Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas.

Romanovskii, N. N., Hubberten, Hans-Wolfgang, Gavrilov, A. V., Eliseeva, A. A. and Tipenko, G. S. (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Marine Letters, 25 (2-3). pp. 167-182. DOI 10.1007/s00367-004-0198-6.

[thumbnail of 2005_Romanovskii-etal-Offshore_GML-25.pdf]

Download (1MB) | Preview

Supplementary data:


Dynamics of the submarine permafrost regime, including distribution, thickness, and temporal evolution, was modeled for the Laptev and East Siberian Sea shelf zones. This work included simulation of the permafrost-related gas hydrate stability zone (GHSZ). Simulations were compared with field observations. Model sensitivity runs were performed using different boundary conditions, including a variety of geological conditions as well as two distinct geothermal heat flows (45 and 70 mW/m2). The heat flows used are typical for the coastal lowlands of the Laptev Sea and East Siberian Sea. Use of two different geological deposits, that is, unconsolidated Cainozoic strata and solid bedrock, resulted in the significantly different magnitudes of permafrost thickness, a result of their different physical and thermal properties. Both parameters, the thickness of the submarine permafrost on the shelf and the related development of the GHSZ, were simulated for the last four glacial-eustatic cycles (400,000 years). The results show that the most recently formed permafrost is continuous to the 60-m isobath; at the greater depths of the outer part of the shelf it changes to discontinuous and “patchy” permafrost. However, model results suggest that the entire Arctic shelf is underlain by relic permafrost in a state stable enough for gas hydrates. Permafrost, as well as the GHSZ, is currently storing probable significant greenhouse gas sources, especially methane that has formed by the decomposition of gas hydrates at greater depth. During climate cooling and associated marine regression, permafrost aggradation takes place due to the low temperatures and the direct exposure of the shelf to the atmosphere. Permafrost degradation takes place during climate warming and marine transgression. However, the temperature of transgressing seawater in contact with the former terrestrial permafrost landscape remains below zero, ranging from −0.5 to −1.8°C, meaning permafrost degradation does not immediately occur. The submerged permafrost degrades slowly, undergoing a transformation in form from ice bonded terrestrial permafrost to ice bearing submarine permafrost that does not possess a temperature gradient. Finally the thickness of ice bearing permafrost decreases from its lower boundary due to the geothermal heat flow. The modeling indicated several other features. There exists a time lag between extreme states in climatic forcing and associated extreme states of permafrost thickness. For example, permafrost continued to degrade for up to 10,000 years following a temperature decline had begun after a climate optimum. Another result showed that the dynamic of permafrost thickness and the variation of the GHSZ are similar but not identical. For example, it can be shown that in recent time permafrost degradation has taken place at the outer part of the shelf whereas the GHSZ is stable or even thickening.

Document Type: Article
Keywords: Submarine permafrost; Gas hydrates; Arctic; Laptev Sea; East Siberian Sea
Research affiliation: HGF-AWI
Refereed: Yes
Publisher: Springer
Projects: Laptev Sea System, Permafrost
Date Deposited: 05 Mar 2015 12:01
Last Modified: 05 Mar 2015 12:01

Actions (login required)

View Item View Item