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Zusammenfassung 3

Zusammenfassung 

Steigende Temperaturen der Meeresoberfläche im Zuge der globalen Klimaveränderung 

fördern durch eine verstärkte Schichtung der Wassersäule und eine reduzierte 

Sauerstofflöslichkeit die Ausbreitung von intermediären Wasserschichten mit niedrigem 

Sauerstoffgehalt, und verändern hierdurch die redox-sensitiven Nährstoffreservoire. Marine 

Sauerstoffminimumzonen (SMZ) treten vornehmlich in den östlichen Gebieten des tropischen 

Pazifiks und Atlantiks auf, wo der Auftrieb kalter, nährstoffreicher Wassermassen an der Küste 

eine hohe Primär- und indirekt auch eine hohe Sekundärproduktion ermöglicht. SMZ fördern 

den Netto-Verlust an anorganischem Stickstoff (N), begünstigen jedoch gleichzeitig die 

Freisetzung von anorganischem Phosphor (P) aus dem Schelfsediment in die Wassersäule. 

Sauerstoffarmes Wasser, das durch Auftrieb in die Oberflächenschicht zu den 

Primärproduzenten transportiert wird, hat somit eine relativ niedrige N:P 

Nährstoffzusammensetzung. Aufgrund der erwarteten Ausbreitung tropischer SMZ wurde die 

Reaktion von Phytoplankton auf Veränderungen im N:P-Nährstoffangebot hinsichtlich 

Produktion, Artenzusammensetzung der Gemeinschaft und elementarer Stöchiometrie im 

tropischen Ostpazifik und –atlantik   untersucht.  

Während Nährstoffanreicherungs-Experimente, die in Mesokosmen an Deck im Rahmen dreier 

Forschungsausfahrten durchgeführt wurden, war die Gesamtprimärproduktion jeweils 

ausschließlich durch den Eintrag von N kontrolliert. Kombinierte Zugaben von N und P konnten 

keinen weiteren Anstieg in der Biomasseproduktion hervorrufen. Für diese Reaktion waren 

vorwiegend Diatomeen verantwortlich, da diese die Phytoplanktongemeinschaft in den 

Mesokosmen nach der Nährstoffzugabe in allen Experimenten dominiert haben. Jedoch konnte 

ein Einfluss der Nährstoffanreicherung auf die Artenzusammensetzung innerhalb der 

Phytoplanktongemeinschaft festgestellt werden, wobei einige flagellate Photoautotrophe 

(Phaeocystis globosa, Heterosigma sp.) bevorzugt bei niedrigen N:P-Verhältnissen auftraten. 

Im Gegensatz zu Model-Simulationen zeigten weder die Mesokosmenexperimente noch eine 

biogeochemische Feldstudie vor der Küste Perus eine Wachstumsstimulierung von 

stickstofffixierenden Cyanobakterien unter niedrigen N:P-Verhältnissen. Ein Überschuß an P 

erscheint ein notwendiger aber nicht hinreichender Faktor für die Entwicklung von diazotrophem 

Phytoplankton zu sein. Spezifische Phytopigmente und funktionelle Gene in den Experimenten 

weisen allerdings auf eine Entwicklung von stickstofffixierenden Cyanobakterien in Sukzession 

zu Diatomeenblüten nach Nährstofferschöpfung hin.  

Die N:P-Stöchiometrie von Phytoplankton war unter nährstoffarmen Bedingungen sehr flexibel 

und korrelierte mit dem N:P-Verhältnis des Nährstoffeintrags während der Experimente. 

Demzufolge ist die elementare Zusammensetzung des Phytoplanktons stark von der 

gegenwärtigen Wachstumsphase abhängig. Zudem wurde eine große Variabilität in der N:P-

Zusammensetzung unterschiedlicher funktioneller Phytoplanktongruppen beobachtet. Große, 
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exponentiell wachsende Mikroalgen (z.B. Diatomeen) der eutrophen Schelfgewässer besaßen 

niedrige N:P-Verhältnisse (~10:1), bedingt durch ihren P-reichen auf schnellen Zellaufbau 

ausgerichteten Metabolismus. Picoplanktonische Algen (z.B. Prochlorococcus) im oligotrophen 

offenen Ozean zeichneten sich durch hohe N:P-Verhältnisse (>20:1) aus, was wiederum auf 

ihren hohen Proteingehalt, der für die effiziente Ressourcenbeschaffung benötigt wird, 

zurückzuführen ist. Somit weisen meine Ergebnisse auf eine multiple Kontrolle der N:P-

Zusammensetzung in Phytoplankton durch das Nährstoffangebot, die Wachstumsphase sowie 

der klassenspezifischen Wachstumsstrategie hin.  

Resultate dieser Studie deuten auf einen abnehmenden Trend von diatomeen-dominierter 

Primärproduktion und auf eine potentielle Verschiebung der Zusammensetzung der 

Phytoplanktongemeinschaft auf dem Schelf von großen mikroplanktonischen Arten hin zu 

Nanoplankton hin. Diese Veränderung des Größenspektrums hätte unmittelbare Konsequenzen 

für das gesamte Nahrungsnetz des Auftriebssystems. Ferner spielen Diatomeen eine 

Schlüsselrolle im Transport von organischem Material in die Tiefe, folglich könnte die 

Sauerstoffverarmung die Bindung von Kohlenstoffdioxid im Ozean auf indirektem Weg 

reduzieren. Ergebnisse dieser Arbeit konnten die auf Modellen basierende Hypothese über den 

stimulierenden Wachstumseffekt niedriger N:P-Nährstoffverhältnisse auf diazotrophe 

Cyanobakterien nicht bestätigen. Stattdessen deuten sie auf eine Entkopplung von N-Verlust 

und der Kompensierung des N-Defizits über die Stickstofffixierung durch Cyanobakterien hin. 

Dennoch suggeriert die Aufeinanderfolge von Diatomeen und Diazotrophen, dass, zusätzlich zu 

den üblichen Verbreitungsgebieten von Stickstofffixierern im oligotrophen offenen Ozean, 

Schelfgewässer das Wachstum von diazotrophen Cyanobakterien nach Aufzehrung von N 

durch Diatomeen im Anschluß an Auftriebsevents begünstigen.  
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Summary 

Rising sea surface temperatures in the course of global climate change promote expansion of 

oxygen-depleted intermediate waters due to strengthened water column stratification and 

reduced oxygen solubility, thereby modifying the redox-sensitive nutrient inventories. Marine 

oxygen minimum zones (OMZ) occur primarily on the eastern margins of the tropical Pacific and 

Atlantic Ocean, where cold nutrient-rich water is transported into the surface layer via coastal 

upwelling, enabling high primary and indirectly also high secondary production. OMZs facilitate 

net loss of inorganic nitrogen (N), but simultaneously promote the release of inorganic 

phosphorus (P) from the shelf sediment. O2-deficient water supplied to primary producers in the 

surface layer via upwelling has consequently a relatively low N:P nutrient composition. Based 

on the predicted expansion of tropical OMZs, the response of phytoplankton to changes in N:P 

supply with regard to production, community composition and elemental stoichiometry in the 

eastern boundary regions of the tropical Pacific and Atlantic Ocean was investigated.   

Total primary production during nutrient enrichment experiments performed in shipboard 

mesocosms on three cruises was solely controlled by N supply. Combined addition of N and P 

could not stimulate a further increase in biomass production. Diatoms were the main 

contributors to this overall response, as they dominated the phytoplankton community in the 

mesocosms after nutrient enrichment within all experiments. Yet, a different effect of nutrient 

enrichment was detected within the phytoplankton community, as some nanoflagellates 

(Phaeocystis globosa, Heterosigma sp.) were favoured by low N:P supply ratios. Contrary to 

model simulations, neither mesocosm experiments nor a biogeochemical field survey off the 

coast of Peru could show a stimulation of growth of nitrogen-fixing cyanobacteria under low N:P 

conditions. Excess P appears to be a necessary but not sufficient factor for development of 

diazotrophic phytoplankton. However, diagnostic phytopigments and functional genes in the 

experiments suggest development of nitrogen-fixing cyanobacteria under nutrient exhaustion in 

succession to diatom blooms.   

The N:P stoichiometry of phytoplankton was highly flexible under nutrient depletion and 

correlated with the N:P supply ratio during the experiments. Thus, phytoplankton elemental 

composition is strongly constrained by the current growth phase. Furthermore, a large variability 

in the N:P composition according to functional types of phytoplankton was observed. Large 

blooming microalgae (e.g. diatoms) of the eutrophic shelf waters featured low N:P ratios owing 

to their P-rich metabolism optimized for fast cell assembly. Picoplankton algae (e.g. 

Prochlorococcus) of the oligotrophic open ocean was characterized by a high N:P composition, 

caused by large amounts of proteins required for efficient resource acquisition. Hence, these 

results indicate a multiple control of phytoplankton N:P stoichiometry by nutrient supply, the 

current growth phase and the group-specific growth strategy.  
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Findings from this thesis suggest a declining trend in diatom-dominated primary production and 

a potential shift in the taxonomic composition of the shelf phytoplankton community from large 

microplanktonic species towards nanoplankton. Consequences of a change in food size spectra 

can be expected to propagate along the entire food web of the upwelling system. Furthermore, 

diatoms are a key control of the downward export of organic matter, thus deoxygenation may 

indirectly reduce the biological sequestration of carbon dioxide in the ocean. Results from this 

thesis could not confirm the model-based hypothesis about a stimulating growth effect on 

diazotrophic cyanobacteria by low nutrient N:P, but indicate rather a decoupling of N loss and 

compensation of the N-deficit via cyanobacterial N2-fixation. Yet, succession of diatoms and 

diazotrophs suggests that, in addition to the common distribution of N2-fixers in the oligotrophic 

open ocean, shelf waters may facilitate growth of diazotrophic cyanobacteria after N depletion 

by diatoms subsequent to upwelling events.  
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I Introduction 
 
Oxygen minimum zones and climate change 

Like most living environments on earth, the ocean faces times of strong change as a result of 

enhanced anthropogenic activity since the beginning of industrialization in the 18th century. 

Above all, the combustion of fossil fuels had and still has a tremendous impact not only on 

global climate (IPCC, 2007), but also on the world’s oceans. Increasing emissions of 

greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O) have caused a net 

increase in sea surface temperature particularly in the last 60 years (Levitus et al., 2000). Rising 

temperatures in the atmosphere as in the sea have an apparent impact on high latitude 

hydrology by promoting melting of sea ice and icebergs. But ocean warming has also a 

significant effect on the hydrography of the low latitude ocean by intensifying stratification of the 

upper water body. Vertical expansion of the thermocline increasingly impedes ventilation of the 

subjacent water parcel, reducing supply of dissolved oxygen (O2) into the ocean’s interior 

(Keeling and Garcia, 2002; Matear and Hirst, 2003). Rising water temperatures are further 

promoting a general seawater deoxygenation by lowering O2 solubility (Shaffer et al., 2009). The 

so-called oxygen minimum zones (OMZs), located below the euphotic zone between about 

100–900 m depth, are major characteristics of eastern boundary current systems in the Atlantic 

and Pacific Ocean (Karstensen et al., 2008; Fuenzalida et al., 2009), as well as of the monsoon-

influenced regions of the Arabian Sea and the Bay of Bengal in the Indian Ocean (Helly and 

Levin, 2004) (Fig. I.1).  

 

 
Figure I.1. Mean annual global distribution of dissolved oxygen at 200 m depth (from World Ocean Atlas 

(WOA) 2009; Garcia et al., 2010a). 
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Tropical OMZs are commonly situated in high productivity eastern boundary upwelling areas. 

Microbial degradation of large amounts of exported organic material contributes additionally to 

the subsurface O2-deficit (Helly and Levin, 2004). Human-induced eutrophication of coastal 

seas via run-off and atmospheric deposition of nutrients with industrial or agricultural origin are 

further enhancing the imbalance between O2 demands and resupply (Rabalais et al., 2010). 

Seawater O2 concentrations below 20 µmol kg-1 are typical for the center of the OMZs in the 

East Pacific and the Indian Ocean, but even complete absence of measurable O2 has been 

frequently observed (Karstensen et al., 2008). The East Atlantic OMZs, in contrast, appear 

rather moderate in terms of O2-deficiency with minimum levels of 40 µmol O2 kg-1.  

Deoxygenation of the ocean’s interior has multiple implications on nutrient cycling, ecosystem 

productivity and marine life. Key fluxes of N and P in the realm of the OMZ are illustrated in Fig. 

I.2. Sub- or anoxic conditions, in the water-column as well as in the sediment, provide an ideal 

environment for a unique microbial community consisting amongst others of denitrifiers, 

chemolithotrophs, nitrifiers, sulphur bacteria and proteobacteria (Stevens and Ulloa, 2008; 

Stewart et al., 2011). 

 

 
Figure I.2. Scheme of redox-dependent fluxes of N and P in the realm of the OMZ 
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The microbial pathways of denitrification (Codispoti and Christensen, 1985) and anaerobic 

ammonium oxidation (anammox) (Kuypers et al., 2005; Hamersley et al., 2007) are key 

processes of the nitrogen cycle, as large amounts of biologically available nitrogen (N) in form 

of nitrate (NO3
-) and ammonium (NH4

+) are transformed into dinitrogen (N2) or N2O, and are 

consequently lost for the autotrophic system (Fig. I.2). A scientific debate about the contribution 

of each process to total N loss in the individual OMZs is in progress. Anammox seems to be the 

prevalent reaction for N loss in the OMZ off Peru (Hamersley et al., 2007; Lam et al., 2009) and 

in the Benguela upwelling off Namibia (Kuypers et al., 2005). The OMZ off Northwest Africa 

appears to be devoid of both processes, at least within the water column (Ryabenko et al., 

2011). Whereas tropical OMZs are a net sink for N, they represent a major source for inorganic 

phosphorus (P) once converging with the continental shelf (Fig. I.2). P associated to metal 

oxides such as iron (Fe) oxide and buried in the sediment is released back into the water 

column under reducing redox-conditions (Ingall and Jahnke, 1994). This reaction delivers 

simultaneously large amounts of bioavailable Fe(II) from the shelf sediment into the water 

column. The pelagic pool of P is further enlarged through dissolution of apatite-containing fish 

debris in the shelf sediments, which applies especially to the high fish production areas of the 

Peruvian upwelling (Suess, 1981; Van Cappellen and Berner, 1988).  

As a consequence of O2-deficiency, intermediate nutrient-rich waters are featuring a low 

inorganic N:P stoichiometry, expressed as an N-deficit relative to the concentration of P (N*=N-

16·P) (see Fig. I.3). Extreme anoxia in the Pacific OMZ causes strongly reduced N:P ratios 

compared to the canonical Redfield ratio of 16:1 (Redfield, 1958), generating high negative 

values of N*. The relatively moderate O2-depletion in the East Atlantic precludes large-scale N 

loss processes, preserving N:P conditions around Redfield’s 16:1 (Moore et al., 2008). 

 

N* (kg m-3) 

Figure I.3. Mean annual distribution of N* at 200 m depth in the Pacific and Atlantic Ocean calculated 

according to Gruber and Sarmiento (1997). Positive N* indicates inorganic N:P ratios larger Redfield 

(16:1), negative N* indicate N:P<16:1. Data used for calculation of N* was taken from WOA 2009 (Garcia 

et al., 2010b). 
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Expansion of OMZs, expected as a result of global warming-induced changes in ocean 

stratification and O2 gas solubility, is already confirmed by observational data. Time series data 

from the last 50 years shown in Fig. I.4 revealed a vertical expansion of O2-deficient 

intermediate zones in the tropical Pacific and Atlantic Ocean (Stramma et al., 2008) and climate 

models predict a further general decline in oceanic O2 concentrations (Bopp et al., 2002; Matear 

and Hirst, 2003). Furthermore, model simulations predict an increase in O2-consumption as a 

result of increased respiration under elevated CO2-levels (Schneider et al., 2004; Oschlies et al., 

2008). In particular the O2-sensitive nitrogen cycle could be significantly affected by this 

development in the course of climate change, as habitats exhibiting O2 concentrations below the 

threshold for microbial N loss processes are likely to increase. The ‘moderate’ OMZ in the 

eastern tropical North Atlantic experienced with an average annual O2 decline of 0.34 µmol kg-1 

over the last 50 years the strongest trend in ocean deoxygenation among the tropical OMZs and 

may thus have the largest potential for broadening of O2-deficient waters (Stramma et al., 

2008). Quite recently dead-zone eddies, which are water masses without detectable O2 

concentrations, have been recorded at the Cape Verde Ocean Observatory in the ETNA 

(Karstensen, pers. comm.). These are clear signals for a progression of deoxygenation in the 

tropical Atlantic. Hence, absence of water column denitrification and anammox off the coast of 

Northwest Africa might soon belong to the past, amplifying the global N-deficit to currently 

unknown dimensions.     

 

 

A B 

Figure I.4. Dissolved oxygen concentration (in µmol kg-1) plotted versus time (1960-2008) and pressure 

(1 dbar ~ 1 m). White dots represent sample locations. (A) The eastern tropical North Atlantic (10° to 

14°N and 20° to 30°W), with thick white contour line at 90 µmol kg-1 O2. (B) The eastern equatorial Pacific 

Ocean (5°S to 5°N and 105° to 115°W), with thick white contour line at 60 µmol kg-1 O2. (from Stramma et 

al., 2008) 
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N-deficiency associated with excess amounts of P in surface waters influenced by the OMZ 

could provide an ecological niche for phytoplankton N2-fixation (Deutsch et al., 2007). However, 

Fe limitation of N2-fixation may inhibit the compensation for extensive N loss (Moore and Doney, 

2007). Since N limits primary production, changes in the ocean’s N inventory due to wide-

spread anoxia will likely affect the magnitude of CO2-sequestration in the ocean via the 

biological pump (Falkowski, 1997; Codispoti et al., 2001).  

 

 
Coastal upwelling areas  

Coastal upwelling is defined as the trade winds-mediated upward transport of cold and nutrient-

rich intermediate water into the surface layer on the continental shelf. Wind-driven and equator-

ward flowing currents running parallel to the coast (e.g. Peru Current, Benguela Current, Canary 

Current) are diverted by the Coriolis force in a 90° angle to the left (Southern Hemisphere) or to 

the right (Northern Hemisphere). This 90° net movement of the surface layer due to wind 

forcings is called Ekman transport (Ekman, 1905). The resulting offshore flowing surface water 

is replaced by colder and usually nutrient-rich deep water. As a consequence, surface waters 

off the coast of Peru in the Pacific and off Mauretania and Namibia in the Atlantic are featuring 

relatively low temperatures for these in general warm regions of the tropical and subtropical 

ocean. The relatively cool surface water parcels contain large amounts of nutrients like nitrate 

(NO3
-), phosphate (PO4

3-), silicate (Si(OH)4) and iron (Fe), representing a marine oasis in the 

generally oligotrophic deserts of the blue tropical surface ocean (see Fig. I.5). In particular on 

the Peruvian shelf constant upwelling supports the formation of vast nutrient plumes that are 

stretching far out into the Pacific Ocean. 

 



Introduction 12

 
Figure I.5. Mean annual surface concentrations of (A) nitrate, (B) phosphate and (C) silicate in the Pacific 

and Atlantic Ocean (from WOA 2009, Garcia et al., 2010b). 

 

In contrast to the commonly poor productivity of the tropical ocean due to stable stratification of 

the upper water body, diapycnal transport of deep water loaded with nutrients into the euphotic 

layer enables extremely high primary production rates. The resulting large phytoplankton 

standing stocks in shelf waters represent the foundation for the high ocean productivity in 

eastern boundary current systems (Chavez, 1995; Pennington et al., 2006). Even though 

upwelling areas contribute only ~0.2% to the global ocean, they are providing 34% of global 

marine primary production (see biomass index chlorophyll a in Fig. I.6) and up to 58% of the 

global marine fish catch (Pauly and Christensen, 1995). This extremely large fish production is 

not only a result of enhanced primary productivity. Eutrophic conditions favour especially growth 

of large phytoplankton which facilitates short food chains, resulting in high ecological energy 

transfer efficiencies, and therewith exponentiating total fish yield (Ryther, 1969; Cushing, 1989).  
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Figure I.6. Mean annual surface ocean chlorophyll a concentration between 1997-2010 (SeaWiFS, 
http://oceancolor.gsfc.nasa.gov/).  

 

Diatoms play an important role in global biogeochemical cycles by accounting for 40% of 

primary production in the ocean (Smetacek, 1999) and by controlling export production into the 

deep ocean via their fast-sinking silica frustules (Buesseler, 1998). Yet, diatoms are absolutely 

dominating the photoautotrophic community in upwelling areas of the eastern margins (Rojas de 

Mendiola, 1981; Wilkerson et al., 2000) (see Fig. I.7A). Large cell size (up to 200 µm) (Hasle 

and Syvertsen, 1997), high nutrient storage capacity (Sunda and Huntsman, 1995) and high 

growth rates under nutrient saturation (reviewed in Sarthou et al., 2005) are perfect adaptations 

of this phytoplankton group for successful blooming after episodical pulses of nutrients from the 

deep. Fawcett and Ward (2011) observed a very fast metabolic response of diatoms on sudden 

nutrient input, which may be the key advantage to overgrow and out-compete other 

photoautotrophic species right from the start. Phaeocystis globosa and dinoflagellates are 

further phytoplankton abundant in upwelling areas (Margaelf, 1978), but in terms of biomass 

they play a minor role compared to diatoms. 
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 A 

 B 

 C 

Figure I.7. Seasonal climatology (1998-2007) for the Dec-Feb period showing the percentage 

contribution of size-class-specific phytoplankton production to total primary production. The three size-

classes (A) micro-, (B) nano- and (C) picophytoplankton are based on phytopigment composition (from 

Uitz et al., 2010). 

 

As large-sized, fast growing phytoplankton is the major producer of sinking particulate material 

(Michaels and Silver, 1988), it represents a key factor in the export of photoautotrophically fixed 

carbon to the deep ocean, namely the biological pump (Dugdale and Wilkerson, 1998). 

Consequently, downward carbon fluxes will likely react sensitive to shifts in the planktonic 

community structure of diatom-dominated assemblages abundant in coastal upwelling areas 

(Boyd and Newton, 1998). 

Due to their large variability in size and shape, diatoms represent an important food source for a 

wide spectrum of pelagic organisms, consisting of micro- and mesozooplankton and 

planktivorous fish. The enormous production of small pelagic fish like anchoveta and sardines in 
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the Peruvian upwelling is principally fuelled by periodic blooming of large diatoms (Ryther, 1969; 

Smetacek, 1999). Changes in the abundance of diatoms could potentially have serious 

implications on the distribution of these swarm-building fish.   

Coastal upwelling areas represent from an ecological as well as from an economical 

perspective highly valuable marine systems, which rely on the permanent nutrient supply 

through vertical advection on the shelf. Changes in nutrient inventories and stoichiometry, as 

will likely occur in the course of expanding OMZs, may not only affect primary production 

significantly. In a bottom-up controlled system with short food chains, changes on the primary 

producer level may have a direct impact on the whole food web up to large predatory fish.  

 

 

Cyanobacteria of the tropical oligotrophic ocean 

Marine life in continental shelf areas of eastern boundary regimes benefits from episodic vertical 

intrusions of ‘fresh’ nutrients. Open ocean regions, in contrast, encounter very stable and 

constant hydrographic conditions. Weak seasonality in low latitude regions cause a pronounced 

year-round stratification of the upper ocean which inhibits exchange with the underlying nutrient-

enriched water body, resulting in a nutrient-impoverished surface layer. Large phytoplankton 

dominating the eutrophic waters of coastal upwelling areas (see Fig. I.7A) are disadvantaged 

under nutrient-depleted conditions, as their low surface-to-volume-ratio is unfavourable for 

nutrient uptake at low concentrations (Chisholm, 1992). Pico- and nanoplanktonic cells, 

primarily of the cyanobacterial genus Synechococcus und Prochlorococcus, tend to dominate 

primary production in most oligotrophic waters of the tropical ocean (Partensky et al., 1999; Uitz 

et al., 2010) (see Fig. I.7B and C). In contrast to the episodic appearance of large blooming 

algae in eutrophic systems, small oceanic phytoplankton pursues the strategy of sustaining 

constant net growth, since nutrient conditions hardly change throughout the year. Cell 

abundances of Synechococcus, which can also occur in meso-/eutrophic areas closer to the 

coast, are lower in strongly nutrient-depleted areas, while Prochlorococcus abundance is 

considerably higher in oceanic ‘deserts’. This is primarily a result of the higher genetic variability 

of Prochlorococcus that facilitates colonization of different light regimes (Ferris and Palenik, 

1998). Prochlorococcus contains a specialized photosystem, which can collect photons 

efficiently even at very low irradiances down to 200 m depth (Moore et al., 1995). The 

photosynthetic adaptation allows growth in the deep layers below the thermocline, where 

diffusion and advection of nutrients from underlying water allows for establishment of a deep 

chlorophyll maximum. This vertical flexibility of Prochlorococcus across the water column is 

representing a major advantage compared to most other commonly light-limited 

photoautotrophs that are bound to the light-flooded but nutrient-impoverished surface layer.     
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Beside Synechococcus and Prochlorococcus, both lacking the ability to fix N2, a variety of 

diazotrophic cyanobacteria are abundant in the oligotrophic ocean of the tropics and subtropics. 

The filamentous colony-forming Trichodesmium (Capone et al., 1997; Carpenter et al., 1999), 

unicellular species such as Crocosphaera (Zehr et al., 2001), recently discovered unicellular 

heterotrophic cyanobacteria (Zehr et al., 2008), and symbiotic diazotrophs associated with 

diatoms (Carpenter et al., 1999; Foster and Zehr, 2006) occur in the tropical and subtropical 

open ocean. For a long time marine diazotrophy was primarily linked to the abundant 

cyanobacterium Trichodesmium (Carpenter and Romans, 1991; Falkowski, 1997), which is able 

to form extensive surface blooms under favourable conditions like water temperatures >25°C 

and calm sea (Breitbarth et al., 2007). High water temperatures between 25-34°C appear to be 

a key factor in controlling distribution of Trichodesmium (reviewed by Stal, 2009). In the last 

decade unicellular cyanobacteria, auto- as well as heterotrophic, gained increasing attention as 

they were discovered to equal or even exceed abundance and N2-fixation rates of filamentous 

Trichodesmium (Zehr et al., 2001; Montoya et al., 2004; Langlois et al., 2008). Unicellular 

Crocosphaera (3-8 µm) has with 22-36°C a much broader temperature spectrum (Webb et al., 

2009), implying a larger geographic distribution than Trichodesmium (Moisander et al., 2010). 

Recently discovered heterotrophic unicellular cyanobacteria named ‘Group A’ are even found in 

cooler waters with temperatures down to 15°C (Needoba et al., 2007; Langlois et al., 2008). 

Therefore colder waters (SST<25°C) of the subtropical and even temperate ocean or close to 

upwelling hotspots, previously not considered as common areas of N2-fixation, may provide 

favourable conditions for diazotrophic phytoplankton. Unicellular ‘Group A’ cells (<1 µm) 

represent a unique group of cyanobacteria, as they completely lack photosystem II and 

enzymes for carbon fixation; consequently they have be classified as photoheterotroph (Zehr et 

al., 2008; Tripp et al., 2010). Another special form of cyanobacteria in the tropical ocean are the 

diatom-diazotroph associations (DDA). Autotrophic cyanobacteria Richelia intracellularis or 

Calothrix live in a symbiotic relationship with the diatoms Hemiaulus, Rhizosolenia or 

Chaetoceros (Foster and Zehr, 2006).  

Diazotrophic cyanobacteria play a critical part in biogeochemistry of the tropical ocean, as N2-

fixation represents the only process with the potential to counterbalance the deficit in the marine 

N-budget. 
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Controls of phytoplankton stoichiometry      

The composition of essential elements for microalgal nutrition in the ocean (carbon, nitrogen 

and phosphorus) is highly similar to the elemental stoichiometry of phytoplankton. This was first 

discovered by Redfield (1958), who suggested a tight mutual regulation of nutrient and organic 

matter stoichiometry. This “they are what they eat” theory was pursued in many studies, 

declaring the nutrient supply ratio as the major control of cellular chemical composition (Rhee, 

1978; Sterner and Elser, 2002). Yet, Goldman et al. (1979) observed in culture experiments a 

tight correlation of phytoplankton stoichiometry with growth rate, regardless of the medium N:P 

ratio. The growth phase, either exponential (nutrient saturation) or stationary (nutrient 

depletion), seems to be highly relevant for the biochemical composition of the cell (Klausmeier 

et al., 2004a; 2004b; 2008). Under replete nutrient supply, phytoplankton consumes nutrients in 

a fixed ratio closely matching its specific optimal uptake ratio. Whereas algae assimilate nearly 

all the residual nutrients in the medium under nutrient starvation, hence cells “are what they eat” 

or “eat what they are served”, respectively, matching the nutrient supply ratio (Sterner and 

Elser, 2002). 

