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Ocean currents generate large footprints in marine
palaeoclimate proxies

Erik van Sebille!, Paolo Scussolini%®, Jonathan V. Durgadoo3, Frank J. C. Peeters?, Arne Biastoch3,
Wilbert Weijer4, Chris Turney1, Claire B. Paris® & Rainer Zahn®’

Fossils of marine microorganisms such as planktic foraminifera are among the cornerstones
of palaeoclimatological studies. It is often assumed that the proxies derived from their shells
represent ocean conditions above the location where they were deposited. Planktic for-
aminifera, however, are carried by ocean currents and, depending on the life traits of the
species, potentially incorporate distant ocean conditions. Here we use high-resolution ocean
models to assess the footprint of planktic foraminifera and validate our method with proxy
analyses from two locations. Results show that foraminifera, and thus recorded palaeocli-
matic conditions, may originate from areas up to several thousands of kilometres away,
reflecting an ocean state significantly different from the core site. In the eastern equatorial
regions and the western boundary current extensions, the offset may reach 1.5 °C for species
living for a month and 3.0 °C for longer-living species. Oceanic transport hence appears to be
a crucial aspect in the interpretation of proxy signals.
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arine sediment archives have been paramount in
M forming our understanding of centennial- to orbital-
scale climate and environmental change!™>. Much of
the palaeoclimatic information has been obtained from the
geochemistry of fossil planktic foraminifer shells and from their
species assemblage composition. It has been known for a long
time that the drift of planktic foraminifera may mean they record
water conditions different from conditions at the core site®. The
influence of the provenance of foraminifera on proxy signals
during their life cycle, however, has not been assessed and
quantified in a rigorous manner, using high-resolution ocean
models.

Besides the fact that planktic foraminifera employ a mechan-
ism to control their depth habitat’, they can be considered as
passive particles, sensitive to advective processes by ocean
currents. As they grow their calcite shell during their lifespan,
foraminifera may drift across different climate zones and ocean
regimes. At the end of their life cycle—during the phase of
gametogenesis—foraminifera lose their ability to stay buoyant in
the upper ocean and their shells sink to the ocean floor to become
part of the sedimentary geological archive!™8, Although the
horizontal advection distance for post-mortem sinking foram-
inifera has been estimated at a few hundred kilometres®~12,
there is a remarkable dearth of information on the geographical
footprint of foraminifera during their lifespan.

Here we quantify the lateral distance that planktic foraminifera
can cover during their lifespan and quantify the impact of the
ambient temperature along their trajectory on the signal
incorporated into their shells. We show that this impact is
potentially highly significant in regions of fast-flowing surface
currents such as western boundary currents. To illustrate the
impact of the trajectory integrated temperature signal during life
and transport on the proxy, we focus on the Agulhas region,
where planktic foraminifera have been extensively used to study
variations and global influence of the amount of warm tropical
Indian Ocean water flowing into the Atlantic Ocean>!314,

Results
Foraminiferal traits and their relation to drift. We use two
ocean models of contemporary circulation, which both include
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mesoscale eddies, to study the advection during the life span and
the post-mortem sinking of foraminifera. Both models have a
1/10° horizontal resolution, but their domains differ: the
INALTO1 model'® is focused around southern Africa in the
Agulhas szfstem and is among the best-performing models in that
region!>1>"17, while the Ocean model For the Earth Simulator
(OFES) model'® is global in extent, allowing us to place these
results in a wider context. In both models, we advect the virtual
foraminifera as passive Lagrangian particles using the
Connectivity Modeling System (CMS)'%, simulating both their
trajectories during their lifetime, as well as their post-mortem
sinking. The local in situ temperature from the hydrodynamic
models is interpolated onto the particle trajectories and used to
reconstruct the incorporation of the temperature signal during
the virtual foraminifera’s lifetime. We compare the model results
to combined single-shell 3'0 and multiple-shell Mg/Ca
temperature reconstructions from Globigerinoides ruber from
core tops at two locations in the Agulhas region®: (1) site CD154-
18-13P below the Agulhas Current and (2) site MD02-2594 below
the Agulhas leakage area.

