anomaly detection. Oth-
ers have demonstrated before that timing behavior can be used for failure
diagnosis (see Related Work 6.2.1, Page 133). As pointed out several times
in this thesis, software timing behavior of enterprise software systems
has complex distribution characteristics (e.g., high variance, heavy tails,
and multimodality). Our approach can control some of this complexity,
which can for instance improve automatic failure diagnosis. However, a
part of complexity is left, which can still lead to many false positives in

151

Chapter 7 - Conclusions

anomaly detection. Nonetheless, it was demonstrated that the remaining
complexity can be acceptable for fault localization in this thesis. The state
of research denies making general statements about how many faults
lead to timing behavior anomalies. We consider failure detection (e.g.,
[Bielefeld, 2012] and [Frotscher, 2013]) and failure prediction (e.g.,[Salfner
and Malek, 2005] and [Pitakrat et al., 2014]) even more challenging than
fault localization if it is only based on software timing behavior; the
additional risk of frequent false alarms during normal operation and the
difficulty to determine an acceptable threshold for raising an alarm.

7.3. Threats to validity

In the following, the most relevant internal and external threats to valid-
ity for TracSTA and WiSTA are discussed. This especially adresses the
quantification of the effectiveness and the possibility to generalize the
results to other systems.

Both the evaluation of TracSTA and WiSTA use the metric standard
deviation reduction (see Section 4.3, Page 78). It compares the original
standard deviation with the standard deviation after applying our ap-
proach. This also allows one to compare the benefit to the benefit of
related work (e.g., stack context analysis). It was selected, because it is
a relatively simple, intuitive, and common variance metric. However,
the metric has also certain relevant weaknesses: The standard deviation
reduction would be high for very small partitions and random parti-
tioning tends in average to result in a slightly positive benefit for some
distribution types. The first risk is reduced by specifying a minimum
partition size (e.g., 600 observations). Another risk arises from the use of
the metric standard deviation within our evaluation metric, as the standard
deviation has several weaknesses itself [Kreinovich and Kosheleva, 2012].
A major reason for the weaknesses of the metric is that it uses the mean
value and it uses directly each individual observation, which makes it
sensitive to outliers. The evaluation could have used more complex alter-
native variance metrics, instead of the standard deviation, that are less
sensitive to outliers. Examples for this could be the winsorized standard
deviation [Wilcox, 2010], using the trimmed mean in the standard devia-
tion [Wilcox, 2010], and fractal theory metrics as proposed by Kreinovich
and Kosheleva [2012]. However, these metrics have also some weak-
nesses itself in the purpose of comparing the variance before and after
using WiSTA and TracSTA, are more complex, and can be unintuitive.

152

7.3 Threats to validity

Evaluating TracSTA and WiSTA with such a metric could be part of future
work.

A general external threat to validity for research in this domain and
not only for the research in this thesis, is the question, how the research
results can be generalized to other software systems. The evaluation of
TracSTA and WiSTA each uses three software systems in their specific
environment. Two of the three systems are large enterprise software
systems, and one of the evaluations took place in the production en-
vironment with real user workload. Still, it should be noted that it is
unknown (and unlikely) whether these three systems are a representative
selection for all enterprise software systems. Other enterprise software
systems might show different timing behavior than the systems in our
case studies, e.g., depending on the software architecture, the workload,
and the hardware setting. There is the risk that very different results
occur in other enterprise software systems. However, we expect at least
roughly similar results and that our approach provides at least a small
benefit in most other enterprise software systems; we would consider it
unusual if there is a complete absence of workload-intensity-specific tim-
ing behavior and trace-context-specific timing behavior in an enterprise
software system with real multi-user workload.

All case studies used Java software systems. A large share of all en-
terprise software systems are developed in Java [King, 2011]. There is
some risk that particular Java characteristics caused the good results on
the effectiveness of our approach. However, we expect a similar timing
behavior relation between both trace shapes and workload intensity and
software response times in systems developed with other modern pro-
gramming languages in the domain of multi-user enterprise software
systems.

We used the Kieker monitoring framework [van Hoorn et al., 2009] in
our experiments to record response time monitoring data. Theoretically,
it could be possible that Kieker itself introduces the variance that is
later reduced by our approach. However, this is unlikely, as Kieker was
also used by several other researchers for related topics and it was itself
subject of a detailed performance analysis (see Waller, 2014; van Hoorn
etal., 2012).

153

Chapter 7 - Conclusions

7.4. Future Work

7.4.1. Future work for both TracSTA and WiSTA

This thesis suggests analyzing timing behavior of enterprise software
systems in the context of trace shapes and workload intensity. It is future
work to extend the quantitative comparison to other types of context
information, such as parameter values and parameter sizes [Koziolek
et al.,, 2008], and application state [Kapova et al., 2010]. More examples
for types of potentially relevant context information can be found in the
section on influences to software timing behavior in Foundations 2.1.4
on Page 18 and in the related work on context-sensitive timing behavior
analysis (Section 6.1, Page 115). The comparison with other types of
context information should quantify the strength of an influence on
software timing behavior. This can help performance engineers and
administrators to decide which of the many influences to timing behavior
should be monitored. Such a comparision could use a more advanced
evaluation metric for the quantification and comparision of the benefits,
such as a winsorized standard deviation [Wilcox, 2010] or a metic based
on fractal theory (see Kreinovich and Kosheleva, 2012) to further increase
the robustness of evaluation results.

As discussed in the previous Section, virtualization and garbage collec-
tion are timing behavior influences that can have a strong influence on
software timing behavior from lower system layers. Some virtualization
technologies change the amount of available hardware resources during
runtime. Our approach assumes a constant amount of available hard-
ware resources so far. Potential future work is to overcome this limitation
by regularly monitoring the amount of available hardware to normalize
the performance measurements. Similarly, the garbage collection activity
could be monitored, and response times that overlap with major garbage
collection runs could be excluded to prevent false positives in anomaly
detection. The approach of Tan et al. [2010] provides starting points for
this future work.

TracSTA and WiSTA currently require the manual selection of mon-
itoring points; we suggest using a partial instrumentation of software
operations (see Page 149). Future work is to provide an automatic se-
lection of monitoring points and to adapt the selection of monitoring
points during runtime. A promising approach for adaptive monitoring is
provided by Ehlers [2012]. A starting point could be to automatically start
with a full instrumentation and then remove the monitoring points that

154

7.4 Future Work

have very short response times as these have little logic and a relatively
high overhead.

A promising additional application scenario for TracSTA and WiSTA is
to enable regression benchmarking for production environments. Regres-
sion benchmarking is a kind of benchmarking that (e.g., Kalibera, 2006)
compares in detail the timing behavior of two versions of a software.
This enables software engineers to determine whether and how changes
to the software changed its performance. Regression benchmarking has
usually to be executed in the lab to control the workload (both amount
and type). However, it is more important to optimize the performance for
the production environment and not for the lab. This is difficult because
the workload is usually not identical between two monitoring periods in
the production environment. WiSTA and TracSTA can control a part of
the variance caused by changes in both the amount and type of workload.
Therefore, using TracSTA and WiSTA can make statements about the
performance of a system more independent from the workload. A benefit
of enabling regression benchmarking for production environments is
that it allows engineers to benchmark some large systems that have no
complete lab setting (e.g., because these systems are distributed across
different companies, or because of license costs).

7.4.2. Future work for TracSTA

TracSTA could be extended to model parallel communication within
traces. More precisely, our system model would be extended to model
within a trace asynchronous call actions between software operations.
TracSTA currently models a trace as a sequence of software operation
executions for a request (i.e., only synchronous call actions between
software operations). This is not a limitation for applying TracSTA in
systems with asynchronous call actions, but TracSTA simply ignores
asynchronous calls, which can lead to missing some timing behavior
correlations. With the advent of multi- and many-core CPU architectures,
it can be expected that also asynchronous communication becomes more
and more relevant, even inside TracSTA’s focus of single user requests.
Other future work for TracSTA could integrate the work from the
domain of program comprehension on how to detect loops and recursion
in monitored traces. A survey of such techniques is presented by Hamou-
Lhadj [2005]. This would reduce the resource demands of TracSTA, as
traces would have a smaller representation because of higher abstraction.
We expect that this can strongly reduce the number of trace contexts in

155

Chapter 7 - Conclusions

scenarios with loops, without losing much of TracSTA’s effectiveness.
For instance, the current TracSTA approach would distinguish the 5th
and 6th execution of a looped software operation.

7.4.3. Future work for WiSTA

Future work for WiSTA is to compare pwi; — pwis to workload intensity
metrics from lower system layers and to explore whether the binning
should be replaced by a regression model.

Alternative workload intensity metrics from lower system layers (i.e.,
below software application layer) could be for instance CPU queue length,
network throughput, or CPU utilization. However, such metrics may be
unavailable in some execution environments because they are platform
specific. An evaluation should quantify the benefit with these metrics
in comparison to our application-layer metrics, which supports one to
decide whether to use only application-layer monitoring, or whether to
additionally monitor and process platform-specific metrics.

WIiSTA uses a binning algorithm for building discrete categories of
workload-intensity-specific timing behavior. It first splits the pwi values
into intervals of equal length and then extends the bins until a minimum
number of observations is reached, even if bins overlap. Alternatively,
regression analysis can be used to create a continuous (i.e., no categories)
mathematical model of the relation between workload intensity and re-
sponse time. Nonlinear regression techniques are required because the
relation to be modeled is usually nonlinear (see for instance Appendix A).
The regression model would have to estimate a description of the distri-
bution for every workload intensity level — since each workload intensity
level can have its own timing behavior distribution (e.g., Figure 5.4 on
Page 96), it is not sufficient to just estimate a single parameter (e.g., a
mean value). Unimodal timing behavior distributions are often well-
described by three-parameter log-normal distributions [van Hoorn, 2007,
P. 90]. However, some software operations have multimodal timing be-
havior distributions (as in the caching example in Section 4.1). A starting
point could be to train a polynomial regression model that provides a
general distribution (e.g., described by 20 or more points) for a given
workload intensity.

156

7.4 Future Work

7.4.4. Future Work on Fault Localization and Failure
Diagnosis

The work of others and our work have demonstrated the feasibility of
fault localization based on timing behavior monitoring in continuously
running enterprise software systems (see Related Work 6.2.1 on Page 133).
A next important step for this area of research would be to move forward
from isolated demonstrations in this area to a systematic empirical com-
parison of different approaches. Already the isolated demonstration is
very time-consuming, as many details, such as the system, the system’s
workload, and the fault load have to be specified. The development of a
common benchmark for fault localization in enterprise software systems
would be a valuable contribution at this point. In the domain of auto-
matic fault localization approaches that localize bugs based on test runs
during debugging, the Siemens suite [Hutchins et al., 1994] (several C
programs together with bugs and tests) has been established as common
evaluation scenario. The benchmark for fault localization techniques,
such as the one presented in this thesis, would need a scenario with large
continuously-running multiuser enterprise software systems. Possibly it
could be based on established performance benchmarks, because these
have non-trivial systems and non-trivial workload. Possible starting
points in this direction could be the work of Silva [2008], the DaCapo
benchmark [Blackburn et al., 2006], and SPEC benchmarks.

In addition to the comparison with other approaches, a next step for
our fault localization approach would be a comprehensive empirical
evaluation. Ideally, this would be done in two scenarios: First, in the
context of a controlled experiment with a fault localization benchmark
setting in the lab as described above. Second, the approach needs addi-
tional evaluation in real world systems. This would involve a long term
application, since failures happen only occasionally.

After the fault coverage of different fault localization approaches are
compared, an additional direction for future research could be to combine
our approach with multiple other fault localization approaches. This
would have the implicit hypothesis that a combined approach would
have advantages over single approaches alone.

Furthermore, it is future work to evaluate the hypothesis that forecast-
ing improves our fault localization approach. For instance Ehlers et al.
[2011], Bielefeld [2012], and Frotscher [2013] suggest that new timing be-
havior observations should be compared with an expected value created
by a forecasting method, such as single exponential smoothing (SES),

157

Chapter 7 - Conclusions

double exponential smoothing (DES), or ARIMA. So far, our anomaly
detection is without forecasting — it compares new values with histori-
cal data. Timing behavior curves appear to follow trends and software
systems are stateful. Some of these trends could origin in the workload
intensity and these are already exploited by WiSTA in our approach (i.e.,
it measures workload intensity and knows its influence to timing behavior,
instead of forecasting only timing behavior). A first analysis of own
measurement data indicated (e.g., by low autocorrelation) that it is a
challenge to robustly apply forecasting method.

Section 3.7 presented a visualization of fault localization results. The
current implementation does not allow one to switch the level of detail
within a single tool and it only creates visualizations on demand. Future
work is to realize a more user friendly and interactive visualization that
shows live timing behavior anomaly scores. Additionally, it should
provide a function to zoom into fault localization results. A promising
starting point is work on software visualization, such as the ExploreViz
approach [Fittkau et al., 2013, 2014].

158

A. Timing Behavior Distribution
Examples

Figures A.1-A.5 present details on the relation between the platform
workload intensity (pwi;, see Section 5.2, Page 96) and operation response
times. In contrast to the case study CS-5.1 in Chapter 5, the normal non-
distributed version of the iBATIS JPetStore is used. Furthermore, 19
operations are instrumented in contrast to the 34 operations of CS-5.1.

The scatter plots (left images of each pair) present sample measure-
ments in combination with linear and polynomial regression lines. A
median filter was applied to the data shown in the scatter plots to remove
large outliers. The right image of each pair show additional statistics
for distribution characteristics at each workload intensity level. Most
operations of Figures A.1-A.5 show a relation between workload inten-
sity and response times that follows the general expected behavior that
response times increase by workload intensity. For instance, operation
CatalogBean.viewCategory(...) in Figure A.1(5) approximately follows
the ideal characteristic workload-response-time-curve of Jain [1991] (see
Section 2.1.1.3, Page 12). For all the operations, non-linear regression ap-
pears to be more suitable than linear regression for modeling the relation
to workload intensity.

Some of the operations, such as those of Figures A.2(1) and A.2(3) do
not follow the typical shape, but show distinct behavior for different
workload intensity levels. These and some other operations showed
the highest response times for medium workload intensity. A possible
explanation is that high workload intensity levels activate scheduling
strategies that delay the start of operation executions until a relatively
fast execution is possible. This prevents high operation response times,
but not high end-to-end response times that include the additional wait
times. Another explanation could be that the operations that have the
highest response times for medium workload intensity depend less on
the primary bottleneck of the system. In other words, if most workload
is, figuratively speaking, in a congestion at one side of a system, then the
operations at the other side of the system might have less competition and

159

Appendix A - Timing Behavior Distribution Examples

lower response times. Furthermore, our workload intensity metric pwi;
might be unsuitable in some cases to correctly quantify high workload
intensity.

160

Linear regression
Polynomial regression

150
I

100
I

Response time in milliseconds (median)
50
I

0

T T T T
0 20 40 60
Platform workload intensity (median)

(1) AccountBean.signon(...)

B
Linear regression
Polynomial regression

150
I

Response time in milliseconds (median)

Platform workload intensity (median)

(3) CartBean.addItemToCart(...)

150
I

Linear regression
Polynomial regression

100
I

50

0
|

Response time in milliseconds (median)

0 20 40 60
Platform workload intensity (median)

(5) CatalogBean.viewCategory(...)

Linear regression
Polynomial regression

Response time in milliseconds (median)

20 40 60
Platform workload intensity (median)

(7) CatalogBean.viewlItem(...)

&g

€3 |

g 87| — RTmedan

£ —— RTmean

% 8- - - RTistquartie

€~ | - - RT3dquartie

3 8

3

&

8

E 9

<

o 8]

ES

2

23+

s

=3

g o

14 T T T T
0 20 40 60

Platform workload intensity (median)

(2) AccountBean.signon(...)

S g

T & 7| — RT median

2 — RTmean

;"9,, = = RT st quartile

2 N | = = RT 3rd quartile

S g

884

3 &

)

= 8—

E 3

£

o 8

£3

LER

S

a

8 o

4 T T T T
0 20 40 60

Platform workload intensity (median)

(4) CartBean.addItemToCart(...)

2+ — RTmedian
—— RT mean

o | = - RTistquartie

- - - RT3rd quartile

100
I

50

0
I

Response time in milliseconds (median)
1!

0 20 40 60
Platform workload intensity (median)

(6) CatalogBean.viewCategory(...

g
g3
8 —— RT median
£ - = RTmean
- - - RT st quartile
B g _| - - RT3rdquartile
28
S
3
2 84
£ o |
=8
2 o
Eeq
3
°
2o |
ER
2
b
3 o
I3 T T T T

40 60
Platform workload intensity (median)

(8) CatalogBean.viewlItem(...)

pwii and response time statistics.

Figure A.1.: Example data (1/5): Relation between platform workload intensity

161

Appendix A - Timing Behavior Distribution Examples

B
LinearTegression o RT median
o Polynomial regression 2 RT mean
RT 1t quartie
° RT 3rd quartile
|

30
I

20
I

10

Response time in milliseconds (median)

Response time in milliseconds (median)

Platform workload intensity (median) Platform workload intensity (median)

(1) AccountSglMapDao.getAccount(...(2) AccountSqlMapDao.getAccount(...)

—— RT median
— RTmean

- = RT st quartile
- - RT3rd quartile

<
Linear regression
! Polynomial regression
T T T T

0 20 40 60 0 20 40 60
Platform workload intensity (median) Platform workload intensity (median)

(8) ItemSqlMapDao.getltem(...) (4) ItemSqlMapDao.getltem(...)