As described in the two previous chapters, the community of marine phytoplankton is composed 

of a variety of functional types and size spectra (see Fig. I.7) that pursue different strategies of 

growth based on the prevailing conditions of hydrography and nutrient distribution. Broadly 

classified, there are large microalgae specialized on blooming in high-nutrient regions close to 

the coast, and there are picoplanktonic species adapted to survive in nutrient-poor waters of the 

open ocean. Phytoplankton stoichiometry is suggested to be highly influenced by the 

predominant metabolic machinery (Klausmeier, 2004a; Arrigo, 2005; Loladze and Elser, 2011), 

since cellular compartments are characterized by quite different chemical compositions (Geider 

and LaRoche, 2002). Blooming phytoplankton like diatoms have typically a relatively low N:P 

composition (~10:1), since cell assembly requires synthesis of increased amounts of P-rich 

ribosomes. Picoplankton is forced to accumulate N-rich proteins for resource (nutrients, light) 

acquisition in the oligotrophic waters, consequently cellular N:P is high (>20:1).  

Regardless of whether growth rate, growth strategy or the nutrient supply ratio are ultimately 

regulating phytoplankton elemental composition, the impact of dissolved organic compounds is 

regularly ignored. Banse (1974) already described uptake and release of dissolved organic 

nitrogen (DON) and dissolved organic phosphorus (DOP) by phytoplankton as a significant 

process influencing the stoichiometry of algal biomass. Certain constituents of DON and/or DOP 

are not exclusively utilized by heterotrophic bacteria, but represent additional nutrient sources 

for a multitude of phytoplankton species (reviewed by Bronk et al., 2007; Dyhrham and 

Ruttenberg, 2006; Dyhrham et al., 2006; Ranhofer et al., 2009). Dissolved organic compounds 

are generally transformed into bioavailable molecules by extracellular enzymes released form 

the algae. DON and/or DOP as potential substitute sources for phytoplankton nutrition may play 
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a crucial role in nutrient and organic matter cycling, specifically in the context of changing 

nutrient inventories induced by expanding OMZs.    
 
 
Nutrient limitation of phytoplankton  

A multitude of different concepts for phytoplankton nutrient limitation can be found in literature. 

Famous Liebig’s law of the minimum states existence of a single limiting nutrient, ultimately 

controlling total biomass yield by its availability (Liebig, 1855). Rate limitation, also known as 

Blackman limitation, describes the impact of a limiting nutrient on growth rate rather than on 

absolute biomass (Blackman, 1905). Both concepts are originally based on the decisive factor 

of a single limiting nutrient, whereas availability of other nutrients is irrelevant. However, co-

limitation, limitation by multiple elements, can frequently be observed due to the simultaneous 

deficiency of several nutrients in the surface ocean (Saito et al., 2008). Co-limitation appears 

often in conjunction with micronutrients (trace metals), induced either by two micronutrients (e.g. 

Fe, Zn, Co, Mn) (Saito et al., 2002), or by one trace metal in combination with a macronutrient 

(N, P, Si) (DiTullio et al., 1993). 

The general complexity of nutrient limitation can be well demonstrated using the study by Mills 

et al. (2004) conducted in the eastern tropical North Atlantic (ETNA). Bioassay experiments 

revealed a general N limitation of total primary production, whereas N2-fixation was co-limited by 

Fe and P. N limitation of the photoautotrophic system in the tropical North Atlantic may be a 

prerequisite for high N2-fixation. Large Fe and potentially also P supply by dust deposition from 

the African continent (Gao et al., 2001) facilitates oceanic diazotrophy, turning the tropical North 

Atlantic into one of the most important areas of marine N2-fixation world-wide (Gruber and 

Sarmiento, 1997).  Diazotrophic cyanobacteria require supplemental amounts of Fe for 

synthesis of the Fe-containing protein nitrogenase that is catalyzing the reaction of N2-fixation 

(reviewed by Howard and Rees, 1996). Cell growth and N2-fixation of cyanobacteria are thus 

especially prone to Fe limitation (Paerl et al., 1994; Berman-Frank et al., 2007; Okin et al., 

2011). However, Fe has been questioned being the key nutrient regulating marine N2-fixation, 

suggesting P as a further important control of diazotrophic phytoplankton growth (Sañudo-

Wilhelmy et al., 2001). A variety of studies in limnetic (Smith, 1983; Vrede et al., 2009), brackish 

(Niemi, 1979) and marine (Michaels et al., 1996) systems discovered blooming of cyanobacteria 

initiated by low seawater N:P stoichiometry. The question is whether N depletion, high P supply 

or a combination of both are favouring cyanobacterial growth. Based on the N:P Redfield ratio 

of 16:1, excess supply of P generated within OMZs is expected to stimulate growth of 

diazotrophic phytoplankton and N2-fixation (Deutsch et al., 2007), thereby potentially 

compensating for the extensive N loss from the anaerobic processes anammox and 

denitrification. This scenario is based on nutrient uptake by non-diazotrophic phytoplankton 
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according to Redfield. However, numerous studies, based on data from the field as well as from 

culture experiments, already reported on non-Redfieldian N:P utilization by phytoplankton. 

According to the concept of growth strategy described in the previous chapter, blooming 

species are commonly consuming nutrients with an N:P below Redfields’ 16:1 (Arrigo et al., 

2005; Klausmeier et al., 2004a), while picocyanobacteria abundant in oligotrophic waters are 

characterized by high N:P uptake ratios (Bertilsson et al., 2003; Klausmeier et al., 2004a). Low 

N:P assimilation of fast-growing phytoplankton in coastal upwelling areas may therefore reduce 

P availability for N2-fixing species abundant in off-shelf waters (Mills and Arrigo, 2010). 

The micronutrient Fe is also a crucial factor in controlling in particular blooming of diatoms 

(Hutchins and Bruland, 1998; Coale et al., 1996). For example, generally productive upwelling 

areas on the Peruvian shelf in the Pacific can be transferred into HNLC (high nutrients low 

chlorophyll) regions if diatom growth is restricted by the availability of Fe (Bruland et al., 2005). 

Diatoms, with their exclusive requirement for Si(OH)4 (with the exception of the negligible group 

of silicoflagellates), rely further on the supply of Si(OH)4 and their development is constrained by 

availability of this macronutrient. Beside N and Fe, autotrophic production in upwelling systems 

could thus be additionally limited by Si(OH)4 (Dugdale et al., 1995; White and Dugdale, 1997). 

The debate about the ultimate limiting nutrient of marine primary production on a global scale 

goes back to Redfield in 1958. Based on the theory that potential N-deficits in the ocean could 

be fully compensated by N2-fixation, he concluded net organic production to be limited by the 

supply of P. However, this proposition could only arouse by neglecting considerations about 

potential limitation of N2-fixation itself. More than 10 years later Ryther and Dunstan (1971) 

possibly approved overall P limitation on geological time scales, but claimed N as the critical 

and proximate factor limiting phytoplankton growth in coastal waters. Today, diatoms as the 

largest contributors to primary production in eutrophic waters (Blain et al., 1997; Smetacek, 

1999) and bulk phytoplankton in the oligotrophic North Atlantic (Graziano et al., 1996; Mills et 

al., 2004; Moore et al., 2008) are known to be limited by N availability. Falkowski (1997) 

considered the general N limitation of marine primary production as a consequence of low Fe 

supply limiting N2-fixation over large areas of the surface ocean.  
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Major objectives and thesis outline 

As a consequence of climate change, O2-deficient areas in the tropical ocean are expected to 

expand, leading most likely to a universal decrease in the N:P ratio of nutrients supplied to the 

surface ocean from the deep. These predictions encouraged me to investigate how 

phytoplankton in coastal upwelling areas overlying OMZs is responding to changes in the N:P 

supply ratio in terms of (i) total production, (ii) community structure and (iii) elemental 

stoichiometry. Based on the specific question whether N:P composition of photoautotrophic 

biomass in upwelling areas will follow the deoxygenation-induced decrease in nutrient N:P 

stoichiometry, I investigated (iiii) whether nutrient N:P is reflected in the microalgal N:P 

composition in general. 

The first study of the thesis is based on a hydrographic and biogeochemical field survey 

along an east-west transect at 10°S in the eastern tropical South Pacific (ETSP), stretching from 

the upwelling area above the narrow Peruvian continental shelf to the stable stratified open 

ocean. Links between vertical and horizontal gradients of nutrients, phytoplankton species 

composition and phytoplankton N:P stoichiometry were examined. 

A close to nature experimental approach was used for testing community biogeochemical 

responses to variable N:P supply ratios in study 2, 3 and 4. Nutrient enrichment experiments 

with natural phytoplankton communities in shipboard mesocosms were conducted in the 

Peruvian upwelling and in the waters off Northwest Africa. Study 2 (off Peru) and 3 (off NW 

Africa) tested the effect of different nutrient fertilization on growth and taxonomical structure of 

the phytoplankton community.  

Study 4 represents a synthesis of the results from all three mesocosm experiments, 

investigating the impact of nutrient supply and nutrient stoichiometry on production, partitioning 

and elemental composition of phytoplankton-derived organic matter. 

Work for this dissertation was conducted in the framework of the Sonderforschungsbereich SFB 

754 "Climate-Biogeochemistry Interactions in the Tropical Ocean" funded by the German 

Science Foundation (DFG) and included participation in three cruises on board of German R/V 

Meteor to the study sites in the tropical Atlantic and Pacific Ocean. Cruise M77-3 was carried 

out in the ETSP from Guayaquil (Ecuador) to Callao (Peru) in Dec./Jan. 2008/09, M80-2 in the 

oceanic ETNA from Mindelo (São Vicente/Cape Verde) to Dakar (Senegal) in Nov./Dec. 2009 

and M83-1 again in the ETNA from Las Palmas (Gran Canary/Spain) to Mindelo (São 

Vicente/Cape Verde) in Oct./Nov. 2010 (Fig. I.8).  
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Figure I.8. Maps showing sampling stations of R/V Meteor cruises M77-3 (yellow), M80-2 (blue) and 

M83-1 (red).         
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Abstract 

The tropical South East Pacific is characterized by strong coastal upwelling on the narrow 

continental shelf and an intense oxygen minimum zone (OMZ) in the intermediate water layer. 

These hydrographic properties are responsible for a permanent supply of intermediate water 

masses to the surface rich in nutrients and with a remarkably low inorganic N:P stoichiometry. 

To investigate the impact of OMZ-influenced upwelling waters on phytoplankton growth, 

elemental, and taxonomical composition we measured hydrographic and biogeochemical 

parameters along an east-west transect at 10°S in the tropical South East Pacific, stretching 

from the upwelling region above the narrow continental shelf to the well-stratified oceanic 

section of the eastern boundary regime. New production in the area of coastal upwelling was 

driven by large-sized phytoplankton (e.g. diatoms) with generally low N:P ratios (<16:1). While 

nitrate and phosphate concentrations were at levels not limiting phytoplankton growth along the 

entire transect, silicate depletion prohibited diatom growth further off-shore. A deep chlorophyll 

a maximum consisting of pico-/nano- (Synechococcus, flagellates) and microphytoplankton 

occurred within a pronounced thermocline in subsurface waters above the shelf break and 

showed intermediate N:P ratios close to Redfield proportions. High PON:POP (>20:1) ratios 

were observed in the stratified open ocean section of the transect, coinciding with the 

abundance of two strains of the pico-cyanobacterium Prochlorococcus; a high-light adapted 

strain in the surface layer and a low-light adapted strain occurring along the oxic-anoxic 

transition zone below the thermocline. Excess phosphate present along the entire transect did 

not appear to stimulate growth of nitrogen-fixing phytoplankton, as pigment fingerprinting did not 

indicate the presence of diazotrophic cyanobacteria at any of our sampling stations. Instead, a 

large fraction of the excess phosphate generated within the oxygen minimum zone was 

consumed by non-Redfield production of large phytoplankton in shelf surface waters.   
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1. Introduction 

The tropical and subtropical South East Pacific is oceanographically a highly diverse region. 

Coastal upwelling driven by alongshore winds is the dominant physical mechanism along the 

coast forming the basis for one of the most productive marine food webs worldwide (Ryther, 

1969). An oxygen-deficient intermediate water body occurs from approximately 100 m down to 

900 m depth, where concentrations of dissolved oxygen (O2) can drop below 20 µmol kg-1 (Helly 

and Levin, 2004; Karstensen et al., 2008; Stramma et al., 2008; Fuenzalida et al., 2009). These 

oxygen minimum zones (OMZs) are caused by a pronounced stratification of the water column 

in the region off the continental shelf, which impedes ventilation of the intermediate water parcel 

(Reid, 1965). In addition, high primary production in the surface waters of the shelf area, 

induced by upwelling of nutrient-loaded water masses previously in contact with shelf 

sediments, enhances the O2-deficit via bacterial degradation of organic matter in the 

intermediate water layer (Helly and Levin, 2004). This deoxygenation has crucial implications on 

cycling of the macronutrients nitrogen (N) and phosphorus (P). The microbial processes 

anammox (anaerobic ammonium oxidation) (Kuypers et al., 2005; Hamersley et al., 2007; 

Galan et al., 2009), heterotrophic denitrification (Codispoti and Christensen, 1985) and DNRA 

(dissimilatory nitrate reduction to ammonium) (Lam et al., 2009) can occur within these OMZs. 

Anammox and denitrification both represent large sinks of inorganic N in anoxic or suboxic 

waters close to the shelf, thereby lowering N:P stoichiometry and driving the autotrophic system 

ultimately into N limitation. Furthermore, anoxic conditions in shelf sediments and shelf bottom 

waters enhance the release of reactive phosphate into the water column formerly associated to 

iron hydroxides (Ingall and Jahnke, 1994), further enhancing the negative deviation from the 

Redfield N:P ratio of 16:1 (Redfield, 1958). The resulting excess phosphate (P*) may provide a 

niche for N-fixing cyanobacteria (Deutsch et al., 2007). Consequently, diazotrophic 

cyanobacteria could be the beneficiary of expanding OMZs and might have the potential to 

replenish the inorganic N-deficit caused by deoxygenation, reconstituting ‘Redfieldian’ nutrient 

stoichiometry. The underlying assumption for this concept is an N:P assimilation by non-

diazotrophic phytoplankton according to Redfield.  

Similar to the deviations in nutrient stoichiometry, also primary producers can diverge in their 

elemental composition from the canonical Redfield ratio. Recent studies argue that this non-

Redfield behavior originates in the specific growth strategy of the microalgae, which determines 

its cellular nutrient requirements (Klausmeier et al., 2004; Arrigo, 2005; Mills and Arrigo, 2010). 

According to this, phytoplankton can be broadly divided into two groups, the ‘bloomers’ and the 

‘survivalists’, a classification that seems to be seeded in their phylogenetic background (Quigg 

et al., 2003). ‘Bloomers’ are characterized by large phytoplankton belonging to the red plastid 

superfamily like diatoms and dinoflagellates that are flourishing especially in eutrophic upwelling 

systems. They are adapted to exponential growth and possess a cellular assembly machinery 
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rich in low N:P-containing RNA. At the other end of the spectrum are the ‘survivalists’, 

predominantly pico- and nanoplankton, with eukaryotic phyla originating from the green plastid 

superfamily. The ‘survivalists’ can sustain net growth even under nutrient scarcity. With the aim 

of expanding their capacity for scavenging nutrients at low concentrations they synthesize large 

amounts of N:P-rich proteins.  

Based on these concepts, two opposing hypotheses about the dynamics of N:P stoichiometry 

above the Peruvian OMZ can be formulated. According to the first hypothesis (sensu Deutsch et 

al. 2007) inorganic nutrients in upwelled waters are utilized in Redfield proportions by non-

diazotrophic phytoplankton, creating a niche for N-fixing cyanobacteria through the availability of 

P*. This scenario would be particularly relevant in the course of expanding OMZs and the 

accompanied increase in the local N-deficit. The second hypothesis (sensu Arrigo, 2005; Mills 

and Arrigo, 2010) allows for non-‘Redfieldian’ nutrient assimilation depending on the growth 

strategy of the phytoplankton species, possibly leading to consumption of P* by non-

diazotrophic phytoplankton. To date the two hypotheses are based primarily on theoretical 

grounds, as empirical data from O2-deficient eastern boundary regions suited for their rigorous 

testing are scarce. To examine the dynamics of N:P stoichiometry in OMZ-influenced waters 

and to test for the two opposing hypotheses, we have conducted vertical high-resolution profiles 

of O2, temperature, chlorophyll a (Chl a) and nutrients in combination with measurements of 

particulate organic matter (POM), dissolved organic carbon (DOC), biogenic silicate (BSi) and 

the distribution of phytoplankton functional types (PFTs) based on pigment compositions along 

an east-west transect at 10°S from the coastal upwelling area to the well-stratified open ocean 

in the south-eastern tropical Pacific off the coast of Peru.  

 

 

 

2. Material and methods 

2.1. Study area and sampling 

During the M77/3 cruise on board of R/V Meteor from Guayaquil/Ecuador to Callao/Peru 

between December 27, 2008 and January 21, 2009, hydrographic data and a range of 

biogeochemical parameters were collected. The study site extended from 4°S to 18°S and from 

72°W to 84°W (Fig. 1.1) and was characterized by strong vertical and horizontal gradients in 

hydrography and biogeochemistry.  
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Figure 1.1. Cruise track of M77/3 cruise with all CTD stations denoted in red and the investigated 
transect along 10°S indicated by the blue frame off the Peruvian coast. Data of hydrographic parameters, 

nutrients and Chl a was collected along the complete length of the transect from the coast to 84.5°W 

(station 8-25), whereas POM, DOC, BSi and phytoplankton pigments were only determined up to 82.5°W 

(station 8, 14, 21, 22 and 24). In addition bathymetric characteristics of the study site like the narrow 

continental shelf and the steep shelf break are displayed. 

 

Our focus was on the physical and biogeochemical sampling of a 10°S transect stretching from 

the upwelling area on the Peruvian continental shelf at 78.38°W, across the steep continental 

slope to the open ocean of the eastern boundary regime at 84°W (hydrography, nutrients and 

Chl a measured at station 8-25) and 82.50°W (POM, DOC, BSi, PFTs measured at station 8, 

14, 21, 22 and 24), respectively. Location of the cruise track, sampled stations and bathymetric 

characteristics of the study area are shown in Fig. 1.1. 

For collecting hydrographic (O2, temperature) and Chl a data as well as water samples for 

biogeochemical analyses, vertical casts were conducted using a rosette device equipped with a 

Seabird 9 plus CTD (conductivity-temperature-depth), dual Seabird O2 sensors and a Dr. Haardt 
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fluorescence sensor.  Water samples were collected in 24 x 10-L Niskin bottles. Calibration of 

the O2 sensors was based on O2 data gained from bottle samples and determined according to 

Winkler (1888). 

 

 

2.2. Nutrient analyses 

Water samples for analyses of nitrate (NO3
-), ammonium (NH4

+), phosphate (PO4
3-) and silicate 

(Si(OH)4) were stored frozen (-20°C) until processing at the Max-Planck Institute in Bremen, 

Germany. NO3
-, PO4

3- and Si(OH)4 were measured with an autoanalyzer (TRAACS 800, Bran & 

Lubbe, Hamburg, Germany) according to Hansen and Koroleff (1999). NH4
+ was determined 

applying the salicylate-hypochlorite method by Bower and Holm-Hansen (1980). 

 

 

2.3. POM  

Water samples for particulate organic carbon (POC) and particulate organic nitrogen (PON) 

were filtered onto combusted (450°C for 5 h) Whatman GF/F filters (0.7 µm pore size; 25 mm 

diameter) at low vacuum pressure (<200 mbar) and stored frozen (-20°C). Filters were fumed 

with hydrochloric acid (37%) for ~15 h to remove all inorganic carbon, dried at 60°C for 12 h and 

finally wrapped in tin cups (8 x 8 x 15 mm) for combustion. Measurements were made 

according to Sharp (1974) using an elemental analyzer (EURO EA Elemental Analyzer) coupled 

to an EUROVECTOR gas chromatograph.  

Particulate organic phosphorus (POP) was measured using a modified method according to 

Hansen and Koroleff (1999) by applying the oxidation reagent Oxisolv (Merck) to the defrosted 

filters plus 40 ml of ultrapure water. 30 min of cooking converted all POP components into 

orthophosphate. Addition of 1.25 ml of ascorbic acid and 1.25 ml of a mixed reagent (4.5 M 

H2SO4 + NH4
+-molybdate + potassium antimonyl tartrate) formed a blue complex, which was 

measured colorimetrically against ultrapure water at a wavelength of 882 nm with a Hitachi U-

2000 spectrophotometer.  

 

 

2.4. DOC 

Glass vials (24 ml), caps and septa for DOC sampling were soaked in a Decon bath (2%; for 

min. 12 h), rinsed with ultrapure water, soaked in an HCl bath (10%; for min. 12 h) and rinsed 

very thoroughly again with ultrapure water. The cleaned glass vials were wrapped into 

aluminum foil and combusted at 450°C for 12 h to destroy all remaining organic material. Water 

samples for DOC were taken immediately from the CTD-Niskin bottles into the prepared 
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sampling vials and stored at -20°C. Samples were thawed, filtrated through combusted (450°C 

for 6 h) GF/F filters, acidified by adding 20 µl HCl (32%) to each sample and stored at 4°C until 

measurement. Filtration was performed in a solvent-free clean laboratory on land, because 

similarly controlled conditions, that are required to minimize contamination of DOC samples, 

were not available on board. Precipitates were not observed after thawing of the samples and 

the release of DOC from cells that may have broken during freezing was negligible. This is 

because POC concentration was on average only 11% of the DOC concentration, and 

systematic patterns of DOC could not be explained by corresponding shifts in POC. Systematic 

errors introduced by our filtration procedure are therefore negligible in the context of our study.  

Analysis of DOC was conducted using the HTCO method (high-temperature catalytic oxidation) 

(Wurl and Min Sin, 2009) on a Shimadzu TOC-V analyzer. The accuracy of the DOC analysis 

was validated several times a day with DOC deep-sea reference material provided by the 

University of Miami.  

 

 

2.5. BSi 

Particulate biogenic silica was collected by filtration of water samples onto filters made of 

cellulose acetate (0.65 µm pore size; 25 mm diameter) at low vacuum pressure (<200 mbar) 

and stored frozen at -20°C. For analysis, the sample filters were incubated each with 25 ml 

NaOH (0.1 M) in Nalgene bottles at 85°C for 2h 15 min in a shaking water bath. After cooling of 

the incubated samples, analysis was conducted according to the method for determination of 

Si(OH)4 by Hansen and Koroleff (1999).  

 

 

2.6. Phytoplankton pigment analysis 

Samples for phytoplankton pigment analysis via HPLC (High Pressure Liquid Chromatography) 

were filtered onto Whatman GF/F filters (0.7 µm pore size; 25 mm diameter) at low vacuum 

pressure and immediately stored frozen at -20°C. For pigment extraction, each filter was 

covered with approximately 3 g of glass beads (2 mm + 4 mm) and 2 ml of acetone. After 

homogenisation in a cell mill (Edmund Bühler GmbH) for 5 min and centrifugation for 10 min at 

5000 rpm, the supernatant was filtered through a 0.2 µm Teflon filter and the extract stored at -

80°C. The HPLC measurement was conducted by a Waters 600 controller in combination with a 

Waters 996 photodiode array detector (PDA) and a Waters 717plus auto sampler. The applied 

method was modified after Barlow et al. (1997).  

Classification and quantification of the phytoplankton pigments was carried out using the 

software EMPOWERS (Waters GmbH, Eschborn, Germany). Phytoplankton class abundances 

were calculated with CHEMTAX (Mackey et al., 1997).  
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Table 1.1. Input and output matrix for CHEMTAX. Pigment to chlorophyll a1/a2
 ratios for the selected 

phytoplankton groups. Modified input matrix after Mackey et al. (1996) and Veldhuis & Kraay (2004). 
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This matrix factorizing program aims at estimating the contributions of individual phytoplankton 

groups to the microalgal community based on the detected concentrations of marker pigments 

and the theoretical ratios of individual pigments to Chl a for each taxonomic class. The applied 

pigment ratios are representative for species of the tropical/equatorial ocean (Mackey et al., 

1996), with modifications according to Veldhuis & Kraay (2004) concerning the Prochlorococcus 

population (Tab. 1.1). This group was divided into a high-light (surface) and a low-light (deep-

water) adapted strain, based on the concentrations of divinylchlorophyll a and divinylchlorophyll 

b (Penno et al., 2000). The chlorophyll degradation product phaeophorbide was also 

determined via the HPLC method. 

 

 

2.7. Data processing 

Section plots of the 10°S transect were prepared with the MATLAB program. Ocean Data View 

3.4. and 4.3. was used for production of a cruise map and for plotting nutrient data from World 

Ocean Atlas 2009 (Garcia et al., 2010b). Topographic contours in all plots were generated with 

ETOPO1 Global Relief Model (Amante and Eakins, 2009).  

 

 

 

3. Results 

3.1. Hydrographic structure  

Hydrographic characterization of the water column along the east-west transect at 10°S in the 

East Pacific was accomplished by analyzing the distribution of temperature (Fig. 1.2A) and O2 

(Fig. 1.2B). Both parameters revealed significant gradients along the transect owing to along-

shore currents and upwelling (Czeschel et al., 2011). In the area of the inner shelf between 78.3 

and 79°W (station 8-18) upwelling of cold (<15°C) and O2-deficient (<5 µmol kg-1) intermediate 

water originating from 100-150 m towards the surface occurred.  This water mass, supplied by 

the poleward flowing Peru-Chile Undercurrent, prevented the formation of a prominent 

stratification and shifted the upper boundary of the OMZ (O2 <20 µmol kg-1) into surface waters 

up to 10-20 m water depth. The impact of vertical advection was predominantly restricted to the 

narrow inner shelf section while a pronounced thermo- and oxycline occurred above the 

continental slope and in the open ocean. In consequence a sharp horizontal gradient of O2 was 

generated due to a drop of the upper limit of the OMZ from surface waters above the inner shelf 

to almost 100 m depth in the water body above the steep shelf break.  
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Figure 1.2. Spatial distribution of 

(A) temperature and (B) O2 from 0 

to 200 m depth in the water 

column along the complete 10°S 

section. Station numbers are 

denoted in red on top of the 

section plot. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

The vertical extent of the oxycline was elevated over the continental shelf break, possibly 

caused by enhanced mixing of along-shore currents, and decreased west of the continental 

slope area towards the open ocean. In the open ocean the upper boundary of the OMZ reached 

about 50 m water depth. Based on the hydrographic data it can be concluded that physical 

forcing processes dominate the study area and establish various physico-chemical conditions 

for nutrient cycling and primary production.  

 

 

3.2. Nutrient distribution  

Distribution of the macronutrients NO3
- (Fig. 1.3A), PO4

3- (Fig. 1.3C) and Si(OH)4 (Fig. 1.3D) 

showed a strong correlation with the hydrographic structure of the water column. For instance, 

temperature closely correlated with NO3
- concentration (r2 = 0.84; n = 114; p <0.0001), with the 

exception of very low NO3
- concentrations in close vicinity to the shelf bottom. A ‘high N loss’ 

sector was defined around the shelf bottom (station 8 and 13: 40 m - bottom; station 14, 15 and 

16: 130 m – bottom) and the data excluded from the NO3
-/T regression.  
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Figure 1.3. Spatial distribution of the major nutrients (A) NO3

-, (B) NH4
+, (C) PO4

3- and (D) Si(OH)4 from 0 

to 200 m depth along the complete transect. Style code as in Fig. 1.2. 

 

Upwelling of intermediate waters in contact with the shelf sediment supplied high concentrations 

of PO4
3- (up to 2 µmol l-1), Si(OH)4 (>15 µmol l-1) and NO3

- (>20 µmol l-1) to the surface layer of 

the inner shelf area, whereas nutrient concentrations were lower with <1 µmol PO4
3- l-1 and <2 

µmol Si(OH)4 l-1 in the upper 25 m west of the inner shelf. Along the entire transect surface 

concentrations of NO3
- and PO4

3- ranged generally above 5 µmol N l-1 and 0.5 µmol P l-1, 

respectively, with a minimum of 2.7 µmol NO3
- l-1 above the shelf slope. While the NO3

- to 

Si(OH)4 ratio was <1 in the bottom waters of the inner shelf (Fig. 1.4), it ranged between 3-5 in 

the surface layer of the shelf and increased further to >10 towards the open ocean. 