Foraminifer traits such as depth habitat, lifespan, seasonality,
post-mortem sinking speed and rate of growth (which is related
to rate of calcification) vary widely between species and are
often poorly constrained®®?%21, Focusing on surface-dwelling
foraminifera, we therefore undertook a sensitivity assessment of
these different traits. Values for sinking speed employed in the
models were 100, 200 and 500 m per day and depth habitats were
30 and 50 m. Lifespans were related to the synodic lunar cycle®2’,
with 15 days for G. ruber and 30 days for other surface-dwelling
foraminifera. However, as some studies report even longer life
spans for upper water column dwelling foraminifera®2, we also
investigated extended lifespans of 45 days within the INALTO1
model and 180 days within the global OFES model. Two growth
rates were used to simulate different calcification scenarios. One
was a linear growth scenario, where the recorded calcification
temperature of a virtual foraminifer is the mean temperature
along its trajectory during its lifespan. The other was an
exponential growth scenario, with a growth rate”?? of 0.1 per
day, so that the later life stages of the foraminifera weigh more
heavily in the final calcification temperature®?3. Finally, we
studied the effect of a seasonal growth cycle on the recorded
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Figure 1 | Foraminifera footprints in the Agulhas region. Maps of the footprint for two core sites in (a) the Agulhas Current and (b) the Agulhas leakage
region. Each coloured dot represents the location where a virtual foraminifer starts its 30-day life, colour-coded for the recorded temperature along its
trajectory. Black dots represent where foraminifera die and start sinking to the bottom of the ocean (at 200 m per day) to end up at the core location

(indicated by the purple circle).
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Figure 2 | The dependence of foraminifera footprint on life traits. The sensitivity of the chosen foraminiferal traits on (a,b) the average distance between
spawning and core location, and on (¢,d) the offset between the mean recorded temperature and the local temperature at the two core sites depicted in
Fig. 1. Lifespan is on the x axis, with ‘at death’ the assumption that foraminifera record the temperature of the location in the last day before they die and
start sinking. The results depend noticeably on the traits, except for the sinking speed (colours), which seems to have little effect on mean recorded

temperature.

temperatures. See Methods section for further methodological
information.

Foraminifera drift in the Agulhas region. A substantial
fraction of the particles incorporated in the cores from both the
Agulhas Current and the Agulhas leakage region appears to
originate from hundreds of kilometres away (Fig. 1). Using a
depth habitat of 50 m, a lifespan of 30 days and a sinking speed of
200m per day, the average drift distances, which are defined
as the average shortest distance from spawning location to the
core site for all virtual foraminifera, are 713 and 533 km in the
Agulhas Current and Agulhas leakage, respectively. These
distances are more than four times larger than the drift distances
during their post-mortem sinking (which are 166 and 71km
for the Agulhas Current and Agulhas leakage, respectively,
Fig. 2a,b), highlighting the impact of drift during the virtual
foraminifer’s life.

This surface drift has implications for the recorded tempera-
ture. In the case of the Agulhas Current core (Fig. 1a), some of the
virtual foraminifera start their life in the Mozambique Channel
and the temperature recorded by these specimens along their
30-day life is up to 5°C warmer than at the core site. Such an
offset is much larger than the uncertainty of 1.5°C (20) that is
associated with foraminifera proxy-based temperature recon-
structions” 1124 In the core at the Agulhas leakage region
(Fig. 1b), some particles arrive from warmer subtropical
temperature regimes of the northern Agulhas Current, whereas
others—in our model—originate from the sub-Antarctic cold
waters of the Southern Ocean in the south.

Both the average drift distances as well as the recorded
temperatures are strongly dependent on the values chosen for the
foraminifer traits (Fig. 2). The dependence is nonlinear and
different for the two sites, although general patterns emerge:
sinking speed is the least important trait; growth scenario becomes
more important for longer-living foraminifera; depth habitat has
far less effect on drift distance than on recorded temperature
(Supplementary Figs 1-4). There are also differences between the
INALTOI and the OFES models, particularly in the amount of
virtual foraminifera originating far upstream in the Agulhas
Current, which show the dependency of the results on the
circulation state (Supplementary Fig. 5). However, there does not
seem to be a seasonal variation in the temperature offsets (Fig. 3).