Response time in milliseconds (median)
Response time in milliseconds (median)

o 8 - — RT median
© RT mean
w _| RT 1st quartile
~ RT 3rd quartile

20
I

15
I

10

5
I

Response time in milliseconds (median)

Response time in milliseconds (median)

Linear regression
Polynomial regression
T T T T

40 60 0 20 40 60
Platform workload intensity (median) Platform workload intensity (median)

(5) ItemSql...getltemListByProduct(...) (6) ItemSql...getltemListByProduct(...)

—— RT median
~ & _| — RTmean
- - RT st quartile
- - RT3rd quartile
)

Linear regression

B Polynomial regression

T T T T

0 20 40 60 0 20 40 60
Platform workload intensity (median) Platform workload intensity (median)

(7) OrderSqlMapDao.insertOrder(...) (8) OrderSqlMapDao.insertOrder(...)

Response time in milliseconds (median)
Response time in milliseconds (median)

Figure A.2.: Example data (2/5): Relation between platform workload intensity
pwi; and response time statistics.

162

Sg g

N Linear regression 3 o | — RTmedan

g Polynomial regression 2 8- — RTmean

e - - - RT1stquartie

=l 8 o | - - RT3rdquartile

S o 5§ &

287 2

o 2 o

= = 5

€ £

£ =

@ © S

E£37 E-

@ 2o

2 283

2 2

S S

& I3

3 o 3 ©

4 T T T T 4 T T T T
0 20 40 60 0 20 40 60

Platform workload intensity (median) Platform workload intensity (median)

(1) CatalogBean.viewProduct(...) (2) CatalogBean.viewProduct(...)

= —~o
3 5 [
3 Linear regression ° g ™ | — RTmedan
£g.l Polynomial regressign 2 | — RTmean
e o % - = = RT lstquartile
3 oo B 8 _| - - RT3rd quartile
= €3
S °]
8 8
e g o 2
&S+ e
23 o o =
£ Egl /) e----
c =
@ @
E E
@ 2 g
2 2:7
S S
& Fode——" T _.
4] g °
[:4 '3 T T T T
0 20 40 60
Platform workload intensity (median) Platform workload intensity (median)

(3) OrderBean.newOrder(...) (4) OrderBean.newOrder(...)

5 - g So

3o Linear regression S § — RTmedan

g S Polynomial regression 2 — RTmean

e % T~ RTistquartile

] 8 = = RT3rd quartile

2 2o

53 S 8-

g 83

a 1

3 2o |

= =8

o] £

e v s 38

@ @

E Eg-

2 & @

& 2o

= S &1

S S

g g

& T T T T € °TT T T T
0 20 40 60 0 20 40 60

Platform workload intensity (median) Platform workload intensity (median)

(5) AccountService.getAccount(...) (6) AccountService.getAccount...)

S o g

sr Linear regression 8 § | — RTmedian

£ o Polynomial regression 2 97| — RTmean

v e % o | == RTistquarle

o < § 7| = = RT3rd quartile

2o - 2

8 8o

8ol &7

= =

E £ g9

£ 84 c®

) 2o

£ s £s

@ @

2o | 1] 8 -

5 - §

a a

3 o - 8 o

4 T T T T 4 T T T T

20 40 60 0 20 40 60

Platform workload intensity (median) Platform workload intensity (median)

(7) CatalogService.getCategory(...) (8) CatalogService.getCategory(...)

Figure A.3.: Example data (3/5): Relation between platform workload intensity
pwii and response time statistics.

163

Appendix A - Timing Behavior Distribution Examples

5 To
8o) S 9
887 Linear regression 3 — RT median
2 Polynomial regression £ _| — RTmean
- g - - - RT1stquartie
g5 € g | - - RT3dquatie
g =
8 8
g £ 3
Eg E
£ =84
g £
2
= =3
387 8
5 597
a 2
3 8o
4 T T T T 4 T T T T
0 20 40 60 0 20 40 60
Platform workload intensity (median) Platform workload intensity (median)

(1) CatalogService.getltem(...) (2) CatalogService.getltem(...)

5 Te

8 58+

3 e Linear regression 3 —— RT median

£ Polynomial regression £ | — RTmean

- - - = RT1stquartie

- © © o | = = RT3rd quartile

= 2384

S o 53

8 B84 8

@)

25 2 8-

= Q- =

E E o

c o c8

2 @ ©

Eg E S

= Q =

2 8

2o 2 Q-

5§93 S

& 3

4] 3 o -

4 T T T T 4 T T T T
0 20 40 60 0 20 40 60

Platform workload intensity (median) Platform workload intensity (median)

(3) CatalogSer...getltemListByProduct(...) (4) CatalogSer...getltemListByProduct(...)

= =
3 <]
g S Linear regression g Q | — RT median
£ Polynomial regression £ = | — RTmean
% 87 % S = = RT 1st quartile
=] © S 7] - - RT3 quarile
2 2
5 3 I
<3 89
@ 2 8
2o | &
e Ts
2
c 3 <
@ ° o
E o | £ 37
= & =
@ @
& 8o
Ik 2]
a 2
g o g o
4 T T T T 4 T T T T
0 20 40 60 0 20 40 60
Platform workload intensity (median) Platform workload intensity (median)

(5) CatalogSer...getProductListByCategory(6) CatalogSer...getProductListByCategory

= =
=3 S 38
g3 Linear regression L © 3 S | — RTmedian
5 Polynomial regression ° 2 — RTmean
%S ° ° % | - - RTistquarie
° El o o © g2g |-~ RT 3rd quartile
] g ®0 o © s S
8 g © & 2B
3 S * @ e 3
£° g o°%%0. % = 7
€ [0 ° .5 % Eg
£ °- 0 ° €3
0 8
o o
E E -
S 0o 5
3 38
s 59
g °® g
5] © -
[i4 © T T T T
0 40 60
Platform workload intensity (median) Platform workload intensity (median)

(7) OrderService.getNextld(...) (8) OrderService.getNextld(...)

Figure A.4.: Example data (4/5): Relation between platform workload intensity
pwii and response time statistics.

164

Response time in milliseconds (median) Response time in milliseconds (median)

Response time in milliseconds (median)

Linear regression o
Polynomial regression °

200 400 600 800 1000

0
|

Platform workload intensity (median)

(1) OrderService.insertOrder(...)

o
IS

- Linear regression

o Polynomial regression
s

=

0 20 40 60
Platform workload intensity (median)

(3) ActionServlet.doGet(...)

o
S . o
Linear regression
Polynomial regression °
Q °
%o
°%
o)
3 g ©
o
<
o
S
o -

0 20 40 60
Platform workload intensity (median)

(5) ActionServlet.doPost(...)

Response time in milliseconds (median)

(2) OrderService.insertOrder(...)

Response time in milliseconds

Response time in milliseconds (median)

—— RT median
o | =™ RTmean
8 - - - RT1stquartile
© | = = RT3rd quartile
o
s |
S
<
o
s |
S
Q
o

Platform workload intensity (median)

—— RT median

— RTmean

- - RT st quartile
RT 3rd quartile

[¢] 20 40 60
Platform workload intensity

(4) ActionServlet.doGet(...)

o
S 4
N —— RT median
— RTmean
o | =~ RTistquarie
B4 -- RT 3rd quartile //

Platform workload intensity (median)

(6) ActionServlet.doPost(...)

pwi; and response time statistics.

Figure A.5.: Example data (5/5): Relation between platform workload intensity

165

B. Standard Deviation
Reduction

The metric standard deviation reduction (for a single software operation)
from Page 78 is formally defined as

sd(OR) — ; (4 sa(py))
sd(OR)

(B.1)
with:

o sd(X) as the function that computes the (unbiased sample) standard
deviation for a multiset X of observations, (a multiset can contain
identical elements multiple times, in contrast to a set.)

e OR as the original multiset of observations (i.e., response times of a
single operation) before applying WiSTA or TracSTA,

e P; as the multiset of observations of the ith partition of the n parti-
tions that are created by WiSTA or TracSTA, and

e | X as the number of elements in a multiset X (i.e., the number of
response times).

The resulting value is expressed as percent value; for instance, a value of
0.24 would be expressed as standard deviation reduction of 24 %.

The metric above is the standard deviation reduction for a single oper-
ation. For providing a single number for a system with many operations,
the weighted average standard deviation reduction is computed, where
the weights are given by the operation call frequencies (see also Sec-
tion 4.3, Page 78).

167

C. Listing Example Chapter 5

Listing C.1 shows the source code for the two-method example in Chap-
ter 5 on Page 102.

Listing C.1: Java source code for the pwis example.

10

11

13

14

16

17

19

20

21

22

23

24

25

26

27

28

29

30

import kieker.tpmon.annotations.TpmonMonitoringProbe;
public class Starter extends Thread({
static int numberOfRequests = 1500;
public static void main(String[] args) throws
InterruptedException {
for (int i = 0; i1 < numberOfRequests; i++) {
new Starter () .start();
Thread.sleep(25);
}
System.exit (0);
}
public void run () throws InterruptedException ({
wait ();
work () ;
}
@TpmonMonitoringProbe ()
public void wait () throws InterruptedException {
Thread.sleep(500);
}
static boolean boolvar = true;
@TpmonMonitoringProbe ()
private void work () {
int a = (int) (Math.random() =* 5d);
for (int i=0; i<2500000; i++) {
a += 1/1000;
}
if (a $ 10000 == 0) {
boolvar = false;

169

D. Call Graph Profiling Tools

Many profiling tools allow performance analysis that is related to the
trace context analysis concept in Chapter 4. In the following, the call
graph profiling and timing behavior analysis of gprof [Graham et al.,
1982], Google’s perftools, Valgrind, Java’s HPROF, and the NetBeans
profiler are presented. All these tools are freely available. The tools
are all demonstrated in the context of the running example shown in
Listing D.1. First, the example is implemented in C; later in this appendix,
it is translated to Java.

A particular focus of this demonstration is to discuss timing behavior
that is specific to the caller (see Chapter 4). The source code shows that
two different callers call the operation “catalog”. Operation “caller2”
causes ten times more loops in “catalog” than “caller1”. Therefore, the
execution of “catalog” should longer if it is called from “caller2” than from
“callerl”.

Listing D.1: Running example C program “profilertest.c”.

main () {

int i;

for (i = 0; i < 10; i++) {

callerl(); caller2();

}
}
callerl() { catalog(1000x1000); } // some iterations
caller2 () { catalog(1l0%x1000%x1000); } // more iterations

catalog (iterations)
int iterations; {

int j,c;
for (j=0; j< iterations; J++){
c=c¢c+ 1.5 % 0.98; // just some calculation

}
}

171

W

Appendix D - Call Graph Profiling Tools

Flat profile:
Each sample counts as 0.0l seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
100.00 1.49 1.49 20 74.50 74.50 catalog
L 0.00 1.49 0.00 10 0.00 74.50 callerl|
0.00 1.49 0.00 10 0.00 74.50 caller2
Call graph:
index % time self children called name
0.74 0.00 10/20 callerl [3]
0.74 0.00 10/20 caller2 [4]
[1] 100.0 1.49 0.00 20 catalog [1]
<spontaneous>
[2] 100.0 0.00 1.49 main [2]
0.00 0.74 10/10 caller2 [4]
0.00 0.74 10/10 callerl [3]
0.00 0.74 10/10 main [2]
[31] 50.0 0.00 0.74 10 callerl [3]
0.74 0.00 10/20 catalog [1]
0.00 0.74 10/10 main [2]
[4] 50.0 0.00 0.74 10 caller2 [4]
0.74 0.00 10/20 catalog [1]
Index by function name
[3] callerl [4] caller2 [1] catalog

Figure D.1.: Gprof output for Listing D.1 and the shell commands of Listing D.2.

D.1. Gprof

Since the 1980s, gprof [Graham et al., 1982] is a widely used tool for call
graph profiling. It is still part of many Linux and Unix distributions. The
shell commands in Listing D.2 compile the C example (Listing D.1) with
debugging support, execute the program, and format the gprof output
into a file named “formated-output.txt”.

Listing D.2: Shell commands for compiling and applying gprof to code of
Listing D.1.

cp profilertest.c gproftest.c

gcc -pg —g -o gproftest gproftest.c

./gproftest

gprof -b gproftest gmon.out > formated-output.txt

Figure D.1 shows the resulting formatted gprof output. The “Flat profile”
area shows the number of calls, the approximated execution time, and
response time for each operation. The execution times are approximations

172

-

W

'

D.2 Google’s Perftools CPU Profiler

as calculated by using sampling, i.e., the program counter is checked
frequently during execution. Therefore, the execution time computation
is a statistical approximation [Graham et al., 1982]. The row in the upper
blue box explains that the operation “callerl” has no own execution time
(self ms/call 0.00 seconds).

The “Call graph”-area in Figure D.1 is much related to our work in
Chapter 4; it contains for each operation (catalog, main, callerl, caller2)
a separate listing. Each listing shows callers and callees above, and re-
spectively below the line starting with the index of the current operation.
For instance, the part in the lower blue box correctly shows that both
operations “caller]l” and “caller2” call the operation “catalog”.

The lower blue box of Figure D.1 shows an important performance
analysis limitation of gprof: It shows identical total execution times of
0.74 seconds for catalog for both calls from callerl and caller2. Gprof
strongly simplifies by equally dividing the total time of catalog (1.49
seconds) to all callers based on their relative frequency (here both 10/20).
Gprof assumes the same time consumption for subcalls [Hall, 1992].

D.2. Google’s Perftools CPU Profiler

Listing D.3 shows shell commands to apply Google’s perftools CPU
profiler to the same source code of Listing D.1. The gcc compiler is
used with the flag “Iprofile”, which requires Google’s perftools to be
installed. Command 3 of Listing D.3 executes the program and creates
a raw profile file named hello-googleperftools.profile. Finally, Google’s
Perl script pprof! is used to create the formatted output into the file
profiler-output.txt, shown in Figure D.2.

Listing D.3: Shell commands for applying Google’s perftools and pprof to
Listing D.1.

cp profilertest.c hello-googleperftools.c

gcc —o hello-googleperftools hello-googleperftools.c -
lprofiler

CPUPROFILE=hello-googleperftools.profile ./hello-
googleperftools

./pprof —--text hello-googleperftools hello-googleperftools.
profile > profiler-output.txt

IThe pprof script is available here: http://code.google.com/p/
google-perftools/source/browse/trunk/src/pprof

173

http://code.google.com/p/google-perftools/source/browse/trunk/src/pprof
http://code.google.com/p/google-perftools/source/browse/trunk/src/pprof

W N e

S}

Appendix D - Call Graph Profiling Tools

Total: 148 samples

148 100.0% 100.0% 148 100.0% catalog
0 0.0% 100.0% 148 100.0% _ libc_start_main
0.0% 100.0% 148 100.0% start
0 0.0% 100.0% I 14 9.5% callerl I
0 0.0% 100.0% 134 90.5% caller2
0 0.0% 100.0% 148 100.0% main

Figure D.2.: Perftools’s output for Listing D.1 with commands from Listing D.3.

D.3. Valgrind’s Call Graph Generator Callgrind

Listing D.4 shows how to apply the Valgrind? [Nethercote and Seward,
2007] call graph profiler. Figure D.3 displays KCachegrind®’s visualiza-
tion.

Listing D.4: Commands for using Valgrind and Kcachegrind.

cp profilertest.c valgrindtest.c

gcc -pg —g -o valgrindtest valgrindtest.c
valgrind --tool=callgrind ./valgrindtest
kcachgrind callgrind.out.x*

D.4. Java’s HPROF Profiler

The Java SDK contains the profiler HPROF since Version 5. Listing D.5
shows a Java program for the example of Listing D.1. The number of
loops was increased to have execution times that are similar to those
of the C program. This seems to be required to compensate compiler
optimizations. In the example with C, compiler optimization flags, such
as -O2 were avoided, because the gcc compiler would automatically
remove the subcalls to catalog.

Hprof is applied to the program of Listing D.5 by using the commands
of Listing D.6. Figure D.4 on Page 176 shows the corresponding output.

Listing D.5: Java variant of the running example from Listing D.1.

public class profilertest {
public static void main (String[] args) throws Exception

{

2Valgrincl http://valgrind.org
3KCachegrincl http://kcachegrind.sourceforge.net/html/Home.html

174

http://valgrind.org
http://kcachegrind.sourceforge.net/html/Home.html

10

11

12

13

14

15

16

17

18

D.4 Java’s HPROF Profiler

\Jcallgrind: out.17312 [/Valgrindtest]

File View Go Settings Help

S open | aack v @y forward v 4 Up v 9 Relative | 55) ycle Detection | ¢} Relative to Parent | Instruction Fetch v
Flat Profile o x| main =h
Search: \Source File v | | Types Callers | All Callers | Callee Map | Source Code
self source File ~ # Ir Source ('fhome/matthias/projects/hello-valgrind
199.98 Fvalgrindtest.c 1 main()
0.00mdl-addr.c 2 000{

0.00 mprofilcounter.h
0.00 mdHookup.c
3 int i;

<>

<0 L) <>

0.004 1 callis) '_dl_runtime_resolve' (Id-2.11.1.s...
0.008 1 call(s) 'mcount” (libc-2.11.1.50: i386-mc...