The distribution of NH4
+ deviated significantly from the other macronutrients and displayed in 

some parts a converse pattern (Fig. 1.3B) as demonstrated by a negative correlation between 

NH4
+ and NO3

- within 20 to 150 m from station 18 to 24 (r2 = 0.64; n = 40; p <0.0001). A distinct 

maximum of NH4
+ with concentrations up to 4 µmol l-1 was located in the broad pycnocline west 

of the inner shelf.  
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Figure 1.4. Ratio of NO3
- to Si(OH)4 

from 0 to 200 m in the water column 

along the complete 10°S transect. 

Style code as in Fig. 1.2. 

 

 

The ratio of total inorganic N (including NO3
-, NO2

- and NH4
+) to P (PO4

3-) was below Redfield 

proportions along the entire 10°S transect (Fig. 1.5A), with values generally ranging between 

10-14. Lower values of 4-10 were measured in waters close to the shelf sediment and the upper 

20 m along most of the transect. The observed low N:P ratios correspond to high concentrations 

of excess phosphate (P* =  inorg. P – inorg. N/16; after Deutsch et al., 2007) (Fig. 1.5B), with 

peak concentrations >1 µmol l-1 in waters close to the shelf sediment and concentrations 

ranging between 0.2-0.5 µmol l-1 in the upper 50 m west of 79°W (station 18). The ubiquitous 

existence of P* within and above the OMZ emphasizes the relative deficiency in NO3
- along the 

entire transect.   

 

 

Figure 1.5. (A) Inorganic N:P 

stoichiometry and (B) excess P (P*) 

according to the Redfield ratio of 16:1 

along the complete transect. Style 

code as in Fig. 1.2. 
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3.3. Organic matter distribution and stoichiometry 

Particulate organic carbon (POC), nitrogen (PON), and phosphorus (POP) (Fig. 1.6A-C), and 

chlorophyll a (Chl a, Fig. 1.7) reached maximum concentrations in the nutrient-replete surface 

waters of the inner shelf (see Fig. 1.3). High concentrations of organic matter (POC >12.5 µmol 

l-1, PON >1.5 µmol l-1, POP >0.1 µmol l-1, DOC >120 µmol l-1) concomitant with the absence of 

Chl a in the area of the shelf bottom water indicate the accumulation of detrital organic matter, 

which may have originated from particle sinking or resuspension of sedimentary material. DOC 

concentrations along the transect ranged generally around 100 µmol l-1 (Fig. 1.6D). Strongly 

elevated DOC concentrations (>250 µmol l-1) in the upper layer of the inner shelf and the shelf 

break coincided with maximum concentrations of microalgal biomass. An extremely high value 

of DOC >250 µmol l-1 was recorded at station 8 in 10 m depth, where concentrations of 

particulate organic material were large as well. Maximum concentrations of particulate organic 

compounds at that station occurred however in the very surface (2 m water depth) above the 

DOC peak.  

 
Figure 1.6. Spatial distribution of particulate organic matter with (A) POC, (B) PON, (C) POP and (D) 

DOC from 0 to 200 m at stations 8, 14, 21, 22 and 24.  Style code as in Fig. 1.2. 

 

While the inner shelf waters contained the largest amount of plankton biomass, elevated 

concentrations of organic matter (POC, PON, POP, DOC) and Chl a were also detected within 

the widely expanded and NH4
+-enriched pycnocline (see Fig. 1.2A, 1.3B) in the subsurface shelf 

break area. In addition, elevated concentrations of POC and Chl a occurred in the upper 50 m 

west of 82°W at station 24 and 25, respectively. Detection of Chl a between 80-100 m, even if 
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concentrations were quite low, indicate the presence of photoautotrophic organisms in the 

apparently still photic water layer.  

 
 
Figure 1.7. Spatial distribution 

of Chl a along the complete 

transect (0-200 m). Style code 

as in Fig. 1.2. 

 

 

 

 

 

 

 

POP concentrations west of station 21 decreased to nanomolar levels which are below the 

detection limit of the method of analysis. This extremely low P content of organic matter led to a 

strongly increased PON:POP stoichiometry (20-50:1) (Fig. 1.8). Only in the waters above the 

inner shelf N:P composition of POM approached or fell below the 16:1 Redfield ratio. The water 

column down to 100 m above the continental slope displayed intermediate PON:POP ratios of 

16-20. Considering the relatively high concentrations of NO3
- and PO4

3- along the entire 

transect, particulate organic matter concentrations were overall comparatively low. 

 
 
Figure 1.8. N:P stoichiometry of 

particulate organic matter at 

station 8, 14, 21, 22 and 24 

along the transect (0-200 m). 

Style code as in Fig. 1.2. 
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3.4. Distribution of phytoplankton functional types (PFTs)  

The abundance of phytoplankton groups along the 10°S section was determined on the basis of 

their pigment composition with the matrix factorization program CHEMTAX (Mackey et al., 

1997). Diatoms, characterized amongst others by the pigment fucoxanthin, were in terms of Chl 

a normalized biomass the most dominant group of phytoplankton along the 10°S transect (Fig. 

1.9A). Yet, high diatom abundance was primarily restricted to the nutrient-rich upper 20 m of the 

coastal upwelling area, with lower concentrations stretching into the shelf break waters. These 

lower values between station 14 and 21 were however a product of interpolation due to a low 

sample resolution in this area. Diatom biomass in the shelf surface layer matched with the 

distribution of BSi (Fig. 1.10), which in the majority originates from diatom silica frustules and 

therefore serves as an indicator for diatom abundance. 
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Figure 1.9. Abundance of PFTs 

at station 8, 14, 21, 22 and 24, 

which inhabited mainly the 

surface layer in the realm of the 

inner shelf from 0 to 80 m. (A) 

Diatoms, (B) cryptophytes, (C) 

prasinophytes and (D) 

autotrophic dinoflagellates. Style 

code as in Fig. 1.2. 
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Figure 1.10. Concentrations of 

diatom-derived BSi from 0 to 

200 m water depth at station 8, 

14, 21, 22 and 24 along the 

transect. Style code as in Fig. 

1.2. 

 

 

 

 
 
Major occurrences of crypto- and prasinophytes, the latter being a subclass of the chlorophytes 

detectable via the diagnostic accessory pigment prasinoxanthin, occurred in the surface layer 

off the coast, but in terms of Chl a normalized biomass were less prominent than diatoms (Fig. 

1.9B and 1.9C). Dinoflagellates, which can be identified precisely by the pigment peridinin 

exclusively produced by this group (see Tab. 1.1), played a negligible role in terms of biomass 

during our observations off the Peruvian coast, with a small population occurring in the surface 

water close to the coast (Fig. 1.9D). As mentioned before, no direct data exists for classification 

of phytoplankton functional types (PFT) between station 14 and 21. Considering the 

comparatively high Chl a fluorescence signal of >0.5 µg l-1 in this section (see Fig. 1.7), 

interpolation of pigment data between stations 14 and 21 therefore may have led to an 

underestimation of PFT values within the shelf area of the transect. 

The chlorophyll derivative phaeophorbide can be used as an indicator for herbivorous grazing 

(Shuman and Lorenzen, 1975). Concentrations of this phaeopigment occurred only in the water 

column above the continental shelf at station 8 and 14, and reached there quite high levels up 

to 700 ng l-1 (Fig. 1.11). No phaeophorbide was detected at station 21, 22 and 24. 

 
 
Figure 1.11. Distribution of the 

chlorophyll degradation product 

phaeophorbide along the 

transect at station 8, 14, 21, 22 

and 24 from 0 to 200 m. Style 

code as in Fig. 1.2. 
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Chlorophytes, haptophytes, chrysophytes, and the unicellular pico-cyanobacterium 

Synechococcus also occurred in the surface waters (0-30 m) of the inner shelf area. In contrast 

to the larger phytoplankton mentioned above, these groups were not restricted to the nutrient-

rich waters of the inner shelf area but were additionally present in the subsurface water layers 

west of the shelf (Fig. 1.12A-D). The population of haptophytes at 10°S consisted in large parts 

presumably of the colonial algae Phaeocystis globosa. Phaeocystis and coccolithophores 

contain the same marker pigments (chlorophyll c3, 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin), but synthesize them in different proportions. Consequently, both 

groups of haptophytes cannot be distinguished from each other by pigment analysis. 

Microscopic counting of samples taken during on-deck incubation experiments on the same 

cruise revealed no indications of coccolithophores, instead large numbers of Phaeocystis were 

observed (Hauss et al., submitted for publication). Haptophyte communities in the tropics and 

subtropics are recently known to comprise also a significant fraction of picoplanktonic species 

(<3 µm) that are difficult to identify microscopically (e.g. Lepére et al., 2009; Liu et al., 2009). 

Based on all these facts we assume that the discovered populations of haptophytes along 10°S 

consisted of Phaeocystis as well as of picoeukaryotes. These haptophytes formed together with 

chlorophytes, chrysophytes and the prokaryote Synechococcus a subsurface photoautotrophic 

assemblage within the high NH4
+-containing pycnocline west of the inner shelf, also reflected in 

elevated Chl a concentrations (see Fig. 1.7). The picoplanktonic species Synechococcus, 

represented by the diagnostic pigment zeaxanthin (see Tab. 1.1), dominated this deep Chl a 

maximum in terms of Chl a normalized biomass.  
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Figure 1.12. Abundance of 

PFTs growing in the surface 

layer of the inner shelf region 

and in the subsurface waters 

above the shelf slope at station 

8, 14, 21, 22 and 24 (0-200 m). 

(A) Chlorophytes, (B) 

haptophytes, (C) chrysophytes 

and (D) the unicellular pico-

cyanobacteria Synechococcus. 

Style code as in Fig. 1.2. 
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All PFTs mentioned so far produce monovinylchlorophyll a as their major photosynthetic active 

pigment. The genus Prochlorococcus, which belongs to the phylum cyanobacteria but lacks the 

ability of N-fixation, is an exception as it is the only photoautotrophic organism synthesizing 

divinylchlorophyll. Detection of this pigment allows an explicit classification of the small 

Prochlorococcus cells in the sample. By using the ratio of divinylchlorophyll a to 

divinylchlorophyll b, Prochlorococcus populations can be further distinguished into high- and 

low-light adapted strains. Very low concentrations (5 ng Chl a l-1) of a high-light strain were 

detected in the upper 50 m at 82.5°W (station 24) (Fig. 1.13A). Higher concentrations of a low-

light adapted population were observed in the intermediate water west of the shelf which 

increased going further west (Fig. 1.13B). Interpolation over a large depth (100-198 m) 

produced concentrations of this strain down to 170 m at station 22 as presented in the section 

plot. This might have led to an overestimation of the Prochlorococcus abundance in these 

waters. Presumably the lower margin of the low-light adapted Prochlorococcus population was 

in the range of 100 m and its occurrence coincided with the oxic/anoxic transition zone (see Fig. 

1.2B and Tab. 1.1), representing the only photoautotroph on the transect growing in water 

below the pycnocline.  

It has to be noted that no photosynthetic accessory pigments indicating the presence of N-fixing 

cyanobacteria (i.e. myxoxanthophyll, aphanizophyll, echinenone) were found at the stations that 

were sampled for PFT abundance.   

 
Figure 1.13. Abundance of two 

strains of the pico-cyanobacteria 

Prochlorococcus, (A) a high-light and 

(B) a low-light adapted population at 

station 8, 14, 21, 22 and 24 (0-200 

m). Style code as in Fig. 1.2. 
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4. Discussion 

4.1. HNLC conditions 

Our observations showed upwelling of cold, O2-depleted and nutrient-rich intermediate water in 

progress in the narrow inner shelf region of the transect between 78.3°W and 79°W (station 8-

18), providing optimal growth conditions for phytoplankton. However, observed maximum 

concentrations of Chl a were low compared to common values for this extremely productive 

area (Chavez, 1995; Pennington et al., 2006). A large discrepancy existed between nutrient 

availability and particulate organic matter concentrations in the surface layer, with PON and 

POP levels up to an order of magnitude lower than inorganic NO3
- and PO4

3-. Mean surface 

concentrations of NO3
- and PO4

3- in the tropical South East Pacific for January 2009 

approximated by World Ocean Atlas data (Garcia et al., 2010b) show that the waters along 

10°S were in the center of a massive upwelling plume, originating from the Peruvian shelf (Fig. 

1.14A and 1.14B). Repressed uptake of these upwelled nutrients in surface waters enabled the 

expansion of nutrient plumes far into the oligotrophic Pacific open ocean to 115°W.  

 

 
Figure 1.14. Mean surface concentrations of 

(A) NO3
- and (B) PO4

3- in the tropical South 

East Pacific for January 2009 (from World 

Ocean Atlas 2009; Garcia et al., 2010). 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

These high-nutrient, low-chlorophyll (HNLC) conditions have been reported previously for the 

Peruvian upwelling system (i.e. Thomas, 1979; Strickland et al., 1969; Minas and Minas, 1992). 

Iron limitation of phytoplankton, especially of diatoms, has been discussed as a possible 

explanation (Bruland et al., 2005). However, measured iron concentrations were not limiting 

 



Study 1  44

along the transect (C. Schlosser, personal communication). Very high ratios of NO3
- to Si(OH)4 

of over 10:1 in the surface layer west of the inner shelf indicate that dissolved silica is ultimately 

limiting the build-up of diatom biomass (Conley and Malone, 1992; Dugdale et al., 1995). In fact, 

surface Si(OH)4 concentrations of <2 µmol l-1 west of the inner shelf are likely to cause Si(OH)4 

limitation stress for diatoms growing under NO3
- replete conditions. But if blooming of diatoms 

was impeded by Si(OH)4 limitation, other non-silicifying phytoplankton could have taken over. 

The fact that this was not observed points to herbivorous grazing by meso- and 

microzooplankton controlling phytoplankton standing stocks (Minas et al., 1986; Cullen et al., 

1992). Most copepods avoid O2-depleted intermediate water layers and are forced to remain in 

the ventilated upper part of the water column (Boyd and Cowles, 1980). The resulting 

‘concentrated’ grazing pressure may have contributed to keeping microalgal biomass low. High 

abundance of the chlorophyll derivative phaeophorbide in surface waters of the shelf area 

supports this assumption. Grazing on phytoplankton by herbivores produces this phaeopigment, 

which serves thus as a suitable indicator for zooplankton feeding activity. Complete absence of 

phaeophorbide at station 21 may imply that the NH4
+ maximum at this station was mainly a 

product of bacterial decomposition rather than of zooplankton excretion (Smith and Whitledge, 

1977). 
 
 
4.2. Non-‘Redfieldian’ primary production 

Dominance of phytoplankton communities by diatoms is a common characteristic of coastal 

upwelling systems and large phytoplankton generally prosper in nutrient-rich waters. In 

particular diatoms can take advantage of nutrient replete conditions through high levels of 

maximum specific uptake rates and a quick metabolic response after vertical intrusions of 

nutrient-rich water (Fawcett and Ward, 2011). As already pointed out these ‘bloomers’ are 

adapted to exponential growth with fast cell division and accordingly their metabolism requires 

the synthesis of large amounts of RNA, which is generally low in N:P. Nutrient requirements 

based on the specific growth strategy of the phytoplankton are therefore responsible for its 

cellular N:P composition (Arrigo, 2005).  Particulate organic matter in the water column above 

the inner shelf had rather low N:P ratios <16:1, consistent with increased abundances of large 

diatoms, dinoflagellates and cryptophytes, which are all originating phylogenetically from the red 

plastid superfamily featuring low cellular N:P quotas (Quigg et al., 2003; Falkowski et al., 2004). 

According to Mills and Arrigo (2010) low N:P uptake of exponentially growing phytoplankton in 

eutrophic systems may be the main reason for a reduced availability of P* for diazotrophic 

phytoplankton. This point is however addressed in more detail in the next section. 

Prasinophytes and chlorophytes, both belonging to the green plastid superfamily, plus the 

unicellular cyanobacterium Synechococcus, also contributed to primary production in the 
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surface water layer of the inner shelf. Their cells commonly exhibit a relatively high N:P 

composition >20:1 (Quigg et al., 2003; Bertilsson et al., 2003), implying that N:P ratios of the 

inner shelf waters would have been even lower without the occurrence of this generally smaller 

phytoplankton.  

Nutrient conditions for the phytoplankton community changed between the inner shelf and the 

steep shelf break due to a drastic shift in the hydrographic structure from intense coastal 

upwelling to the formation of a pronounced pycnocline. Accumulation of NH4
+ in subsurface 

layers associated with strong density gradients is a common phenomenon in well-stratified 

waters, where a sufficient source of organic material is available from sinking organic matter 

‘trapped’ within the pycnocline (Fogg, 1991; Holmedal and Utnes, 2006). The resulting long 

residence time of organic particles within this layer is generating optimal conditions for 

regeneration by zooplankton grazing and/or heterotrophic bacteria (Saino et al., 1983; 

Brzezinski, 1988). But since the absence of phaeophorbide at station 21 indicate a minor 

relevance of herbivorous grazing, this nutrient recycling system was presumably sustained by 

microbial degradation. 

Even though NO3
- and PO4

3- were present at non-limiting concentrations in off-shelf waters, 

biomass of large blooming PFTs was significantly lower compared to the near-shore surface 

waters. The phytoplankton community west of the inner shelf consisted to a large part of nano- 

and picophytoplankton, which is characteristic for systems of regenerative primary production 

(Malone, 1980). As discussed in Section 4.1, diatom growth was likely inhibited by Si(OH)4 

limitation outside the center of upwelling. Size-selective grazing by mesozooplankton on large 

microalgae and microzooplankton may have suppressed build-up of the microphytoplankton 

community and relieved grazing pressure on the nano- and picoplankton communities 

(Richardson et al., 2004).  

According to its marker pigment concentration the pico-cyanobacterium Synechococcus was 

the most abundant phytoplankton in the NH4
+-enriched subsurface layer. With its small cell size 

and a metabolism adapted to low nutrient concentrations, Synechococcus is a typical 

representative of the ‘survivalists’. Cellular N:P is high owing to large amounts of proteins for 

nutrient uptake which permit maintaining net growth even under low nutrient availability 

(Bertilsson et al., 2003). 

Chlorophytes, as part of the green plastid superfamily, are also characterized by a high N:P 

quota exceeding by far Redfield proportions. In the shelf slope area this group co-occurred with 

the abundant haptophytes and low numbers of microphytoplanktonic species, both 

characterized by low N:P ratios. Thus, the co-occurrence of  ‘bloomers’ and ‘survivalists’ in this 

transition zone between shelf and oceanic waters resulted in the observed intermediate N:P 

ratios and can be seen as an example for the multi-specific composition of the intermediate 

Redfield ratio of 16:1 (Klausmeier et al., 2004a).  
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The oceanic section of the 10°S transect at station 22 and 24 west of 81°W was almost 

exclusively inhabited by one phytoplankton species, the unicellular pico-cyanobacterium 

Prochlorococcus, which is known to dominate photosynthetic biomass in the oligotrophic ocean 

(e.g. Campbell et al., 1994; Liu et al., 1997). A low-light adapted strain was distributed along the 

lower part of the thermo- and oxycline. Due to its photosynthetic apparatus Prochlorococcus 

can absorb photons at very high efficiency even at extremely low irradiances, allowing growth in 

waters below the nutricline down to 150-200 m depth. This is probably an essential feature of 

this non-diazotrophic phytoplankton to satisfy its nutrient demands for surviving in the highly 

stratified oligotrophic ocean (Partensky et al., 1993; Moore et al., 1995).  

The high PON:POP stoichiometry (>20:1) in the open ocean section west of 80°W indicates a 

pronounced N-rich nutrient-acquisition machinery of the phytoplankton cells, although nutrients 

in the seawater were still available in sufficient quantities. Particularly high ratios (>40:1) were 

observed in the surface layer at 82.5°W (station 24) and in the intermediate water body between 

80 and 170 m, correlating with the occurrence of the two Prochlorococcus strains. As the 

dominating photoautotrophic species of the oligotrophic ocean, this picoplanktonic organism is 

also featuring a high N:P- containing functional machinery (Bertilsson et al., 2003), allowing 

generally exploitation of the impoverished nutrient pools of the stratified ocean. Replete nutrient 

conditions even in the off-shelf waters did apparently not initiate a shift in allocation of cellular 

resources towards production of growth machinery in Prochlorococcus. In the course of ocean 

warming and the associated strengthening of water column stratification, oligotrophic regions 

are likely to expand and will promote growth of this high N:P assimilating picoplankton (Irwin et 

al., 2009). Increased uptake of N compared to P by expanding distributions of Prochlorococcus 

may enhance the inorganic N-deficit and generate elevated amounts of P* which could promote 

N-fixation (Mills and Arrigo, 2010).   

 

 

4.3. Does P* control N-fixation?  

A concept introduced by Deutsch et al. (2007) hypothesizes a tight spatial coupling between 

processes of N loss via denitrification and N gain via N-fixation. In their model simulations of 

global N-fixation rates Deutsch et al. (2007) assume an N:P uptake by non-diazotrophic 

phytoplankton according to Redfield. Bioavailable N lost via denitrification is estimated to range 

between 200-300 Tg yr-1 (Codispoti, 1995; Galloway et al., 1995), generating excess PO4
3- and 

thus favouring growth of N-fixing cyanobacteria. OMZs such as off the Peruvian coast represent 

particularly large sinks of inorganic N. In fact, low inorganic N:P ratios <10:1 in the vicinity of the 

shelf sediment indicate that a significant amount of remineralized NO3
- is consumed by the 

microbial processes of denitrification (e.g. Codispoti and Packard, 1980) and/or DNRA (Lam et 

al., 2009), the latter subsequently providing NH4
+ for anammox, before reaching the euphotic 
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zone. As a result of this microbially induced N loss and the concomitant gain of P from anoxic 

shelf sediments, N has the potential to run into depletion before P does (Harrison et al., 1981), 

generating excess amounts of P available for the autotrophic community. Especially large 

phytoplankton in OMZ-influenced coastal upwelling areas takes advantage of the low inorganic 

N:P stoichiometry and removes a large portion of the P* generated in O2-depleted intermediate 

shelf waters from surface shelf waters before it reaches oceanic waters (see Fig. 1.5B). This 

non-Redfield nutrient assimilation by non-diazotrophic phytoplankton counteracts the 

replenishment of the local N-deficit by decoupling the microbial processes of N loss and N gain 

in OMZ-influenced waters.  

Despite the fact that positive values of P* were present throughout the entire transect, based on 

the phytoplankton pigment analysis we could not detect photoautotrophic diazotrophic 

cyanobacteria at any of the stations sampled for PFT abundance. Trichodesmium and 

Crocosphaera, representing presumably the most dominant species of nitrogen-fixing 

cyanobacteria in the tropical ocean, both contain the carotenoid myxoxanthophyll (Carpenter et 

al., 1993; Mohamed et al., 2005), which was not detected at any of the stations along 10°S. 

Molecular data collected during the same cruise detected genes expressing the N-fixation 

catalyzing enzyme nitrogenase concentrated within the OMZ on the 10°S transect (Löscher et 

al., unpublished results). These N-fixers were identified primarily as new clusters of probably 

heterotrophic bacteria. The recently discovered unicellular ‘Group A’ cyanobacteria is reported 

to lack photosystem II as well as photosynthetic accessory pigments (Zehr et al., 2008). 

Pigment fingerprinting can consequently not be applied for identification of this exceptional 

group of diazotrophs. However, Löscher et al. (unpublished results) did not detect any gene 

copies by representatives of ‘Group A’ along 10°S. Considering this finding and on the basis of 

the distribution of phytoplankton marker pigments along 10°S, we conclude that no phototrophic 

N-fixers occurred along the transect. This implies that the ubiquitous presence of excess 

concentrations of P in the upper 200 m along the transect did not result in growth of N-fixing 

cyanobacteria and conflicts with the hypothesis by Deutsch et al. (2007). Apparently it is not 

possible to deduce the distribution of diazotrophic phytoplankton solely from the N:P 

stoichiometry of dissolved nutrients without considering non-Redfield uptake of phytoplankton. 

Further crucial factors such as N availability, iron supply (Berman-Frank et al., 2001) and 

temperature distribution (reviewed by Stal, 2009) also have to be taken into account.  

In fact, NO3
- concentrations hardly dropped below 5 µmol l-1 even in the surface layer along 

10°S. An ecological niche for N-fixers to enrich these waters with further N was thus not really 

given. Even though the low N:P supply ratio would have favoured growth of diazotrophic 

cyanobacteria, relatively high concentrations of NO3
- (and also NH4

+) in the off-shelf surface 

waters may have repressed their expansion.    

 



Study 1  48

As already mentioned, phytoplankton growth along 10°S was not limited by the micronutrient 

iron (C. Schlosser, personal communication). Yet, several studies reported on a tight correlation 

between water temperature and the distribution of N-fixing cyanobacteria (e.g. Falcón et al., 

2005; Staal et al., 2007). In particular Trichodesmium, but also unicellular diazotrophs common 

in warmer waters appear to have a narrow temperature range for growth and N-fixation. 

Regions in the tropical and subtropical ocean characterized by water temperatures below 25°C 

were in most of the cases devoid of diazotrophic cyanobacteria, even with nutrient conditions 

(low inorganic N:P) favourable for their growth (Staal et al., 2007). Surface temperatures along 

10°S never exceeded 25°C, but ranged mainly between 20-24°C in the off-shelf waters, which 

may have precluded the development of diazotrophic cyanobacteria despite the abundance of 

excess phosphate.  

 

 

5. Conclusions 

Our observations showed that the large oceanographic variability in the South East Pacific 

provides the habitat for a multitude of phytoplankton communities, forming a highly diverse 

photoautotrophic ecosystem from large diatoms in the near-shore upwelling areas to small 

picoplankton in the open ocean. Total phytoplankton biomass was kept low probably by 

zooplankton grazing in combination with an offshelf Si(OH)4 limitation of diatoms. Horizontal as 

well as vertical gradients in hydrography and nutrient distribution have a crucial impact on the 

taxonomical composition of the phytoplankton community by selecting for different types of 

growth strategies. Associated differences in specific nutrient requirements caused strong 

deviations in biomass elemental composition from the Redfield ratio, emphasizing non-

‘Redfieldian’ nutrient assimilation by phytoplankton as a major driver in ecological stoichiometry. 