The distribution of the calcification temperatures of the virtual
foraminifera can be compared with proxy temperature distribu-
tions derived from the G. ruber from the core tops (see Methods).
The mean * 1 s.d. of the INALTO1, OFES and proxy distributions
overlap (Fig. 4). The spread in temperatures is larger than the
typical sensitivities to the choice of life trait values (which is
<1°C, Fig. 2c¢,d). According to a two-sample Kolmogorov-
Smirnov test, the G. ruber proxy data in the Agulhas Current core
is most closely matched by the virtual foraminifera within OFES
with a depth habitat of 30m (P=0.47, which means the OFES
and proxy distributions are statistically indistinguishable). The
G. ruber proxy data in the Agulhas leakage core is most closely
matched by the virtual foraminifera within INALTOI, with a
depth habitat of 50m (P=0.06). All other virtual foraminifera
distributions are statistically different from the G. ruber proxy
data (P<0.05), even though in all cases means and s.d. are within
1.5°C of the G. ruber proxy data.
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Figure 3 | The effect of seasonality on the temperature offsets. Seasonal cycle of the offset of recorded temperature for the virtual foraminifera with
respect to the local in-situ temperature in (a) the Agulhas Current core and (b) the Agulhas leakage core. For each month, the difference between the
recorded temperatures and the instantaneous temperatures at the core is plotted with a 0.5°C interval, as a percentage of the total number of virtual

foraminifera that reach the core in that month. The virtual foraminifera have a lifespan of 30 days, a depth habitat of 50 m, a linear growth scenario and a
sinking speed of 200 m per day. There is no clear seasonal variation in offset of recorded temperatures with time of year.
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Figure 4 | Distributions of temperature at two cores in the Agulhas
region. The observed proxy temperatures (grey bars) at (a) the Agulhas
Current core and (b) the Agulhas leakage core are compared with the
temperature distributions for the virtual foraminifera experiments in the
INALTO1 model (red) and the OFES model (blue). Traits used are the

G. ruber lifespan?9 of 15 days, a depth habitat of 30 m (dashed) or 50 m
(solid), a sinking speed of 200 m per day and a linear growth scenario. Note
that the spread in recorded temperature is larger than the sensitivity of the
means with foraminiferal trait choices (Fig. 2c,d).
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A global estimate of foraminifera drift. A global analysis
(Fig. 5), using the OFES model, of virtual foraminifera released on
a 5° x 5° global grid reveals that the virtual foraminifera can drift
for up to a thousand kilometres during an assumed 30-day life-
span (Fig. 5¢). This is one order of magnitude larger than the
lateral drift, which dead virtual foraminifera experience during
the 200 m per day sinking (Fig. 5a). Drifts are largest in regions
with largest horizontal velocities such as along the equator, in the
western boundary currents and their extensions, and in the
Southern Ocean, while drift distances are smaller in the centres of
the gyres.

This horizontal drift can introduce large offsets when
foraminiferal records are interpreted as representative of local
conditions: for example, in the reconstruction of temperatures,
the discrepancy with the local temperatures varies greatly with
region (Fig. 5b,d,f). If it is assumed that the foraminifera
document the local temperature at the location where they die
and start sinking, the offsets are smaller than 0.1°C almost
everywhere (Fig. 5b). However, for lifespans of 30 days®2?, offsets
can be as large as 1.5°C (Fig. 5d), which is equal to the
uncertainty associated with proxy-based palaeotemperature
estimates” 1124, Virtual G. ruber, with lifespans of 15 days,
have similar offsets (Supplementary Fig. 6). For virtual
foraminifera with more extended lifespans of 180 days
(Fig. 5e,f), average drift distances can reach 3,000km and the
associated offsets in average recorded temperature can be >3°C.
In the case of virtual foraminifera with depth habitats of 30 m,
these temperature offsets are up to 4 °C (Supplementary Fig. 7),
while they are up to 2°C in the case of an exponential growth
scenario (Supplementary Fig. 8).

Discussion

We have shown that ocean currents affect the signals incorpo-
rated in foraminiferal proxies. There appears to be a clear global
pattern in the global temperature offsets, which are positive along
the equator and within the western boundary currents, and
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Figure 5 | Global analysis of drift distances and temperature offsets. (a,c.e) The average distance between spawning location and the core site for virtual
foraminifera in the OFES model that record the temperature (a) in the last day before they die and start sinking and for virtual foraminifera with lifespans of
() 30 days and (e) 180 days. In all cases, a depth habitat of 50 m, a linear growth scenario and a sinking speed of 200 m per day were used. Note that
the colour scale is logarithmic. (b,df) Offsets, defined as the difference between along-trajectory recorded temperatures and local temperatures at the
core site. Offsets reach up to 1.5°C for 30-day lifespans and up to 3°C for 180-day lifespans, when the virtual foraminifera travel more than 1,000 km.

negative in the centres of the subtropical gyres. The regions with
largest temperature offsets are those closely related to regions of
high ocean surface velocity and consequently lateral drift: in the
eastern Tropical Pacific and Atlantic Ocean, and in the extensions
of the western boundary currents such as the Gulf Stream,
Kuroshio and Agulhas currents. However, there are also regions
of high lateral drift where temperature offsets are much smaller
such as the Southern Ocean and the Tropical Indian Ocean. The
difference is that the regions of high offsets are also the regions of
some of the largest lateral temperature gradients (often related to
large ocean-atmosphere heat fluxes). Larger temperature changes
experienced by the foraminifera along their pathway result in
larger offsets with respect to the temperature above the core site.
The implication is that, depending on species traits and locations,
the temperature offsets can be significant if the shells in the core
are interpreted as representative of the conditions right above the
core location.