0.00 mdl-reloc.c
0.00 mistremp.c - | 4000 for(i=0;i<10;i++){
0.00 mdlload.c s 5 0.00 caller():
I 9.098 10 call(s) 'callerl (valgrindtest: valgrindt...
Incl. self Called Function 5 000 caller2();
199.98 0.00 1@ main W90.89 8 10 call(s) ‘caller2 (valgrindtest: valgrindt...
N 09.95 HE 99.98 20mcatalog 7 }
- 00.89 000 1omcaller2 8 000}
I 9.00 0.00 10mcallerl 9
10 caller1() {
1 catalog(1000000);

< T <> | [P Gk Call Graph | Al Callees | Caller Map [1 < >

caligrind.out.17312 [1] - Total Instruction Fetch Cost: 1 540 262 063

Figure D.3.: KCachegrind’s call graph view for the Valgrind profile.

for (int 1 = 0 ; 1 < 10 ; i ++) {
callerl ();
caller2 ();

public static void callerl () { catalog (1000000 %10
}
public static void caller2 () { catalog (10 = 1000000
*10); }

public static void catalog (long iterations) {
double c = 0.0d;
for (int j = 0 ; Jj < iterations ; j ++) {
c=c¢c+ 1.5 % 0.98 ;

)i

175

Appendix D - Call Graph Profiling Tools

[...]

TRACE 300955:
profilertest.catalog(profilertest.java:Unknown line)
profilertest.caller2(profilertest.java:Unknown line)
profilertest.main(profilertest.java:Unknown line)

TRACE 300953:
profilertest.catalog(profilertest.java:Unknown line)
profilertest.callerl(profilertest.java:Unknown line)
profilertest.main(profilertest.java:Unknown line)

[...]

CPU TIME (ms) BEGIN (total = 1728) Thu Dec 29 10:25:06 2011
rank self accum count trace method

1 89.06% 89.06% 10 300955 profilertest.catalog

2 8.85% 97.92% 10 300953 profilertest.catalog
[...]

35 0.06% 100.00% 10 300954 profilertest.callerl

Figure D.4.: Part of the output created by the Java profiler hprof (file
java.hprof.txt).

Listing D.6: Commands for applying the Java profiler to Listing D.5.

javac —-g profilertest.java
2| java —-Xrunhprof:cpu=times profilertest

-

D.5. NetBeans 6.9 Java Profiler

A profiler is part of the NetBeans IDE* (Version 6.9). Figure D.5 shows
the Back Trace feature of this profiler for the Java program of Listing D.5.
The Back Trace shows a caller-context-sensitive performance analysis — it
shows that response times of catalog are larger from “caller2” (1571 ms)
than from “caller1” (172 ms).

4NetBeans Profiler http://profiler.netbeans.org/

176

http://profiler.netbeans.org/

D.5 NetBeans 6.9 Java Profiler

NetBeans IDE Dev 201002152000 =||El[

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

D htoiv [O O 8RR (-

g @ CPUI 11:07:24 AM X [4l[»[*][=]
2
= = View: (£ Methods EI Q T &
§ IBack Traces - Method lT\me][\nvocatlcns
E ~ B profilertest2.catalog (long) Wl 1743 ms (100%)
é % when called from profilertest2 caller2 () - 1571 ms (90.1%)

b & when called from profilertestz.callerl () | 172ms (9.9%) 10
r ”
ﬁ Subtree for: catalogmain] %1 Back Traces for: catalog ®

Call Tree & l Hot Spots 5 l Combined B3 l Info @

@l usages [loutput L5 Test Results (g Tasks &, Search Results

Figure D.5.: NetBeans 6.9 Profiler’s “Back Trace” function provides caller context
analysis.

177

E. Garbage Collection Analysis

Garbage collection is a known performance influence to software appli-
cations (see Foundations 2.1.4.6 on Page 22). In the context of the case
studies of the Chapters 4 and 5, some garbage collection measurements
were taken to estimate its relevance to the timing behavior analyses
presented in this thesis.

[}

(53

é © _| —— Major gc (#: 5, avg: 778.45 ms)
= o Minor gc (#: 3312, avg: 11.66 ms)
£ S

s ¥

£

S M+

3]

2

3 o |

3 =

(0]

j=))

©

2 © -

©

0] T T

T T 1
1000 2000 3000 4000 5000
Experiment Time (Seconds)

(1) Major garbage collection runs and execution times of minor runs.

2.0

1.6

1.2

~|—— Major gc (avg. time btw. col.: 860.3 s)
| © Minor gc (avg. time btw. col.: 1.36 s)

0.8

T T
1000 2000 3000 4000 5000
Experiment Time (Seconds)

Seconds between garbage collections

(2) Time between subsequent minor garbage collections.

Figure E.1.: Example: Garbage collection activity.

179

Appendix E - Garbage Collection Analysis

Node: jpet2

2
=81 '§$2
c o
8 oT
© 31 r&o
< 2
= 83
z & T2
(@) S
-85
< T T T T T T =

0 1000 2000 3000 4000 5000

Experiment Time (Seconds)

Figure E.2.: Example: CPU utilization and total system memory allocation
during the experiment of Figure E.1(1).

Figure E.1 displays garbage collection monitoring data from one ex-
periment run of the iBATIS Java JPetStore application. A probabilistic
workload with a constant workload-intensity of 30 concurrent users was
used. Figure E.1(1) shows that there were a large amount (3312) of the
so-called minor garbage collections and five so-called major garbage
collections during the 5000 seconds experiment. The minor collections
required in average 11.7 milliseconds and the major collections in average
778.5 milliseconds. Therefore, the pauses caused by garbage collection
can lead to significantly increased operation response times. Figure E.2
shows CPU utilization and memory consumption during the same exper-
iment. The five vertical CPU load peaks (at about sec. 1120, 1980, 2830,
3670, and 4570) indicate a connection to the major garbage collections.

The monitoring data shown in Figure E.3 is from an experiment with
linearly increasing workload (up to approximately 50 users). The mea-
surements indicate the same connection between major collections and
CPU load peaks. The time between minor collections appears to decrease
by increasing workload intensity. The origin of the regular delays of
minor collections (the dots in the upper chart at approximately 3 seconds
between collections) seems to correlate to the down-peaks in CPU load.

180

Node 2

Experiment Time (Seconds)

500 1000 1500 2000
| | | |
° °© —— Major gc
% N—% o Minor gc
of ®
= Cc o _|
O —
O >
S e
o —
o)
=5 o o o @b
53 0 00 9%00070pO
Q
O o —
80
0]
n -
[an]
_gs=
o)
o _] -
= @© o
® o
o RS
q_;O_ —_
o © g
3 -2
O 2
o ¥ 2
0
2 |25
O K 1 gs
S
- S @
o 4 =
T T T T
500 1000 1500 2000

Experiment Time (Seconds)

Figure E.3.: Example for periodic CPU utilization peaks and its relations to major
garbage collection events.

181

List of Figures

1.1.

1.2.

2.1.
2.2.
2.3.
24.
2.5.
2.6.

2.7.
2.8.
29.
2.10.
2.11.
2.12.
2.13.

2.14.

3.1.
3.2.
3.3.

34.

Response times of ten internal software operations of an

onlinestore. 2
Overview of the fault localization approach and the two
central contributions of this thesis. 4
Efficiency in the ISO/IEC 9126-1 standard 9
Response timemetrics. 11
Response times and execution times. 11
Fitting distributions to response time data. 17
Multimodality of response times. 19
Typical relation between response times and workload
intensity. L oo 21
Measured and predicted average response times in relation
toworkload intensity. o 0L 22
Error propagation example in a component-based software
system. 23
Fundamental chain of dependability threats [AviZienis
etal.,2004]. 24
Failure class hierarchy. 25
Failure modes and failure domains.. 25
Fault localization in software systems: concepts and tech-
NIQUES. o 29
Anomaly detection example with three classes of normal
behavior. L o 35
Software system layers and monitoring targets. Image
based on Focke [2006]. 36
Conceptual steps of the fault localization approach. 40
Anomaly analysis in component-based systems. 41
Error propagation, errors cause anomalies, and anomaly
propagation. L 42
Schema for a monitored software operation execution. . . . 44

183

184

3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.

3.12.
3.14.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
47.
4.8.

49.
4.10.

4.11.
4.12.

5.1.
5.2.
5.3.
54.

5.5.

Bookstore example. “M” boxes indicate monitoring probes. 46

Dynamic Call Tree for monitoring data of Table 3.1. 48
Example: Different trace shapes can correspond to differ-

ent timing behavior. o 00 0L 50
Workload curve (active user sessions) of an online photo
printing service. L 51
Unique visitors of two online photo printing services.

Graph by compete.com. 51

Response time distributions specific to workload intensity. 52
Response time distribution characteristics for two different

numbersofbins. L Lo oL L 54
Demonstration of different anomaly detection functions. . 57
Failure diagnosis visualization example. 61

Trace shape specific timing behavior: newOrder() in iBATIS

JPetStore. 66
UML sequence diagrams for the monitoring data of Table 4.1. 69
Dynamic call trees for the sequence diagrams of Figure 4.2. 70

All trace shape contexts for operation f(). 72
All monitored response times of operation f(). 73
Stack context analysis identifies two stack contexts for
operation f(). o 74
Trace context analysis identified three contexts for opera-
Hon f(). o v v v 74
The trace shape context tree organizes the response times
bytraceshape. L Lo oL 76
Ilustration of tree optimization operators. 77
CS-4.1: Standard deviation reduction for different num-
bers of monitoring points. 0L 82

(CS5-4.1: Trace contexts per operation for full instrumenation. 84
CS-4.1: Number of monitoring points in relation to the
numberof contexts. L L L 85

Relation between response time statistics and workload

intensity. L oL 92
Anomaly detection with constant workload intensity. . . . 95
Anomaly detection with changing workload intensity. . . . 95
Probability density distributions for low, medium, and

high workload intensity. 96
Example traces as UML sequence diagrams. 98

5.6.

5.7.

5.8.

59.

5.10.

5.11.
5.12.

5.13.
5.14.
5.15.
5.16.
5.17.

5.18.

6.1.

6.2.

6.3.

Al

A2.

A3

AA4.

Ab.

pwi example 1: Multiple traces within the same execution

environment.. Lo 99
pwi example 2: Trace 3 involves multiple execution envi-
ronments.. 101
Example pwis: Timing behavior characteristics correlate
toOpwWig. . . o o o 103

CS-5.1: Deployment architecture of the distributed JPetStore.105
CS-5.1: Workload intensity specification based on 24 hour

measurements of a real customer portal. 106
CS-5.1: Standard deviation reduction. 106
(CS-5.1: Log-transformation increases standard deviation
reduction. L oo 107
(CS-5.2: Workload intensity specification and CPU usage. . 108
(CS-5.2: Standard deviation reduction. 109
(CS-5.3: Workload curve (active sessions). 110
CS-5.3: Standard deviation reduction. 110
Size of bins (i.e. classes) without log-transformation (op-
eration work()). 112
Relation between pwi and response times (operation view-
Product of CS-5.1). 114
Tracing a path through a distributed multi-tier system
(Source: [Aguileraetal.,, 2003]). 118
Magpie’s visualization of a single request’s trace (Source: [Barham
etal,2004]). 119

Response times during four days of seasonal data and a
seasonal forecasting (green line) for a window size of 24

hours. Image by Bielefeld [2012]. 136
Example data (1/5): Relation between platform workload
intensity pwi; and response time statistics. 161
Example data (2/5): Relation between platform workload
intensity pwi; and response time statistics. 162
Example data (3/5): Relation between platform workload
intensity pwi; and response time statistics. 163
Example data (4/5): Relation between platform workload
intensity pwi; and response time statistics. 164
Example data (5/5): Relation between platform workload
intensity pwi; and response time statistics. 165

185

D.1.

D.2.

D.3.
DA4.

D.5.

E.1.

E.2.
E.3.

186

Gprof output for Listing D.1 and the shell commands of

ListingD.2. o o 172
Perftools’s output for Listing D.1 with commands from
ListingD.3. L 174

KCachegrind’s call graph view for the Valgrind profile. . . 175
Part of the output created by the Java profiler hprof (file

javahprofixt). oo 176
NetBeans 6.9 Profiler’s “Back Trace” function provides

caller context analysis. 177
Garbage collection activity. 179
CPU utilization and total system memory allocation. . . . 180
CPU utilization peaks compared with garbage collection

activity. 181

List of Tables

2.1.

3.1
3.2.
3.3.

4.1.

4.2.
4.3.
44.

4.5.
4.6.

47.

4.8.

49.

5.1.
5.2.
5.3.
54.
5.5.
5.6.

Categorization schemes related to fault localization. 30
Example monitoring data for a request to the bookstore. . 46
Example for training datasets. 53
Example for anomaly score computation. 58

Simplified monitoring data for the ongoing TracSTA ex-
ample. 68
Trace shape contexts for the ongoing example. 71
Summary of the settings of the three TracSTA case studies. 79
CS-4.1: Summary of the instrumentation scenarios and
monitoringdata.. L oL oo 81
CS-4.1: Standard deviation reduction results for E1 and E2. 81
CS5-4.1: Distinct trace shape contexts per instrumentation

and contexttype. L L. 83
(CS-4.2: Standard deviation reduction and number of con-

texts. . .. 86
CS-4.3: Standard deviation reduction and number of con-

texts. ... 87
(CS-4.3: Standard deviation reduction and number of con-

texts with model size optimization. 88
pwimetricsoverview. L oL 97
Example: Two weight vectors (columns). 102
Summary of the settings of the WiSTA case studies. 104
CS-5.1: Average standard deviation reduction (in %). . . . 107
(CS-5.2: Average standard deviation reduction (in %). . . . 108
CS-5.3: Average standard deviation reduction (in %). . . . 110

187

Bibliography

[Abreu et al. 2007] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund.
On the accuracy of spectrum-based fault localization. In Academic and
Industrial Conference Practice and Research Techniques, pages 89-98, Sept.
2007. doi:10.1109/TAIC.PART.2007.13. (Cited on page 28.)

[Achtert et al. 2010] E. Achtert, H.-P. Kriegel, L. Reichert, E. Schubert,
R. Wojdanowski, and A. Zimek. Visual evaluation of outlier detection
models. In Proceedings of the 15th International Conference Database
Systems for Advanced Applications (DASFAA’10), volume 5982 of Lecture
Notes in Computer Science, pages 396-399. Springer, Apr. 2010. ISBN 978-
3-642-12097-8. doi:10.1007 /978-3-642-12098-5_34. (Cited on page 55.)

[Adams 1984] E.N. Adams. Optimizing preventive service of software
products. IBM Journal of Research and Development, 28(1):2-14, Jan. 1984.
doi:10.1147/rd.281.0002. (Cited on page 27.)

[Agarwal et al. 2004] M. K. Agarwal, K. Appleby, M. Gupta, G. Kar,
A. Neogi, and A. Sailer. Problem determination using dependency
graphs and run-time behavior models. In Proceedings of the 15th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM’04), volume 3278 of Lecture Notes in Com-
puter Science, pages 171-182. Springer, Nov. 2004. ISBN 3-540-23631-7.
doi:10.1007 /b102082. (Cited on pages 1, 33, 59, and 135.)

[Aguilera et al. 2003] M. K. Aguilera, J. C. Mogul, J. L. Wiener,
P. Reynolds, and A. Muthitacharoen. Performance debugging for
distributed systems of black boxes. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP’03), pages 74-89. ACM,
2003. ISBN 1-58113-757-5. doi:10.1145/945445.945454. (Cited on
pages 1,44,117, 118,122,148, and 185.)

[Amin et al. 2012] A. Amin, A. Colman, and L. Grunske. Statistical
detection of QoS violations based on CUSUM control charts. In Pro-
ceedings of the 3rd ACM/SPEC International Conference on Performance

189

http://dx.doi.org/10.1109/TAIC.PART.2007.13
http://dx.doi.org/10.1007/978-3-642-12098-5_34
http://dx.doi.org/10.1147/rd.281.0002
http://dx.doi.org/10.1007/b102082
http://dx.doi.org/10.1145/945445.945454

Engineering (ICPE’12), pages 97-108. ACM, 2012. ISBN 978-1-4503-1202-
8. d0i:10.1145/2188286.2188302. (Cited on page 29.)

[Ammons et al. 1997] G. Ammons, T. Ball, and J. R. Larus. Exploiting
hardware performance counters with flow and context sensitive pro-
filing. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’'97), pages 85-96. ACM, 1997.
ISBN 0-89791-907-6. doi:10.1145/258915.258924. (Cited on pages 5, 44,
48, 63, 67,69,116,117, 121, and 146.)

[Arlitt et al. 2001] M. E. Arlitt, D. Krishnamurthy, and J. Rolia. Charac-
terizing the scalability of a large web-based shopping system. ACM
Transactions on Internet Technology, 1(1):44-69, Aug. 2001. ISSN 1533-
5399. doi:10.1145/383034.383036. (Cited on pages 1, 67, and 94.)

[Armbrust et al. 2010] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Communications of the ACM, 53
(4):50-58, Apr. 2010. doi:10.1145/1721654.1721672. (Cited on page 94.)

[Au-Yeung et al. 2004] S. Au-Yeung, N. Dingle, and W. Knottenbelt.
Efficient approximation of response time densities and quantiles in
stochastic models. In Proceedings of the 4th International Workshop on
Software and Performance (WOSP’04), pages 151-155. ACM, 2004. ISBN
1-58113-563-7. d0i:10.1145/974044.974068. (Cited on page 16.)