In order to evaluate the role of P* as a control for the abundance of N-fixing cyanobacteria in the 

eastern boundary current areas further field data, including especially rates of N-fixation, are 

necessary. Even though P* serves as the primary driver promoting growth of diazotrophic 

cyanobacteria on a global scale, its presence is a necessary but not sufficient condition for its 

development locally. Additional factors influencing the distribution of N-fixers on a local scale, 

such as N availability, iron supply and temperature, have to be considered.  
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Abstract 

Inorganic dissolved macronutrient (nitrogen, N, and phosphorus, P) supply to surface waters in 

the eastern tropical South Pacific is influenced by expanding oxygen minimum zones, since N 

loss occurs due to microbial processes under anoxic conditions while P is increasingly released 

from the shelf sediments. To investigate the impact of decreasing N:P supply ratios in the 

Peruvian Upwelling, we conducted nutrient manipulation experiments using a shipboard 

mesocosm setup with a natural phytoplankton community. In a first experiment, either N or P or 

no nutrients were added with mesozooplankton present or absent. In a second experiment, 

initial nutrient concentrations were adjusted to four N:P ratios ranging from 2.5 to 16 using two 

“high N” and two “high P” levels in combination (i.e. +N, +P, +N and P, no addition). Over six 

and seven days, respectively, microalgal biomass development as well as nutrient uptake was 

monitored. Phytoplankton biomass strongly responded to N addition, in both mesozooplankton-

grazed and not grazed treatments. The developing diatom bloom in the “high N” exceeded that 

in the “low N” treatments by a factor of two. No modulation of the total biomass by P-addition 

was observed, however, species-specific responses were more variable. Notably, some 

organisms were able to benefit from low N:P fertilization ratios, especially Heterosigma sp. and 

Phaeocystis globosa which are notorious for forming blooms that are toxic or inadequate for 

mesozooplankton nutrition. After the decline of the diatom bloom, the relative contribution of 

unsaturated fatty acid to the lipid content of seston was positively correlated to diatom biomass 

in the peak bloom, indicating that positive effects of diatom blooms on food quality of the protist 

community to higher trophic levels remain even after the phytoplankton biomass was 

incorporated by grazers. Our results indicate an overall N-limitation of the system, especially in 

the case of dominating diatoms, which were able to immediately utilize the available nitrate 

(within two days) and develop a biomass maximum within three days of incubation. After the 

decline of diatom biomass, detection of the cyanobacterial marker pigment aphanizophyll 

indicated the occurrence of diazotrophs, especially in those enclosures initially provided with 

high N supply. This was surprising, as diazotrophs are thought to play a role in compensating to 

some extent the N deficit above OMZs in the succession of phytoplankton after an upwelling 

event.  
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1. Introduction 

Coastal upwelling systems are immensely productive, contributing an estimated 11% to the 

annual new production while covering only 1% of the world’s oceans (Chavez and Toggweiler, 

1995; Pennington et al., 2006). In the eastern tropical South Pacific, the high productivity in the 

photic zone leads to an extensive oxygen minimum zone (OMZ) at depth, reaching suboxic and 

in some regions anoxic oxygen (O2) levels (Fiedler and Talley, 2006). Recent observations 

indicate that this OMZ is expanding in the course of global climate change (Stramma et al., 

2008). Besides direct effects of low O2 concentrations on metazoan life (Vaquer-Sunyer and 

Duarte, 2008), the biogeochemistry of both water column and sediments are highly influenced 

by concentrations of dissolved O2: under anaerobic conditions, massive losses of dissolved 

inorganic nitrogen (N) occur through denitrification (Deutsch et al., 2001) and anammox 

(Kuypers et al., 2005). In contrast, anoxic shelf sediments are a source for dissolved inorganic 

phosphate (P) as, under reducing conditions, P bound to metal oxides or biogenic apatite in fish 

debris is released into the water column (Van Cappellen and Ingall, 1994; Lenton and Watson, 

2000). Thus, water masses that are already significantly below the canonical N:P Redfield ratio 

of 16 are transported by upwelling processes into the productive surface layer (Franz et al., 

2012). Since changes in the nutrient stoichiometry have been observed to affect phytoplankton 

in respect of its community structure (Sommer et al., 2004), its elemental composition (Gervais 

and Riebesell, 2001) and its nutritional value for higher trophic levels (Kiørboe, 1989; Sterner 

and Schulz, 1998), changes in the upwelled nutrient stoichiometry may have strong impacts on 

the primary and secondary production as well as the biogeochemical cycling off Peru. It has 

been accepted for decades that the overall productivity in the Peruvian coastal upwelling is 

limited by new nitrogen (Dugdale, 1985). While it is largely assumed that especially large-celled 

phytoplankton communities on the shelf rely on the vertical supply of nitrate as opposed to 

offshore pico- and nanoplankton dominated assemblages that take advantage of regenerated 

ammonium and urea (Probyn, 1985), tracer uptake experiments conducted off Peru indicate 

that ammonium (NH4) regenerated in surface waters can contribute up to 50% of total 

assimilated dissolved inorganic nitrogen (DIN; Fernández et al., 2009). However, the effect of 

non-Redfield N and P supply dynamics on the shelf phytoplankton assemblage has not been 

well studied yet, and field data describing the changes in community structure with increasing 

distance from the coastal upwelling are scarce (DiTullio et al., 2005; Franz et al., 2012). 

Traditionally, upwelling areas are considered to be regions of short energy transfer across few 

trophic levels, with diatoms, calanoid copepods and small pelagic fish feeding on zoo- and 

partly phytoplankton as key players (Cushing, 1989; Alheit and Niquen, 2004). Furthermore, 

diatoms are considered the main drivers of export flux due to their large cell sizes, high sinking 

velocities and rapid flocculation (Buesseler, 1998), thus channelling biomass into the OMZ. A 

plethora of studies exists describing the response of marine phytoplankton to nutrient 
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enrichment experiments (see Downing et al., 1999 and references therein) in terms of biomass 

or chlorophyll-a (Chl-a) change relative to an unamended control. Although the use of batch 

assays has been criticized in low-nutrient environments (Hutchins et al., 2003), they have 

contributed pivotally to our understanding of nutrient limitation in many systems and are 

considered suitable to simulate pulsed nutrient supply in coastal upwelling areas. While a 

number of studies have been conducted in the eastern North Pacific (Kudela and Dugdale, 

2000; Wetz and Wheeler, 2003; Fawcett and Ward, 2011), little information is available on 

phytoplankton biomass regulation off Peru (Hutchins et al., 2002). Furthermore, no detailed 

studies exist that examine phytoplankton succession following an upwelling event in this area. 

The ability to fix elemental N by diazotrophic cyanobacteria is a major advantage in ecosystems 

prone to N limitation. Thus, it is argued that excess P in the euphotic zone as a result of N 

losses within the OMZ in the tropical eastern South Pacific could facilitate considerably higher 

N2-fixation rates than previously assumed (Deutsch et al., 2007). This is well in line with 

observations reporting that the role of unicellular cyanobacteria in the nutrient cycle has been 

underestimated (Zehr et al., 2001; Montoya et al., 2004; Moisander et al., 2010) compared to 

the extensive surface blooms of Trichodesmium spp. in the warm surface waters of the 

oligotrophic ocean (Breitbarth et al., 2007). 

The transfer of primary to secondary production (i.e. zooplankton growth) is driven by various 

factors, among which the quality of prey can be of equal or higher relevance than its quantity 

(Kleppel, 1993). Within the biochemical composition of microalgae, the proportion of 

polyunsaturated fatty acids (PUFAs) in relation to saturated and monounsaturated fatty acids 

(SAFA and MUFA, respectively) form an integral part of the food quality of a primary producer to 

higher trophic levels (Müller-Navarra et al., 2000). PUFAs such as 20:5n3 (eicosapentanoic 

acid, EPA) and 22:6n3 (docosahexanoic acid, DHA) cannot be synthesized de novo by most 

metazoan consumers and are thus considered essential (Brett and Müller-Navarra, 1997). It 

was demonstrated that PUFA content in the particulate matter can enhance secondary 

production of marine zooplankton (e.g. Jónasdóttir et al., 1995; Vargas et al., 2006). While 

carbon accumulation in nutrient-limited monoalgal phytoplankton cultures results in cells that 

are rich in lipids (Malzahn et al., 2010), N limitation may have a negative effect on relative PUFA 

content, as shown by Klein Breteler et al. (2005). Furthermore, changes in the taxonomic 

composition of a phytoplankton assemblage under nutrient limitation may influence the 

availability of PUFAs depending on the physiology of the species involved (Mayzaud et al., 

1989; Vargas et al., 2006). 

We hypothesized that changes in inorganic N and P supply as well as their ratio would influence 

the community composition and total biomass development of the phytoplankton, in turn 

affecting the quality to higher trophic levels. To investigate this, nutrient limitation experiments 
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were conducted using an in situ phytoplankton assemblage and meso-scale shipboard 

experimental containers. 

 

 

 

2. Materials and Methods 

2.1. Experimental setup 

Two short-term (6 and 7d) growth experiments were conducted during cruise M77/3 on the 

German RV “Meteor” from Guayaquil (Ecuador) to Callao (Peru) from Dec 26, 2008 to Jan 21, 

2009 (Table 2.1). The experimental setup comprised twelve 70L mesocosm bags afloat in four 

gimbals-mounted cooling water baths connected to a flow-through system that allowed a 

complete water exchange of the water bath with surface seawater within 10 to 15 min (Fig. 2.1 

A). Surface water for the initial filling was obtained from repeated casts (10m depth) using 

Niskin bottles mounted on a CTD-rosette at 12°02.05’S, 077°47.33’W for experiment 1 and at 

16°0.01’S, 074°37.04’W for experiment 2 (Fig. 2.1 B). The collected water from individual Niskin 

bottles was mixed in large barrels before filling the individual bags. Temperatures within the 

mesocosms varied with sea surface temperature and ranged from 19.0 to 23.0°C in experiment 

1 and from 18.0 to 25.6°C in experiment 2. The water baths were shaded with nets to reduce 

light intensity to approximately 30% of surface irradiation. Daytime light intensity within the 

water baths ranged from 700 to 2600 µE s-1 m-2. As an experimental treatment, inorganic N and 

P levels were manipulated by initial fertilization using ammonium nitrate (NH4NO3) and 

monopotassium phosphate (KH2PO4) to the respective target DIN:DIP ratios (Table 1), where 

DIN includes NH4 and NO3. Equal SiO addition (10µmol L-1) to all mesocosms using sodium 

metasilicate penta-hydrate (Na2SiO3·5H2O) as well as Provasoli PII metal mix (6ml) prevented 

co-limitation by Si or by trace elements. In experiment 1, either N or P (or none) was added in 

the presence or absence of mesozooplankton (removed by a 200µm mesh screen), while 

experiment 2 was aimed at a closer investigation of N:P impact, and thus encompassed four 

N:P treatments, of which one (N:P=5) received no nutrient addition and thus represents the 

ambient nutrient conditions at the filling station. During experiment 2, the bottom plate 

construction failed in two mesocosms in the course of the experiment, thus these were omitted 

from subsequent analyses. Due to the limited water volume in this first application of the setup 

and the volume requirements of sampling (4-5L d-1), mesocosms had to be restocked (i.e. 

diluted to initial volume) on days 3 (14L in experiment 1, 20L in experiment 2) and 5 (8L in 

experiment 1, 15L in experiment 2) using 5µm-filtered surface seawater. In experiment 2, SiO 

was also restocked to 10µmol L-1 on day 5. However, due to the large differences in biomass 

and nutrient concentrations between sampling days, we did not attempt to calculate growth 
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rates and correcting the data for the dilution as we concluded that an extrapolation of growth 

rates in the sampled water would introduce a considerable error. 

 

 
Figure 2.1. Sketch of three mesocosms within gimbals-mounted water bath with flow-through cooling 

using surface seawater (panel A). Four water baths with a total of twelve mesocosms were used. 

Locations of initial filling of the two experiments are indicated by stars on panel B. 

 

 
Table 2.1. Overview of the initial and adjusted conditions of the two experiments. 
 

initial conditions
Latitude
Longitude
T (°C)
DIN
DIP
SiO

experimental conditions
treatment +N none +P +N +N&P none +P
N:P 20 3.4 2.8 16 8 5 2.5
N level high low low high high low low
P level low low high low high low high
adjusted DIN 32 5.5 5.5 16.0 16.0 5.0 5.0
adjusted DIP 1.6 1.6 2 1.0 2.0 1.0 2.0
adjusted SiO 10 10 10 10 10 10 10

replicates 2x zooplankton removed 3x
2x zooplankton

3.2 3.7

5.0

Experiment 2Experiment 1

16°0.01’S
074°37.04’W

18.2

1.0

12°02.05’S
077°47.33’W 

20.3
5.5
1.6
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2.2. Analyses 

All samples except for fatty acid composition were taken on a daily basis after gentle mixing of 

each mesocosm by up-and-down stirring. Samples for dissolved inorganic nutrients (NO3
-, NO2

-, 

PO4
3-, SiO) were filtered through 5µm cellulose acetate filters (ø 25mm) and immediately 

analyzed on board according to Hansen and Koroleff (1999) using a Hitachi U-2000 

spectrophotometer. For determination of NO2
-, 0.2ml sulphonamide and 0.2ml 

naphtylethylendiamine were added to 10ml of sample, incubated 30min at room temperature, 

and absorbance was measured at 542nm against double deionized water. To calculate the 

amount of NO3
- in the sample, all NO3

- compounds were reduced to NO2
- using a cadmium 

reductor with the reagents sulphanilamide and N-1-naphtylethylendiamine dihydrochloride and 

incubating for 20min at room temperature before measuring. NH4
+ analysis was conducted 

according to Holmes et al. (1999). Immediately after sampling, 10ml of unfiltered sample was 

mixed with 2.5ml of working reagent (WR) and incubated in the dark for 2h 15min, and its 

emission measured at 422nm. The WR consisted of 2L borate-buffer (80g Na2B4O7*10H2O + 2L 

double deionized water), 10ml of sodium sulfite (1g Na2SO3 in 125ml double deionized water) 

and 100ml of OPA-solution (4g orthophtaldialdehyde in 100ml ethanol).   

For the analysis of PO4
3-, 0.3ml of a mixed reagent (4.5M H2SO4 + ammonium molybdate + 

potassium antimonyl tartrate) and 0.3ml ascorbic acid were added to 10ml sample, incubated at 

room temperature for 10min and the absorbance measured at 882nm against double deionized 

water.  

Analysis of Si(OH)4 was performed according to Hansen and Koroleff (1999). 0.3ml of a mixed 

reagent (molybdate solution + 3.6M H2SO4 in the ratio 1:1) was added to 10ml of unfiltered 

sample. After 10-20 min of incubation, 0.2ml oxalic acid and 0.2ml of ascorbic acid were added, 

and after another 30min, absorption was measured against double deionized water at 810nm 

wavelength in a spectrophotometer. 

Cell counts of Lugol-stained microplankton were conducted daily on board using the inverted 

microscope method after Utermöhl (1958). Sedimentation volume was 50ml. At least 100 cells 

per category were counted when possible. Biovolumes were calculated after approximation to 

geometric shapes (Hillebrand et al. 1999) and converted to biomass (µg C L-1) using the carbon 

to volume relationships described in Menden-Deuer and Lessard (2000). Nanoplankton and 

bacterial abundance were assessed using a flow cytometer (FACScalibur, Becton Dickinson, 

San Jose, CA, USA). Samples (5ml) were fixed with 2% formaldehyde, frozen at -80°C, 

transported to the laboratory and measured at a flow rate of 50.6µl min-1. Cells were 

distinguished by forward scatter (relative cell size) and fluorescence of Chl-a, phycoerythrin, 

and allophycocyanin. Biovolume was estimated assuming spherical shapes. For bacterial 

abundance, samples were diluted 1:3, stained with SYBR-Green and counted at lower flow rate 

(13.9µl min-1).  
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The fatty acids of bulk seston were measured as fatty acid methyl esters (FAMEs). 250 or 

500ml water, depending on the concentration of phytoplankton, were filtered on precombusted 

0.2µm GF/F filters at the start (duplicate sample) and the end of the experiment (one sample 

per mesocosm) and frozen at -80°C. Lipids were extracted from the samples with 

dichloromethane:methanol:chloroform (1:1:1 volume ratios), and C23:0 standard added. After 

centrifugation, water-soluble fractions were removed by washing with a 1M KCl solution and 

dried by addition of NaSO4. The solvent was evaporated to dryness in a rotaryfilm evaporator 

(150-200mbar) and the remainder transferred with 200µl chloroform into a glass cocoon. 

Esterification was done over night using 2% H2SO4 in methanol at 50°C.The FAMEs were 

washed from the H2SO4 using n-hexane, transferred into a new cocoon, and evaporated to 

dryness using nitrogen gas. N-hexane was added to a final volume of 100µl. All chemicals used 

were GC grade. FAMEs were analyzed by gas chromatography using a Varian CP 8400 gas 

chromatograph equipped with a DB-225 column (JandW Scientific, 30m length, 0.25mm inner 

diameter, 0.25mm film). The carrier gas was helium at a pressure of 82.737Pa. Sample aliquots 

(1µl) were injected splitless. The injector temperature was set to 250°C. The column oven was 

set to 60°C for 1min after injection, after which it was heated to 150°C at 15°C min-1,  then to 

170°C at 3°C min-1, and finally to 220°C at 1°C min-1, which was held for 21 min. The flame 

ionization detector was set to 300°C. FAMEs were quantified using calibrations set up for each 

fatty acid separately. 

Samples for High Pressure Liquid Chromatography (HPLC) were vacuum-filtered (150mbar) 

onto Whatman GF/F filters (25 mm) and immediately stored at -20°C until analysis in the 

laboratory. Filters were homogenized for 5min with 2mm and 4mm glass beads and 2ml 

acetone (90%). The supernatant was filtered through a 0.2µm teflon filter and stored at -80°C. 

The HPLC measurement was conducted by a Waters 600 controller in combination with a 

Waters 996 photodiode array detector (PDA) and a Waters 717plus auto sampler (modified 

after Barlow et al. 1997). Classification and quantification of the various phytoplankton pigments 

was performed with the software EMPOWERS (Waters). 

 

 

2.3. Statistics 

In order to estimate nutrient uptake rates, linear regressions were fitted to DIN and DIP over 

time in experiment 1. To be able to estimate nutrient drawdown dynamics in the different 

treatments in experiment 2, where the decrease in nutrient concentrations was nonlinear, three-

parameter logistic regressions were fitted to nutrient concentrations over time: 
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where [N] is the concentration (µMol L-1) of the respective nutrient, t is time (days), and a, b, and 

t50 are regression parameters, so that t50 represents the time where half of the initially available 

nutrient concentration is consumed. Only values up to day four were included, as post-bloom 

conditions resulted in slight increase in detected concentrations of N and P.  

Diatom biomass was described using a lognormal function 

(2) 

2)/ln(
*5.0

*
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= b
tt

MAX

MAXBM

eBMBM  

Where BM is the observed biomass at time t (d), BMMAX is the maximum biomass reached 

during bloom development and tBMMAX is the time when maximum biomass is reached. 

A factorial ANOVA with time, initial N level and P level as factors as used to explore differences 

between treatments in the biomass of individual species as well as aphanizophyll. A correlation 

matrix was used to explore the relationships between total diatom biomass (maximum of the 

respective mesocosm during the entire experiment) and individual fatty acids and their ratios 

determined at termination of the experiment (i.e. after the bloom). Data were square-root 

transformed to approximate normality. 

 

 

 

3. Results 

3.1. Nutrients 

In situ nutrient concentrations at the filling stations were 5.5 and 5 µmol L-1 total DIN, 1.6 and 

1.0 µmol L-1 DIP, and 3.2 and 3.7µmol L-1 SiO in experiment 1 and 2, respectively. This 

translates into molar N:P ratios of 3.4 and 5 in experiment 1 and 2, respectively (Tab 2.1).  

After the start of the experiment, nutrient drawdown of the three macronutrients (DIN, DIP, SiO) 

began after a time lag of 1-2 days in experiment 1 and immediately in experiment 2. Generally, 

nutrient drawdown in experiment 1 (Fig. 2.2) was slower than in experiment 2 (Fig. 2.3), in 

which the initial phytoplankton assemblage contained more diatoms, with a mean (±SD) 

proportion of 6.9±3.8% and 60.2±7.4% of total microplankton biomass on day 1 in experiment 1 

and 2, respectively. No significant differences in nutrient drawdown were detected within 

experiment 1 between the mesocosms with zooplankton present as opposed to the ones that 

were mesh-screened, therefore, data were pooled into four replicates of the three nutrient 

treatments. Until the termination of the experiment, dissolved nutrients were detected in all 

mesocosms. The drawdown of DIN in the “high N” treatment was significantly faster (ANCOVA, 

p<0.001) than in the two “low N” treatments, with a mean (±SE) uptake rate of 2.9(±0.3)µmol N 

d-1  in the +N treatment, 0.40(±0.12)µmol N d-1 in the +P and 0.40(±0.13)µmol N d-1  in the 

ambient treatment, respectively (Fig. 2.2A). Similarly, DIP uptake rates were similar in the two 
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“low P” treatments over the course of the experiment, with 0.09(±0.02)µmol P d-1 in the ambient 

and +N treatment, respectively, and significantly higher (ANCOVA, p<0.001) in the +P treatment 

with 0.12(±0.03)µmol P d-1. No continuous removal of SiO could be observed (Fig. 2.2C). In 

contrast to experiment 1, the DIN pool was completely depleted on the third day in experiment 

2. Mean half consumption times t50(±SE) of DIN were significantly longer in the “high N” 

treatments (p=0.014), with 1.84(±0.07) and 1.9(±0.08)days in the N:P=16 and 8, and 

1.32(±0.18) and 1.41(±0.15)days in N:P=5 and 2.5 treatments, respectively. For DIP, mean half 

consumption times were significantly longer in the “high P” treatments (p=0.009), with 

1.23(±0.07) and 1.73(±0.09) days in the N:P=16 and N:P=8, and 1.34(±0.2) and 2.23(±0.3) days 

in the N:P=5 and 2.5 treatments, respectively. In the N:P=2.5 treatment, supplied P uptake was 

incomplete and a concentration of approximately 0.5µMol L-1 remained until termination of the 

experiment. The ratio of drawdown velocity, expressed as t50N:t50P, was positively related to 

initial N:P supply (Fig. 2.3, insert on panel B). 

 

 
 
Figure 2.2. Dissolved inorganic nutrient (DIP, panel A, DIN, panel B, and SiO, panel C) concentrations 

(µmol L-1) in experiment 1 over time. Values are treatment means (±standard deviation). Data from 

mesocosms with mesozooplankton removed and not removed were pooled because of insignificant 

differences, hence n=4 for all treatments. 
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Figure 2.3. Dissolved inorganic nutrient (DIP, panel A, DIN, panel B, and SiO, panel C) concentrations 

(µmol L-1) in experiment 2 over time. Values are treatment means (±standard deviation, n=2-3). Lines are 

sigmoid regressions fitted through individual mesocosm values up to day four (indicated by dashed line). 

Insert on panel B indicates relationship between half consumption times (t50N:t50P) and initial N:P supply 

ratio. 

 

 

 
 

Figure 2.4. Uptake ratios of inorganic nitrogen and phosphorus in experiment 1 (panel A) and experiment 

2 (panel B). Values are individual data, slopes of linear regressions correspond to uptake ratios. 
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The uptake ratios of inorganic N and P in the different experimental treatments determined by 

linear regressions (Fig. 2.4) were closely related to the initial N:P ratio provided in both 

experiments. In experiment 1, the regression slopes (±SE, p<0.001) were 23.92(±1.73), 

5.9(±1.15) and 4.28(±1.05) in the +N (N:P=32), ambient (N:P=3.4) and +P (N:P=2.8) 

treatments, respectively. In experiment 2, the regression slopes (±SE, p<0.001) were 

25.01(±1.48), 9.88(±0.56), 7.07(±0.75) and 2.59(±0.56) in the +N (N:P=16), + N&P (N:P=8), 

ambient (N:P=5) and +P (N:P=2.5) treatments, respectively. 

 

 
3.2. Total diatom biomass  

In experiment 1, the removal of mesozooplankton larger than 200µm resulted in about two-fold 

increase in diatom biomass development within the respective nutrient addition treatments (Fig. 

2.5). Nevertheless, diatom biomass was always higher in the +N treatments than in the other 

two. In experiment 2, diatom biomass was also higher in the two “high N” treatments (N:P=16 

and N:P=8) than in the two “low N” treatments (N:P=5 and N:P=2.5) whereas no differences 

could be detected among the “high P” and “low P” treatments (Fig. 2.6A). The peak bloom was 

reached slightly earlier in the “low N” treatments. 
 

  
 
Figure 2.5. Summed diatom biomass (µg C L-1) in experiment 1 over time in mesocosms with 

mesozooplankton removed (Panel A) and not removed (Panel B). Values are means (±standard 

deviation, n=2) of the fertilization treatments (+N, +P, ambient). Lines are lognormal regressions fitted 

through individual mesocosm data over the entire time period. 
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Figure 2.6. Summed diatom biomass (µg C L-1) in experiment 2 over time (Panel A) and Aphanizophyll 

concentration (ng L-1) as determined by HPLC over time (Panel B). Values are treatment means 

(±standard deviation). Lines in Panel A are lognormal regressions fitted through individual mesocosm 

data over the entire time period. Values are treatment means (±standard error). 
 

 
3.3. Cyanobacterial marker pigment  

During the first three days of experiment 2, no significant differences in the amount of 

aphanizophyll between the different treatments could be detected (Fig. 2.6B). However, after 

day 3, two diverging trends in the distribution of the pigment were monitored in the “high N” and 

“low N” treatments. Initial DIN concentration had a significant impact (p<0.0001) on the 

production of aphanizophyll (factorial ANOVA with N-level, P-level and time as factors), 

whereas neither initial P nor the interaction between the two were significant and Tukey’s HSD 

post-hoc comparison (p<0.01) revealed a significant separation of the aphanizophyll 

concentration between the two N-levels on days 6 and 7. In the two “high N” treatments (16:1 

and 8:1), aphanizophyll increased continuously up to maximum mean (±SE) concentration of 

168.2(± 37.7) and 163.9(±13.8)ng L-1 in the 16:1 and 8:1 treatment, respectively. Only minor 

changes over time were detected in those tanks treated with initial “low N”, with final mean 

(±SE) values of 66.8(±7.7) and 54.7(±10.0) in the 5:1 and 2.5:1 treatment, respectively.  
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Table 2.2. Summary of maximum biomass and p-values of an ANOVA comparing biomass of individual 

taxa over the entire experiment 1. 
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Figure 2.7. Microplankton biomass (µg C L-1) derived from microscopic counts in experiment 2. Diatoms: 

panels A,B,H,I,J,K,L and P, dinoflagellates (all mixotrophic): panels E,M,N,Q,R, ciliates: panels C,G,S, 

haptophytes: panel O and raphidophytes: panel D. Note different scaling on y-axis, with the taxa reaching 

the highest biomass in the top row, and lowest in the bottom row. Values are treatment means (±standard 

deviation). 
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3.4. Individual taxa 

In experiment 1, there were taxon-specific differences in the response to nutrient treatments 

and presence of mesozooplankton. Tab. 2.2 summarizes maximum biomasses of individual 

taxa as well as ANOVA significance levels of time (days), nutrient treatment (+N, + P, no 

addition) and zooplankton presence. Both zooplankton and nutrient supply significantly affected 

several microplankton species (Tab. 2.2). The presence of zooplankton resulted in many (but 

not all) of the larger organisms reaching lower biomasses. For example, the dominant diatom 

group (Pseudonitzschia sp.) was not negatively affected by higher grazing pressure 

(p=0.197).In contrast, nanoplankton biomass was significantly (p<0.001) higher in the mesh-

screened treatments, indicating a trophic cascade effect. Nutrient addition resulted in higher 

biomass in most groups, with N-addition having a larger impact than P-addition (compare Fig. 

2.5). The three dominant (biomass-based) dinoflagellate species (Prorocentrum triestinum, 

Dinophysis caudata and Ceratium furca) were all positively affected by N-addition, while P 

addition did not result in a biomass increase relative to the unamended control. Likewise, the 

two diatom groups contributing the largest proportion of biomass dominant diatoms 

(Pseudonitzschia sp. and Chaetoceros spp.) were positively affected by N (p<0.001), but not by 

P addition; however, in Thalassiosira subtilis and Dactylosolen fragilissimum the biomass 

response to P addition was significantly higher (p<0.001) than in the “ambient” treatment, while 

the two nutrient addition treatments (+N and +P) were not significantly different from each other. 

Likewise, in experiment 2, the dinoflagellate Prorocentrum triestinum (Fig. 2.7E) and diatoms of 

the genus Pseudonitzschia (Fig. 2.7A) were favoured by N-addition, while Heterosigma sp. (Fig. 

2.7D) and Phaeocystis globosa (Fig. 2.7O) benefitted from increased P levels. The only species 

that reached significantly higher biomass in mesocosms with no nutrient addition was the 

diatom Nitzschia aculeata (Fig. 2.7J).  
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Figure 2.8. Nanoplankton abundance (panels 

A and B, no. ml-1) and biomass (panel C, µg 

C L-1) and bacterial abundance (Panel D, 

cells ml-1) over time as detected by flow 

cytometry. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
At the start of the experiment, a cluster with small (<5µm) cells containing very little Chl-a, and 

phycoerythrin likely Prochlorococcus (Fig. 2.8A), and one of similar size with slightly more Chl-a 

and especially phycoerythrin, likely Synechococcus (Fig. 2.8B), were identified and initially 

increased in number, but disappeared after day 4, with no differences between treatments. As 

the forward scatter to size conversion is inaccurate for cells smaller than 5µm, we were not able 

to convert their abundance data into biomass by measured cell sizes. However, assuming a 

cellular carbon content of 50 and 200fg C cell-1 for Prochlorococcus- and Synechococcus-like 

cells (Bertilsson et al., 2003) would result in a maximum biomass of approximately 8.0 and 

7.6µg C L-1, respectively. Mixed photoautotrophic nanoplankton comprised a considerable 

amount of the total calculated biomass (mean diameter 7.7µm, Fig.  2.8C), with a similar 

temporal development of biomass as the microplankton (estimated from microscopic counts), 

however exceeding its biomass. Again, a significant difference between the two N-levels, but 

not between P-levels, was detected (p<0.001)., The highest biomass was reached on day 3 with 

2266(±498) and 1680(±441)µg C L-1 in the N:P=16 and N:P=8 treatments, respectively, and on 

day 2 with 916(±126)  and 847(±33) µg C L-1  in the N:P=5 and N:P=2.5 treatments, 

respectively. Bacterial abundance developed in parallel with the phytoplankton bloom, reaching 

a maximum abundance on day 2 and declining afterwards (Fig. 2.8D). No treatment effects 

could be detected in bacterial abundance. 
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3.5. Fatty acid composition  

No significant correlation between maximum diatom biomass and total lipid content or individual 

fatty acid components could be detected. Both EPA (20:5n3) and DHA proportion (22:6n3) 

decreased slightly in both experiments during the course of the experiments. EPA contributed a 

mean (±SD) proportion of 4.39(±0.49) and 5.13(±0.06)% of total FA at the start, and 2.47(±0.6) 

and 4.23(±2.14)% at the end of experiment 1 and 2, respectively, while DHA contributed a mean 

(±SD) proportion of 10.38(±0.68) and 5.37(±0.01)% of total FA at the start, and 4.89(±0.78) and 

5.15(±1.74)% at the end of experiment 1 and 2, respectively. However, a significant correlation 

(r=0.69, p<0.05) existed between the relative amount of unsaturated fatty acids (FAunsat/sat) and 

maximum diatom biomass (Fig. 2.9). 