An analysis such as the one presented here could also be used a
priori to identify the amount of advective bias at a potential
drilling site. Another tantalizing application could be to ‘invert’
the problem and use our approach to determine where different
fossil specimens most probably grew their shell, so that the
temperatures recorded by the fossils could be geolocated to the
location where the microorganism actually grew its shell, rather

than where it reached the ocean floor. This would allow
disentanglement of proxy data from microorganisms with
different traits and a better spatial interpretation of the signal
around the location of the sediment core site. Coccolithophores,
for example, are also paleoclimatological proxy carriers of
primary importance, with life traits and settling dynamics that
differ notably from planktic foraminifera®>. With an approach
similar to ours, coccolithophoric footprints could be calculated
and compared with the foraminiferal ones, potentially vastly
increasing the amount of information that can be obtained from a
single sediment core. A vital prerequisite to this application,
however, is a better understanding and quantification of the
organism’s ecology?%%%, including species-specific lifespans, depth
habitats, calcification rates and sinking speeds.

Methods

Ocean model data. We used data from two ocean circulation models. The first is
the INALTO1 model configuration'?, which is based on the NEMO ocean model?’,
extending an earlier setup'®. The model was specifically set up to study the
dynamics of the Agulhas region and includes a 1/10° high-resolution region with
46 vertical levels that spans the entire South Atlantic and western part of the
Southern Indian (between 70°W-70°E and 50°S-8°N), which is nested in a 1/2°
global model. We used 28 years (1980-2007) of the hindcast experiment, a period
for which the dynamics of the model has been shown to agree well with
observations!>1®. The atmospheric forcing builds on the CORE reanalysis
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Table 1 | Values of sinking speeds retrieved from laboratory studies.

Species Size fraction Speed (m per day) Reference Notes

General planktic foraminifera 30-480 39

General planktic foraminifera ~400 pum 1,210 40

General planktic foraminifera 177-250 pm 864 ol Combusted (empty) shells, in freshwater
General planktic foraminifera >250 um 1,987 41 Combusted (empty) shells, in freshwater

G. ruber ~300-400 um 838 + 441 42 From sea floor sediment; combusted; in freshwater
G. sacculifer ~400-600 um 1,396 + 652 42 From sea floor sediment; combusted; in freshwater
G. ruber 31449 m 198 £ 94 2 Non-ashed shells from plankton tows

G. ruber 289+82um 7231321 2 Ashed shells from plankton tows

Orbulina universa 573+ 74pm 277 £144 2 Non-ashed shells from plankton tows

O. universa 521+ 52 um 701+ 219 2 Ashed shells from plankton tows

G. sacculifer 328 +99 um 274 +£143 2 Non-ashed shells from plankton tows

G. sacculifer 3401170 um 1054 + 531 2 Ashed shells from plankton tows

G. bulloides 299+ 44 um 3281174 2 Non-ashed shells from plankton tows

G. bulloides 211 £28 um 208 £ 46 2 Ashed shells from plankton tows
Neogloboquadrina pachyderma 200-300 um 358+ 67 n Empty shells; from sediment traps
Turborotalita quinqueloba ~200 pum 180 n Empty shells; from sediment traps

G. ruber ~550 um 2,000+ 270 26 Sea floor sediment, uncleaned

G. sacculifer ~690 um 2,600 £ 310 26 Sea floor sediment, uncleaned

O. universa ~640 um 2,760 £ 890 26 Sea floor sediment, uncleaned

Values are ordered chronologically by publishing date. The species most commonly used for palaeo-reconstructions are reported. Bold indicates the values we considered the most appropriate for our
study. Average values for multiple one-shell experiments are reported, along with the s.d.. In addition, the size of the shells is specified.

products?® and is applied via bulk air-sea flux formulae. We used the same 28 years
of data from the Japanese OFES!$, which is also 1/10° horizontal resolution and
has a near-global coverage between 75°S and 75°N, and 53 vertical levels. The
model is forced using National Centers for Environmental Prediction (NCEP) wind
and flux fields. Results from both models have been shown to be consistent with
important observed features of the modern ocean circulation, including among
others the trajectories of surface buoys?® and the deep currents in the North
Atlantic®, the South Atlantic®! and the Agulhas region!”32.