[AviZienis et al. 2004] A. AviZienis,]J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of dependable and se-
cure computing. Transactions on Dependable and Secure Computing, 1(1):
11-33, Jan. 2004. ISSN 1545-5971. d0i:10.1109/TDSC.2004.2. (Cited on
pages 23, 24, 25,27, 29, and 183.)

[Avritzer et al. 2005] A. Avritzer, A. Bondi, and E.]. Weyuker. Ensuring
stable performance for systems that degrade. In Proceedings of the 5th
International Workshop on Software and Performance (WOSP’05), pages
43-51. ACM, 2005. ISBN 1-59593-087-6. doi:10.1145/1071021.1071026.
(Cited on page 137.)

[Avritzer et al. 2006] A. Avritzer, A. B. Bondi, M. Grottke, K. S. Trivedi,
and E.]. Weyuker. Performance assurance via software rejuvenation:
Monitoring, statistics and algorithms. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN’06), pages 435—-444.

190

http://dx.doi.org/10.1145/2188286.2188302
http://dx.doi.org/10.1145/258915.258924
http://dx.doi.org/10.1145/383034.383036
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/974044.974068
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/1071021.1071026

IEEE, June 2006. ISBN 0-7695-2607-1. d0i:10.1109/DSN.2006.58. (Cited
on pages 58 and 137.)

[Avritzer et al. 2007] A. Avritzer, A. Bondi, and E.]. Weyuker. Ensuring
system performance for cluster and single server systems. Journal
of Systems and Software, 80(4):441-454, Apr. 2007. ISSN 0164-1212.
doi:10.1016/j.jss.2006.07.020. (Cited on page 137.)

[Axelsson 2000] S. Axelsson. Intrusion detection systems: A survey and
taxonomy. Technical Report 99-15, Chalmers University, Mar. 2000.
(Cited on pages 30 and 31.)

[Bailey and Soucy 1983] R. M. Bailey and R. C. Soucy. Performance
and availability measurement of the IBM information network. IBM
Systems Journal, 22(4):404-416, 1983. doi:10.1147/sj.224.0404. (Cited on
pages 128 and 133.)

[Ball and Larus 1996] T. Ball and J. R. Larus. Efficient path profiling. In
Proceedings of the 29th ACM/IEEE International Symposium on Microarchi-
tecture (MICRO'29), pages 46-57. IEEE, Dec. 1996. ISBN 0-8186-7641-8.
doi:10.1109/MICRO.1996.566449. (Cited on pages 44, 63, and 116.)

[Balsamo et al. 2004] S. Balsamo, A. Di Marco, P. Inverardi, and M. Sime-
oni. Model-based performance prediction in software development: A
survey. Transactions on Software Engineering, 30(5):295-310, May 2004.
ISSN 0098-5589. d0i:10.1109/TSE.2004.9. (Cited on pages 14 and 15.)

[Barham et al. 2003] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan.
Magpie: online modelling and performance-aware systems. In Proceed-
ings of the 9th Conference on Hot Topics in Operating Systems (HOTOS'03).
USENIX Association, 2003. (Cited on pages 117 and 118.)

[Barham et al. 2004] P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using magpie for request extraction and workload modelling. In
Proceedings of the 6th Symposium On Operating Systems Design and Imple-
mentation (OSDI'04), pages 259-272. USENIX Association, 2004. (Cited
on pages 117, 119, and 185.)

[Bause et al. 2008] FE. Bause, P. Buchholz, J. Kriege, and S. Vastag. A
framework for simulation models of service-oriented architectures. In
S. Kounev, I. Gorton, and K. Sachs, editors, Proceedings of the SPEC
International Performance Evaluation Workshop (SIPEW’08), volume 5119
of Lecture Notes in Computer Science (LNCS), pages 208-227, Heidelberg,

191

http://dx.doi.org/10.1109/DSN.2006.58
http://dx.doi.org/10.1016/j.jss.2006.07.020
http://dx.doi.org/10.1147/sj.224.0404
http://dx.doi.org/10.1109/MICRO.1996.566449
http://dx.doi.org/10.1109/TSE.2004.9

June 2008. Springer. ISBN 978-3-540-69813-5. d0i:10.1007 /978-3-540-
69814-2_14. (Cited on page 14.)

[Becker et al. 2007] S. Becker, H. Koziolek, and R. Reussner. Model-
based performance prediction with the palladio component model.
In Proceedings of the 6th International Workshop on Software and Per-
formance (WOSP’07), pages 54-65. ACM, 2007. ISBN 1-59593-297-6.
doi:10.1145/1216993.1217006. (Cited on pages 14 and 129.)

[Bemmerl and Bode 1991] T. Bemmerl and A. Bode. An integrated en-
vironment for programming distributed memory multiprocessors. In
A. Bode, editor, Proceedings of the 2nd European Conference on Distributed
Memory Computing, volume 487 of Lecture Notes in Computer Science,
pages 130-142. Springer, 1991. doi:10.1007/BFb0032930. (Cited on
page 37.)

[Bielefeld 2012] T. C. Bielefeld. Online performance anomaly detection
for large-scale software systems. Master’s thesis, University of Kiel,
Mar. 2012. Diploma Thesis. (Cited on pages 58, 135, 136, 137, 152, 157,
and 185.)

[Blackburn et al. 2004] S. M. Blackburn, P. Cheng, and K. S. McKinley.
Myths and realities: the performance impact of garbage collection.
In Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’04 / Performance’04), pages
25-36. ACM, 2004. ISBN 1-58113-873-3. d0i:10.1145/1005686.1005693.
(Cited on page 22.)

[Blackburn et al. 2006] S. M. Blackburn, R. Garner, C. Hoffman, A. M.
Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,]. E. B.
Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo Benchmarks: Java benchmarking
development and analysis. In Proceedings of the 21st Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA’06).
ACM, Oct. 2006. doi:10.1145/1167473.1167488. (Cited on pages 18
and 157.)

[Bocaniala and Palade 2006] C. D. Bocaniala and V. Palade. Compu-
tational intelligence methodologies in fault diagnosis: Review and
state of the art. In V. Palade, C. D. Bocaniala, and L. C. Jain, editors,
Computational Intelligence in Fault Diagnosis, Advanced Information and

192

http://dx.doi.org/10.1007/978-3-540-69814-2_14
http://dx.doi.org/10.1007/978-3-540-69814-2_14
http://dx.doi.org/10.1145/1216993.1217006
http://dx.doi.org/10.1007/BFb0032930
http://dx.doi.org/10.1145/1005686.1005693
http://dx.doi.org/10.1145/1167473.1167488

Knowledge Processing, chapter 1, pages 1-36. Springer, 2006. ISBN
978-1-184628-343-7. (Cited on page 27.)

[Bond and McKinley 2007] M. D. Bond and K. S. McKinley. Prob-
abilistic calling context. In Proceedings of the 22nd ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications
(OOPSLA’07), pages 97-112. ACM, 2007. ISBN 978-1-59593-786-5.
doi:10.1145/1297027.1297035. (Cited on page 122.)

[Bourne 2004] S. Bourne. A conversation with bruce lindsay. Queue, 2
(8):22-33, Nov. 2004. ISSN 1542-7730. d0i:10.1145/1036474.1036486.
(Cited on pages 27 and 28.)

[Box and Jenkins 1990] G. E. P. Box and G. Jenkins. Time Series Anal-
ysis, Forecasting and Control. Holden-Day, Incorporated, 1990. ISBN
0816211043. (Cited on page 135.)

[Breunig et al. 2000] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. Lof: identifying density-based local outliers. In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’00), pages 93-104. ACM, 2000. ISBN 1-58113-217-4.
doi:10.1145/342009.335388. (Cited on pages 35 and 55.)

[Brutlag 2000] J. D. Brutlag. Aberrant behavior detection in time series
for network monitoring. In Proceedings of the 14th USENIX Conference
on System Administration, pages 139-146. USENIX Association, 2000.
(Cited on page 142.)

[Bulej et al. 2005] L. Bulej, T. Kalibera, and P. Ttma. Re-
peated results analysis for middleware regression benchmarking.
Performance Evaluation, 60(1-4):345-358, 2005. ISSN 0166-5316.
doi:10.1016/j.peva.2004.10.013. (Cited on pages 15, 18, and 129.)

[Candea et al. 2004] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman,
and A. Fox. Microreboot - A technique for cheap recovery. In Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation (OSDI'04). USENIX Association, 2004. (Cited on
pages 27 and 147.)

[Cappelli and Kowall 2011] W. Cappelli and]J. Kowall. APM in-
novators: Driving APM technology and delivery evolution, Sept.
2011. URL http://www.gartner.com/technology/reprints.

193

http://dx.doi.org/10.1145/1297027.1297035
http://dx.doi.org/10.1145/1036474.1036486
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1016/j.peva.2004.10.013
http://www.gartner.com/technology/reprints.do?id=1-17DC04V&ct=110920&st=sg
http://www.gartner.com/technology/reprints.do?id=1-17DC04V&ct=110920&st=sg

do?id=1-17DC04V&ct=110920&st=sg. Available online, Last ac-
cess: 2011-12-15. (Cited on page 123.)

[Chanda et al. 2007] A. Chanda, A. L. Cox, and W. Zwaenepoel. Who-
dunit: transactional profiling for multi-tier applications. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems (EuroSys’07), pages 17-30. ACM, 2007. ISBN 978-1-59593-636-3.
doi:10.1145/1272996.1273001. (Cited on pages 44, 117, 118, and 150.)

[Chandola et al. 2009] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys, 41:1-58, July 2009. ISSN
0360-0300. doi:10.1145/1541880.1541882. (Cited on pages 32, 33, 34,
and 35.)

[Chen et al. 2007] H. Chen, G. Jiang, C. Ungureanu, and K. Yoshi-
hira. Online tracking of component interactions for failure detec-
tion and localization in distributed systems. Transactions on Sys-
tems, Man, and Cybernetics, 37(4):644-651, July 2007. ISSN 1094-6977.
d0i:10.1109/TSMCC.2007.897496. (Cited on page 139.)

[Chen et al. 2002] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and
A. Fox. Pinpoint: Problem determination in large, dynamic, in-
ternet services. In Proceedings of the International Conference on De-
pendable Systems and Networks (DSN’02), pages 595-604. IEEE, 2002.
doi:10.1109/DSN.2002.1029005. (Cited on pages 1, 28, 38, 122, 138,
and 139.)

[Chen et al. 2004] M. Chen, A. X. Zheng,]J. Lloyd, M. L. Jordan, and
E. Brewer. Failure diagnosis using decision trees. In Proceedings of the
International Conference on Autonomic Computing (ICAC’04), pages 36—43.
IEEE, May 2004. d0i:10.1109/ICAC.2004.1301345. (Cited on page 144.)

[Cheng 2008] X. Cheng. Performance, benchmarking and sizing in devel-
oping highly scalable enterprise software. In S. Kounev, I. Gorton, and
K. Sachs, editors, Proceedings of the SPEC International Performance Eval-
uation Workshop (SIPEW’08), volume 5119 of Lecture Notes in Computer
Science (LNCS), pages 174-190. Springer Verlag, June 2008. ISBN 978-3-
540-69813-5. doi:10.1007 /978-3-540-69814-2_12. (Cited on pages 12, 13,
14,21, and 22.)

[Cheungetal. 2011] L. Cheung, L. Golubchik, and F. Sha. A study of web
services performance prediction: A client’s perspective. In Proceedings

194

http://www.gartner.com/technology/reprints.do?id=1-17DC04V&ct=110920&st=sg
http://www.gartner.com/technology/reprints.do?id=1-17DC04V&ct=110920&st=sg
http://dx.doi.org/10.1145/1272996.1273001
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/TSMCC.2007.897496
http://dx.doi.org/10.1109/DSN.2002.1029005
http://dx.doi.org/10.1109/ICAC.2004.1301345
http://dx.doi.org/10.1007/978-3-540-69814-2_12

of the 19th International Symposium on Modeling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS’11), pages 75-84,
2011. doi:10.1109/MASCOTS.2011.66. (Cited on page 125.)

[Choi et al. 1999]]. Choi, M. Choi, and S.-H. Lee. An alarm correlation
and fault identification scheme based on osi managed object classes.
In Proceedings of the International Conference on Communications (ICC’99),
pages 1547-1551. IEEE, 1999. d0i:10.1109/1CC.1999.765477. (Cited on
page 59.)

[Cleve and Zeller 2005] H. Cleve and A. Zeller. Locating causes of
program failures. In Proceedings of the 27th International Conference on
Software Engineering (ICSE’05), pages 342-351. ACM, May 2005. ISBN
1595939632. doi:10.1109/ICSE.2005.1553577. (Cited on page 28.)

[Cohen et al. 2004] I. Cohen, M. Goldszmidt, T. Kelly, J]. Symons, and J. S.
Chase. Correlating instrumentation data to system states: a building
block for automated diagnosis and control. In Proceedings of the 6th
Symposium on Opearting Systems Design & Implementation (OSDI'04),
pages 16-16, Berkeley, CA, USA, 2004. USENIX Association. (Cited on
page 140.)

[Cohen et al. 2005] I. Cohen, S. Zhang, M. Goldszmidt,]J. Symons,
T. Kelly, and A. Fox. Capturing, indexing, clustering, and retrieving
system history. In Proceedings of the 20th ACM Symposium on Operat-
ing Systems Principles (SOSP’05), pages 105-118. ACM, 2005. ISBN
1-59593-079-5. d0i:10.1145/1095810.1095821. (Cited on page 140.)

[Cristian et al. 1995] F. Cristian, H. Aghili, H. R. Strong, and D. Dolev.
Atomic broadcast: From simple message diffusion to byzantine agree-
ment. Information and Computation, 118(1):158-179, Apr. 1995. (Cited
on page 25.)

[Crovella and Bestavros 1997] M. E. Crovella and A. Bestavros. Self-
similarity in world wide web traffic: evidence and possible causes.
IEEE/ACM Transactions Networking, 5(6):835-846, 1997. ISSN 1063-6692.
do0i:10.1109/90.650143. (Cited on pages 16 and 17.)

[Crovella et al. 1998] M. E. Crovella, M. S. Taqqu, and A. Bestavros.
Heavy-tailed probability distributions in the world wide web. In A
Practical Guide To Heavy Tails: Statistical Techniques and Applications,
pages 3-26. Birkhduser, 1998. ISBN 0-8176-3951-9. (Cited on pages 16
and 17.)

195

http://dx.doi.org/10.1109/MASCOTS.2011.66
http://dx.doi.org/10.1109/ICC.1999.765477
http://dx.doi.org/10.1109/ICSE.2005.1553577
http://dx.doi.org/10.1145/1095810.1095821
http://dx.doi.org/10.1109/90.650143

[CWE/SANS 2009] Top 25 Most Dangerous Programming Errors.
CWE/SANS, July 2009. URL http://cwe.mitre.org/top25/
pdf/2009_cwe_sans_top_25.pdf. Available online, Last access:
2010-10-15. (Cited on page 27.)

[D’Alconzo et al. 2009] A. D’Alconzo, A. Coluccia, F. Ricciato,
and P. Romirer-Maierhofer. A distribution-based approach to
anomaly detection and application to 3G mobile traffic. In Pro-
ceedings of the 28th Conference on Global Telecommunications (GLOBE-
COM’09), pages 2888-2895. IEEE, 2009. ISBN 978-1-4244-4147-1.
doi:10.1109/GLOCOM.2009.5425651. (Cited on pages 16 and 126.)

[Dallmeier 2010] V. Dallmeier. Mining and checking object behav-
ior. PhD thesis, Saarland University, 2010. URL http://scidok.
sulb.uni-saarland.de/volltexte/2010/3434. Available on-
line, Last access: 2014-05-03. (Cited on pages 26 and 37.)

[Dallmeier et al. 2005] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight
bug localization with AMPLE. In Proceedings of the 6th International Sym-
posium on Automated Analysis-driven Debugging(AADEBUG’05), pages
99-104. ACM, 2005. ISBN 1-59593-050-7. doi:10.1145/1085130.1085143.
(Cited on page 144.)

[DeMillo and Mathur 1995] R. A. DeMillo and A. P. Mathur. A grammar
based fault classification scheme and its application to the classification
of the errors of TEX. Technical report, Software Engineering Research
Center and Department Of Computer Science Purdue Univerity, 1995.
(Cited on page 26.)

[Diaconescu and Murphy 2005] A. Diaconescu and J. Murphy. Au-
tomating the performance management of component-based enter-
prise systems through the use of redundancy. In Proceedings of the
20th IEEE/ACM International Conference on Automated software En-
gineering (ASE’05), pages 44-53. ACM, 2005. ISBN 1-59593-993-4.
doi:10.1145/1101908.1101918. (Cited on pages 137 and 147.)

[Diaconescu et al. 2004] A. Diaconescu, A. Mos, and J. Murphy. Au-
tomatic performance management in component based software sys-
tems. In Proceedings of the 1st International Conference on Autonomic
Computing (ICAC’04), pages 214-221. IEEE, 2004. ISBN 0-7695-2114-2.
doi:10.1109/ICAC.2004.15. (Cited on pages 1, 37, and 137.)