 

 

 
Figure 2.9. Positive correlation (r=0.69) of the 

proportion of unsaturated fatty acids 

(FAunsat/sat) at final day of the two experiments 

with the maximum diatom biomass during the 

experiment. Values are square-root 

transformed single mesocosm data. Dashed 

line indicates 95% confidence band, dotted 

line indicates 95% prediction band. 

 

 

 

4. Discussion 

The Peruvian upwelling system is characterized by strong spatial gradients in surface nutrient 

concentrations, both in absolute concentrations and relative to each other (Bruland et al., 2005; 

Franz et al., 2012), indicating that several macro- and micronutrients can potentially limit 

primary productivity. Particularly iron can limit phytoplankton growth (Hutchins et al., 2002), 

while silicate limitation of diatoms becomes more crucial further offshore (Franz et al., 2012). 

However, under low O2 conditions on the shelf, the high solubility of iron supplies high 

concentrations of Fe(II) to surface waters along with P (Bruland et al., 2005), rendering N the 

macronutrient in shortest supply if OMZs are expanding. Phytoplankton counts revealed a 

considerable effect of nutrient availability on the community structure of the primary producers, 

and N addition significantly increased the total biomass of protists (Fig. 2.5 and 2.6), indicating 

an overall N-limitation of the system. Under N-repletion, diatom biomass doubled and biomass 
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of autotrophic dinoflagellates increased up to 4-fold compared to the treatments with relatively 

low concentrations of N, implying that an increasing N-deficit in the O2-deficient waters of the 

eastern South Pacific can induce a shift in the taxa dominating the phytoplankton community at 

the expense of diatoms and dinoflagellates. Given the response of bulk diatom biomass, it 

becomes evident that biomass production at the primary producer level depends solely on the 

supply of inorganic N. This is surprising, as we expected at least a modulation of the response 

by P availability. Diatoms are frequently characterized as “bloomers” (Klausmeier et al., 2004b; 

Arrigo, 2005) that keep a high-rRNA growth machinery adapted to rapid exponential growth 

and, thus, display low N:P requirements (Loladze and Elser, 2011) and are able to efficiently 

utilize excess P. Mills and Arrigo (2010) employed a dynamic ecosystem model to explore the 

relationship between nutrient uptake ratios of phytoplankton and marine nitrogen fixation. They 

suggested that by non-Redfield uptake stoichiometry, fast-growing phytoplankton (i.e. diatoms) 

in upwelling areas utilize excess P and therefore ultimately control new nitrogen flux by N-

fixation into the ocean, as then excess P would not be available to diazotrophs further offshore. 

However, the plasticity of uptake stoichiometry (i.e. N:P<Redfield, Fig. 2.4) indicates that it is 

impossible to classify growth modes and uptake ratios of certain functional types of 

phytoplankton without taking into account that both growth and uptake ratio strongly depend on 

the limiting nutrient. This is partly reflected in the particulate matter (POM) pool (Franz et al., 

subm.), but also linked to higher release of dissolved organic phosphate (DOP; Franz et al., 

subm.). The partitioning of phytoplankton-derived organic matter between its dissolved and 

particulate fractions as a response to changes in nutrient supply has also been described by 

Conan et al. (2007), hence, we cannot conclude that the observed uptake ratios described in 

the present study are directly translated to phytoplankton or POM. 

Wetz and Wheeler (2003) observed complete depletion of NO3 by diatoms within three to five 

days, while SiO and PO4 were still available, in deck incubation experiments off Oregon where 

deep water was seeded with a surface inoculum. Interestingly, the N:P uptake ratio before N 

depletion ranged from 13 to 15.6 in their study. N:P uptake ratios observed in yet another 

eastern boundary current system, the Benguela current, in microcosm incubations conducted by 

Pitcher et al. (1993) ranged from 13.5 to 19.8. Hence, it can be concluded that uptake ratios of 

diatom-dominated phytoplankton assemblages in upwelling areas are not necessarily low in N:P 

as suggested by Mills and Arrigo (2010); rather, the observed uptake ratios are directly related 

to supply. This can also be seen from the relative uptake velocity (estimated as “half 

consumption times” in our study) for the limiting and non-limiting nutrient, respectively. The 

ability of blooming diatoms to immediately utilize DIN and outcompete smaller size fractions of 

phytoplankton has recently been demonstrated in a simulated upwelling mesocosm experiment 

in Monterey Bay by Fawcett and Ward (2011). If the immediate growth response of fast-growing 

large diatoms to such upwelling events is directly related to the vertical supply of dissolved 
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inorganic nitrogen across into the photic zone, this might further intensify this imbalanced 

nutrient budget in the Peruvian upwelling.  

While Fawcett and Ward (2011) observed a succession of diatom species from “ubiquitous” 

Pseudonitzschia spp.-dominated to “upwelling” Chaetoceros spp.-dominated, we found quite 

the contrary, Pseudonitzschia spp. contributing substantially to the total developing biomass, 

which in parts may be due to their protection against grazing. It has to be noted that some 

species within the genus Pseudonitzschia are known to produce the neurotoxin domoic acid, 

although it is questionable whether this is harmful to copepods (Lincoln et al., 2001). As can be 

seen from results in Experiment 1, presence of mesozooplankton did not significantly influence 

biomass development in Pseudonitzschia spp. Their relative proportion of microplankton 

biomass thus increased when grazing pressure on other algal groups was increased in the 

unscreened treatments (Tab. 2.2). However, since Pseudonitzschia numbers decreased after 

depletion of nutrients in both experiments, they apparently are consumed by microzooplankton. 

Their dominance might therefore also be caused by allelopathic effects that negatively affect the 

growth of other microalgae (Granéli and Hansen, 2006). Further, Pseudonitzschia 

pseudodelicatissima has been reported to grow particularly well following high ammonium 

concentrations (Seeyave et al., 2009), making it a good competitor in both upwelling and post-

upwelling conditions. In the California Current, Pseudonitzschia was found to be associated with 

the beginning or end of strong upwelling periods, when nutrients are elevated but declining 

(Kudela et al., 2002). 

In our experiment, Phaeocystis globosa (although never dominating algal biomass) was clearly 

profiting from P addition. This is in line with a study by Riegman et al. (1992) in the southern 

North Sea, who observed a positive effect of decreasing dissolved N:P in riverine discharge on 

biomass development of P. globosa. The authors hypothesized that P. globosa is a good 

competitor under N-limitation and tested this hypothesis in laboratory competition experiments. 

They found that P. globosa, while being outcompeted at high N:P by the coccolithophore 

Emiliania huxleyi and the diatom Chaetoceros socialis, quickly became the dominant species 

under N limitation (N:P=1.5). Interestingly, P. globosa growth was also found to be enhanced 

under increased Fe supply in the eastern tropical South Pacific (Hutchins et al., 2002); it may 

thus be one of the “winners” of elevated P/Fe and low N conditions on the shelf under ocean 

deoxygenation. P. globosa is thought to be of comparably low nutritional value to zooplankton 

consumers, as experimental studies using calanoid copepods and a mono-specific diet of 

Phaeocystis resulted in low egg production rates (Tang et al., 2001; Turner et al., 2002). 

However, since adult survivorship and egg hatching success were high throughout these 

feeding experiments, the authors conclude that the low food quality is due to the lack of 

essential constituents rather than the content of chemical compounds that act as mitotic 
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inhibitors (Turner et al., 2002). Moreover, its fatty acid composition was determined to be low in 

n3 PUFAs (Tang et al., 2001). 

Within the biochemical make-up of primary producers, the fatty acid composition is recognized 

as one of the key factors of food quality. To metazoan consumers, particularly long-chained 

polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA; 20:5n3) and 

docosahexaenoic acid (DHA; 22:6n3) are considered essential, as they usually cannot be 

synthesized de novo and thus have to be ingested in adequate amounts. In natural food webs, 

these components influence the growth and reproduction of zooplankton as well as trophic 

transfer efficiency (Kainz et al., 2004). Although a persistent effect on the bulk fatty acid 

composition could be detected at the end of the experiments (Fig. 2.9), no differences were 

found in the relative amounts of essential PUFAs such as EPA and DHA. Although the relative 

contribution of these components decreased during the experiments, they still contributed 

substantially to total lipids. It is therefore unlikely that consumers will be limited by PUFAs as a 

consequence of nitrogen-limited diatom growth in this assemblage.  It has to be noted that the 

fatty acid analysis took place at the termination of the experiment, when a large proportion of 

the primary producers’ biomass constituting the peak bloom was transferred to protozoan 

grazers such as various ciliates (Fig. 2.7C) and mixotroph dinoflagellates such as Fragilidum 

subglobosum (see Fig. I.7M). For copepods, it has been demonstrated that protozoans 

contribute relatively more to the diet in oligotrophic ocean regions or under post-bloom 

conditions when phytoplankton concentrations are low (Calbet and Saiz, 2005). While it is 

generally accepted that marine ciliates contribute to the availability of phytoplankton biomass to 

mesozooplankton by repackaging of cells that are too small to be consumed directly (Sherr and 

Sherr, 1988), they are considered incapable of synthesizing PUFAs beneficial to higher trophic 

levels, a process dubbed “trophic upgrading” (Klein Breteler et al., 1999). 

While nitrogen fixing cyanobacteria may be able to partially compensate the lack of available 

nitrogen, this appears to happen in a distinct succession rather than a direct response to P 

availability. Several studies in limnetic (Smith, 1983; Vrede et al., 2009), brackish (Niemi, 1979) 

and marine (Michaels et al., 1996) environments have reported on cyanobacterial blooms 

triggered by low inorganic N:P stoichiometry. Analysis of the pigment inventory by HPLC 

revealed that the photosynthetic accessory pigment aphanizophyll increased considerably after 

the complete depletion of both inorganic N and P after the diatom bloom in those tanks that 

received high initial N load (Fig. 2.6B). This xanthophyll is solely produced by cyanobacterial 

phytoplankton (Hertzberg and Jensen, 1966), but not by all cyanobacterial genera. It is even 

regarded indicative of N-fixing cyanobacteria (Hall et al., 1999) in freshwater systems, which is 

supported by the negative correlation between δ15N in particulate organic matter (low δ15N 

characterizes atmospheric fixed N) and the concentration of aphanizophyll in lakes (Patoine et 

al., 2006). Nevertheless, since aphanizophyll has also been detected in Microcystis aeruginosa 

 



Study 2 

 

72

(Soma et al., 1993), a freshwater species which lacks the ability to fix dinitrogen, its detection 

might not necessarily imply the abundance of diazotrophic cyanobacteria. However, up to now 

there is no marine non-diazotroph cyanobacterium known to synthesize aphanizophyll. The 

widely abundant oceanic non-diazotrophs picoautotrophs Prochlorococcus and Synechococcus 

lack this pigment. No filamentous cyanobacteria such as Trichodesmium were detected by 

microscopic inspection, which is not surprising as they are not recorded in the nutrient-rich 

waters of the Peruvian Shelf. In general, Trichodesmium is encountered in oligotrophic waters 

with sea surface temperatures >20°C (Breithbarth et al., 2007). However, in contrast to 

filamentous species that often reach lengths of 200µm and form dense colonies, unicellular 

diazotrophic cyanobacteria with sizes of approximately 1-8µm cannot be identified using light 

microscopy, neither could they be distinguished from other photoautotrophs by flow cytometry. 

Only little is known about the pigment composition of N-fixing cyanobacteria such as the lately 

found “Group A” (Zehr et al., 2001) or diatom-diazotroph associations (DDAs) such as the 

endosymbiontic Richelia intracellularis. According to Řezanka and Dembitsky (2006), pigments 

from Richelia have not yet been isolated. However, their phylogeny (order Nostocales, family 

Nostocaceae) could indicate that they might be able to synthesize this pigment. DDAs have 

been found to substantially contribute to the diazotroph community in subtropical and tropical 

waters. Their occurrence has been reported from ocean areas as different as the Amazon River 

plume (Foster et al., 2007), the eastern tropical Atlantic (Foster et al., 2009), the southwest 

Indian Ocean (Poulton et al., 2009) and the southern California Current (Kimor et al., 1978). 

Since we did not assess N2-fixation rates in this study, and could not concomitantly detect other 

diazotroph carotenoids such as myxoxanthophyll, we cannot conclude whether the 

cyanobacteria present in the experiment were diazotrophic. Furthermore, even if diazotrophs 

were present in our experiment, N2-fixation might be down-regulated due to preferential uptake 

of DIN (Holl and Montoya, 2005). Further studies to investigate this succession pattern are 

recommended, preferably applying molecular techniques and N2-fixation rate assays, as it might 

be an important driver of the onshore-offshore differences in dominating algal functional groups. 
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Abstract 

Results from previous bioassays conducted in the oligotrophic Atlantic Ocean determined 

availability of inorganic nitrogen (N) as the proximal limiting control of primary production, but 

additionally displayed a synergistic growth effect of combined N and P addition. To identify the 

primary limiting nutrient of coastal phytoplankton in the tropical ocean, we performed an 11-day 

nutrient enrichment experiment with a natural phytoplankton community from shelf waters off 

Northwest Africa in shipboard mesocosms. We used pigment and gene fingerprinting together 

with flow cytometry for classification and quantification of the taxa-specific photoautotrophic 

response on variable nutrient supply. Total phytoplankton biomass was solely controlled by the 

level of N supply, while combined high enrichment of N and P did not induce a further increase 

in phytoplankton abundance compared to high N enrichment alone. Extreme dominance of the 

photoautotrophic assemblage by N-limited diatoms in conjunction with the absence of any P-

limited phytoplankton species prevented an additive effect of combined N and P addition on 

total phytoplankton biomass. Furthermore, succession of diatoms and nitrogen-fixing 

cyanobacteria occurred after nutrient exhaustion following to fertilization. The response of 

phytoplankton succession to the simulated upwelling event suggests that, in addition to the 

common distribution of nitrogen-fixing algae in the oligotrophic open ocean, shelf waters in the 

tropical East Atlantic may support growth of diazotrophic cyanobacteria such as Trichodesmium 

subsequent to upwelling pulses.  
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1. Introduction 

Various theories are circulating about the nature of nutrient limitation in the pelagic tropical 

Atlantic. Bioassay approaches including additions of inorganic nitrogen (N), phosphorus (P) and 

dissolved iron (Fe) in the eastern Atlantic determined N as the key limiting nutrient for total 

primary production (e.g. Graziano et al., 1996; Mills et al., 2004; Moore et al., 2008). Some of 

these experiments indicated however also an apparent co-limitation of N and P (Moore et al., 

2008), or Fe and P (Mills et al., 2004), both on a more species-specific level. In particular Fe 

and surplus P are assumed to provide a niche for diazotrophic phytoplankton (Mills et al., 2004). 

The gradient in nutrient N:P stoichiometry from Redfield conditions (~16:1) in the eastern 

Atlantic to relatively high ratios (>30:1) in the West Atlantic implies a transition from slight N to 

severe P limitation (Fanning et al., 1992; Wu et al., 2000; Moore et al., 2008). In combination 

with the apparent absence of significant pelagic N loss in the eastern tropical North Atlantic 

(ETNA) (Ryabenko et al., 2011), the lower N:P signature appears to be rather conflicting with 

regard to the high supply of N to this area via dinitrogen (N2)-fixation (e.g. Falcón et al., 2004; 

Voss et al., 2004), riverine discharge (Nixon et al., 1996) and dust deposition (Talbot et al., 

1986). Compared to the severely O2-deficient waters in the eastern Pacific and the Arabian Sea, 

minimum concentrations in the underlying oxygen minimum zone (OMZ) of the ETNA are 

generally too high (40-50 µmol kg-1; Karstensen et al., 2008) to enable water column 

denitrification as a large-scale N loss process. But O2 concentrations down to zero have 

meanwhile been detected in the core of spin-off eddies at the Cape Verde time-series station in 

the ETNA (Karstensen, pers. comm.). Moreover, recent publications indicate benthic N loss via 

denitrification and anaerobic ammonium oxidation (anammox) within the sediment of the 

Northwest African continental shelf (Trimmer and Nicholls, 2009; Jaeschke et al., 2010). 

Consequently, intermediate waters with reduced N:P stoichiometry are transported via coastal 

upwelling into the euphotic zone, forcing primary production towards N limitation. Along with 

high Fe supply by dust deposition from the African continent (Gao et al., 2001), such nutrient 

conditions are generally favouring development of N2-fixing cyanobacteria. As a result, 

diazotrophic phytoplankton like the filamentous cyanobacterium Trichodesmium (Capone et al., 

1997; Tyrrell et al., 2003) and several groups of lately discovered unicellular diazotrophs (e.g. 

Crocosphaera, Group A cyanobacteria, diatom-symbionts) (Falcón et al., 2002; Langlois et al., 

2008) are highly abundant throughout the tropical and subtropical Atlantic and contribute 

significantly to the input of N via biological N2-fixation.  

Closer to the coast in the realm of the Northwest African upwelling, phytoplankton communities 

are primarily dominated by typical representatives of eutrophic systems such as diatoms, the 

haptophyte Phaeocystis and dinoflagellates (Margalef, 1978). Growth of diatoms and 

dinoflagellates are controlled by N availability (Ryther and Dunstan, 1971; Hauss et al., subm.), 

while Phaeocystis globosa bas been reported to favour low N:P supply ratios (Riegman et al., 
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1992; Hauss et al., subm.). Especially diatoms are, based on their low cellular N:P stoichiometry 

(Quigg et al., 2003; Arrigo, 2005), suspected to exploit a considerable fraction of freshly 

upwelled P on the shelf by non-Redfield production, reducing potentially the availability of P for 

diazotrophs further offshore (Mills and Arrigo, 2010; Franz et al., 2012).  

Production of organic matter as a response to different nutrient supply conditions in that same 

experiment (Franz et al., subm.) indicated a proximate N limitation of total primary production. In 

this study, we address in detail the taxon- or even species-specific response of the 

phytoplankton community by identification and quantification of phytoplankton through pigment 

and gene fingerprinting and flow cytometry.    

 

 

 
2. Material & Methods 

2.1. Mesocosm experimental set-up  

A nutrient limitation experiment in shipboard mesocosms was conducted using a natural 

phytoplankton community during R/V Meteor cruise M83-1 from Las Palmas (Gran 

Canary/Spain) to Mindelo (São Vicente/Cape Verde) in Oct./Nov. 2010 (Fig. 3.1).  

 

 
Figure 3.1. Map of the ETNA showing the mesocosm filling station on the Northwest African Shelf off 

Dakar (red triangle) and the following cruise track (red dots) during the 11-day nutrient enrichment 

experiment on RV Meteor cruise M83-1.  
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Twelve mesocosms in four flow-through gimbals-mounted water baths on deck of the ship (see 

Fig. 3.2) were filled each with 150 L of natural seawater from about 5 m water depth (15°0.01’N, 

17°45.00’W; see Fig. 3.1) using a peristaltic pump. The individual mesocosm enclosure is a 

cylindrical plastic bag fixed to a floating tire and with a plexiglass bottom. Continuous flow of 

ambient surface seawater through the water baths via in- and outflow provided in situ 

temperature conditions (<2°C above sea surface temperature).  

 

 
Figure 3.2. Schematic draft of 

three shipboard mesocosms 

floating in a gimbals-mounted 

water bath. 

 
 

 

 

 

 

 

 

 
 

Surface irradiance in the mesocosms was reduced by 60% to 100 - 600 µE m-2 s-1 by covering 

the water baths with solid white lids. Initially, inorganic nutrients (ammonium (NH4
+), nitrite 

(NO2
-), nitrate (NO3

-), phosphate (PO4
3-), silicate (Si(OH)4)) of the natural seawater medium 

were determined and four different N:P treatments (in triplicates) were adjusted by nutrient 

additions (NaNO3 and KH2PO4). Treatment replicates were distributed over the different water 

baths. Initial molar N:P supply ratios ranged between 16:1 and 2.8:1. Addition of 15 µmol L-1 

Na2SiO3·5H2O and 10 ml of a trace metal mix (Provasoli II trace metal mix; West and McBride, 

1999) to all treatments should prevent other nutrient limitation effects than by N or P (Tab. 3.1). 

Sampling for biogeochemical and taxonomical analyses was conducted on a daily basis for a 

period of 11 days. Technical issues during filling of mesocosm #8 (5.5:1 treatment) resulted in 

its exclusion from the experiment analysis. N:P treatment 5.5:1 was therefore only represented 

by duplicate mesocosms.  
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Table 3.1. Overview of mesocosm filling site, initial and experimental conditions during the M83-1 cruise. 
 

initial conditions  
Latitude 15°0.01'N 
Longitude 17°45.00'W 
T(°C) 27.6 
DIN 0.3 
DIP 0.1 
Si(OH)4 
 

1.4 
 

 

experimental conditions      
N supply level high N high N low N low N  
N:P  16 8 5.5 2.8 
DIN supply (µmol L-1) 12 12 4.13 4.13 
DIP supply (µmol L-1) 0.75 1.5 0.75 1.5 
Si(OH)4 supply (µmol L-1) 
 

15 
 

15 
 

15 
 

15 
 

 

 

2.2. Inorganic nutrients  

Water samples for inorganic nutrients were pre-filtered through 5 µm cellulose acetate filters (26 

mm) and measured immediately after sampling with a Quaatro autoanalyzer (Seal Analytical) 

and an external fluorometer (Jasco FP-2020). Analysis of NO3
-, NO2

-, PO4
3- and Si(OH)4 was 

performed according to Hansen and Koroleff (1999), and NH4
+ was analyzed according to the 

method by Holmes et al. (1999).  

 

 

2.3. Flow cytometry (FCM) 

Cell counts for phytoplankton and bacterial abundance were obtained using a flow cytometer 

(FACScalibur, Becton Dickinson, San Jose, CA, USA). Samples (5 ml) were fixed with 2% 

formaldehyde and frozen at -80°C. Samples were filtered through a 64 µm syringe filter prior to 

measurement at a flow rate of 50.6 µl min-1. Cells were distinguished by size (front scatter) and 

fluorescence of chlorophyll a, phycoerythrin, and allophycocyanin. Biovolume was estimated 

assuming spherical shapes from a front scatter to size calibration and converted to biomass 

(µmol C L-1) using the carbon to volume relationships described in Menden-Deuer and Lessard 

(2000). However, as the calibration is only valid for cells >3 µm, we assumed 50 and 200 fg C 

cell-1 for Prochlorococcus and Synechococcus-like cells, respectively (Bertilsson and Berglund, 

2003). For bacterial abundance, samples were diluted 1:3, stained with SYBR-Green and 

counted at lower flow rate (13.9 µl min-1). Unfortunately, 38 samples for bacterial abundance 

were lost due to inappropriate dilution. 
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2.4. Biogenic silica 

Particulate biogenic silica was collected by filtration of water samples onto filters made of 

cellulose acetate (0.65 µm pore size; 25 mm diameter) at low vacuum pressure (<200 mbar) 

and stored frozen at -20°C. For analysis, the sample filters were incubated each with 25 ml 

NaOH (0.1 M) in Nalgene bottles at 85°C for 2h 15 min in a shaking water bath. After cooling of 

the incubated samples, analysis was conducted according to the method for determination of 

Si(OH)4 by Hansen and Koroleff (1999).  

 

 

2.5. Phytoplankton pigments 

Samples for phytoplankton pigment analysis via HPLC (High Pressure Liquid Chromatography) 

were filtrated onto Whatman GF/F filters (0.7 µm pore size; 25 mm diameter) at low vacuum 

pressure and immediately stored frozen at -80°C. For pigment extraction, each filter was 

covered with approximately 3 g of glass beads (2 mm + 4 mm) and 2 ml of acetone. After 

homogenisation in a cell mill (Edmund Bühler GmbH) for 5 min and centrifugation for 10 min at 

5000 rpm, the supernatant was filtered through a 0.2 µm Teflon filter and the extract stored at -

80°C. The HPLC measurement was conducted by a Waters 600 controller in combination with a 

Waters 996 photodiode array detector (PDA) and a Waters 717plus auto sampler. The applied 

method was modified after Barlow et al. (1997). Classification and quantification of the 

phytoplankton pigments involving chlorophylls, carotenoids and degradation products was 

carried out using the software EMPOWERS (Waters).  

 

 

2.6. nifH-gene detection 

Samples for DNA purification were taken by filtering a volume of 1 L seawater through 0.2 µm 

polyethersulfon membrane filters (Millipore, Billerica, MA, USA). The filters were immediately 

frozen and stored at -80°C. Nucleic acids were extracted using the Qiagen DNA/RNA All prep 

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. NifH was amplified by 

PCR with primers as described in Zani et al. (2000) followed by Topo TA cloning (Invitrogen, 

Carlsbad, CA) and Sanger sequencing (carried out by the Institute of Clinical Molecular Biology, 

Kiel). Detected nifH clusters were quantified by quantitative Real Time PCRs as previously 

described by Langlois et al. (2008) and Foster et al. (2007). TaqMan® qPCRs were set up in 25 

µl reactions containing 12.5 µl TaqMan® buffer (Applied Biosystems), 8.0 µl of nuclease-free 

water, 0.5 µmol L-1 of the forward and reverse primers, 0.25 µmol L-1 TaqMan probe, and 1 µl of 

template DNA. Reactions were performed in technical duplicates in an ABI 7300 qPCR system 

(Applied Biosystems). For each primer and probe set, standard curves were obtained from 
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dilution series ranging from 107 to 1 gene copies per reaction; standards were made using 

plasmids containing the target nifH gene. 

 

 

 

3. Results 

3.1. Nutrient drawdown 

Drawdown of the macronutrients DIN, DIP and Si(OH)4 was fast after initiation of the experiment 

(Fig. 3.3). DIN inventories were already exhausted in all treatments on day 3 (Fig. 3.3A). P 

concentrations, with the exception of the 2.8:1 mesocosms, reached the detection limit of the 

applied method of ~0.2 µmol L-1 on day 3 (Fig. 3.3B). DIP drawdown in the 2.8:1 treatment was 

comparatively slow, and residual concentrations of ~0.2 µmol L-1 were measured until the end of 

the experiment. Substantial consumption of ~11 µmol Si(OH)4 L-1 occurred in the ‘high N’ 

treatments (treatments 16:1 and 8:1 supplied with 12 µmol N L-1) between day 2 and 3 (Fig. 

3.3C). ‘Low N’ (treatments 5.5:1 and 2.8:1 supplied with 4.13 µmol N L-1) phytoplankton utilized 

with ~5 µmol L-1 less than 50% Si(OH)4 in the same period .  

 

 
Figure 3.3. Temporal development of (A) DIN (including 

NH4
+, NO2

- and NO3
-), (B) DIP and (C) Si(OH)4 within the 

four N:P treatments. Values are treatment means and 

vertical error bars denote the standard error of replicates 

within each N:P treatment.  

 

 
 

 

 

 

 

 

 

 

 

 

 

A

 B 

 C 



Study 3 83

3.2. Biomass of phyto- and bacterioplankton via flow cytometry (FCM) 

Total phytoplankton biomass quantified via FCM was significantly affected by N supply (Fig. 

3.4A; Tab. 3.2). During the primary bloom (day 2-4), maximum biomass concentration was 

increased four-fold by high N supply, as ‘high N’ mesocosms accumulated 150-200 µmol C L-1 

compared to ~50 µmol C L-1 in the ’low N’ treatments.  

Bacterial abundance was also significantly affected by initial N supply (Tab. 3.2), even though 

the effect was less pronounced compared to the phytoplankton biomass (Fig. 3.4B). 

Approximately 200x105 cells ml-1 accumulated until day 6 in the ‘high N’ treatments, while cell 

numbers achieved 150x105 cells ml-1 in the ’low N’ treatments. Data points between day 7 and 9 

are missing due to complications during measurement. 

 
 
Figure 3.4. Temporal development of (A) 

phytoplankton biomass (<64 µm) and (B) 

bacterial abundance derived from flow 

cytometry within the four N:P treatments. Style 

code following to Fig. 3.3.  
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Table 3.2. Summary of p-values of non-parametric Mann-Whitney-U tests comparing the significance of 

DIN and DIP supply on the development of the detected phytoplankton pigments, BSi, total phytoplankton 

biomass and bacterial cell abundance. Statistical significant effects (p<0.05) are denoted in bold. 