Virtual foraminifera trajectory calculations. The virtual foraminifera were
advected within the INALTO1 and OFES velocity data using the CMS version
1.1b'°. The CMS employs a fourth-order Runge-Kutta method and can output
along-trajectory temperature and salinity.

For each core, we computed Lagrangian particle trajectories in reverse time. We
started one particle every day at the core site itself, near the ocean floor, for a total
of almost 10,000 particles per site (amounting to 27 simulated years). These
particles were then integrated backwards in time by reversing the sign of the
velocity components. A sinking velocity was added to the particles. Once near the
surface, the particles were advected for another 45 days (180 days in the global
case) at their prescribed depth habitat, using only the horizontal velocity fields and
without any explicit diffusivity (see below). During this part of their trajectory,
representing the lifespan of the foraminifera, the location as well as the in situ
temperature of the particle was stored every day for further analysis. These along-
trajectory temperatures were then used to offline calculate the recorded
temperature based on growth scenario. The temperature distributions along the
trajectory paths were then compared with in situ conditions at the core location.

For sites poleward of 40°N and 40°S in the global experiment, we used only
those virtual foraminifera that lived for their full life in the warmer months (April
to September for the Northern Hemisphere and October to March for the Southern
Hemisphere). In all other cases, including those of the Agulhas region cores, we
used virtual foraminifera throughout the year and have not observed a bias in the
results that would be associated with seasonality (Fig. 3).

Sensitivity to the addition of diffusion in foraminiferal transport. The particles
in this study have been computed using the three-dimensional model velocity
fields, without any additional diffusion due to sub-grid scale processes. Here we
show that the effect of diffusion is an order of magnitude smaller than that of
advection with the currents (Supplementary Fig. 9).

In these simulations, we used the turbulent diffusion module of the CMS
(equation 3 in ref. 19) with K, =50 m?s ~ ! for the MD02-2594 core and with
Ky, =250m?s ! for the CD154-18-13P core. We chose the first of these values for
diffusion (Kj, =50 m%s 1) as the most appropriate for the INALT01 and OFES
models, which both have a resolved scale of 10 km (Fig. 2 of ref. 33). The second of
these values (K, =250 m?s ~ !) was chosen to study the effect of an extremely high
diffusivity.

The experiments revealed that for both cores, the effect of diffusion on the core
footprints is minimal. In the case of core MD02-2594, the average shortest distance
between spawning location and core site changed by only 10 km. In the case of core

6

CD154-18-13P, which had the much higher diffusivity, the average distance
changed only by 18 km.

This finding is in agreement with previous results where it was shown (Fig. 1 of
ref. 33) that diffusion on time scales of months is <50km. It is also in agreement
with the theoretical estimate of dispersion in the absence of advective flow.

A Brownian motion process gives for the spread of particles std(X) = sqrt(2 Ky, T),
where std(X) is the s.d. of distance (that is, the spread due to diffusion) and T is the
length of integration. For T= 30 days and Kj, =50 m?s ! this leads to

std(X) = 16 km, whereas for the longer OFES runs with T'=180 days and

K, =50m?s ! this leads to std(X) =40 km.

In summary, diffusivity in the 1/10° resolution OFES and INALTO01 models is at
least an order of magnitude smaller than the advective spread we find in our study,
and hence diffusion will not affect our main conclusions.

Literature review of the sinking speed of planktic foraminifera. We consider a
set of surface-dwelling planktic foraminifer species, widely used to reconstruct sea
surface conditions such as temperatures. The depth habitat of these species can be
confidently constrained to the mixed layer, therefore warranting the assumption
that no significant vertical migration during living time occurs®2.

We reviewed the specialized literature for the most accurate quantification of
the sinking speed of foraminifera shells (Table 1). The results of previous studies
(see references in Table 1) confirm that the sinking speed of planktic foraminifera
depends mainly on the shell weight (in turn related to the shell size, that is,
diameter) and the presence of spines. From the same studies, it appears that the
shell morphology, which is characteristic of each species, is also determinant for the
sinking speed. Shell thickening is also important and it is related to the life stage of
the specimen, which in turn is arguably proportional to the shell size.