196

http://cwe.mitre.org/top25/pdf/2009_cwe_sans_top_25.pdf
http://cwe.mitre.org/top25/pdf/2009_cwe_sans_top_25.pdf
http://dx.doi.org/10.1109/GLOCOM.2009.5425651
http://scidok.sulb.uni-saarland.de/volltexte/2010/3434
http://scidok.sulb.uni-saarland.de/volltexte/2010/3434
http://dx.doi.org/10.1145/1085130.1085143
http://dx.doi.org/10.1145/1101908.1101918
http://dx.doi.org/10.1109/ICAC.2004.15

[Downey 2001] A. B. Downey. The structural cause of file size distribu-
tions. In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS'01), pages
328-329. ACM, 2001. ISBN 1-58113-334-0. doi:10.1145/378420.378824.
(Cited on page 17.)

[Dustin 2002] E. Dustin. Effective Software Testing: 50 Specific Ways to
Improve Your Testing. Addison-Wesley Longman, 2002. ISBN 978-
0201794298. (Cited on page 36.)

[Ehlers 2012]]. Ehlers. Self~Adaptive Performance Monitoring for
Component-Based Software Systems. Number 2012-1 in Kiel Computer
Science Series. Kiel University, Department of Computer Science, Apr.
2012. ISBN 9783844814477. PhD thesis. (Cited on pages 121, 135, 138,
and 154.)

[Ehlers and Hasselbring 2011] J. Ehlers and W. Hasselbring. A self-
adaptive monitoring framework for component-based software sys-
tems. In Proceedings of the 5th European Conference on Software Architec-
ture (ECSA’11), pages 278-286. Springer, 2011. doi:10.1007/978-3-642-
23798-0_30. (Cited on pages 121 and 137.)

[Ehlers et al. 2011] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring,.
Self-adaptive software system monitoring for performance anomaly
localization. In Proceedings of the 8th ACM International Conference on
Autonomic computing (ICAC’11), pages 197-200. ACM, 2011. ISBN
978-1-4503-0607-2. doi:10.1145/1998582.1998628. (Cited on pages 135
and 157.)

[Eisenstadt 1997] M. Eisenstadt. My hairiest bug war stories. Com-
munications of the ACM, 40(4):30-37, Apr. 1997. ISSN 0001-0782.
doi:10.1145/248448.248456. (Cited on pages 27 and 28.)

[Elbaum et al. 2007] S. Elbaum, S. Kanduri, and A. Andrews. Trace
anomalies as precursors of field failures: an empirical study. Em-
pirical Softwoftware Engineering, 12(5):447-469, 2007. ISSN 1382-3256.
do0i:10.1007 /s10664-007-9042-8. (Cited on page 143.)

[Eskin 2000] E. Eskin. Anomaly detection over noisy data using learned
probability distributions. In Proceedings of the 7th International Conference
on Machine Learning (ICML’00), pages 255-262. Morgan Kaufmann,
2000. ISBN 1-55860-707-2. (Cited on page 52.)

197

http://dx.doi.org/10.1145/378420.378824
http://dx.doi.org/10.1007/978-3-642-23798-0_30
http://dx.doi.org/10.1007/978-3-642-23798-0_30
http://dx.doi.org/10.1145/1998582.1998628
http://dx.doi.org/10.1145/248448.248456
http://dx.doi.org/10.1007/s10664-007-9042-8

[Eusgeld et al. 2008] 1. Eusgeld, F. Fraikin, M. Rohr, F. Salfner, and
U. Wappler. Software Reliability. InI. Eusgeld, F. Freiling, and R. Reuss-
ner, editors, Dependability Metrics, volume 4909 of Lecture Notes in
Computer Science (LNCS), pages 104-125. Springer, 2008. ISBN 978-3-
540-68946-1. doi:10.1007 /978-3-540-68947-8_10. (Cited on pages 7, 24,
and 27.)

[Farshchi 2003] J. Farshchi. Statstical-based intrusion detection, Apr.
2003. URL http://www.securityfocus.com/infocus/1686.
Available online, Last access: 2014-05-03. (Cited on page 31.)

[Fawcett 2006] T. Fawcett. An introduction to ROC analysis.
Pattern Recognition Letters, 27(8):861-874, 2006. ISSN 0167-8655.
doi:10.1016/j.patrec.2005.10.010. (Cited on page 34.)

[Fenton and Ohlsson 2000] N. E. Fenton and N. Ohlsson. Quantitative
analysis of faults and failures in a complex software system. IEEE
Transactions on Software Engineering, 26(8):797-814, 2000. ISSN 0098-
5589. d0i:10.1109/32.879815. (Cited on page 27.)

[Field et al. 2012] A. Field, J. Miles, and Z. Field. Discovering Statistics
Using R. SAGE Publications, 2012. ISBN 978-1-4462-0045-2. (Cited on

page 16.)

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live trace visualization for comprehending large software landscapes:
The explorviz approach. In Working Conference on Software Visualization
(VISSOFT’13), Sept. 2013. d0i:10.1109/VISSOFT.2013.6650536. (Cited
on page 158.)

[Fittkau et al. 2014] F. Fittkau, P. Stelzer, and W. Hasselbring. Live
visualization of large software landscapes for ensuring architecture
conformance. In 2nd International Workshop on Software Engineering
for Systems-of-Systems 2014 (SES0S'14). ACM, Aug. 2014. (Cited on
page 158.)

[Focke 2006] T. Focke. Performance Monitoring von Middleware-
basierten Applikationen, Mar. 2006. Master’s thesis (Diplomarbeit),
Carl von Ossietzky University Oldenburg, Software Engineering
Group, Department of Computing Science. (Cited on pages 7, 36,
and 183.)

198

http://dx.doi.org/10.1007/978-3-540-68947-8_10
http://www.securityfocus.com/infocus/1686
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/32.879815
http://dx.doi.org/10.1109/VISSOFT.2013.6650536

[Focke et al. 2007a] T. Focke, W. Hasselbring, M. Rohr, and J.-G. Schute.
Ein Vorgehensmodell fiir Performance-Monitoring von Information-
ssystemlandschaften. EMISA Forum, 27(1):26-31, Jan. 2007a. ISSN
1610-3351. (Cited on pages 37, 46, and 47.)

[Focke et al. 2007b] T. Focke, W. Hasselbring, M. Rohr, and J.-G. Schute.
Instrumentierung zum Monitoring mittels Aspekt-orientierter Pro-
grammierung. In W.-G. Bleek, H. Schwentner, and H. Ziillighoven,
editors, Proceedings of the GI Conference on Software Engineering 2007
(SE’07), volume 106 of GI-Edition — Lecture Notes in Informatics (LNI),
pages 55-59. Gesellschaft fiir Informatik (GI), Bonner Kollen Verlag,
Mar. 2007b. ISBN 978-3-88579-199-7. (Cited on pages 7 and 46.)

[Forrest et al. 1996] S. Forrest, S. A. Hofmeyr, A. Somayaji, and
T. A. Longstaff. A sense of self for unix processes. In Proceed-
ings of the Symposium on Security and Privacy, page 0120. IEEE, 1996.
doi:10.1109/SECPRI.1996.502675. (Cited on pages 143 and 144.)

[Franks et al. 2009] G. Franks, T. Al-Omari, M. Woodside, O. Das, and
S. Derisavi. Enhanced modeling and solution of layered queueing
networks. IEEE Transactions on Software Engineering, 35(2):148-161,
2009. ISSN 0098-5589. d0i:10.1109/TSE.2008.74. (Cited on page 14.)

[Frotscher 2013] T. Frotscher. Architecture-based multivariate anomaly
detection for software systems. Master’s thesis, University of Kiel,
2013. URL http://eprints.uni-kiel.de/21346/. Masterarbeit.
(Cited on pages 124, 136, 152, and 157.)

[Gao et al. 2007] Q. Gao, F. Qin, and D. K. Panda. Dmtracker: finding
bugs in large-scale parallel programs by detecting anomaly in data
movements. In Proceedings of the ACM/IEEE Conference on Supercom-
puting (SC’07), pages 1-12, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-764-3. d0i:10.1145/1362622.1362643. (Cited on page 132.)

[Garlan et al. 2003] D. Garlan, S.-W. Cheng, and B. Schmerl. Increas-
ing system dependability through architecture-based self-repair. In
R. de Lemos, C. Gacek, and A. Romanovsky, editors, Architecting De-
pendable Systems, volume 2677 of Lecture Notes in Computer Science,
pages 23-46. Springer Verlag, 2003. ISBN 3-540-40727-8. d0i:10.1007/3-
540-45177-3_3. (Cited on page 1.)

[Garlan et al. 2004] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: architecture-based self-adaptation with

199

http://dx.doi.org/10.1109/SECPRI.1996.502675
http://dx.doi.org/10.1109/TSE.2008.74
http://eprints.uni-kiel.de/21346/
http://dx.doi.org/10.1145/1362622.1362643
http://dx.doi.org/10.1007/3-540-45177-3_3
http://dx.doi.org/10.1007/3-540-45177-3_3

reusable infrastructure. Computer, 37(10):46-54, Oct. 2004. ISSN 0018-
9162. doi:10.1109/MC.2004.175. (Cited on page 94.)

[Gartner 2010] Gartner. Magic quadrant for application performance
monitoring, Feb. 2010. Gartner. (Cited on page 123.)

[Georges et al. 2008] A. Georges, L. Eeckhout, and D. Buytaert. Java
performance evaluation through rigorous replay compilation. In Pro-
ceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, Languagues, and Applications (OOPSLA’08), pages
367-384. ACM, 2008. doi:10.1145/1449764.1449794. (Cited on page 20.)

[Ghosh et al. 1998] A. K. Ghosh, J. Wanken, and F. Charron. Detecting
anomalous and unknown intrusions against programs. In Proceedings
of the 14th Computer Security Applications Conference (ACSAC’98). IEEE,
Dec. 1998. doi:10.1109/CSAC.1998.738646. (Cited on page 31.)

[Giesecke 2008] S. Giesecke. Architectural styles for early goal-driven
middleware platform selection. PhD thesis, Carl von Ossietzky University
of Oldenburg, Department of Computing Science, 2008. (Cited on

page 19.)

[Giesecke et al. 2006] S. Giesecke, M. Rohr, and W. Hasselbring. Software-
Betriebs-Leitstinde fiir Unternehmensanwendungslandschaften. In
Proceedings of the Workshop “Software-Leitstinde: Integrierte Werkzeuge zur
Softwarequalititssicherung”, volume P-94 of Lecture Notes in Informatics,
pages 110-117. Gesellschaft fiir Informatik, Oct. 2006. ISBN 978-3-
88579-188-1. (Cited on page 26.)

[Gorton and Liu 2003] I. Gorton and A. Liu. Evaluating the performance
of ejb components. IEEE Internet Computing, 7(3):18-23, 2003. ISSN
1089-7801. doi:10.1109/MIC.2003.1200296. (Cited on page 19.)

[Govindraj et al. 2006] K. Govindraj, S. Narayanan, B. Thomas, P. Nair,
and S. P. On using AOP for Application Performance Management.
In M. Chapman, A. Vasseur, and G. Kniesel, editors, Proceedings of the
AOSD 2006 Industry Track (Technical Report IAI-TR-2006-3, University of
Bonn), pages 18-30, Mar. 2006. (Cited on pages 36 and 150.)

[Graham et al. 1982] S. L. Graham, P. B. Kessler, and M. K. McKusick.
gprof: a call graph execution profiler. SIGPLAN Notes, 17(6):120-126,
1982. doi:10.1145/872726.806987. (Cited on pages 1, 5, 15, 21, 63, 67,
116, 146,171,172, and 173.)

200

http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1145/1449764.1449794
http://dx.doi.org/10.1109/CSAC.1998.738646
http://dx.doi.org/10.1109/MIC.2003.1200296
http://dx.doi.org/10.1145/872726.806987

[Gray 1986]]. Gray. Why do computers stop and what can be done
about it? In Proceedings of the Symposium on Reliability in Distributed
Software and Database Systems (SRDS-5), pages 3-12. IEEE, 1986. (Cited
on pages 25, 26, and 27.)

[Grottke et al. 2010] M. Grottke, A. Nikora, and K. Trivedi. An
empirical investigation of fault types in space mission system soft-
ware. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN’10), pages 447-456. IEEE, June 2010.
doi:10.1109/DSN.2010.5544284. (Cited on page 27.)

[Grubbs 1956] F. E. Grubbs. Procedures for detecting outlying observa-
tions in samples. Technometrics, 11:1-21, 1956. (Cited on page 32.)

[Gruschke 1998a] B. Gruschke. Integrated event management: Event
correlation using dependency graphs. In Proceedings of the 9th IFIP/IEEE
International Workshop on Distributed Systems: Operations & Management
(DSOM’98), Oct. 1998a. (Cited on page 30.)

[Gruschke 1998b] B. Gruschke. A new approach for event correlation
based on dependency graphs. In Proceedings of the 5th Workshop of the
OpenView University Association, Apr. 1998b. (Cited on pages 40 and 59.)

[Giilcti 2003] C. Giilcti. The Complete Log4j Manual: The Reliable, Fast and
Flexible Logging Framework for Java. QOS.ch, 2003. ISBN 2-9700369-0-8.
(Cited on page 35.)

[Gupta 2005] S. Gupta. Pro Apache Log4j. Apress, 2nd edition, 2005.
ISBN 978-1590594995. (Cited on pages 35 and 36.)

[Hall 1992] R.]J. Hall. Call path profiling. In Proceedings of the 14th
International Conference on Software Engineering (ICSE’92), pages 296-306.
ACM, 1992. ISBN 0-89791-504-6. doi:10.1145/143062.143147. (Cited on
pages 116, 117, and 173.)

[Hamou-Lhadj2005] A.Hamou-Lhadj. Techniques to Simplify the Analysis
of Execution Traces for Program Comprehension. PhD thesis, Ottawa-
Carleton Institute for Computer Science, School of Information Tech-
nology and Engineering (SITE), University of Ottawa, 2005. (Cited on
pages 122 and 155.)

201

http://dx.doi.org/10.1109/DSN.2010.5544284
http://dx.doi.org/10.1145/143062.143147

[Hamou-Lhadj and Lethbridge 2004] A. Hamou-Lhadjand T. C. Leth-
bridge. A survey of trace exploration tools and techniques. In Pro-
ceedings of the Conference of the Centre for Advanced Studies on Collabora-
tive Research (CASCON’04), pages 42-55. IBM Press, 2004. (Cited on
page 122.)

[Hangal and Lam 2002] S. Hangal and M. S. Lam. Tracking down
software bugs using automatic anomaly detection. In Proceedings
of the 24th International Conference on Software Engineering (ICSE’02),
pages 291-301, New York, NY, USA, 2002. ACM. ISBN 1-58113-472-X.
doi:10.1145/581339.581377. (Cited on page 132.)

[Harchol-Balter 2002] M. Harchol-Balter. Task assignment with un-
known duration. Jounal of the ACM, 49(2):260-288, 2002. ISSN 0004-
5411. doi:10.1145/506147.506154. (Cited on pages 16, 17, and 18.)

[Harchol-Balter 2008] M. Harchol-Balter. Scheduling for server farms:
Approaches and open problems. In S. Kouneyv, I. Gorton, and K. Sachs,
editors, Proceedings of the SPEC International Performance Evaluation
Workshop (SIPEW’08), volume 5119 of Lecture Notes in Computer Science
(LNCS), pages 1-3, Heidelberg, June 2008. Springer Verlag. ISBN 978-3-
540-69813-5. doi:10.1007/978-3-540-69814-2_1. (Cited on page 15.)

[Hauswirth et al. 2004] M. Hauswirth, P. F. Sweeney, A. Diwan, and
M. Hind. Vertical profiling: understanding the behavior of object-
priented applications. SIGPLAN Notes, 39(10):251-269, 2004. ISSN
0362-1340. do0i:10.1145/1035292.1028998. (Cited on pages 15 and 37.)

[Hawkins 1980] D. M. Hawkins. Identification of Outliers. Monographs
on applied probability and statistics. Chapman and Hall, London, UK,
1980. ISBN 0-412-21900-X. (Cited on page 32.)

[Herbst et al. 2014] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-Adaptive Workload Classification and Forecasting for Proactive
Resource Provisioning. Concurrency and Computation - Practice and
Experience, Special Issue with extended versions of the best papers from ICPE
2013, 2014. doi:10.1002/cpe.3224. (Cited on page 127.)

[Herzog 2000] U. Herzog. Formal methods for performance evaluation.
In E. Brinksma, H. Hermanns, and J.-P. Katoen, editors, Euro Sum-
mer School on Trends in Computer Science, volume 2090 of Lecture Notes
in Computer Science, pages 1-37. Springer, 2000. ISBN 3-540-42479-2.
doi:10.1007 /3-540-44667-2_1. (Cited on pages 13, 14, 15, and 21.)

202

http://dx.doi.org/10.1145/581339.581377
http://dx.doi.org/10.1145/506147.506154
http://dx.doi.org/10.1007/978-3-540-69814-2_1
http://dx.doi.org/10.1145/1035292.1028998
http://dx.doi.org/10.1002/cpe.3224
http://dx.doi.org/10.1007/3-540-44667-2_1

[Hocko and Kalibera 2010] M. Hocko and T. Kalibera. Reducing per-
formance non-determinism via cache-aware page allocation strategies.
In Proceedings of the Joint WOSP/SIPEW International Conference on Per-
formance Engineering (WOSP/SIPEW’10), pages 223-233. ACM, Jan.
2010. ISBN 978-1-60558-563-5. doi:10.1145/1712605.1712640. (Cited on
pages 19 and 20.)