 N supply P supply 
 

total phytoplankton biomass <0.0001 0.233 
bacteria abundance <0.05 0.546 
Chl a <0.0001 0.082 
BSi <0.05 0.318 
Fucoxanthin <0.0001 0.173 
Chlorophyll c1+2 <0.0001 0.198 
Diadinoxanthin <0.0001 0.553 
Diatoxanthin <0.0001 0.075 
β-Carotene <0.0001 <0.05 
Zeaxanthin 0.054 <0.05 
Chlorophyll c3 0.064 0.080 
19'-Hexanoyloxyfucoxanthin 0.055 0.766 
Peridinin <0.0001 0.665 
Aphanizophyll <0.05 0.907 
Myxoxanthophyll <0.0001 0.665 
Alloxanthin 0.209 0.994 
Chlorophyll b 0.710 0.953 
Violaxanthin 0.610 0.560 
19'-Butanoyloxyfucoxanthin 0.274 0.801 
Trichodesmium nifH-gene 
 

0.647
 

0.824 
 

 

 

3.3 Proxys for taxonomical phytoplankton composition (phytopigments, BSi and nifH)  

The temporal development of Chl a, a proxy for total photoautotrophic biomass, was, in 

agreement with phytoplankton abundance determined via FCM, significantly affected by N 

supply (Fig. 3.5A; Tab. 3.2). Chl a in the ‘high N’ treatments exceeded with up to 4.5 µg L-1 

maximum concentrations in the ‘low N’ treatments (~2.5 µg L-1) in particular during the bloom 

peak (day 2-3). However, maximum concentrations of Chl a and FCM-derived biomass (i.e. cell 

numbers) showed a temporal discrepancy of two days. 

Accumulation of BSi mirrored the uptake of Si(OH)4 in the individual treatments, as maximum 

values of ~24 µmol BSi L-1 occurred in the ‘high N’ mesocosms (Fig. 3.5B). In contrast, BSi did 

only slightly accumulate in the ‘low N’ treatments, hardly surpassing concentrations of 10 µmol 

L-1 throughout the experiment. Thus, production of BSi was significantly affected by the initial N 

supply, whereas initial P enrichment did not have any effect (Tab. 3.2).  
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Figure 3.5. Temporal development of (A) Chl a 

and (B) BSi within the four treatments. Style 

code following to Fig. 3.3.  
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Fucoxanthin, chlorophyll c1+2 and diadinoxanthin represented in terms of concentration the most 

dominant phytopigments (Fig. 3.6). Together with diatoxanthin and β-carotene, they function as 

marker pigments for diatom abundance. These five pigments displayed a similar pattern of 

distribution in the individual treatments, significantly controlled by N supply and only differing in 

their concentration level (Tab. 3.2). Equally high concentrations of the individual pigment in the 

‘high N’ treatments faced equally low contents in the ‘low N’ treatments. This effect was most 

pronounced during the exponential phase (day 2-3), differing in concentration by a factor of 2. 
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Figure 3.6. Temporal development of 

phytoplankton pigments diagnostic for 

diatoms within the four treatments. Style  

code following to Fig. 3.3.  

 

 

Production of the xanthophylls aphanizophyll and myxoxanthophyll, both occurring only in 

cyanobacteria, was strongly affected by N supply (Fig. 3.7A; Tab. 3.2). They hardly 

accumulated in the ‘low N’ treatments (e.g. >0.05 µg L-1 aphanizophyll), whereas concentrations 

reached maximum levels between day 4-6 in the ‘high N’ treatments (e.g. ~0.17 µg L-1 

aphanizophyll).  

Chlorophyll c3 and the carotenoid 19’-hexanoyloxyfucoxanthin are mainly synthesized by the 

taxonomic group of haptophytes. Both pigments did not respond to specific nutrient supply 

according to statistical testing (Tab. 3.2). However, peaks of 19’-hexanoyloxyfucoxanthin were 

slightly higher in the ‘high N’ compared to the ‘low N’ treatments and chlorophyll c3 accumulated 

stronger in the ‘high N’ mesocosms from day 6 on (Fig. 3.7B). 
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Figure 3.7. Temporal development of phytoplankton pigments diagnostic for (A) (N2-fixing) 

cyanobacteria, (B) haptophytes and (C) chlorophytes within the four treatments. Style code following to 

Fig. 3.3.  

 

Chlorophyll b and the carotenoid violaxanthin are indicators for the occurrence of chlorophytes. 

No significant effect of nutrient supply on both pigments was found (Tab. 3.2), yet maximum 

concentrations on day 2 and 3 were larger in the ‘high N’ mesocosms (Fig. 3.7C). 

Concentration of the picocyanobacterial marker zeaxanthin was highest in the 16:1 treatment 

(Fig. 3.8A), though the standard error within this treatment was rather large throughout the 

experiment due to accumulation of higher concentrations in one of the three replicate 
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mesocosms. For that reason we suspect that this represents an outlier and zeaxanthin 

production was not affected by variable nutrient supply.  

 
 
Figure 3.8. Temporal development of 

phytoplankton pigments diagnostic for (A) 

picocyanobacteria (e.g. Synechococcus), (B) 

dinoflagellates, (C) cryptophytes and (D) 

chrysophytes within the four treatments. Style 

code following to Fig. 3.3.  
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In contrast to many other carotenoids, peridinin is exclusively produced by dinoflagellates, thus 

representing an unambiguous indicator for the abundance of this phytoplankton group. 

Concentration of peridinin between the treatments was significantly influenced by N supply (Fig. 

3.8B; Tab. 3.2). 

Alloxanthin is a diagnostic pigment for the abundance of cryptophytes. Statistical analysis did 

not reveal a significant effect of nutrient supply on alloxanthin development (Tab. 3.2). But 

alloxanthin levels were higher in the ‘high N’ than in the ‘low N’ treatments during the peak 

phase from day 2-4 (Fig. 3.8C). 

Development of 19’-butanoyloxyfucoxanthin, predominantly produced by chrysophytes, did not 

follow any significant pattern between the treatments and concentrations were extremely low 

throughout the experiment (Fig. 3.8D; Tab. 3.2).  

Detection of group-specific nifH-gene copies in the mesocosms revealed high abundance of 

filamentous Trichodesmium (Fig. 3.9), along with scarce abundance of unicellular 

Crocosphaera-like species, γ-proteobacteria, Group A and diatom-diazotroph associations (data 

not shown). Trichodesmium-specific nifH-gene copy numbers did not respond to N or P supply 

(Tab. 3.2) and increased exponentially over time, displaying the largest amplification towards 

the end of the experiment between day 8-11. Abundance of Trichodesmium nifH-genes and 

distribution of the cyanobacterial marker pigments myxoxanthophyll and aphanizophyll (Fig. 

3.7A) neither agreed over time nor between treatments. 

 
 
Figure 3.9. Temporal development of 

Trichodesmium nifH-gene abundance within the 

four N:P treatments on a log-scale. Style code 

following to Fig. 3.3.  
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4. Discussion 

4.1. N supply controls phytoplankton growth 

Chl a concentrations from HPLC measurements and phytoplankton biomass detected via FCM 

were significantly affected by the level of N supply but not by the N:P supply ratio, which is 

consistent with the response by POC and PON production in this experiment shown in a further 

work (Franz et al., unpubl. data). Combined high addition of N and P did not provoke an 

additional increase in algal biomass compared to the high N and low P enrichment. Hence, 

growth of bulk phytoplankton was solely controlled by the availability of N, a response that has 

been previously observed in association with coastal upwelling communities (Thomas et al., 

1974; Hauss et al., subm.). Yet, the majority of nutrient enrichment experiments performed in 

marine environments reported a seemingly synergistic limitation effect of N and P on primary 

production (Graziano et al., 1996; Davey et al., 2008; Moore et al., 2008; Tang et al., 2009). 

Such a multiplicative control of growth by N and P is rather common in oligotrophic lakes (e.g. 

White and Payne, 1977; Elser et al., 1990). During low nutrient concentrations, neutralization of 

the proximate nutrient limitation by enrichment of this nutrient is assumed to quickly cause 

limitation by the secondary limiting nutrient. The above listed marine enrichment experiments 

were also performed in nutrient-impoverished waters of the tropical and subtropical ocean, 

which suggests a general close dependence of the primary and secondary limiting nutrient 

under low nutrient availability. However, results from Droop (1974) and Rhee (1978) confirmed 

Liebig’s law of the minimum, which says that growth is solely controlled by the most limiting 

nutrient (Liebig, 1855). Rhee (1978) explained the additive effect of combined N and P addition 

with a competitive exclusion and coexistence of populations either limited by N or by P. 

Combined enrichment of N and P would stimulate growth of the N- and the P-limited species, 

resulting in a higher biomass yield than single addition of N or P. Hence, photoautotrophic 

communities in the oligotrophic ocean are presumably composed beside of N- also of P-limited 

species, which are jointly defining the response of the total algal assemblage. In contrast to that, 

diatoms extremely dominated phytoplankton biomass in this study and distribution of the 

specific marker pigments indicated no P-limitation of any phytoplankton group (see Tab. 3.2). 

Accordingly, total phytoplankton showed a pattern of single N-limitation. The strong dominance 

of N-controlled blooming phytoplankton in coastal upwelling areas seems to exclude the 

apparent additive growth effect of combined N and P enrichment observed in oligotrophic 

regions.    
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4.2. Phytoplankton community dominated by diatoms 

Comparison of the distribution of Chl a, BSi and diatom marker pigments demonstrate a strong 

dominance of the microalgal assemblage in all treatments by diatoms, which is in agreement 

with the response of phytoplankton in a similar enrichment experiment conducted in the 

Peruvian upwelling (Hauss et al., subm.). Artificial nutrient addition, comparable to an episodic 

upwelling event, represented the trigger for fast nutrient drawdown and exponential growth by 

diatoms. Diatom metabolism is known to react promptly on sudden pulses of nutrient input with 

extremely high rates of nutrient uptake and cell division (Fawcett and Ward, 2011). This quick 

metabolic response may be the crucial advantage of diatoms to outcompete other 

phytoplankton groups in high nutrient regimes such as upwelling areas. Especially 

picoplanktonic species are inferior competitors under nutrient saturation. Small cells are highly 

beneficial under nutrient depletion (Chisholm, 1992), but they have no chance to prosper in 

coexistence with large blooming species in a eutrophic environment (Wilkerson et al., 2000; 

Wetz and Wheeler, 2003). Under high N supply conditions, diatom accumulation can even 

escape a top-down control by mesozooplankton grazing, as copepods are constrained by their 

longer development cycle (Goericke, 2002).   

Blooming and dominance of diatoms is certainly influenced by the availability of Si(OH)4 and Fe. 

Sufficient supply of Si(OH)4 to diatoms is vital for building their silica-containing cell walls 

(Lewin, 1962). In addition, particularly coastal diatoms seem to have high Fe requirements 

(Sunda and Huntsman, 1995; Bruland et al., 2001) and their growth has been reported to be 

limited by Fe supply (Hutchins and Bruland, 1998; Hare et al., 2005). Si(OH)4 and Fe were both 

initially provided to the phytoplankton community in adequate concentrations, to prevent 

limitation by other nutrients than by N and P.   

 

 

4.3. Diatom-diazotroph succession  

The single-pulse nutrient addition experiment in this study simulates an upwelling event. 

Following the characteristic succession of functional groups in such experiments can therefore 

help to explain their spatial distribution patterns, both in respect to the vertically stratified water 

column and in the shelf – slope - open ocean transect typical of eastern boundary current 

systems. It has been hypothesized before, following observations by Margalef (1973) and model 

predictions by Hood et al. (2004), that the succession sequence diatoms – cyanobacteria - 

flagellates might be characteristic of the ETNA. Traditionally, large-scale N input by N2-fixation 

has been largely attributed to the central and western part of the North Atlantic based upon the 

dominance of Trichodesmium and the high N:P export ratio in this regions (Capone et al., 

2005). More recently, the role of unicellular cyanobacteria as well as diatom-diazotroph 
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associations (DDAs) has been increasingly acknowledged in the tropical North Atlantic 

(Montoya et al., 2007; Langlois et al., 2008; Foster et al., 2009).  

Episodic pulses of upwelling on the shelf facilitate blooming of large primary producers, initiating 

rapid drawdown of the vertically supplied N in the surface layer. N depletion following to 

upwelling events may create a niche for N2-fixing cyanobacteria. In this study, exhaustion of 

initially supplied N on day 3 (Fig. 3.3A) terminated a diatom-dominated bloom (see Fig. 3.5 and 

3.6), thereby providing favouring conditions for the onset of diazotrophic development. 

Temporal distribution of the cyanobacterial marker pigments myxoxanthophyll and 

aphanizophyll was directly opposed to the development of the diatom bloom, as maximum 

pigment concentrations occurred between day 4 to 6 (Fig. 3.7A). The highest increase in the 

abundance of the Trichodesmium-specific nifH-gene, the functional gene expressing the N2-

fixation catalyzing enzyme nitrogenase, occurred also after termination of the diatom bloom 

from day 7 on. Termination of the diatom bloom seems to be a prerequisite for extensive growth 

of diazotrophic cyanobacteria. Trichodesmium is able to grow on NO3
- (Holl and Montoya, 

2005), but coexistence of diatoms and N2-fixers under nutrient saturation is eliminated by the 

fact that cyanobacteria cannot compete with diatoms for the available P (Tilman, 1982). Based 

on high abundance of the Trichodesmium-specific nifH-gene in combination with only scarce 

copy numbers of nifH-genes from unicellular cyanobacteria and DDAs, we suppose that 

aphanizophyll and myxoxanthophyll can be considered as primarily Trichodesmium-derived. 

Consequently, Trichodesmium developed under nutrient depletion subsequent to the diatom-

dominated phytoplankton bloom, supporting the hypothesis (see Margalef, 1973, and Hood et 

al., 2004) that N2-fixers are growing in succession to diatoms in the upwelling area on the West 

African continental shelf.       

Many observations support the general assumption that low N:P conditions are stimulating 

growth of N2-fixers (e.g. Niemi, 1979; Vrede et al., 2009). But neither increased production of 

cyanobacterial marker pigments in the ‘high N’ treatments, a response that has already been 

observed in the mesocosm study by Hauss et al. (subm.), nor similar abundance of the 

Trichodesmium-specific nifH-gene across all treatments (Fig. 3.9; Tab. 3.2) indicate a 

stimulation of diazotrophic cyanobacteria by low N:P supply ratios. In contrast, production of 

myxoxanthophyll and aphanizophyll was lowest in the 2.8:1 treatment, which was the only 

treatment with residual amounts of DIP throughout the entire experiment. Likewise excess P did 

not induce an enhancement in nifH-gene abundance compared to the other treatments, 

implying that growth of diazotrophic algae was not limited by P availability. The discrepancy in 

the distribution of marker pigments and nifH-gene abundance precludes though a definite 

conclusion about the effect of variable nutrient supply on N2-fixing cyanobacteria in the 

experiment. Nonetheless, the analogy in the increased production of cyanobacterial marker 

pigments in the ‘high N’ treatments between this study and Hauss et al. (subm.) suggests a 
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particular pattern behind this response, which we are not able to identify with the available 

dataset.  

Furthermore, the disagreement between cyanobacterial diagnostic pigments and nifH-gene 

abundance exposes that our present comprehension of the correlation between different 

microalgal indicators is rather incomplete. Owing to this inconsistency and the associated 

uncertainty of the cyanobacterial proxies, and simply because we did not perform rate 

measurements of N2-fixation, we are not able to evaluate the input of N via N2-fixation during the 

experiment. Given that a secondary weaker diatom bloom developed after day 7, which showed 

the same pattern of N control, we suspect that an effective remineralization of nutrients must 

have occurred between the first and second bloom.  

 

 

4.4. Ecological implications 

Results from this simulated upwelling experiment indicate that phytoplankton in the ETNA may 

occur in a successional sequence as proposed by the model of Hood et al. (2004). Following to 

upwelling pulses and drawdown of nutrients by bloom forming species, coastal shelf areas can 

offer favouring growth conditions for N2-fixers, provided that the vertical supply of nutrients 

occurs only episodically. The common non-consideration of upwelling regions as potential 

habitats for diazotrophic phytoplankton may have caused an underestimation of total N input by 

N2-fixation into the tropical Atlantic Ocean. Furthermore, N2-fixation in shelf areas may 

counteract the N-deficit of OMZ-influenced waters. So far, results indicate an absence of large-

scale N loss via anammox or denitrification in the water column off Northwest Africa (Ryabenko 

et al., 2011), because relatively high minimum O2 concentrations of about 40 µmol kg-1 preclude 

these microbial pathways. But studies based on models (Matear and Hirst, 2003) and time-

series analysis (Stramma et al., 2008) consider the ETNA as the region with the largest 

potential for expansion of low-oxygen environments. As a consequence, N loss processes may 

gradually establish in the deoxygenating waters of the tropical East Atlantic, enhancing the 

necessity for compensation of the N-deficit through biological N2-fixation. Especially N-

controlled primary production by blooming, non-diazotrophic species would benefit from the N 

supply via N2-fixation, if upwelled N stocks are reduced due to microbial N loss processes in 

oxygen-deficient intermediate layers.          
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 Abstract 

Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), 

are expected to expand as a consequence of global climate change. Poor oxygenation is 

promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound 

phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but 

with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal 

upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry 

on production, partitioning and elemental composition of phytoplankton-derived dissolved (DOC, 

DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment 

experiments were conducted with natural phytoplankton communities in shipboard mesocosms, 

during research cruises in the tropical waters of the South East Pacific and the North East 

Atlantic. Maximum accumulation of POC and PON was observed under high N supply 

conditions, indicating that primary production was controlled by N availability. The stoichiometry 

of photoautotrophic biomass was unaffected by nutrient N:P supply during exponential growth 

under nutrient saturation, while it was highly variable under conditions of nutrient limitation and 

closely correlated to the N:P supply ratio, although PON:POP of accumulated phytoplankton 

generally exceeded the supply ratio. Phytoplankton N:P composition was constrained by a 

general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism 

responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply 

and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P 

supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters  

seem to represent a net source for DOP, which may stimulate growth of diazotrophic 

phytoplankton. These results demonstrate that microalgal nutrient assimilation and partitioning 

of phytoplankton-derived organic matter between the particulate and the dissolved phase are 

controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient 

cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry. 
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1. Introduction 

Oxygen minimum zones (OMZs) of the tropics and subtropics occur in conjunction with highly 

productive eastern boundary upwelling systems, e.g. the Peru Current in the Eastern Tropical 

South Pacific (ETSP) and the Canary Current in the Eastern Tropical North Atlantic (ETNA). 

Nutrient-rich deep water is transported by wind-driven upwelling vertically into the euphotic 

zone, ensuring high rates of primary production. Large amounts of sinking microalgal biomass 

enhance consumption of dissolved oxygen (O2) in the mesopelagic zone indirectly via microbial 

degradation of organic matter (Helly and Levin, 2004). Beside these loss processes, 

deoxygenation is further promoted by a pronounced stratification of the upper water column off 

the upwelling centers, impeding ventilation of the O2-depleted intermediate water body (Reid, 

1965; Luyten et al., 1983). Climate change-induced warming of the surface layer leads to an 

intensified stratification of the upper tropical ocean and rising sea surface temperatures impede 

the uptake of atmospheric O2 by lowering its solubility (Keeling and Garcia, 2002; Matear and 

Hirst, 2003).  

The impact of low O2 levels on redox-sensitive nutrient cycling is immense. Sub- or anoxia 

creates niches for the microbial processes of denitrification (Codispoti and Christensen, 1985) 

and anaerobic ammonium oxidation (anammox) (Thamdrup and Dalsgaard, 2002; Kuypers et 

al., 2003), both contributing to the deficit of biologically available inorganic nitrogen (N) by 

converting it to nitrous oxide and/or dinitrogen (N2). Decreasing oxygenation has also 

implications on phosphorus cycling. If bottom water and sediment become depleted in O2, 

buried metal oxide complexes are reduced and the associated dissolved inorganic phosphorus 

(P) is released back into the water column. A further source of P is the dissolution of apatite-

containing fish debris in the sediments of the continental shelf areas. This process supplies 

additional P to the dissolved reactive P pool especially in the fish-rich waters of the ETSP 

(Suess, 1981; Van Cappellen and Berner, 1988).   

These deoxygenation-induced changes in nutrient cycling are generating intermediate water 

masses with a low nutrient N:P signature relative to the Redfield ratio of 16:1 (Redfield, 1958). 

Via coastal upwelling, these are transferred into the surface layer, fuelling primary production. 

An open question is how primary production will respond to OMZ-induced shifts in nutrient 

availability and the associated decline in nutrient N:P stoichiometry. The prevailing N limitation 

of phytoplankton within coastal upwelling systems suggests a decreasing trend of 

photoautotrophic production in the course of expanding OMZs (Dugdale, 1985). Modifications in 

the concentration of supplied nutrients are known to further affect the biochemical composition 

of phytoplankton (Gervais and Riebesell, 2001). Sterner and Elser (2002) introduced the ‘they 

are what they eat’ theory, implying that phytoplankton N:P generally mirrors N:P supply. In 

contrast, studies involving dynamic nutrient models or field surveys claimed the specific growth 

strategy of phytoplankton being the key control of its elemental stoichiometry (Klausmeier et al., 
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2004a; Arrigo, 2005; Franz et al., 2012). This hypothesis is based on the fact that the different 

functional compartments within a phytoplankton cell are varying in their individual nutrient 

demands (Falkowski, 2000; Geider and LaRoche, 2002). Cellular stoichiometry varies as a 

function of the specific functional machinery that dominates in a species’ metabolism, i.e. cell 

assembly or resource acquisition. Furthermore, partitioning of phytoplankton-derived organic 

matter between its dissolved and particulate fractions might be influenced by changes in the 

nutrient supply (Conan et al., 2007). This response is relevant in respect of DON and DOP as 

substitute nutrient sources for phytoplankton in waters that are deficient in inorganic nutrient 

compounds (reviewed by Karl and Björkman, 2002, and Bronk et al., 2007).     

Our major objective was to test experimentally the response of natural phytoplankton 

communities taken from the euphotic zone above the OMZs off Peru and West Africa to variable 

combinations of N and P supply concentrations and their ratios. Production of particulate and 

dissolved organic matter as well as elemental composition of the bulk phytoplankton community 

were determined in order (i) to identify the key nutrient controlling phytoplankton growth, (ii) to 

unravel whether nutrient N:P supply is reflected in the PON:POP composition of accumulated 

phytoplankton biomass and (iii) to detect potential shifts in the partitioning of accumulated 

organic matter between dissolved and particulate fractions under different types of nutrient 

enrichment. 

 
 
 
2. Material & Methods 

2.1. Mesocosm experimental set-up  

This study is based on the results of three nutrient enrichment experiments conducted in 

shipboard mesocosms during RV Meteor cruises M77-3 in the Peruvian Upwelling (PU) region 

from Guayaquil (Ecuador) to Callao (Peru) in Dec./Jan. 2008/09, M80-2 in the ETNA from 

Mindelo (São Vicente/Cape Verde) to Dakar (Senegal) in Nov./Dec. 2009 and M83-1 off the 

coast of West Africa (WA) from Las Palmas (Gran Canary/Spain) to Mindelo (São Vicente/Cape 

Verde) in Oct./Nov. 2010 (Fig. 4.1).  
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Figure 4.1. Map of the tropical Pacific and Atlantic showing filling stations of the mesocosms (crossed 

circles) plus the following cruise track during the time of experiments (dots) at the respective cruise. 

Yellow markers denote cruise M77-3 (PU), blue M80-2 (ETNA) and yellow M83-1 (WA).  

 

For each experiment, twelve mesocosms with a volume of 70 L (PU) or 150 L (ETNA and WA) 

were distributed over four flow-through gimbals-mounted water baths on deck of the ship (Fig. 

4.2). The single mesocosm enclosure was a cylindrical plastic bag with a plexiglass bottom 

fixed to a floating tire. On the PU cruise, the mesocosms were filled with 70 L each, using 

natural seawater from 10 m depth (Niskin bottles from CTD-casts), which was pre-screened 

(200 µm mesh size) to remove mesozooplankton. On the ETNA cruise, mesocosm bags were 

each filled with 130 L of natural seawater from 5 m water depth using a peristaltic pump. 

Additionally, a 20 L inoculum from the chlorophyll a maximum at around 50 m depth taken with 

the CTD-rosette was added to each mesocosm. On the PU cruise, mesocosms were each filled 

completely with 150 L of seawater from 5 m depth with the peristaltic pump. As surface 

mesozooplankton abundance was low at the study site, no pre-screening of the medium was 

done in this case. Continuous flow of ambient surface seawater through the water baths 

provided in situ temperature conditions (<2°C above sea surface temperature).  
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Figure 4.2. Schematic draft of 

three shipboard mesocosms 

floating in a gimbals-mounted 

water bath. 

 

 

 

 

 

 

 

 
  

 

Surface irradiance in the mesocosms on the Pacific cruise (700-2600 µmol photons m-2 s-1) was 

reduced to approximately 30% by covering the water baths with camouflage nets, whereas solid 

white lids shaded the tanks on the Atlantic cruises. The solid lids reduced surface light intensity 

by approximately 50%, resulting in mesocosm light conditions between 100 to 1000 µmol 

photons m-2 s-1. Initially, inorganic nutrients (ammonium (NH4
+), nitrite (NO2

-), nitrate (NO3
-), 

phosphate (PO4
3-), silicate (Si(OH)4)) of the natural seawater medium were determined and four 

different N:P treatments in each experiment were adjusted by nutrient additions (Tab. 4.1). 

Nutrient concentrations of the initial medium on the PU cruise were increased due to upwelling 

on the shelf. For adjustment of the four N:P treatments, either N (+N), P (+P) , N combined with 

P (+NP) or nothing (control) was added. In contrast, surface nutrient concentrations were 

extremely low on the West African shelf. To adjust similar nutrient concentrations and N:P 

supply ratios to the PU experiment, N and P were added to all four treatments, but in variable 

concentrations. Enrichment with high N and low P (+N), low N and high P (+P), high N and high 

P (+NP), low N and low P (control) represented the four treatments. For simplification we use 

‘enrichment’, including high addition, or ‘no enrichment’, including low addition, for both 

experiments. 

Initial molar N:P supply ratios ranged between 20 and 2.5 in all three experiments. Si(OH)4 and 

a trace metal mix (Provasoli II trace metal mix; West and McBride, 1999) were added to all 

treatments (Tab. 4.1). Sampling for biogeochemical analyses was conducted on a daily basis 

for a period of 7 (PU), 9 (ETNA) and 11 days (WA). Because of their smaller volume during the 

PU cruise, all mesocosms had to be restocked on sampling days 3 and 5 with filtered (5 µm) 

natural surface seawater provided by the internal ship’s pump (dilution factors: 0.4 and 0.27, 

respectively). Nutrient concentrations of this medium were on average 5.5 µmol l-1 DIN, 0.5 

µmol L-1 DIP and 8.6 µmol L-1 Si(OH)4. Nutrient inventories in the mesocosms were partially 
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restocked through the dilution. Since this was conducted already after the biomass peak and in 

equal amounts to all twelve mesocosms, we exclude a significant influence on the outcome of 

the experiment which was mainly driven by the initial nutrient supply. 

 
Table 4.1. Overview of mesocosm filling sites, initial and experimental conditions during the three cruises.  

 M77-3 (PU) M80-2 (ETNA)  M83-1 (WA) 
initial conditions      
Latitude 16°0.01'S  7°41.37'N  15°0.01'N 
Longitude 74°37.04'W  24°13.50'W  17°45.00'W 
T(°C) 18.2  27.9  27.6 
DIN 5  0.3  0.3 
DIP 1  0.1  0.1 
Si(OH)4 3.7  0.7  1.4 
experimental conditions               
(high) enrichment +N +NP control +P       +N +NP control +P 
N:P supply 16 8 5 2.5  20 15 10 5  16 8 5.5 2.8 
DIN supply (µmol L-1) 16 16 5 5  9 7.5 7.5 7.3  12 12 4.13 4.13 
DIP supply (µmol L-1) 1 2 1 2  0.5 0.5 0.7 1.6  0.75 1.5 0.75 1.5 
Si(OH)4 supply (µmol L-1) 10 10 10 10  6 6 6 6  15 15 15 15 
               
 

 

2.2. Inorganic nutrients  

Analysis of the nutrients NO2
-, NO3

-, PO4
3- and Si(OH)4 was conducted on board immediately 

after sampling according to Hansen and Koroleff (1999). Prior to measurement, samples were 

pre-filtered through 5 µm cellulose acetate filters (26 mm). A Hitachi U-2000 spectrophotometer 

was used for all colorimetric measurements on the PU cruise, while they were carried out with a 

Quaatro autoanalyzer (Seal Analytical) during the experiments in the ETNA and WA. NH4
+ 

analysis during PU was conducted according to Holmes et al. (1999), and according to Kerouel 

and Aminot (1997) with a Jasco FP-2020 fluorometer in the Atlantic.  