Therefore, following ref. 21, we chose to use a sinking speed of 200 m per day
for non-ashed G. ruber with a common size of ~ 300 pm. This was based on four
considerations: first, G. ruber, Globigerinoides sacculifer and Globigerinoides
bulloides are among the most used surface foraminifer species in palaeo-
reconstructions; second, foraminifera in the size fraction between 200 and 350 um
are the most used; third, even though foraminifera might undergo partial post-
mortem degradation of their plasma content, and although before sinking they
normally release their gametes, which constitute a large part of their organic
composition, the non-ashed, plankton-tow sample probably resembles the form in
which a foraminifer sinks just after death; and finally, seawater (as opposed to
freshwater) experiments more closely mime the dynamics of foraminifera sinking.

Empirical data from G. ruber shells. Shells of planktic foraminifer G. ruber, white
variety, were picked from the top centimetre of cores MD02-2594 (Agulhas leakage
region, 34° 42.6' S, 17° 20.3" E, 2,440 m depth) and CD154-18-13P (Agulhas
Current, 33° 18.3' S, 28° 50.8' E, 3,090 m depth), from the size fraction 250-
355 um. Both core tops represent contemporary climate (see below). Stable isotope
(3'80) analyses were conducted on the single shells with a Thermo Finnigan Delta
Plus mass spectrometer at the VU University Amsterdam, with the method
outlined in ref. 13. We analysed 79 G. ruber shells from core MD02-2594 and
48 shells from core CD154-18-13P.
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From core MD02-2594, we also analysed the Mg/Ca value of a group
of 20 shells of G. ruber, using an inductively coupled plasma/optical emission
spectrometry, after rigorous cleaning of the sample, following a standard
procedure®®. Analysis was performed at the Trace Elements Laboratory of Uni
Research, Bergen. As for core CD154-18-13P the amount of shells did not allow
carrying out Mg/Ca analysis, we used the Mg/Ca value of the core top of adjacent
core CD154-17-17K (33° 16.1' S, 29° 7.3’ E, 3,330 m depth)!'4, which is located
26km to the SE.

Temperature reconstructions from G. ruber geochemistry. The Mg/Ca values
were converted to calcification temperatures using a species-specific calibration?*,
We used a previously established approach to assign calcification temperatures to
individual foraminiferal shell?, which consists of first anchoring the mean
temperature of the foraminiferal population using the Mg/Ca-derived temperature
of a group of shells; then calculating the offset of each shell §'80 value from the
mean of all measurements; and finally converting each 3180 offset into a
temperature offset by dividing it by a factor of — 0.22, which approximates the
dependency of equilibrium calcite 31304 on temperature. This method
necessarily assumes that only temperature determines the foraminiferal 580
(8180y), thus ignoring a potential effect of changes in seawater 3180 (81%0,,) that
can be measurable near ocean fronts®® such as the subtropical front near 40°S
south of Africa. Given the northerly location of our Agulhas leakage core at 34°S,
this is not a major concern for our study and we consider this approach to yield a
reasonable first-order approximation of palaeo upper water column temperature
variability from a foraminiferal population as previously shown?.

Radiocarbon dating of the core tops. One assumption in the comparison
between palaeo proxy data and INALTO1 model (Fig. 4) is that the two core tops
are representative of the same contemporary circulation as the model. We support
the validity of this assumption in the following.

Core MD02-2594 in the Agulhas leakage area has been dated at a depth of
50-51 cm, to be 2,815 * 57 years before present>’. Therefore, the core top itself will
be younger than that. Core CD154-18-13P in the Agulhas Current has not been
radiocarbon dated, but the core top of core CD154-17-17K, <50km away, has
been dated at a calibrated age of between 1,760 and 1,849 years before present®®. As
a further confirmation that the core top material of CD154-18-13P is representative
at least of the Holocene, we verify that the average 3'30 value of the core top
G. ruber specimens we analysed (— 1.29 + 0.5%o; error is s.d. of 48 measurements)
is comparable—if not more negative—to that of CD154-17-17K core top
(—1.13 £ 0.1%o; error is instrument precision38). A radiocarbon date on CD154-
18-13P core top should be obtained to certify this, but this was not possible due to
scarcity of material.

In summary, both core tops are of at least Late Holocene age, which suggests
that our foraminiferal analyses should reflect the dynamics and ocean properties of
the modern Agulhas System.
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