[Hodge and Austin 2004] V. Hodge and J. Austin. A survey of outlier
detection methodologies. Artificial Intelligence Review, 22:85-126, Oct.
2004. ISSN 0269-2821. d0i:10.1023 /B:AIRE.0000045502.10941.a9. (Cited
on pages 32 and 33.)

[Hoffman 2005] B. Hoffman. Monitoring, at your service. Queue, 3(10):
34-43, 2005. ISSN 1542-7730. do0i:10.1145/1113322.1113335. (Cited on
pages 1 and 38.)

[Hovemeyer and Pugh 2004] D. Hovemeyer and W. Pugh. Finding
bugs is easy. ACM SIGPLAN Notices, 39(12):92-106, Dec. 2004. ISSN
0362-1340. doi:10.1145/1052883.1052895. (Cited on page 132.)

[Hrischuk et al. 1995] C. Hrischuk, J. Rolia, and C. Woodside. Auto-
matic generation of a software performance model using an object-
oriented prototype. In Proceedings of the 3rd International Work-
shop on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS’95), pages 399-409. IEEE, Jan. 1995.
doi:10.1109/MASCOT.1995.378659. (Cited on page 122.)

[Hrischuk et al. 1999] C. Hrischuk, C. Murray Woodside, and J. Rolia.
Trace-based load characterization for generating performance software
models. Transactions on Software Engineering, 25(1):122-135, Jan. 1999.
ISSN 0098-5589. d0i:10.1109/32.748921. (Cited on page 122.)

[Huber et al. 2012] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and
S. Kounev. 5/T/A: Meta-modeling run-time adaptation in component-
based system architectures. In Proceedings of the 9th International Con-
ference on e-Business Engineering (ICEBE’12), pages 70-77. IEEE, Sept.
2012. doi:10.1109/ICEBE.2012.21. (Cited on page 94.)

[Humble and Farley 2010]]. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases through Build, Test, and Deployment Automation.
Addison-Wesley Professional, 1st edition, 2010. ISBN 978-0321601919.
(Cited on page 36.)

203

http://dx.doi.org/10.1145/1712605.1712640
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1145/1113322.1113335
http://dx.doi.org/10.1145/1052883.1052895
http://dx.doi.org/10.1109/MASCOT.1995.378659
http://dx.doi.org/10.1109/32.748921
http://dx.doi.org/10.1109/ICEBE.2012.21

[Hutchins et al. 1994] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In Proceedings of the 16th International Conference
on Software Engineering (ICSE’94), pages 191-200. IEEE, 1994. ISBN
0-8186-5855-X. (Cited on page 157.)

[Hyndman and Khandakar 2008] R. J. Hyndman and Y. Khandakar.
Automatic time series forecasting: The forecast package for R. Journal
of Statistical Software, 27(3):1-22, July 2008. ISSN 1548-7660. (Cited on
page 135.)

[IEEE Standards Board 2002] IEEE Standards Board. IEEE Standard
Glossary of Software Engineering Terminology. New York, NY, USA, 2002.
IEEE Standard 610.12-1990, Initial release 1990, Reaffirmed 2002. (Cited
on page 35.)

[Isermann 2006] R.Isermann. Fault-Diagnosis Systems. Springer Verlag,
1st edition, 2006. ISBN 3-540-24112-4. (Cited on pages 28, 29, 30, 31, 40,
and 41.)

[I[sermann and Ballé 1997] R. Isermann and P. Ballé. Trends in the
application of model-based fault detection and diagnosis of technical
processes. Control Engineering Practice, 5(5):709-719, 1997. ISSN 0967-
0661. doi:10.1016/S0967-0661(97)00053-1. (Cited on page 27.)

[ISO/IEC 9126-1] ISO/IEC 9126-1:2001 Software engineering — Product
quality — Part 1: Quality model. ISO/IEC, June 2001. (Cited on page 9.)

[ISO/IEC 42010] Recommended Practice for Architectural Description of
Software-Intensive Systems. Also IEEE Standard 1471-2000. 1SO/IEC,
2006. (Cited on page 20.)

[Jain 1991] R. Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and Model-
ing. John Wiley & Sons, 1st edition, Apr. 1991. ISBN 0471503363. (Cited
on pages 3, 5,10, 11, 12, 15, 21, 32, 37,91, 92, 93, 113, and 159.)

[Jiang et al. 2006] G. Jiang, H. Chen, and K. Yoshihira. Modeling and
tracking of transaction flow dynamics for fault detection in complex
systems. IEEE Transactions on Dependable and Secure Computing, 3:312—
326, 2006. ISSN 1545-5971. doi:10.1109/TDSC.2006.52. (Cited on
pages 58, 141, and 142.)

204

http://dx.doi.org/10.1016/S0967-0661(97)00053-1
http://dx.doi.org/10.1109/TDSC.2006.52

[Jones and Harrold 2005] J. A. Jones and M. J. Harrold. Empirical
evaluation of the tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE’05), pages 273-282. ACM, 2005. ISBN 1-
58113-993-4. d0i:10.1145/1101908.1101949. (Cited on pages 28 and 132.)

[Jones et al. 2002] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization
of test information to assist fault localization. In Proceedings of the
24th International Conference on Software Engineering (ICSE’02), pages
467-477. ACM, 2002. ISBN 1-58113-472-X. doi:10.1145/581339.581397.
(Cited on page 28.)

[Jung et al. 2004] H.-W. Jung, S.-G. Kim, and C.-S. Chung. Measuring
Software Product Quality: A Survey of ISO/IEC 9126. IEEE Software, 21
(5):88-92, 2004. ISSN 0740-7459. d0i:10.1109/MS.2004.1331309. (Cited
on page9.)

[Kalibera 2006] T. Kalibera. Performance in Software Development Cycle:
Regression Benchmarking. PhD thesis, Charles University in Prague,
Faculty of Mathematics and Physics, 2006. (Cited on pages 1, 120,
and 155.)

[Kalibera et al. 2005] T. Kalibera, L. Bulej, and P. Tuma. Auto-
mated detection of performance regressions: The mono experience.
In Proceedings of the 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS’05), pages 183-190. IEEE, 2005. ISBN 0-7695-2458-3.
doi:10.1109/MASCOT.2005.18. (Cited on page 129.)

[Kao et al. 1993] W.-I. Kao, R. Iyer, and D. Tang. FINE: A fault injection
and monitoring environment for tracing the unix system behavior
under faults. Transactions on Software Engineering, 19(11):1105-1118,
1993. ISSN 0098-5589. doi:10.1109/32.256857. (Cited on pages 32
and 40.)

[Kapova et al. 2010] L. Kapova, B. Buhnova, A. Martens, J. Happe,
and R. H. Reussner. State dependence in performance evalua-
tion of component-based software systems. In Proceedings of the
Joint WOSP/SIPEW International Conference on Performance Engineering
(WOSP/SIPEW’10), pages 37-48. ACM, Jan. 2010. ISBN 978-1-60558-
563-5. (Cited on pages 19, 20, and 154.)

205

http://dx.doi.org/10.1145/1101908.1101949
http://dx.doi.org/10.1145/581339.581397
http://dx.doi.org/10.1109/MS.2004.1331309
http://dx.doi.org/10.1109/MASCOT.2005.18
http://dx.doi.org/10.1109/32.256857

[Katzela and Schwartz 1995] 1. Katzela and M. Schwartz. Schemes
for fault identification in communication networks. IEEE/ACM
Transactions on Networking, 3(6):753-764, Dec 1995. ISSN 1063-6692.
d0i:10.1109/90.477721. (Cited on pages 28 and 29.)

[Kelly 2005] T. Kelly. Detecting performance anomalies in global appli-
cations. In Proceedings of the 2nd Conference on Real, Large Distributed
Systems (WORLDS’05). USENIX Association, 2005. (Cited on pages 119,
120, and 124.)

[Kernighan and Pike 1999] B. W. Kernighan and R. Pike. The Practice of
Programming. Addison-Wesley Longman, 1999. ISBN 978-0201615869.
(Cited on page 35.)

[Kiciman 2005] E. Kiciman. Using Statistical Monitoring to Detect Failures
in Internet Services. PhD thesis, Stanford University, Sept. 2005. (Cited
on pages 28, 44, 138, and 139.)

[Kiciman and Fox 2005] E. Kiciman and A. Fox. Detecting
application-level failures in component-based internet services.
IEEE Transactions on Neural Networks, 16(5):1027-1041, Sept. 2005.
doi:10.1109/TNN.2005.853411. (Cited on pages 40, 122, and 139.)

[King 2011] R. King. The top 10 programming languages.
IEEE Spectrum, 48(10):84-84, Oct. 2011. ISSN 0018-9235.
doi:10.1109/MSPEC.2011.6027266. (Cited on page 153.)

[Knuth 1989] D. E. Knuth. The errors of TgX. Software—Practice and
Experience, 19(7):607-685, July 1989. (Cited on page 26.)

[Kogon and Williams 1998] S. M. Kogon and D. B. Williams. Charac-
teristic function based estimation of stable distribution parameters. In
R.]J. Adler, R. E. Feldman, and M. S. Taqqu, editors, A Practical Guide
to Heavy Tails: Statistical Techniques and Applications, pages 311-335.
Birkhauser Boston Inc., 1998. ISBN 0-8176-3951-9. (Cited on page 16.)

[Koziolek 2008] H. Koziolek. Parameter Dependencies for Reusable Per-
formance Specifications of Software Components. PhD thesis, Carl von
Ossietzky University of Oldenburg, Department of Computing Sci-
ence, 2008. URL http://sdgweb.ipd.uka.de/publications/
pdfs/koziolek2008g.pdf. Available online, Last access: 2014-04-
12. (Cited on page 129.)

206

http://dx.doi.org/10.1109/90.477721
http://dx.doi.org/10.1109/TNN.2005.853411
http://dx.doi.org/10.1109/MSPEC.2011.6027266
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2008g.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2008g.pdf

[Koziolek et al. 2008] H. Koziolek, S. Becker, and J. Happe. Predicting
the Performance of Component-based Software Architectures with
different Usage Profiles. In Proceedings of the 3rd International Conference
on the Quality of Software Architectures (QoSA’07), volume 4880 of LNCS,
pages 145-163. Springer, 2008. do0i:10.1007/978-3-540-77619-2. (Cited
on pages 13, 21, 129, and 154.)

[Kreinovich and Kosheleva 2012] V. Kreinovich and O. Kosheleva. How
to define mean, variance, etc., for heavy-tailed distributions: a fractal-
motivated approach. Technical Report UTEP-CS-12-32, University of
Texas at El Paso, Departmental Technical Reports (CS), 2012. URL
http://digitalcommons.utep.edu/cs_techrep/710. (Cited
on pages 152 and 154.)

[Kriegel et al. 2009] H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek.
LoOP: local outlier probabilities. In D. W.-L. Cheung, L-Y. Song, W. W.
Chu, X. Hu, and J. J. Lin, editors, Proceedings of the 18th ACM Conference
on Information and Knowledge Management (CIKM'09), pages 1649-1652.
ACM, Nov. 2009. doi:10.1145/1645953.1646195. (Cited on page 55.)

[Kruegel and Vigna 2003] C. Kruegel and G. Vigna. Anomaly detection
of web-based attacks. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS’03), pages 251-261. ACM,
2003. ISBN 1-58113-738-9. doi:10.1145/948109.948144. (Cited on

page 31.)

[Kumar 1995] S. Kumar. Classification and detection of computer intrusions.
PhD thesis, Purdue University, 1995. (Cited on pages 30 and 31.)

[Kiing and Krause 2007] P. Kiing and H. Krause. Why do software
applications fail and what can software engineers do about it? a case
study. In Proceedings of the IRMA Conference on Managing Worldwide
Operations and Communications with Information Technology, pages 319—
322. IGI Publishing, 2007. ISBN 978-1-59904-929-8. (Cited on page 26.)

[Lai and Wang 1995] M.-Y. Lai and S. Y. Wang. Software fault insertion
testing for fault tolerance. In Lyu [1995], chapter 13, pages 315-333.
ISBN 0471950688. (Cited on page 26.)

[Lamport 1978] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM, 21(7):558-565, 1978.
ISSN 0001-0782. doi:10.1145/359545.359563. (Cited on page 37.)

207

http://dx.doi.org/10.1007/978-3-540-77619-2
http://digitalcommons.utep.edu/cs_techrep/710
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.1145/948109.948144
http://dx.doi.org/10.1145/359545.359563

[LaPadula 1999] L.]J. LaPadula. State of the art in anomaly detection
and reaction. Technical Report MP 99B0000020, MITRE, 1999. (Cited
on page 30.)

[Laprie et al. 1995]].-C. Laprie,]J. Arlat, C. Beounes, and K. Kanoun.
Architectural issues in software fault tolerance. In Lyu [1995], chapter 3,
pages 47-80. ISBN 0471950688. (Cited on page 24.)

[Lashari and Srinivas 2003] G. Lashari and S. Srinivas. Charac-
terizing java application performance. Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’03), 2003.
doi:10.1109/IPDPS.2003.1213265. (Cited on pages 9, 15, 19, and 20.)

[Lee and Anderson 1990] P. A. Lee and T. Anderson. Fault Tolerance
: Principles and Practice. Dependable computing and fault-tolerant
systems. Springer-Verlag, 2nd edition, 1990. (Cited on page 29.)

[Liand Zhou 2005] Z.Liand Y. Zhou. Pr-miner: automatically extracting
implicit programming rules and detecting violations in large software
code. In Proceedings of the 10th European Software Engineering Conference
and the Symposium on Foundations of Software Engineering (ESEC/FSE’05),
pages 306-315. ACM, 2005. doi:10.1145/1081706.1081755. (Cited on
page 132.)

[Littlewood and Strigini 2000] B. Littlewood and L. Strigini. Software
reliability and dependability: a roadmap. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE’00), pages 175-188.
ACM, 2000. ISBN 1-58113-253-0. doi:10.1145/336512.336551. (Cited on
page 24.)

[Liu et al. 2005] Y. Liu, A. Fekete, and I. Gorton. Design-level
performance prediction of component-based applications. Transac-
tions on Software Engineering, 31(11):928-941, 2005. ISSN 0098-5589.
doi:10.1109/TSE.2005.127. (Cited on pages 14 and 19.)

[Lyu 1995] M. R. Lyu, editor. Software Fault Tolerance, 1995. John Wiley &
Sons, Inc. ISBN 0471950688. (Cited on pages 207 and 208.)

[Lyu 2007] M. R. Lyu. Software reliability engineering: A roadmap.
In Proceedings of the International Conference on Software Engineering
(ICSE’07), Future of Software Engineering (FOSE’07), pages 153-170. IEEE,
2007. ISBN 0-7695-2829-5. doi:10.1109/FOSE.2007.24. (Cited on pages 2
and 24.)

208

http://dx.doi.org/10.1109/IPDPS.2003.1213265
http://dx.doi.org/10.1145/1081706.1081755
http://dx.doi.org/10.1145/336512.336551
http://dx.doi.org/10.1109/TSE.2005.127
http://dx.doi.org/10.1109/FOSE.2007.24

[Mansouri-Samani 1995] M. Mansouri-Samani. Monitoring of Distributed
Systems. PhD thesis, University of London, Imperial College of Science,
Technology and Medicine, Department of Computing, 1995. (Cited on
page 37.)

[Marick 1990] B. Marick. A survey of software fault surveys. Techni-
cal report, Department of Computer Science. University of Illinois at
Urbana-Champaign, Dec. 1990. (Cited on page 26.)

[Marquard and Gotz 2008] U. Marquard and C. Gotz. Sap standard
application benchmarks - it benchmarks with a business focus. In
S. Kouneyv, I. Gorton, and K. Sachs, editors, Proceedings of the SPEC
International Performance Evaluation Workshop (SIPEW’08), volume 5119
of Lecture Notes in Computer Science (LNCS), pages 4-8, Heidelberg,
June 2008. Springer Verlag. ISBN 978-3-540-69813-5. d0i:10.1007 /978-
3-540-69814-2_2. (Cited on page 13.)

[Marwede et al. 2009] N. Marwede, M. Rohr, A. van Hoorn, and
W. Hasselbring. Automatic failure diagnosis in distributed large-
scale software systems based on timing behavior anomaly correla-
tion. In A. Winter, R. Ferenc, and J. Knodel, editors, Proceedings of
the 13th European Conference on Software Maintenance and Reengineering
(CSMR’09), pages 47-57. IEEE, Mar. 2009. ISBN 978-0-7695-3589-0.
doi:10.1109/CSMR.2009.15. (Cited on pages 2, 7, 28, and 58.)

[Marwede 2008] N.S. Marwede. Automatic failure diagnosis based on
timing behavior anomaly correlation in distributed Java Web applica-
tions, Aug. 2008. Master’s thesis (Diplomarbeit), Carl von Ossietzky
University of Oldenburg, Department of Computing Science, Software
Engineering Group. (Cited on page 7.)

[Maxion and Tan 2000] R. Maxion and K. Tan. Benchmarking anomaly-
based detection systems. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’00), pages 623—-630. IEEE, 2000.
doi:10.1109/ICDSN.2000.857599. (Cited on page 143.)

[Maxion 1990] R. A. Maxion. Anomaly detection for diagnosis. In
B. Randell, editor, Proceedings of the 20th International Symposium on
Fault-Tolerant Computing (FTCS’90), pages 20-27. IEEE, June 1990. ISBN
0-8186-2051-X. doi:10.1109/FTCS.1990.89362. (Cited on pages 22, 30,
58,124, and 131.)