The utilized abbreviation DIN (dissolved inorganic nitrogen) includes the inorganic nitrogen 

compounds NO2
-, NO3

- and NH4
+, DIP (dissolved inorganic phosphorus) includes PO4

3- and all 

other forms of ortho-phosphate. 

 

 

2.3. POM 

Water samples from the mesocosms for particulate organic carbon (POC) and nitrogen (PON) 

and for particulate organic phosphorus (POP) were filtered onto pre-combusted (450°C for 5 h) 

Whatman GF/F filters (0.7 µm pore size; 25 mm diameter) at low vacuum pressure (200 mbar) 

and stored frozen at -20°C until analysis. Filters for POC/PON were fumed with hydrochloric 

acid (37%) for ~15 h to remove the inorganic carbon, dried at 60°C for 12 h and wrapped in tin 
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cups (8 x 8 x 15 mm) for combustion. Final measurements of POC and PON were made 

according to Sharp (1974) using an elemental analyzer (EURO EA Elemental Analyser) coupled 

to an EUROVECTOR gas chromatograph.  

POP was measured using a modified method according to Hansen and Koroleff (1999) by 

incubating the defrosted filters with the oxidation reagent Oxisolv (Merck) and 40 mL of 

ultrapure water for 30 min in a household pressure cooker.  

 

 

2.4 DOM 

For the analysis of dissolved organic nitrogen (DON) and phosphorus (DOP) water samples 

were pre-filtered through combusted (450°C for 5 h) Whatman GF/F filters (25 mm; 0.7 µm) on 

the PU and ETNA cruise. No pre-filtration was conducted during the cruise off WA, thus yielding 

total nitrogen (TN) and phosphorus (TP) instead of total dissolved nitrogen (TDN) and 

phosphorus (TDP), respectively. 

Analysis was accomplished according to Koroleff (1977). Initially, one portioning spoon of the 

oxidation reagent Oxisolv (Merck) was dissolved in 40 mL of sample and autoclaved in a 

pressure cooker for 30 min. 10 mL of the oxidized sample was added to 0.3 mL of a mixed 

reagent (4.5 M H2SO4 + NH4
+- molybdate + potassium antimonyl tartrate) and 0.3 mL of 

ascorbic acid, incubated for 10 min and finally TDP (PU, ETNA) or TP (WA) was determined 

colorimetrically at 882 nm against ultrapure water. Detection limit of the method was 0.2 µmol L-

1 and analytical precision was ±8.3%. The DOP concentration was calculated as follows: 

 
DOP=TDP-DIP          (1) 

 
DOP=TP-(DIP+POP)         (2) 

 
DON was analyzed by pumping the oxidized sample through a reductor containing cadmium, 

resulting in the reduction of all dissolved organic nitrogen compounds to NO2
-. After an 

incubation of 30 min, TDN (PU, ETNA) or TN (WA) was measured with a spectrophotometer at 

a wavelength of 542 nm against ultrapure water. Detection limit of the method was 0.1 µmol L-1 

and analytical precision was ±0.1 µmol L-1. The DON concentration was obtained as follows: 

 
DON=TDN-DIN         (3) 

 
DON=TN-(DIN+PON)         (4) 

  
Measurement of TDN from the WA experiment was carried out in combination with the DOC 

analysis (PU and WA). Water samples for TDN and DOC were collected in ultra-clean and pre-

combusted (450°C for 12 h) glass vials and stored at -20°C. In a solvent-free clean laboratory 
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on land, thawed samples were filtrated through combusted (450°C for 6 hours) GF/F filters and 

acidified by adding 20 µl HCl (32%) to each sample. Analysis of TDN (detection limit: 2 µmol L-1; 

AP: ±1 µmol L-1) and DOC (DL: 5 µmol L-1; AP: ±1 µmol L-1) was conducted using the HTCO 

method (high-temperature catalytic oxidation) (Wurl and Min Sin, 2009) on a Shimadzu TOC-V 

analyzer. The accuracy of the analysis was validated several times a day with deep-sea 

reference material provided by the University of Miami. Concentrations of DON were calculated 

using Eq. (3).   

 

 

2.5. Calculations

         
Build-up of dissolved and particulate organic matter in the three experiments was determined 

based on the time period of exponential growth from the initial sampling day until the first day 

after nutrient exhaustion. The first day after complete DIN exhaustion in all treatments plus the 

subsequent day (in order to compensate temporal fluctuation of individual maxima of organic 

matter) were defined for each experiment as the time of maximum organic matter accumulation 

(PU: day 4 and 5; ETNA: day 6 and 7; WA: day 4 and 5). The difference in concentration 

between the initial sampling day and the respective day of maximum accumulation represented 

the build-up of organic matter. It was not possible to calculate a build-up of DOP during the WA 

experiment as measured concentrations were in large part close to or even below the detection 

limit of 0.2 µmol L-1 throughout the experiment, and the associated large daily variability in the 

data precluded a determination of accumulating DOP for each treatment. 

Drawdown of nutrients was determined in accordance with the accumulation of organic matter, 

i.e. it is defined as the difference in DIN or DIP, respectively, from initial sampling until the 

maximum of organic matter accumulation (PU: day 4 and 5; ETNA: day 6 and 7; WA: day 4 and 

5). To highlight differences in nutrient drawdown at variable N:P supply, treatments were united 

into four N:P supply groups: ~16:1 (including N:P treatments of 15:1 and 16:1), ~8:1 (including 

N:P treatments of 8:1 and 10:1), ~5:1 (including N:P treatments of 5:1 and 5.5:1), ~2:1 

(including N:P treatments of 2.5:1 and 2.8:1).       

Effects of nutrient enrichment on production of POM and DOM compounds were identified using 

the effect size metric response ratio RRx, calculated as follows: 

 
RRx=ln(E/C)           (5)  

 
where E denotes the build-up of the respective organic compound in the enriched treatment 

(+N, +P or +NP), whereas C represents the build-up of the variable in the control (see Tab. 1). 

Since it was impossible to determine an accumulation of DOP during the WA cruise, absolute 

concentrations of DOP were used for calculating RRx.  
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2.6. Statistical analyses 

Relationships of pelagic community response variables to the inorganic N:P supply ratio  and 

drawdown ratios of DIN and DIP were determined using regression analyses (SigmaPlot, 

Systat). Effects of the three nutrient enrichment treatments (+N, +P, or +NP) on RRx of the 

accumulated dissolved and particulate organic compounds during the experiments in the PU 

and off WA were compared using one-way ANOVA, followed by Tukey’s post-hoc test to 

compare specific combinations of factors (Statistica 8, StatSoft). A significance level of p<0.05 

was applied to all statistical tests. 

 

 

 

3. Results 

3.1. Nutrient uptake  

Removal of DIN and DIP per biomass unit from the medium was closely related to the N:P 

supply ratio over all three experiments (Fig. 4.3). Drawdown ratios determined through the 

regression slopes of DIN versus DIP reflected the N:P supply. N:P drawdown in the ~16:1 N:P 

treatments was 17.18(±0.49), 8.42(±0.30) in the ~8:1 treatments, 6.21(±0.48) in the ~5:1 

treatments and 2.93(±3.21) in the treatments with an N:P supply of about 2:1.  

 

 
 
Figure 4.3. Drawdown of DIN versus DIP (both normalized to per POC unit) during the PU (yellow), 

ETNA (blue) and WA (red) experiments. Linear regressions were fitted to the nutrient drawdown in the 

treatments supplied with N:P~16:1 (circles; straight line: y=17.18(±0.49)x-0.01(±0.003), r2=0.989, 

p<0.0001), N:P~8:1 (triangles; long-dashed line: y=8.42(±0.30)x+0.004(±0.004), r2=0.984, p<0.0001), 

N:P~5:1 (squares; short-dashed line: y=6.21(±0.48)x-0.01(±0.01), r2=0.923, p<0.0001) and N:P~2:1 

(diamonds; dotted line: y=2.93(±3.21)x+0.01(±0.05), r2=0.085, p=0.386). 
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3.2. Nutrient enrichment and build-up of organic matter 

Our data show that the phytoplankton community was limited by N within the PU and WA 

experiments. This effect was noticeably stronger in the experiment carried out in the Atlantic 

(WA) (Fig. 4.4; Tab. 4.2). N addition induced strong responses of POC and PON build-up 

compared to the P enriched treatment, whether through fertilization by N alone (pPOC=0.001; 

pPON=0.002) or in combination with P (pPOC=0.002; pPON=0.001) (Fig. 4.4A and B).  

A D 

B E 

C F 

Peruvian 
upwelling 

West Africa Peruvian 
upwelling 

West Africa 

 
Figure 4.4. Relative responses (RRx) of the autotrophic communities to enrichment in high N (+N, blue), 

high P (+P, purple) or to combined high N and high P (+NP, grey), during the PU (Peruvian upwelling) 

and the WA (West Africa) experiments. Response variables are build-up of (A) POC, (B) PON, (C) POP, 

(D) DOC and (E) DON. (F) Since no accumulation of DOP could be determined for the WA experiment, 

absolute concentrations of DOP were used to evaluate RRx. For detailed calculation of RRx see Sect. 
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4.2.5. Values are treatment means and the error bars denote the standard deviation for two consecutive 

days of production within each treatment of high nutrient enrichment. 

 

P supply provoked only a minor increase in the response of POC production relative to the 

control treatment, and PON build-up was even negatively affected by P supply. The same trend 

was observed for the mesocosm experiment in the PU, but effects were not significant due to 

large standard deviations within the three treatments.   

In both experiments, combined supply of N and P generated increased accumulation of POP 

compared to addition of N (PU: p=0.314; WA: p=0.054) or P (PU: p=0.277; WA: p=0.066) alone 

(Fig. 4.4C).  

DOC and DON production displayed no statistically significant difference in the RRx between the 

three treatments during the PU cruise (p=0.577) (Fig. 4.4D and E). In the WA experiment, build-

up of DOC and DON responded in a similar way to N fertilization like POC and PON, although 

the response for DOC in the +NP treatment was two-fold increased compared to the RRx in the 

+N treatment (p=0.001). Nonetheless, N enrichment caused a significantly elevated DOC 

accumulation in contrast to P supply (+N: p=0.006; +NP: p=0.0002). DON production appeared 

to be also promoted by N supply, but no significant effect between the three treatments could be 

detected due to high variability among replicates and sampling days (p=0.205). 

 
Table 4.2. Summary of p-values obtained from ANOVA comparing the effects of the three high nutrient 

enrichment treatments (+N, +P, or +NP) on build-up (POC, PON, POP, DOC, DON) or concentration 

(DOP) of organic elemental compounds during the PU and WA experiment. Statistical significant effects 

(p<0.05) are denoted in bold. 

 

Experiment Factor +N vs. +P +N vs. +NP +P vs. +NP treatment 
 

PU 
 

RRx [POC] 
 

0.134
 

0.975
 

0.193 
 

0.106 

 RRx [PON] 0.162 0.987 0.210 0.120 

 RRx [POP] 0.998 0.314 0.277 0.243 

 RRx [DOC] 0.652 0.996 0.665 0.577 

 RRx [DON] 0.629 0.886 0.908 0.654 

 RRx [DOP] 0.225 0.039 0.398 0.047 
 

WA 
 

RRx [POC] 0.001
 

0.994
 

0.002 
 

0.0005 
 RRx [PON] 0.0002 0.473 0.0005 <0.0001 
 RRx [POP] 0.993 0.054 0.066 0.036 
 RRx [DOC] 0.006 0.0009 0.0002 <0.0001 
 RRx [DON] 0.188 0.804 0.464 0.205 

 RRx [DOP] 0.621 0.321 0.065 0.074 
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Absolute concentrations of DOP were used to assess the effect of nutrient enrichment on DOP, 

since no detectable accumulation of DOP occurred within the WA experiment. The strong 

variation of DOP within the treatments caused strong negative responses to single high N or P 

supply and positive RRx in the +NP mesocosms (Fig. 4.4F). The measured fluctuation of DOP 

stocks around the detection limit of 0.2 µmol L-1 suggest a high uncertainty in DOP data. In the 

experiment off Peru, DOP was affected by high P addition, as RRx was increased in the +P and 

+NP treatment, whereas DOP showed on average no response to N fertilization. In particular 

the combined addition of N and P resulted in increased concentrations of DOP in relation to the 

+N treatment (p=0.039). 

 

 

3.3. Elemental stoichiometry of particulate organic matter  

Over all three mesocosm experiments, the PON:POP ratio of biomass build-up correlated 

positively with the inorganic N:P supply ratio (p<0.0001) (Fig. 4.5). Thus, the supplied N:P 

stoichiometry did influence the PON:POP production ratio of phytoplankton, although the 

PON:POP of produced biomass exceeded the N:P of nutrient supply in most cases. This 

deviation between the inorganic and organic N:P ratio slightly increased with decreasing supply 

ratios, denoted by the slope of linear regression of 0.90(±0.07). No PON:POP values lower than 

5:1 were observed, although some treatments were provided with even lower nutrient N:P ratios 

of 2.8 and 2.5.  

 

 
Figure 4.5. Positive linear correlation (dashed line: 

y=0.90(±0.07)x+3.64(±0.08), r2=0.875, p<0.0001) 

between N:P of nutrient supply and the PON:POP of 

produced biomass until day one and two after DIN 

limitation in the PU (yellow), ETNA (blue) and WA 

(red) experiment. Dotted line indicates PON:POP 

build-up equal to N:P supply. Values are treatment 

means and the vertical error bars denote the 

standard deviation of replicates within each N:P 

treatment.  
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During exponential growth under nutrient-saturated conditions, PON:POP across all 

experiments fluctuated between a range of 11:1 to 21:1, regardless of the respective N:P supply 

ratio (Fig. 4.6A). PON:POP composition within the individual experiments only slightly varied 

between the treatments. When phytoplankton entered the stationary growth phase due to 

exhaustion of N, their PON:POP began to diverge between the treatments and towards their 

respective N:P supply ratio (Fig. 4.6B). N:P supply conditions <16:1, indicating N-limitation of 

the autotrophic community according to Redfield, caused in general a decrease in the 

PON:POP. Redfield- or P-limited conditions, induced by an initial N:P ≥16:1, entailed an 

increase of the phytoplankton N:P stoichiometry. These effects were strong in the ETNA and 

WA experiments, and more weakly pronounced in the PU approach. Overall, PON:POP 

composition of the phytoplankton ranged between 6:1 to 24:1 over all experiments during the 

stationary phase.   

 

 
Figure 4.6. PON:POP stoichiometry during (A) 

exponential and (B) stationary growth phase. 

Greyish bars signify the N:P Redfield ratio of 16:1. 

Style and color-coding according to Fig. 4.5.   
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The relation between nutrient uptake and the production of biomass is demonstrated in Tab. 

4.3. In general, initial inventories of N and P were consumed completely and N:P uptake closely 

matched the N:P supply in all experiments. But the uptake ratio of N:P exceeded the supply 

ratio in the lowest N:P treatments of the PU (2.5:1) and the WA (2.8:1) trial, as unused P was 

left in the medium during both experiments (data not shown). Values <1 of the quotient of N:P 

uptake and build-up display that PON:POP production was, with a few exceptions, higher than 

N:P drawdown. This discrepancy in the ratio of nutrient consumption and particulate matter 

production increased in each experiment with decreasing N:P supply and is therefore congruent 

to the offset between PON:POP build-up and the N:P supply ratio shown in Fig. 4.5.      

 
Table 4.3. Summary of the N:P uptake and the stoichiometry of particulate organic matter build-up within 

each experiment. The quotient of N:P drawdown and PON:POP build-up describes the analogy of N:P 

uptake and produced PON:POP. 

 

 N:P 
supply 

N:P 
drawdown 

(±SD) 
(µmol L-1)

PON:POP 
build-up 

(±SD) 
(µmol L-1)

N:P drawdown/ 
PON:POP build-

up 
 

 

PU 
 

16 
 

17.0(±0.3)
 

19.3(±6.4)
 

0.88 
 8 8.8(±0.4) 11.3(±4.9) 0.78 
 5 5.7(±0.8) 8.8(±7.4) 0.65 
 2.5 3.9(±0.9) 6.2(±2.7) 0.62 
 

ETNA 
 

20 
 

20.2(±0.9)
 

21.6(±3.9)
 

0.94 
 15 14.2(±1.9) 10.5(±3.6) 1.35 
 10 9.2(±1.3) 21.5(±3.6) 0.43 
 5 4.8(±0.1) 10.3(±2.6) 0.46 
 

WA 
 

16 
 

16.0(±0.4)
 

15.2(±2.6)
 

1.05 
 8 8.8(±0.3) 9.9(±1.5) 0.88 
 5.5 5.7(±0.4) 7.6(±3.0) 0.75 
 
 

2.8 
 

4.7(±0.5) 
 

6.0(±1.4) 
 

0.77 
 

 

 

3.4. Partitioning of organic matter 

Changes occurred in the partitioning of N- and P-containing organic matter between the 

dissolved and the particulate fraction in relation to nutrient supply. Build-up of PON decreased 

with decreasing N:P supply in the PU (slope of regression (SR=0.46(±0.19), p=0.053) and WA 

(SR=0.50(±0.11), p=0.005) trial, whereas PON accumulation was unaffected by nutrient supply 

in the ETNA experiment (SR=0.07(±0.04), p=0.094) (Fig. 4.7A; Tab. 4.4). DON production 

showed no significant response to the N:P supply ratio in the ETNA (SR=0.03(±0.05), p=0.625) 

and the PU experiment (SR=0.20(±0.12), p=0.129) (Fig. 4.7B). Like PON, DON build-up was 

also significantly reduced with lower N:P supply off West Africa (SR=0.19(±0.07), p=0.040). 
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Figure 4.7. Build-up of (A) PON, (B) DON, (C) POP and (D) DOP until day one and two after DIN 

limitation as a function of N:P stoichiometry of the supplied nutrients during three (PON, DON, POP) or 

two experiments (DOP). Style and color-coding according to Fig. 4.5.   

 

 

The nutrient N:P stoichiometry did not have an effect on POP production in the PU 

(SR=0.002(±0.012), p=0.897) and WA trial (SR=0.004(±0.013), p=0.771), while POP 

accumulation was significantly higher at low N:P supply in the ETNA trial (SR=0.033(0.009), 

p=0.011) (Fig. 4.7C). Build-up of DOP was stimulated by lowered N:P supply off Peru (SR=-

0.012(±0.014), p=0.411) and in the ETNA experiment (SR=-0.020(±0.007), p=0.020) (Fig. 

4.7D). The influence of the nutrient N:P stoichiometry on DOP production in the WA experiment 

could not be determined, since DOP did not accumulate in this experiment.   
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Table 4.4. Summarizing the effect of decreasing N:P supply on accumulation of PON, DON, POP and 

DOP within each experiment. Statistical significance of the individual effect (p<0.05; denoted by *) was 

tested with linear regression analysis and p-values are given in brackets.  

 

 PON build-up 
 

DON build-up 
 

POP build-up 
 

DOP build-up 
 

 

PU 
 

 

↓ (p=0.053) 
 

 

↔ (p=0.129) 
 

 

↔ (p=0.897) 
 

 

↑ (p=0.411) 
 

 

ETNA 
 

 

↔ (p=0.094) 
 

 

↔ (p=0.625) 
 

 

 ↑* (p=0.011) 
 

 

 ↑* (p=0.020) 
 

 

WA 
 

 

 ↓* (p=0.005) 
 

 

 ↓* (p=0.040) 
 

 

↔ (p=0.771) 
 

 

? 
 

 

↑ increase; ↓ decrease; ↔ unaffected 
 

 

 

4. Discussion 

4.1. Nutrient limitation of mesocosm phytoplankton  

In the mesocosm experiments conducted in the upwelling areas off Peru (PU) and Northwest 

Africa (WA), microalgal growth responded with enhanced growth to the addition of N, while 

combined fertilization of N and P did not induce a further increase in biomass production 

compared to N-alone enrichment (Fig. 4.4). The effect that N was the critical element controlling 

photoautotrophic production was primarily driven by diatoms, as they dominated mesocosm 

phytoplankton communities during both experiments (Hauss et al., subm.; Franz et al., unpubl. 

results). This diatom dominance can likely be attributed to their fast metabolic reaction including 

high maximum uptake rates and fast cell division after input of new N (Fawcett and Ward, 

2011). A comparable reaction was already recorded by Rhyther and Dunstan (1971), where 

NH4
+ enrichment induced strong growth of the diatom Skeletonema costatum, while P addition 

resulted in equally poor growth of this species compared to the unamended control. Primary 

production in coastal upwelling areas, to a major part accomplished by diatoms, has been 

known for decades to be limited by ‘newly’ supplied N from the deep (Dugdale, 1985). Thus, it is 

not surprising that the phytoplankton community in the mesocosm experiments, provided with 

replete amounts of Si(OH)4 and iron, was regulated by the macronutrient N. Yet, since the 

cellular assembly machinery of blooming species like diatoms are requiring in addition large 

quantities of P molecules for RNA synthesis, we expected highest growth rates in the 8:1 N:P 

treatments, which were enriched in N and P. However, total production of phytoplankton 

biomass was solely controlled by N supply and showed no reaction to P fertilization. Similar 

responses of natural phytoplankton communities were recorded in another nutrient enrichment 

experiment performed in the upwelling area off Southern California (Thomas, 1974). A multitude 

of nutrient fertilization studies were conducted in oligotrophic regions and showed patterns of N 
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as well as of P limitation (e.g. Graziano et al., 1996; Moore et al., 2008). Although N was the 

primary limiting nutrient (see also meta-analysis by Downing et al., 1999), combined additions of 

N and P induced larger increases in phytoplankton biomass compared to providing N alone. 

Summarizing results from all these nutrient enrichment experiments, including this study, we 

can deduce that under the premise that no other nutrient (e.g. Fe, Si) limits primary production, 

picoplanktonic communities from nutrient-poor waters tend to be limited by N and P, whereas 

microalgal assemblages from upwelling areas are exclusively limited by N. Yet, we have to be 

careful with generalizing these responses to the bulk of marine non-diazotrophic 

photoautotrophs, since there is a wide variability among different phytoplankton groups 

concerning their optimal nutrient conditions (Geider and LaRoche, 2002). For instance, growth 

of some rare photoautotrophs during the PU experiment was favoured by low N:P nutrient ratios 

(Hauss et al., subm.). 

Considering the response of the phytoplankton community as a whole, this study gives 

indications of the key nutrient controls of primary production in coastal upwelling areas and how 

nutrient assimilation and photoautotrophic production of organic matter responds to changes in 

nutrient inventories.  

 

 

4.2. Relationship between N:P supply and phytoplankton N:P  

Redfield (1958) discovered the average elemental composition of seston and of seawater 

nutrients to be remarkably similar and suggested a tight coupling between organic matter and 

nutrient stoichiometry. However, beside the ratio of nutrient supply (Rhee, 1978; Sterner and 

Elser, 2002), phytoplankton stoichiometry is influenced considerably by growth rate (Goldman et 

al., 1979). Numerous studies discussed the relation between the physiological growth state and 

the cellular N:P ratio of phytoplankton (Sterner and Elser, 2002; Klausmeier et al., 2004a, 

2004b; Arrigo, 2005). Exponential growth requires an assembly machinery rich in ribosomes, 

which are characterized by low N:P. In contrast, equilibrium growth under nutrient limitation is 

maintained by a metabolism optimized for resource acquisition, consisting mainly of N-rich 

proteins. Hence, the growth strategy of the cell affects nutrient requirements and ultimately its 

biochemical composition substantially.  

In addition, the growth phase defined by nutrient availability is regulating phytoplankton 

elemental stoichiometry (Klausmeier et al., 2004b and 2008). Elemental ratios of organic matter 

within the individual experiments showed only minor deviations from each other during 

exponential growth under high nutrient availability, regardless of the respective N:P supply ratio 

(Fig. 4.6A). Nutrient saturation allowed cells to “eat what they need” (after Sterner and Elser, 

2002), closely matching their specific optimal uptake ratio and constraining phytoplankton N:P 

to a relatively narrow range around Redfields’ 16:1. Under nutrient depletion during the 
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stationary phase, cells consume nearly the entire pool of supplied nutrients, and consequently 

their elemental composition approached the respective N:P input ratio, generating a much wider 

PON:POP range (Fig. 4.6B). N:P drawdown ratios obtained from regression analysis also 

showed that nutrient uptake kinetics of the cells were strongly influenced by the N:P supply ratio 

(Fig. 4.3). The tight positive correlation between ratios of nutrient supply and organic biomass 

after nutrient exhaustion indicates a high flexibility of phytoplankton stoichiometry to changes in 

nutrient supply ratios when absolute nutrient concentrations are low. This response has already 

been described by culture experiments (Rhee, 1978; Goldman et al., 1979) and model based 

data (Klausmeier et al., 2004a). An extremely high or low PON:POP stoichiometry under 

conditions of nutrient limitation are likely to be caused by luxury consumption and intracellular 

storage of the nutrient (N or P) that is not limiting (Goldman et al., 1979; Geider and LaRoche, 

2002). Nonetheless, the flexibility of cellular N:P is ultimately restricted. Phytoplankton 

elemental composition seemed to be constrained by a lower ratio of 5:1, as biomass was not 

produced with a PON:POP composition <5:1 (Fig. 4.5). Using a compilation of published data 

on the biochemical composition of phytoplankton, Geider and LaRoche (2002) identified also a 

lower limit for microalgal N:P stoichiometry of 5:1. Unused residual amounts of DIP in the 

medium (data not shown) and exudation of excess P (Fig. 4.7D) are conform with the concept 

that limits to the cellular storage capacity for nutrients are causing the decoupling of nutrient 

supply ratio and microalgal elemental composition (Geider and LaRoche, 2002).  

A consistent offset between the PON:POP ratio of produced biomass and the N:P supply ratio 

occurred over the entire gradient of N:P, yet approaching the 1:1 line with increasing N:P supply 

(Fig. 4.5). Thus, the largest offset occurred at the lowest N:P supply tested. This deviating trend 

is partly a result of the unused DIP left in the medium in the 2.5:1 and 2.8:1 N:P treatments 

during the PU and WA trials. Our data indicate that the increased deviation between organic 

N:P build-up and inorganic N:P uptake under low N:P supply was caused by enhanced transfer 

of DIP into the DOP pool. Decreasing N:P supply ratios may thereby induce a shift in the 

partitioning of organic P from the particulate to the dissolved phase. The lower the nutrient N:P 

supply ratio, the more phosphorus may be channeled into DOP instead of being utilized for 

particulate biomass build-up. With excess P in the medium (excess P=DIP-DIN/16), Conan and 

colleagues (2007) detected also a significant part (around 80%) of assimilated P in the 

dissolved organic fraction. Already in 1974, Banse highlighted the high importance of dissolved 

organic compounds in nutrient cycling and in changes of phytoplankton N:P, as removal of 

inorganic substances from the medium does not necessarily imply their exclusive incorporation 

into particulate biomass. For instance, exudation of dissolved fractions of organic material by 

healthy non-senescent cells is not uncommon (Mague et al., 1980; Myklestad et al., 1989) and 

may influence organic matter cycling significantly. 
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4.3. Effect of different nutrient enrichment on organic matter partitioning 

Changes in the N:P supply ratios affected the production of organic nitrogen and phosphorus 

and their partitioning between the particulate and the dissolved fraction. In the experiment off 

Peru, decreasing N:P supply entailed a reduction in PON accumulation, whereas DON build-up 

varied only marginally along the gradient of N:P supply. Excess P resulting from decreasing N:P 

supply ratios was transferred into DOP, while POP production remained rather unaffected by an 

increasing P availability. Changes in the PON:POP composition of phytoplankton under variable 

nutrient supply in this experiment on the Peruvian shelf were caused by the pools of PON and 

DOP responding to changing nutrient supply.  