209

http://dx.doi.org/10.1007/978-3-540-69814-2_2
http://dx.doi.org/10.1007/978-3-540-69814-2_2
http://dx.doi.org/10.1109/CSMR.2009.15
http://dx.doi.org/10.1109/ICDSN.2000.857599
http://dx.doi.org/10.1109/FTCS.1990.89362

[Meier 2007] R. Meier. Techniques for minimizing the performance
impact of java garbage collection across your system landscape. SAP
Professional Journal, 9(3), May 2007. (Cited on page 22.)

[Menascé and Almeida 2001] D. A. Menascé and V. A. Almeida. Capacity
Planning for Web Services: Metrics, Models, and Methods. Prentice Hall,
Oct. 2001. ISBN 0-13-065903-7. (Cited on pages 2, 4, 5, 12, 13,16, 17, 21,
91,128, and 145.)

[Menascé et al. 1999] D. A. Menascé, V. A. F. Almeida, R. Fonseca,
and M. A. Mendes. A methodology for workload characterization
of e-commerce sites. In Proceedings of the Conference on Electronic
Commerce (EC’99), pages 119-128. ACM, 1999. ISBN 1-58113-176-3.
doi:10.1145/336992.337024. (Cited on pages 1 and 38.)

[Mielke 2006] A. Mielke. Elements for response-time statistics in ERP
transaction systems. Performance Evaluation, 63(7):635-653, July 2006.
doi:j.peva.2005.05.006. (Cited on pages 2, 15, 16, 18, and 40.)

[Mitrani 1982] 1. Mitrani. Simulation techniques for discrete event systems.
Cambridge University Press, 1982. ISBN 0521238854. (Cited on page 3.)

[Montgomery and Runger 2003] D. C. Montgomery and G. C. Runger.
Applied Statistics and Probability for Engineers. John Wiley & Sons, Inc.,
3rd edition, 2003. ISBN 0-471-20454-4. (Cited on page 35.)

[Mos and Murphy 2004] A. Mos and J. Murphy. Compas: Adaptive
performance monitoring of component-based systems. In Proceedings
of the 2nd ICSE Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS’04), pages 35-40. IEEE, May 2004. ISBN 0-86341-430-3.
do0i:10.1049/ic:20040348. (Cited on page 138.)

[Munoz-Garcia et al. 1990] J. Munoz-Garcia, J. L. Moreno-Rebollo, and
A. Pascual-Acosta. Outliers: A formal approach. International Statistical
Review / Revue Internationale de Statistique, 58(3):215-226, 1990. ISSN
03067734. (Cited on page 32.)

[Musa 2004] J. D. Musa. Software Reliability Engineering: More Reliable
Software Faster and Cheaper. Author House, 2nd edition, 2004. ISBN
978-1418493882. (Cited on pages 24 and 25.)

[Musa et al. 1987] J. D. Musa, A. Iannino, and K. Okumoto. Software
Reliability: Measurement, Prediction, Application. McGraw-Hill, New

210

http://dx.doi.org/10.1145/336992.337024
http://dx.doi.org/j.peva.2005.05.006
http://dx.doi.org/10.1049/ic:20040348

York, 1st edition, 1987. ISBN 0-07-044093-X. (Cited on pages 10, 24, 25,
and 29.)

[Nagappan et al. 2006] N. Nagappan, T. Ball, and A. Zeller. Mining
metrics to predict component failures. In Proceedings of the 28th Inter-
national Conference on Software Engineering (ICSE’06), pages 452—461.
ACM, 2006. ISBN 1-59593-375-1. d0i:10.1145/1134285.1134349. (Cited
on page 27.)

[Nethercote and Seward 2007] N. Nethercote and J. Seward. Valgrind:
a framework for heavyweight dynamic binary instrumentation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI'07), pages 89-100. ACM, 2007. ISBN
978-1-59593-633-2. do0i:10.1145/1250734.1250746. (Cited on page 174.)

[Network Reliability Council 1993] Network Reliability Council. Net-
work reliability: A report to the nation, June 1993. (Cited on page 26.)

[Nou et al. 2008] R. Nou, S. Kouney, F. Julia, and J. Torres. Autonomic
QoS control in enterprise Grid environments using online simulation.
Journal of Systems and Software, 2008. (Cited on page 5.)

[Object Management Group (OMG) 2007] Object Management Group
(OMG). Unified Modeling Language: Superstructure Version 2.1.1,
Feb. 2007. (Cited on page 43.)

[Oracle 2013] Oracle. Java hotspot garbage collection: The
Garbage-First garbage collector, Oct. 2013. URL http:
//www.oracle.com/technetwork/java/javase/tech/
gl-intro-jsp-135488.html. Available online, Last Access:
2014-05-08. (Cited on page 22.)

[Oracle 2014] Oracle. Java SE 8 - Java platform stnadrd edition tools
reference, Mar. 2014. URL http://docs.oracle.com/javase/8/

docs/technotes/tools/windows/java.html. Available online,
Last Access: 2014-06-07. (Cited on page 23.)

[Ostrand and Weyuker 2002] T.J. Ostrand and E. J. Weyuker. The dis-
tribution of faults in a large industrial software system. In Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA02), pages 55-64. ACM, 2002. ISBN 1-58113-562-9.
doi:10.1145/566172.566181. (Cited on page 27.)

211

http://dx.doi.org/10.1145/1134285.1134349
http://dx.doi.org/10.1145/1250734.1250746
http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html
http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html
http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
http://dx.doi.org/10.1145/566172.566181

[Patcha and Park 2007] A. Patcha and J.-M. Park. An overview of
anomaly detection techniques: Existing solutions and latest technologi-
cal trends. Computer Networks, 51(12):3448-3470, 2007. ISSN 1389-1286.
d0i:10.1016/j.comnet.2007.02.001. (Cited on pages 30 and 32.)

[Patterson and Hennessy 2008] D. A. Patterson and J. L. Hennessy. Com-
puter Organization and Design: The Hardware/Software Interface. Morgan
Kaufmann, 4th edition, 2008. ISBN 978-0123744937. (Cited on page 10.)

[Paxson 1994] V. Paxson. Empirically-derived analytic models of wide-
area tcp connections. IEEE/ACM Transactions on Networking, 2(4), 1994.
(Cited on pages 16 and 17.)

[Pertet and Narasimhan 2005] S. Pertet and P. Narasimhan. Causes
of failures in web applications. Technical Report CMU-PDL-05-109,

School of Computer science & Electrical and Computer Engineering,
Dec. 2005. (Cited on page 28.)

[Pitakrat2013] T. Pitakrat. Hora: Online failure prediction framework for
component-based software systems based on kieker and palladio. In
Proceedings of the Symposium on Software Performance: Joint Kieker/Palladio
Days 2013, pages 39-48. CEUR-WS.org, Nov. 2013. (Cited on page 138.)

[Pitakrat et al. 2014] T. Pitakrat, A. van Hoorn, and L. Grunske. In-
creasing dependability of component-based software systems by on-
line failure prediction. In Proceedings of the Tenth European Confer-
ence on Dependable Computing (EDCC’14), pages 66—69. IEEE, 2014.
doi:10.1109/EDCC.2014.28. (Cited on pages 138 and 152.)

[Ploski et al. 2007] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Has-
selbring. Research Issues in Software Fault Categorization. SIG-
SOFT Software Engineering Notes, 32(6):1-8, Nov. 2007. ISSN 0163-5948.
doi:10.1145/1317471.1317478. (Cited on pages 7 and 26.)

[Printezis 2004] T. Printezis. Garbage collection in the java hotspot
virtual machine, Sept. 2004. URL http://www.devx.com/Java/
Article/21977/1954?pf=true. Available online, Last access:
2014-05-03. (Cited on page 22.)

[Psounis et al. 2005] K. Psounis, P. Molinero-Ferndndez, B. Prabhakar,
and F. Papadopoulos. Systems with multiple servers under heavy-
tailed workloads. Performance Evaluation, 62(1-4):456—474, 2005. ISSN
0166-5316. doi:10.1016/j.peva.2005.07.030. (Cited on page 18.)

212

http://dx.doi.org/10.1016/j.comnet.2007.02.001
http://dx.doi.org/10.1109/EDCC.2014.28
http://dx.doi.org/10.1145/1317471.1317478
http://www.devx.com/Java/Article/21977/1954?pf=true
http://www.devx.com/Java/Article/21977/1954?pf=true
http://dx.doi.org/10.1016/j.peva.2005.07.030

[Reps et al. 1997] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with applications to the
year 2000 problem. In Proceedings of the 6th European Conference on
Software Engineering (ESEC’'97), pages 432—449. Springer, 1997. ISBN
3-540-63531-9. doi:10.1145/267895.267925. (Cited on pages 28 and 132.)

[Reynolds et al. 2006a] P. Reynolds, C. Killian, J. L. Wiener,]. C. Mogul,
M. A. Shah, and A. Vahdat. PIP: detecting the unexpected in distributed
systems. In Proceedings of the 3rd Symposium on Networked Systems
Design & Implementation (NSDI'06), Berkeley, CA, USA, 2006a. USENIX.
(Cited on page 144.)

[Reynolds et al. 2006b] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K.
Aguilera, and A. Vahdat. WAP5: black-box performance debugging
for wide-area systems. In Proceedings of the 15th International Conference
on World Wide Web (WWW'06), pages 347-356. ACM, 2006b. ISBN
1-59593-323-9. d0i:10.1145/1135777.1135830. (Cited on page 122.)

[Rohr 2007] M. Rohr. Timing behavior anomaly detection for
automatic failure detection and diagnosis, Apr. 2007. URL
http://d3s.mff.cuni.cz/research/seminar/download/
2007-04-10-Rohr-TimingAnomaly.pdf. Available online, Last
access: 2014-04-03. Presentation at Charles Univerity Prague. (Cited
on page 1.)

[Rohr et al. 2007] M. Rohr, S. Giesecke, and W. Hasselbring. Timing
Behavior Anomaly Detection in Enterprise Information Systems. In
J. Cardoso, J. Cordeiro, and J. Filipe, editors, Proceedings of the 9th
International Conference on Enterprise Information Systems (ICEIS’07),
volume DISI, pages 494-497. INSTICC Press, June 2007. ISBN 978-972-
8865-88-7. (Cited on page 7.)

[Rohr et al. 2008a] M. Rohr, A. van Hoorn, S. Giesecke, J. Matevska,
and W. Hasselbring. Trace-context sensitive performance models from
monitoring data of software systems. In C. Lebsack, editor, Proceedings
of the Workshop on Tools Infrastructures and Methodologies for the Evaluation
of Research Systems (TIMERS’08) at IEEE International Symposium on
Performance Analysis of Systems and Software 2008, pages 37-44, Apr.
2008a. (Cited on pages 6, 18, 19, and 81.)

[Rohr et al. 2008b] M. Rohr, A. van Hoorn, S. Giesecke, J. Matevska,
W. Hasselbring, and S. Alekseev. Trace-context sensitive performance

213

http://dx.doi.org/10.1145/267895.267925
http://dx.doi.org/10.1145/1135777.1135830
http://d3s.mff.cuni.cz/research/seminar/download/2007-04-10-Rohr-TimingAnomaly.pdf
http://d3s.mff.cuni.cz/research/seminar/download/2007-04-10-Rohr-TimingAnomaly.pdf

profiling for enterprise software applications. In S. Kounev, I. Gorton,
and K. Sachs, editors, Proceedings of the SPEC International Performance
Evaluation Workshop (SIPEW’08), volume 5119 of Lecture Notes in Com-
puter Science (LNCS), pages 283-302, Heidelberg, June 2008b. Springer
Verlag. ISBN 978-3-540-69813-5. doi:10.1007 /978-3-540-69814-2_18.
(Cited on page 6.)

[Rohr et al. 2008c] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer,
L. Stoever, S. Giesecke, and W. Hasselbring. Kieker: Continuous mon-
itoring and on demand visualization of Java software behavior. In
Proceedings of the IASTED International Conference on Software Engineer-
ing 2008, pages 80-85. ACTA Press, Feb. 2008c. ISBN 978-0-88986-715-4.
(Cited on pages 4, 7, 46, and 47.)

[Rohr et al. 2010] M. Rohr, A. van Hoorn, W. Hasselbring, M. Liibcke,
and S. Alekseev. Workload-intensity-sensitive timing behavior anal-
ysis for distributed multi-user software systems. In Proceedings of the
Joint WOSP/SIPEW International Conference on Performance Engineering
(WOSP/SIPEW’10), pages 87-92. ACM, Jan. 2010. ISBN 978-1-60558-
563-5. doi:10.1145/1712605.1712621. (Cited on pages 7, 10, 49, and 141.)

[Rolia and Sevcik 1995] J. Rolia and K. Sevcik. The method of layers.
IEEE Transactions on Software Engineering, 21(8):689-700, 1995. ISSN
0098-5589. d0i:10.1109/32.403785. (Cited on page 14.)

[Rygielski and Tomczak 2011] P. Rygielski and J. M. Tomczak. Context
change detection for resource allocation in service-oriented systems.
In Proceedings of the 15th International Conference on Knowledge-based
and Intelligent Information and Engineering Systems (KES'11) - Volume
Part 11, pages 591-600, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN
978-3-642-23862-8. (Cited on pages 131 and 132.)

[Sabetta and Koziolek 2008] A. Sabetta and H. Koziolek. Measuring
performance metrics: Techniques and tools. In I. Eusgeld, E. Freiling,
and R. Reussner, editors, Dependability Metrics, volume 4909 of Lec-
ture Notes in Computer Science (LNCS), pages 226-232. Springer, 2008.
ISBN 978-3-540-68946-1. d0i:10.1007/978-3-540-68947-8_21. (Cited on
pages 9, 12,13, and 15.)

[Salfner and Malek 2005] F. Salfner and M. Malek. Proactive fault
handling for system availability enhancement. In Proceedings of the

214

http://dx.doi.org/10.1007/978-3-540-69814-2_18
http://dx.doi.org/10.1145/1712605.1712621
http://dx.doi.org/10.1109/32.403785
http://dx.doi.org/10.1007/978-3-540-68947-8_21

DPDNS Workshop in conjunction with IPDPS 2005, Denver, Colorado,
2005. IEEE. (Cited on page 152.)

[Sambasivan et al. 2011] R. R. Sambasivan, A. X. Zheng, M. De Rosa,
E. Krevat, S. Whitman, M. Stroucken, W. Wang, L. Xu, and G. R. Ganger.
Diagnosing performance changes by comparing request flows. In Pro-
ceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation (NSDI'11), Berkeley, CA, USA, 2011. USENIX Associa-
tion. (Cited on pages 15, 20, 37, 40, 44, 120, and 121.)

[Scherr 1965] A. L. Scherr. An analysis of time-shared computer systems.
Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1965. (Cited on page 21.)

[Schroeder and Gibson 2006] B. Schroeder and G. A. Gibson. A large-
scale study of failures in high-performance computing systems. In
Proceedings of the International Conference on Dependable Systems and
Networks (DSN’06), pages 249-258. IEEE, 2006. ISBN 0-7695-2607-1.
doi:10.1109/DSN.2006.5. (Cited on page 26.)

[Schwenkenberg 2007] P. Schwenkenberg. Auswirkung von Program-
mierfehlern auf Softwarezeitverhalten, Aug. 2007. Master’s thesis
(Diplomarbeit), Carl von Ossietzky University of Oldenburg, Depart-
ment of Computing Science, Software Engineering Group. (Cited on
pages 7 and 62.)

[Shewhart 1931] W. A. Shewhart. Economic Control of Quality of Manufac-
tured Product. D. Van Nostrand Company, 1931. (Cited on pages 3, 29,
33, and 140.)

[Sigelman et al. 2010] B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and A. Shanbhag. Dap-
pet, a large-scale distributed systems tracing infrastructure, 2010. Tech-
nical Report. (Cited on pages 36 and 37.)

[Silva 2008] L. M. Silva. Comparing error detection techniques for web
applications: An experimental study. In Proceedings of the 7th Inter-
national Symposium on Network Computing and Applications (NCA'08),
pages 144-151. IEEE, July 2008. doi:10.1109/NCA.2008.57. (Cited on
page 157.)

[Silverman 1986] B. W. Silverman. Density Estimation for Statistics and
Data Analysis. Chapman and Hall, New York, 1986. (Cited on page 55.)

215

http://dx.doi.org/10.1109/DSN.2006.5
http://dx.doi.org/10.1109/NCA.2008.57

[Simon 2006] D. Simon. Optimal State Estimation: Kalman, H Infinity,
and Nonlinear Approaches. Wiley & Sons, 1st edition, Aug. 2006. ISBN
0471708585. (Cited on page 18.)

[Smith and Williams 2001a] C. U. Smith and L. G. Williams. Software
performance antipatterns; common performance problems and their
solutions. In Proceedings of the 27th International Computer Measurement
Group Conference (CMG’01), pages 797-806, 2001a. (Cited on pages 12,
13,20, and 22.)

[Smith and Williams 2001b] C. U. Smith and L. G. Williams. Perfor-
mance Solutions: A practical guide to creating responsive, scalable software.
Addision-Wesley, 2001b. ISBN 978-09291722291. (Cited on pages 1, 5,
9,10,12, 13, 15, 20, and 36.)

[Smith and Williams 2002] C. U. Smith and L. G. Williams. New software
performance antipatterns: More ways to shoot yourself in the foot.
In Proceedings of the 28th International Computer Measurement Group
Conference (CMG’02), pages 667-674. Computer Measurement Group,
2002. (Cited on page 20.)

[Sommer 2007] N. Sommer. Evaluation of control flow traces in software
applications for intrusion detection, 2007. 4 month undergraduate
thesis, Carl von Ossietzky University of Oldenburg, Department of
Computing Science, Software Engineering Group. (Cited on page 7.)

[Spivey 2004] J. M. Spivey. Fast, accurate call graph profiling. Soft-
ware — Practice & Experience, 34(3):249-264, 2004. ISSN 0038-0644.
doi:10.1002/spe.562. (Cited on page 15.)

[Steinder and Sethi 2001] M. Steinder and A. S. Sethi. The present
and future of event correlation: A need for end-to-end service fault
localization. In Proceedings of the IIIS SCI World Multi-Conference on
Systemics, Cybernetics and Informatics 2001, pages 124-129, 2001. (Cited
on page 40.)

[Steinder and Sethi 2004] M. Steinder and A. S. Sethi. A survey of fault
localization techniques in computer networks. Science of Computer
Programming, 53(2):165-194, Nov. 2004. doi:10.1016/j.scico.2004.01.010.
(Cited on pages 28, 29, 30, and 31.)

216

http://dx.doi.org/10.1002/spe.562
http://dx.doi.org/10.1016/j.scico.2004.01.010

[Stewart and Shen 2005] C. Stewart and K. Shen. Performance modeling
and system management for multi-component online services. In Pro-
ceedings of the Symposium on Networked Systems Design & Implementation
(NSDI'05), pages 71-84. USENIX, 2005. (Cited on pages 9, 13, 15, 21,
and 22.)

[Stransky 2006] F. Stransky. Automatisierte Lokalisierung von Fehlerur-
sachen bei Performance-Problemen in J2EE Anwendungen, 2006. Uni-
versity of Oldenburg, Software Engineering Group, Department of
Computing Science, (4 month undergraduate thesis). (Cited on page 7.)

[Sun Microsystems 2006] Sun Microsystems. Memory manage-
ment in the java hotspot virtual machine, Apr. 2006. @ URL
http://java.sun.com/javase/technologies/hotspot/
gc/memorymanagement_whitepaper.pdf. Available online, Last
access: 2008-08-29. (Cited on page 22.)

[Sun Microsystems, Inc. 1994-2006] Sun Microsystems, Inc. Java
BluePrints: Guidelines, patterns, and code for end-to-end applications.
http:/ /java.sun.com/reference /blueprints/, 1994-2006. Available on-
line, Last access: 2007-10-10. (Cited on page 80.)

[Tan et al. 2006] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to
Data Mining. Addison-Wesley, 2006. (Cited on page 32.)

[Tan et al. 2010] Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly
prediction for large-scale hosting infrastructures. In Proceedings of
the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC’10), pages 173-182. ACM, 2010. ISBN 978-1-60558-
888-9. doi:10.1145/1835698.1835741. (Cited on pages 130 and 154.)

[Thereska and Ganger 2008] E. Thereska and G. R. Ganger. Iron-
model: robust performance models in the wild. SIGMETRICS Per-
formance Evaluation Review, 36(1):253-264, 2008. ISSN 0163-5999.
doi:10.1145/1384529.1375486. (Cited on page 14.)

[Thereska et al. 2006] E. Thereska, B. Salmon, J. Strunk, M. Wachs,
M. Abd-El-Malek, J. Lopez, and G. R. Ganger. Stardust: tracking
activity in a distributed storage system. In Proceedings of the joint
International Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS’06), pages 3—-14. ACM, 2006. ISBN 1-59593-319-0.
doi:10.1145/1140277.1140280. (Cited on pages 36, 37, 117, and 122.)

217

http://java.sun.com/javase/technologies/hotspot/gc/memorymanagement_whitepaper.pdf
http://java.sun.com/javase/technologies/hotspot/gc/memorymanagement_whitepaper.pdf
http://dx.doi.org/10.1145/1835698.1835741
http://dx.doi.org/10.1145/1384529.1375486
http://dx.doi.org/10.1145/1140277.1140280

[Tiffany 2002] M. Tiffany. A survey of event correlation techniques and
related topics, 2002. URL http://nsl.tiffman.com/netman/
netman.pdf. Available online, Last access: 2013-01-17. (Cited on
pages 30 and 31.)

[Vallamsetty et al. 2003] U. Vallamsetty, K. Kant, and P. Mohapatra.
Characterization of e-commerce traffic. Electronic Commerce Research, 3:
167-192, 2003. ISSN 1389-5753. do0i:10.1023/A:1021585529079. (Cited
on page 18.)

[van Hoorn 2007] A. van Hoorn. Workload-sensitive timing behavior
anomaly detection in large software systems, Sept. 2007. Master’s
thesis (Diplomarbeit), Carl von Ossietzky University of Oldenburg, De-
partment of Computing Science, Software Engineering Group. (Cited
on pages 2,7, 10, 15, 16, 18, 37, 80, and 156.)

[van Hoorn 2014] A. van Hoorn. Model-Driven Online Capacity Man-
agement for Component-Based Software Systems. Phd thesis, Faculty of
Engineering, Kiel University, Kiel, Germany, Oct. 2014. URL http:
//eprints.uni-kiel.de/25969/. (Cited on pages 1 and 94.)

[van Hoorn et al. 2008] A. van Hoorn, M. Rohr, and W. Hasselbring. Gen-
erating probabilistic and intensity-varying workload for web-based
software systems. In S. Kounev, I. Gorton, and K. Sachs, editors,
Proceedings of the SPEC International Performance Evaluation Workshop
(SIPEW’08), volume 5119 of Lecture Notes in Computer Science (LNCS),
pages 124-143, Heidelberg, June 2008. SPEC, Springer Verlag. ISBN 978-
3-540-69813-5. d0i:10.1007 /978-3-540-69814-2_9. (Cited on pages 62,
80, and 105.)

[van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, S. Frey, and D. Kieselhorst. Continuous monitoring of soft-
ware services: Design and application of the Kieker framework. Techni-
cal Report TR-0921, Kiel University, Department of Computer Science,
Nov. 2009. (Cited on pages 4, 15, 36, 37, 46, 69, 80, 121, 150, and 153.)

[van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring.
Kieker: A framework for application performance monitoring and
dynamic software analysis. In Proceedings of the 3rd joint ACM/SPEC
International Conference on Performance Engineering (ICPE’12), pages
247-248. ACM, Apr. 2012. doi:10.1145/2188286.2188326. (Cited on
pages 150 and 153.)

218

http://ns1.tiffman.com/netman/netman.pdf
http://ns1.tiffman.com/netman/netman.pdf
http://dx.doi.org/10.1023/A:1021585529079
http://eprints.uni-kiel.de/25969/
http://eprints.uni-kiel.de/25969/
http://dx.doi.org/10.1007/978-3-540-69814-2_9
http://dx.doi.org/10.1145/2188286.2188326

[Viswanathan and Liang 2000] D. Viswanathan and S. Liang. Java virtual
machine profiler interface. IBM Systems Journal, 29(1):82-95, Feb. 2000.
(Cited on page 15.)

[Waheed and Rover 1995] A. Waheed and D. Rover. A structured ap-
proach to instrumentation system development and evaluation. In Pro-
ceedings of the IEEE/ACM Conference on Supercomputing (SC’95), page 30,
1995. d0i:10.1109/SUPERC.1995.242930. (Cited on page 35.)

[Waller 2014] J. Waller. Performance Benchmarking of Application Moni-
toring Frameworks. Number 2014 /5 in Kiel Computer Science Series.
Department of Computer Science, Kiel University, Dec. 2014. ISBN 978-
3-7357-7853-6. Dissertation, Faculty of Engineering, Kiel University.
(Cited on page 153.)

[Wang et al. 2014] T. Wang,]. Wei, W. Zhang, H. Zhong, and T. Huang.
Workload-aware anomaly detection for web applications. Journal of Sys-
tems and Software, 89:19-32, 2014. d0i:10.1016/j.jss.2013.03.060. (Cited
on page 134.)

[Wasylkowski et al. 2007] A. Wasylkowski, A. Zeller, and C. Lindig.
Detecting object usage anomalies. In Proceedings of the 6th European
Software Engineering Conference and the Symposium on Foundations of
Software Engineering (ESEC/FSE’07), pages 35-44. ACM, 2007. ISBN
978-1-59593-811-4. doi:10.1145/1287624.1287632. (Cited on page 132.)

[Wilcox 2010] R. R. Wilcox. Fundamentals of Modern Statistical Methods
- Substantially Improving Power and Accuracy. Springer, 2nd edition,
2010. ISBN 978-1-4419-5524-1. doi:10.1007 /978-1-4419-5525-8. (Cited
on pages 152 and 154.)

[Williams et al. 2007] A. W. Williams, S. M. Pertet, and P. Narasimhan.
Tiresias: Black-box failure prediction in distributed systems. In Proceed-
ings of the 21th International Parallel and Distributed Processing Symposium
(IPDPS’07), pages 1-8. IEEE, Mar. 2007. doi:10.1109/IPDPS.2007.370345.
(Cited on pages 40, 41, 58, 130, 131, and 139.)

[Wong and Debroy 2009] W. E. Wong and V. Debroy. A survey of
software fault localization. Technical Report UTDCS-45-09, University
of Texas at Dallas, Nov. 2009. (Cited on page 28.)

[Woodside 2008] M. Woodside. The relationship of performance models
to data. In Proceedings of the SPEC International Performance Evaluation

219

http://dx.doi.org/10.1109/SUPERC.1995.242930
http://dx.doi.org/10.1016/j.jss.2013.03.060
http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1007/978-1-4419-5525-8
http://dx.doi.org/10.1109/IPDPS.2007.370345

Workshop (SIPEW’08), pages 9-28. Springer-Verlag, 2008. ISBN 978-3-
540-69813-5. doi:10.1007 /978-3-540-69814-2_3. (Cited on pages 12, 13,
and 36.)

[Woodside et al. 2007] M. Woodside, G. Franks, and D. C. Petriu. Future
of software performance engineering. In Proceedings of the Workshop on
the Future of Software Engineering (FOSE’07), pages 171-187. IEEE, 2007.
ISBN 0-7695-2829-5. doi:10.1109/FOSE.2007.32. (Cited on page 18.)

[Xie and Notkin 2002] T. Xie and D. Notkin. An empirical study of
Java dynamic call graph extractors. Technical Report UW-CSE-02-12-
03, University of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, Dec. 2002. (Cited on pages 15, 116,
and 123.)

[Yilmaz et al. 2008] C. Yilmaz, A. Paradkar, and C. Williams. Time will
tell: fault localization using time spectra. In Proceedings of the 13th
International Conference on Software Engineering (ICSE’08), pages 81-90.
ACM, 2008. ISBN 978-1-60558-079-1. doi:10.1145/1368088.1368100.
(Cited on pages 1, 9, 28, 33, 40, 41, 119, 133, 134, and 141.)

[Zeller 2002] A. Zeller. Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT Symposium on
Foundations of Software Engineering (SIGSOFT’02/FSE-10), pages 1-10.
ACM, 2002. ISBN 1-58113-514-9. doi:10.1145/587051.587053. (Cited on
pages 28 and 132.)

[Zhang et al. 2007] Q. Zhang, L. Cherkasova, G. Matthews, W. Greene,
and E. Smirni. R-capriccio: A capacity planning and anomaly detection
tool for enterprise services with live workloads. Technical Report HPL-
2007-87, Enterprise Systems and Software Laboratory, HP Laboratories
Palo Alto, 2007. URL http://www.hpl.hp.com/techreports/
2007/HPL-2007-87.pdf. Available online, Last access: 2014-05-03.
(Cited on pages 22, 40, and 126.)

[Zhang et al. 2005] S. Zhang, I. Cohen, M. Goldszmidt,]J. Symons, and
A. Fox. Ensembles of models for automated diagnosis of system per-
formance problems. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN'05), pages 644-653. IEEE, 2005.
ISBN 0-7695-2282-3. do0i:10.1109/DSN.2005.44. (Cited on pages 124
and 140.)

220

http://dx.doi.org/10.1007/978-3-540-69814-2_3
http://dx.doi.org/10.1109/FOSE.2007.32
http://dx.doi.org/10.1145/1368088.1368100
http://dx.doi.org/10.1145/587051.587053
http://www.hpl.hp.com/techreports/2007/HPL-2007-87.pdf
http://www.hpl.hp.com/techreports/2007/HPL-2007-87.pdf
http://dx.doi.org/10.1109/DSN.2005.44

[Zhou et al. 2004] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torrellas. Accmon: Automatically detecting memory-related
bugs via program counter-based invariants. In Proceedings of the In-
ternational Symposium on Microarchitecture (MICRO’04), pages 269-280.
IEEE, Dec. 2004. doi:10.1109/MICRO.2004.3. (Cited on page 132.)

221

http://dx.doi.org/10.1109/MICRO.2004.3

Index

Anomaly, 32
Anomaly detection, 30, 32
semi-supervised, 33
supervised, 33
unsupervised, 33
Anomaly detector, 53
Anomaly rating, 58
Anomaly score, 54
Arrival rate, 12
Availability, 25

Call action
asynchronous, 43
synchronous, 43

Call graph profiling, 116
tools, 171

Callee, 43

Caller, 43

Caller context, 67, 70

Causal path, 44

Context
caller, 67,70
stack, 67,70
trace, 67, 70

CPU time, 10

DCT, 48, 69
Diagnostic checking, 29
Dynamic call graph, 116

Dynamic call tree, 48, 69, 116

e, 44

eoi, 45

Error, 23

ess, 45

ev, 100

Execution, 44

Execution environment, 43, 45
Execution order index, 45
Execution time, 10, 45

Failure, 23
Failure diagnosis, 27
False alarm, 34
Fault, 23
software, 24
Fault diagnosis, 30
Fault hypothesis testing, 30
Fault isolation, 27
Fault localization, 27
Fault removal, 27
Fault symptom detection, 29

Garbage collection, 22, 151, 179

Heavy-tailed distribution, 16

Individual request characteristics,
13

Instrumentation, 37

Limit checking, 29
Logging, 35

223

Message, 47
Message trace, 47
Misuse pattern detection, 31
Monitoring, 35
event driven, 37
instrumentation, 37
probes, 37
sampling, 37
timer driven, 37
Monitoring data, 44
Multimodal, 18

nt, 44

0,44
Operation, 10, 43
Outlier, 32

Path profiling, 116
Performance, 9

prediction, 14
Performance prediction, 14
Platform workload intensity, 97
Profiling, 15, 36

call graph, 116

path profiling, 116

tools, 123,171

transactional, 117, 118
Program comprehension, 122
pwi, 97

pwiy, 98

PWisy, 99

pwisz, 99

pwiy, 100

Real-time systems, 13
Regression benchmarking, 15
Request flow, 44

Request path, 44

Resource utilization, 9, 12

224

Resource-sharing systems, 13

Response time, 10, 45
end-to-end, 10
operation, 10

Scalability, 13

Service demand, 13
Signature-based detection, 31
Software operation, 10

st, 44

Stack context, 67, 70

Standard deviation reduction, 78
standard deviation reduction, 167
Synchronous communication, 44
System layers, 36

Threshold, 29

Throughput, 12

Timing behavior
definition, 9

tr, 44

Trace, 37, 44
message, 47
monitored, 44
shape, 64, 69

Trace context, 67, 70

Trace shape context tree, 75

Trace synthesis, 47

traceid, 44

TracSTA, 63

Transactional profiling, 117, 118

TSCT, 75

Utilization, 12

Virtualization, 151, 154
vmid, 44

WiSTA, 91
Workload, 12
Workload intensity, 12

	Abstract
	Zusammenfassung
	Table of contents
	Introduction
	Motivation and Problem
	Contributions and Evaluation
	Thesis Structure
	Bibliographical Notes

	Foundations
	Software Timing Behavior
	Software Faults and Dependability of Software Systems
	Automatic Fault Localization for Software Systems
	Anomaly Detection
	Software Application Monitoring

	Fault Localization Approach
	Approach Overview and Fault Localization Assumptions
	Software System Model and Monitoring Model
	Instrumentation and Trace Synthesis
	Trace-Context-Sensitive Timing Behavior Analysis
	Workload-Intensity-Sensitive Timing Behavior Analysis
	Anomaly Detection
	Anomaly Correlation and Visualization

	TracSTA: Trace-Context-Sensitive Timing Behavior Analysis
	Correlation between Timing Behavior and Trace Context
	Trace-Context-Sensitive Timing Behavior Analysis
	Empirical Evaluation
	Summary

	WiSTA: Workload-Intensity-Sensitive Timing Beh. Analysis
	Correlation btw. Timing Behavior and Workload Intensity
	Workload-Intensity-Sensitive Timing Behavior Analysis
	Empirical Evaluation
	Summary

	Related Work
	Context-sensitive Timing Behavior Analysis
	FaultLocalization & Failure Diagnosis for SoftwareSystems

	Conclusions
	Summary
	Discussion
	Threats to validity
	Future Work

	Appendix Timing Behavior Distribution Examples
	Appendix Standard Deviation Reduction
	Appendix Listing Example Chapter 5
	Appendix Call Graph Profiling Tools
	Gprof
	Google's Perftools CPU Profiler
	Valgrind's Call Graph Generator Callgrind
	Java's HPROF Profiler
	NetBeans 6.9 Java Profiler

	Appendix Garbage Collection Analysis
	List of Figures
	List of Tables
	Bibliography
	Index