In the ETNA experiment, organic nitrogen, neither in the particulate nor in the dissolved phase, 

was affected by nutrient supply. PON:POP of biomass build-up was solely controlled by 

changes in the production of POP and DOP in response to variable N:P supply ratios. Like in 

the PU trial, DOP accumulation increased with decreasing N:P supply and declined under rising 

N:P conditions, respectively. Phytoplankton cells confronted with P-starvation activate 

expression of extracellular enzymes such as alkaline phosphatase which are catalyzing 

hydrolysis of organic phosphorus compounds (Dyhrman and Ruttenberg, 2006; Dyhrman et al., 

2006; Ranhofer et al., 2009). Alkaline phosphatase expression and activity is generally 

stimulated by P-deficiency at concomitant N-repletion. Increases in excess P may consequently 

diminish production of this hydrolytic enzyme, as the need for using DOP as a substitute source 

for nutrition is vanishing. Poor DOP consumption would even allow an enhanced accumulation 

of organic phosphorus in the dissolved phase, as observed in the Peruvian upwelling. Beside 

low removal rates, accelerated DOP production via microalgal exudation, cell lysis and 

zooplankton grazing (Karl and Björkman, 2002) may be the reason for increasing DOP 

accumulation with decreasing N:P supply. For example, protozoan grazing has been linked to 

the transfer of organic phosphorus from the particulate to the dissolved fraction (Dolan et al., 

1995). However, more reasonable in conjunction with changes in nutrient inventories seems to 

be an increased exudation of DOP induced by a form of luxury consumption of P by the 

microalgal cells under growing P availability. Luxury uptake of the non-limiting nutrient by 

phytoplankton typically occurs under nutrient saturation to refill cellular reservoirs for upcoming 

events of nutrient starvation (Healey, 1973; Geider and LaRoche, 2002; Sarthou et al., 2005). 

Yet, intracellular accumulation of phosphorus is quantitatively confined and an excess in 

intracellular phosphorus is disposed via exudation.  

Unfortunately, we could not assess the effect of variable nutrient supply on DOP build-up in the 

experiment conducted on the West African shelf. But since PON production was significantly 

reduced under low N:P supply together with no effect on POP build-up, the growing offset 

between PON:POP stoichiometry and inorganic N:P was likely induced by enhanced 

channelling of P into the DOP pool. The general absence of DOP accumulation in the WA 
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experiment may be due to several reasons. Low concentrations could be caused by low DOP 

release via exudation, grazing or cell lysis. Alternatively, enhanced or reduced removal of DOP 

could have also affected the magnitude of DOP accumulation. Photoautotrophic 

microorganisms can utilize certain DOP compounds as an additional P source (reviewed by 

Cembella et al., 1984, and by Karl and Björkmann, 2002), and especially the filamentous 

cyanobacterium Trichodesmium is known to grow largely on DOP (e.g. Dyhrman et al., 2002; 

Sohm and Capone, 2006). The presence of Trichodesmium in the WA experiment and the fact 

that its abundance increased under exhaustion of DIP (Franz et al., unpubl. results) indicates 

that DOP exuded from blooming diatoms (Franz et al., unpubl. results) was immediately 

assimilated by the cyanobacteria. Differences in the taxonomical composition of the 

phytoplankton communities can therefore strongly influence DOP dynamics. It must be further 

taken into account that DOP can include a multitude of organic compounds that differ 

considerably in their molecular configuration (Karl and Björkman, 2002). This entails differences 

in the bioavailability of the various DOP compounds. Small nucleotides (e.g. 

Adenosintriphosphat) can be easily assimilated, whereas polymers (DNA, RNA) are 

characterized by long turnover times, resulting in accumulation of DOP in the water column 

(Thingstad et al., 1993; Björkman and Karl, 1994). Consequently, the biochemical composition 

of the individual DOP pool determines its bioavailability and is pivotal for its removal by bacteria 

and microalgae.  

In contrast to the PU and ETNA experiments, DON accumulation increased with increasing N:P 

supply off West Africa. This can either be attributed to an enhanced deposition or an impaired 

removal of DON at high N supply, or a combination of both. Even though N was the critical 

nutrient, saturation presumably stimulated luxury uptake of N by phytoplankton cells, resulting in 

a restocking of the intracellular N reservoirs, but causing also enhanced exudation of DON. 

High phytoplankton biomass in the N-rich treatments induced development of a large protozoan 

community, which increased the DON pool via grazing and excretion additionally. DON may 

have also accumulated due to an impeded removal by phytoplankton. In fact, DON serves as a 

nitrogen source for some phytoplankton groups under DIN depletion and especially labile forms 

of DON are frequently assimilated by photoautotrophs (reviewed by Bronk et al. 2007). But 

under high DIN availability the autotrophic cells preferred assimilation of the more bioavailable 

forms of DIN, promoting accumulation of DON in the medium.   

The artificial nutrient enrichment to natural phytoplankton communities from eastern 

boundary current systems in the ship-board mesocosms can be regarded as a simulated 

upwelling event, facilitating development of a typical phytoplankton bloom subsequent to 

nutrient pulses from the deep. Considerations about shifts of N and P between the inorganic, 

organic particulate and organic dissolved fraction are therefore based on the dominant 

autotrophic community and protozoa. But heterotrophic bacteria are also known to feed on 



Study 4 

 

118

inorganic and dissolved organic nutrient compounds (Kirchman, 1994), and will certainly 

influence in particular pools of DON and DOP. Nonetheless, we presume that significant effects 

in these pools are primarily induced by the response of phytoplankton to variable nutrient 

supply. Hence, we could show that pools of DON and DOP are indeed affected by the 

magnitude of N:P supply and may thus play an important role in coastal upwelling 

biogeochemistry under decreasing N:P supply ratios. 

 

 

Conclusions 

Against the background of expanding OMZs and the associated increase in N loss, 

biogeochemistry of high-productivity upwelling areas overlying O2-deficient intermediate waters 

may face severe changes in the future. Our results indicate a decline in organic matter 

production of coastal phytoplankton as a result of decreasing N supply. The observed high 

flexibility of phytoplankton elemental stoichiometry to variations in the N:P supply ratio suggests 

a general decrease in the N:P composition of primary producers in the upwelling regime in the 

course of decreasing seawater N:P. However, phytoplankton N:P seems to have a critical lower 

limit of about 5:1. DIP in excess of this ratio is likely to be transferred into the DOP pool or 

remains unused in shelf waters. Surface waters departing from the shelf would thus be enriched 

in DIP and DOP, and might fuel growth of diazotrophic phytoplankton in the oceanic off-shelf 

regions. High-quality in situ measurements of DOP in surface waters above the OMZ on the 

continental shelf and adjacent to the upwelling area are necessary to confirm this hypothesis. 

Modifications in the cellular N:P composition also entails a change in the nutritional value of 

coastal microalgae as a food source. Effects of changing N:P supply may therefore also involve 

higher trophic levels of the pelagic food web.  
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III. Synthesis and future perspectives 

Acidification and warming of the ocean, both induced by the increase in anthropogenic carbon 

dioxide (CO2), are commonly regarded as the two major stressors for marine systems in the 

course of global change. Since recent years, ocean deoxygenation has been increasingly 

recognized as an additional stress factor with the potential to significantly impact the ocean 

(reviewed by Keeling et al., 2009, and by Gruber, 2011). The projected expansion of OMZs in 

the tropical ocean (Matear and Hirst, 2003; Stramma et al., 2008) may have profound 

implications for marine biogeochemistry on a global scale, as these O2-deficient zones are 

closely connected to highly productive eastern boundary current systems. Coastal upwelling 

areas comprise merely a tiny fraction of the global ocean, but account for a substantial part of 

global marine primary and secondary production (Ryther, 1969; Pauly and Christensen, 1995). 

The productivity of these ecosystems relies primarily on the physically-mediated vertical nutrient 

supply to the surface. Inventories and cycling of inorganic nutrients are thought to react highly 

sensitive to an expansion and intensification of O2-deficiency, with unknown implications for the 

autotrophic as well as the heterotrophic community. In order to elucidate the effects of 

proceeding ocean deoxygenation on primary production in coastal upwelling domains, 

biogeochemical field surveys as well as nutrient enrichment experiments with natural 

phytoplankton communities in shipboard-mesocosms were conducted during three cruises to 

the eastern margins of the tropical Pacific and Atlantic Ocean.    

Aquatic mesocosms, namely meso-scale enclosures that allow controlled manipulation of 

certain environmental factors under close to natural conditions, are popular tools to study 

biogeochemical processes and elemental cycling in aquatic systems. Mesocosms can be 

regarded as experimental ecosystems, since they represent a compromise between highly 

controlled but small-scale, mostly mono-cultural lab experiments and in situ field surveys. The 

possibility to study the response of a complete natural community to specifically manipulated 

factors, with all its mutual interactions and indirect effects, represents the major advantage of 

the mesocosm approach. In the framework of this thesis, natural plankton communities from the 

tropical ocean were confronted with different concentrations and ratios of N and P in shipboard 

mesocosms, to examine the effect of deoxygenation-induced changes in nutrient inventories 

and stoichiometry on phytoplankton.  
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Nitrogen as primary limiting nutrient for phytoplankton growth 

The experimental design of the mesocosm experiments was, in the context of decreasing N:P 

supply ratios, solely aimed at resolving the question whether N or P, or a combination of both 

nutrients is controlling primary production in tropical eastern boundary regions. To preclude any 

nutrient limitation other than by N or P, all experimental treatments were equally supplied with 

replete amounts of Fe and Si(OH)4. Indeed, Fe is known to limit phytoplankton growth in coastal 

upwelling areas (Hutchins et al., 2002), a response that is mainly driven by dominating large 

diatoms which seem to have an exceptionally high demand for this micronutrient (Sunda and 

Huntsman, 1995; Hutchins and Bruland, 1998). Fe supply to the euphotic zone via upwelling 

probably increases with expanding OMZs, as continental shelf sediments are significant 

sources for this trace metal (Johnson et al., 1999) and anoxic conditions in bottom waters are 

promoting release of Fe from the sediment (Ingall and Jahnke, 1994). Enhancement in Fe 

supply to the euphotic zone would affect primary production and microalgal community 

composition (DiTullio et al., 2005; Hare et al., 2005).  

Replete concentrations of Fe (Schlosser, pers. comm.), NO3
-, and PO4

3-, in conjunction with 

relatively low concentrations of Si(OH)4 in the off-shelf waters on the 10°S transect in Study 1 

suggest that diatom growth was limited by Si(OH)4 availability adjacent to the Peruvian inner 

shelf. Diatom-dominated microalgal assemblages in upwelling areas are known to react 

particularly sensitive to changes in Si(OH)4 concentrations (Dugdale and Wilkerson, 1998), 

since diatoms require this nutrient for their silica cell walls (Lewin, 1962). Regeneration of 

biogenic silicate has been linked to the colonization by bacteria, which degrade the organic 

coating used to prevent dissolution of the silica shell of living diatoms (Biddle and Azam, 1999; 

Demarest et al., 2011). Still, it remains entirely unclear if and how Si(OH)4 recycling will be 

affected by an intensification of low O2 waters on the continental shelf. 

Thus, availability of Fe and Si(OH)4 can each limit primary production, particularly in the diatom-

dominated upwelling areas, and may possibly both be influenced by changes in the ocean’s 

redox-state. Nonetheless, this thesis exclusively aims at investigating the effect of variable N:P 

supply on phytoplankton growth, community structure and biomass stoichiometry. 

Three nutrient enrichment experiments, conducted in shipboard mesocosms (Study 2, 3 and 4) 

in eastern boundary regions of the Pacific and Atlantic Ocean, revealed N compared to P as the 

primary limiting nutrient for primary production. This response is generally in agreement with the 

majority of nutrient addition experiments performed in marine ecosystems (e.g. Vince and 

Valiela, 1973; Graziano et al., 1996; Davey et al., 2008; Moore et al., 2008; Tang et al., 2009). 

But although phytoplankton growth was significantly stimulated by N fertilization in these 

previous experiments, it was fuelled even further by combined addition of N and P; an effect 

that did not apply to the experiments completed in upwelling areas within the framework of this 

thesis (see Fig. III.1, right panel). The apparent synergistic effect of combined N and P 
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enrichment was likewise observed in a global meta-analysis that compiled results from a 

multitude of nutrient enrichment experiments conducted in a variety of marine systems (see Fig. 

III.1, left panel; Elser et al., 2007), whereof only one study was accomplished in an upwelling 

region (Thomas et al., 1974). Primary production in this nutrient fertilization experiment run off 

the Californian coast was, similar to Study 2, 3 and 4, solely controlled by N availability. The 

response of phytoplankton communities common in nutrient-rich tropical upwelling areas was 

hence highly underrepresented in the large-scale meta-analysis by Elser et al. (2007).  

 

 
Figure III.1. Relative responses (RRx) of phytoplankton to enrichment in N (+N), P (+P) or to combined 

addition in N and P (+NP). The left panel shows RRx from a global meta-analysis by Elser et al. (2007), 

including results of nutrient enrichment experiments from different marine areas. The right panel shows 

mean RRx (of POC build-up) from enrichment experiments conducted in the Peruvian upwelling and off 

the coast of NW Africa (Study 4). For detailed calculation of RRx see section 2.5. in Study 4. Values are 

treatment means and error bars denote the standard error.  
 

Provided that no further nutrient is limiting (e.g. Fe, Si(OH)4), it can be differentiated between 

exclusive N limitation of bulk phytoplankton in coastal shelf waters (this study; Thomas et al., 

1974; Downing et al., 1999) and a multiplicative limitation effect of N and P on primary 

production in the oligotrophic open ocean (Graziano et al., 1996; Davey et al., 2008; Moore et 

al., 2008; Tang et al., 2009). Yet, Liebig’s law of the minimum, declaring that growth is solely 

controlled by the primary limiting nutrient, has been confirmed to hold in either way (Droop, 

1974; Rhee, 1978). The seemingly synergistic growth effect of simultaneous N and P addition is 

assumed to be a result of competitive exclusion and coexistence of populations either limited by 

 



Synthesis  122

N or by P in natural communities. Combined addition of N and P favours growth of both N- and 

P-limited species, resulting in a higher biomass yield compared to single N or P fertilization. 

Based on this hypothesis, phytoplankton assemblages in bioassays conducted in the 

oligotrophic ocean may be equally composed of N- and P-limited species, which are jointly 

controlling the response of the total algal community. Primary production in coastal upwelling 

areas is largely dominated by diatoms and dinoflagellates, which are both limited by N 

availability (Ryther and Dunstan, 1971; Smetacek, 1999; Study 2 and 3). Hence, bulk 

phytoplankton shows only patterns of N-limitation (Fig. III.1; right panel). The effect of single N-

limitation was less pronounced during the experiment in the Peruvian upwelling, because 

responses on nutrient enrichment were more variable on a species-specific level (Study 2). 

Growth of flagellate autotrophs such as the haptophyte Phaeocystis globosa and the 

chrysophyte Heterosigma sp. was favoured by the addition of P (Study 2). Low nutrient N:P has 

already been demonstrated to promote development of colony-forming Phaeocystis globosa, as 

it represents a good competitor under N-limitation (Riegman et al., 1992). Still, biomass of the 

P-limited species was too low compared to the N-limited diatoms and dinoflagellates to have a 

significant effect on total primary production.  

In the context of future decreasing diapycnal N:P supply, evaluation of these findings implies a 

possible shift in the community structure of phytoplankton in coastal upwelling areas from large 

species to smaller nanoplankton, since diatoms and dinoflagellates are disadvantaged while 

certain flagellates appear to benefit from low N:P supply conditions. Picoplanktonic species 

such as Synechococcus and Prochlorococcus were however completely unaffected by variable 

nutrient enrichment (Study 2 and 3).  

 

 

N2-fixation in the realm of coastal upwelling areas 

The potential of N2-fixation to counteract the growing N-deficit represents a central issue within 

the scope of expanding OMZs. Based on numerous observations in aquatic environments (e.g. 

Niemi, 1979; Vrede et al., 2009), low nutrient N:P ratios are widely believed to stimulate the 

development of N2-fixing cyanobacteria. The universal N-deficit in conjunction with excess P in 

OMZ-influenced waters may thus provide an ecological niche for N2-fixers (Deutsch et al., 

2007). Quite the contrary, cyanobacterial marker pigments mainly accumulated within the N-

enriched treatments during the mesocosm experiments (Study 2 and 3), while abundance of the 

Trichodesmium-specific nifH-gene was not affected by variable nutrient supply (Study 3). The 

occurred discrepancy in the distribution of diagnostic pigments and the nifH-gene impedes a 

definite conclusion about the effect of low N:P supply ratios on diazotrophic growth. Yet, 

residual amounts of DIP left throughout the experiment in the lowest N:P treatment during Study 

2 and 3, indicate that P availability was not crucial for the development of N2-fixing 
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cyanobacteria. The analogy in the responses of cyanobacterial marker pigments to nutrient 

supply in the experiments off Peru (Study 2) and on the West African shelf (Study 3) suggests a 

particular pattern behind this reaction, whose clarification should be subject to future research.  

Results from the field survey off Peru reconfirm the insignificant effect of excess P on growth of 

diazotrophic cyanobacteria, as no marker pigments indicating N2-fixing cyanobacteria were 

detected in the low N:P waters overlying the OMZ (Study 1). P availability is certainly an 

important factor for the development of N2-fixers (Sañudo-Wilhelmy et al., 2001; Dyhrman et al., 

2002), but it is apparently not possible to predict growth of diazotrophic phytoplankton solely on 

the basis of a low nutrient N:P stoichiometry. Factors such as iron availability (Berman-Frank et 

al., 2001) and sea surface temperature (reviewed by Stal, 2009) have to be considered, as they 

are likely to further influence occurrence of N2-fixing cyanobacteria. Replete concentrations of 

Fe (Schlosser, pers. comm.) and PO4
3- on the transect off Peru (Study 1) indicate that growth of 

diazotrophic algae was not limited by P or Fe. Abundance of N2-fixing cyanobacteria has been 

demonstrated to be highly constrained by water temperature (e.g. Falcón et al., 2005; Staal et 

al., 2007). Relatively low sea surface temperatures along the transect between ~17-23°C as a 

consequence of strong upwelling on the shelf, may thus have precluded development of 

photoautotrophic N2-fixers a priori. 

Diazotrophic cyanobacteria are typically prospering in the stratified oligotrophic open ocean 

adjacent to the dynamic and nutrient-rich waters on the continental shelf. N2-fixing 

cyanobacteria are also able to grow on NO3
- (Holl and Montoya, 2005), but they are in general 

inferior competitors for P uptake compared to diatoms under replete nutrient conditions (Tilman, 

1982), which basically eliminates a successful coexistence of both algal groups. Nonetheless, 

field observations (Margalef, 1973), models (Hood et al., 2004) and results from Study 2 and 3 

suggest growth of diazotrophs in a successional sequence to diatoms following to upwelling 

events in shelf waters. Termination of diatom blooms by N starvation in coastal upwelling areas 

provides apparently a further niche for N2-fixation that has hardly been considered so far. This 

succession of functional phytoplankton groups would particularly apply to the shelf waters off 

Northwest Africa, where high Fe concentrations frequently occur due to deposition of dust 

originating from the Saharan desert (Gao et al., 2001). Beside the prevalent oceanic N2-fixation, 

a significant amount of N2 might be already fixed within coastal waters, as cyanobacteria take 

advantage of N depletion between two upwelling events. Thus, cyanobacterial N2-fixation may 

partially compensate the N-deficit of upwelled, OMZ-derived water immediately on the 

continental shelf. 

N2-fixation in the open ocean next to the Peruvian upwelling may be, despite the general excess 

in P, impeded by low water temperatures. However, constantly warm water, high Fe input via 

dust deposition and the depletion of inorganic nutrients after diatom blooms induced by episodic 
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upwelling events seem to stimulate development of diazotrophic cyanobacteria in shelf waters 

off Northwest Africa.   

 

 

Multiple controls of cellular N:P stoichiometry 

Changes in macronutrient availability may additionally affect cellular composition of 

phytoplankton cells. Alfred Redfield (1958) proposed a tight coupling between the concentration 

of nutrients in seawater and the elemental composition of phytoplankton biomass, based on the 

observed similarity between them. Since then, oceanographers have been seeking after the key 

control of phytoplankton stoichiometry.  

Indeed, in agreement with culture experiments by Rhee (1978) and Goldman et al. (1979), a 

strong correlation occurred between the N:P supply ratio and the microalgal N:P composition in 

all three nutrient enrichment experiments (Study 4). Yet, high flexibility of cellular N:P was 

confined to the stationary growth phase after nutrient exhaustion, a pattern already described in 

a model-based study by Klausmeier et al. (2004b). Once phytoplankton growth is limited by low 

external nutrient concentrations, cells consume the residual nutrients in the medium and 

biomass is finally matching the supply ratio. Compared to this “they are what they eat” situation, 

cells are free to “eat what they need” under nutrient saturation (see Sterner and Elser, 2002). 

They incorporate nutrients in a fixed ratio which approximates their optimal uptake ratio, 

regardless of the medium N:P. Hence, phytoplankton N:P stoichiometry is not adjusting towards 

the nutrient supply ratio during high nutrient availability, as the intracellular elemental 

composition is then controlled by species-specific nutrient requirements rather than by external 

nutrient concentrations (Klausmeier et al., 2004b). Extreme deviations from the optimal cellular 

elemental stoichiometry under nutrient starvation are most likely achieved by intracellular 

storage of the non-limiting nutrient (Goldman et al., 1979; Geider and LaRoche, 2002).   

Phytoplankton N:P stoichiometry and the taxa-specific growth strategy correlated on the east-

west transect at 10°S in the Pacific (Study 1). The plankton N:P ratio increased successively 

from the Peruvian shelf towards the open ocean on the transect. In the nutrient-rich shelf 

waters, blooming phytoplankton such as diatoms featured a low N:P composition (~10:1), based 

on their P-demanding cell assembly machinery (Klausmeier et al., 2004a; Arrigo, 2005; Loladze 

and Elser, 2011). Picoplankton like Prochlorococcus, typically abundant in the stratified 

oligotrophic oceanic section of the transect, pursues in general a strategy of sustaining net 

growth. Its metabolism is thus geared to acquisition of nutrients and/or light, and consequently 

cellular N:P is relatively high (>20:1) due to the large content of N-rich proteins. Horizontal and 

vertical gradients of hydrography and nutrient availability select for different types of growth, 

which seem to control biomass elemental composition considerably.  
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Based on these results, phytoplankton N:P stoichiometry is not at all affected by only one, but 

by several factors, including nutrient supply, the cellular growth phase and the specific growth 

strategy.   

 
 
Ecological implications for coastal upwelling areas 

Findings within this thesis demonstrate that changes in the nutrient N:P supply ratio could have 

substantial implications for the biogeochemistry of upwelling systems. Results from the nutrient 

enrichment experiments indicate a significant decline in total primary production as a result of 

reduced N supply (Study 2, 3 and 4). But high phytoplankton standing stocks are bottom-up 

controlling the food chain in the upwelling area and are essential for the high productivity of this 

ecosystem. A decline in phytoplankton biomass may thus affect all trophic levels, from 

microscopic primary consumers up to large predators. Reduced primary production under N-

limited conditions was mainly induced by diatoms, as the most abundant primary producer in all 

mesocosm approaches. Diatoms represent the actual sustainers of the large fish production, 

since their large size enables extremely short food chains (Ryther, 1969; Cushing, 1989). Small 

planktivorous fish like anchoveta and sardines have specialized gills to filter large phytoplankton 

out of the water. Some colonial diatoms even form aggregates up to centimetres in diameter, 

and can be directly eaten by fish without special filter feeding adaptations (Ryther, 1969). A 

reduction in diatom biomass could presumably have a large direct effect on production of 

herbivores and zooplanktivores (e.g. small pelagic fishes, copepods, ciliates), associated with 

further consequences for the carnivorous consumers of the eastern boundary regime (e.g. 

whales, sea birds, piscivorous fishes, squids).  

Yet, some autotrophic flagellates (Heterosigma sp., Phaeocystis globosa) seemed to be 

favoured by low seawater N:P ratios (Study 2), implying a potential shift in the taxonomical 

composition and size structure of the phytoplankton community in shelf waters influenced by the 

underlying OMZ. A tendency from large microalgae towards smaller nanoplankton in the course 

of a deoxygenation-caused decrease in N:P supply may be possible. Growth of the haptophyte 

Phaeocystis globosa has already been observed to be stimulated by low nutrient N:P 

stoichiometry (Riegman et al., 1992). Phaeocystis is generally of low food quality for 

zooplankton, leading to low egg production (Tang et al., 2001; Turner et al., 2002) and 

ultimately to a decrease in the abundance of copepods (Bautista et al., 1992). Similar to the 

general reduction in primary productivity, a shift in the taxonomical composition of the 

phytoplankton community could have profound implications for the entire food web of the 

upwelling area. 

Low N:P supply ratios did unexpectedly not stimulate development of N2-fixing 

cyanobacteria (Study 1, 2 and 3). Compensation of the N-deficit in eastern boundary current 
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systems by oceanic N2-fixation as a response to low nutrient N:P supply from the nearby shelf 

seems therefore questionable. However, specific proxies (nifH-gene, phytopigments) indicate 

growth of diazotrophic cyanobacteria in succession to diatom blooms after pulses of nutrient 

enrichment (Study 2 and 3). N2-fixers such as Trichodesmium appear to occupy the niche 

following to diatom blooms induced by episodic upwelling events, and may counteract the N-

deficit via N2-fixation in shelf waters.    

Declining concentrations of phytoplankton biomass in general and diatom abundance 

specifically, may certainly have an impact on organic matter export to the deep ocean. The 

downward flux of POC is known to react highly sensitive to shifts towards or away from diatoms 

(Boyd and Newton, 1999), due to their large size and the ballast effect of the silica shell. Only 

recently, a tight link between high export rates and biominerals such as silica was shown for the 

upper ocean (Sanders et al., 2010). Hence, large-sized and silica-containing bloom forming 

phytoplankton facilitates high sinking rates of organic matter and an efficient transport of 

biologically fixed CO2 to the ocean interior (Dugdale and Wilkerson, 1998; Buesseler, 1998). 

Declining rates of primary production in the euphotic zone along with a change in the size 

spectrum of phytoplankton towards smaller, non-silicifying cells may reduce the efficiency of the 

biological pump in the upwelling domain, weakening the ocean’s capacity for sequestering 

atmospheric CO2. Alterations in organic matter fluxes into and through the O2-deficient layer 

may further influence microbial processes and O2 fluxes within the OMZ.  

Based on results from Study 4, a general decrease in phytoplankton N:P stoichiometry as a 

result of lower N:P supply ratios can be expected. The nutritional value of the phytoplankton for 

herbivorous grazers such as zooplankton may be reduced, since e.g. copepods feature a 

relatively high N:P composition of 25 to 30. Phytoplankton grown under N-limitation exhibit a 

reduced content of polyunsaturated fatty acids (Klein Breteler et al., 2005), which represent an 

essential component of metazoan nutrition for reproduction and growth (Brett and Müller-

Navarra, 1997; Kainz et al., 2004).     

Overall, results gained within this thesis indicate that a deoxygenation-induced decrease in the 

N:P supply ratio may have substantial implications for the biogeochemical system and the entire 

food web of coastal upwelling areas. 
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Perspectives 

Observations during experiments and fields surveys within the framework of this thesis raised 

several further questions. In the following section, I will address some of these issues in more 

detail.   

The observed discrepancy between cyanobacterial marker pigments and nifH-gene abundance 

in Study 3 demonstrates that our present comprehension of certain microalgal proxies is still 

incomplete. Pigment and gene fingerprinting are used as tools for distinguishing between 

various functional types of phytoplankton or even for determination of phytoplankton abundance 

on taxa or species level. Yet, detailed knowledge on functioning of these phytoplankton markers 

under variable conditions of e.g. nutrient supply, light intensity and temperature, is 

indispensable for quantitative evaluation of biomass estimates based on these parameters. On 

that purpose, ambiguous indicators for phytoplankton abundance such as phytopigments and 

functional genes, potentially variable under changing environmental conditions, have to be 

compared to microscopic counts. Especially nutrient availability can play a decisive role in the 

cellular composition of photosynthetic pigments. Henriksen and colleagues (2002) detected 

significant changes in the composition of accessory pigments between the exponential growth 

phase and nutrient limited conditions. Losses in the cellular pigment content were larger under 

N- than under P-limitation, owing to the close connection between pigment synthesis and the 

intracellular N metabolism (Latasa and Berdalet, 1994). Variability in pigment per cell quotas 

between nutrient saturation and nutrient depletion can be up to 3-fold, which may lead to 

significant uncertainties in the pigment-based biomass. In favour of correct application of taxa-

specific pigments as phytoplankton proxies, it is necessary to improve understanding of the 

obvious flexibility of the pigment content per cell.    

Investigations about phytoplankton nutrient limitation include in most cases merely the dissolved 

inorganic pool of N and P and do not account for dissolved organic compounds as further 

nutrient sources for photoautotrophs. But many studies already reported on the utilization of 

DON (reviewed by Bronk et al., 2007) and DOP (reviewed by Cembella et al., 1984, and by Karl 

and Björkmann, 2002) by phytoplankton. Results from Study 4 indicate an enhanced transfer of 

excess P into DOP. In the mesocosm experiments, P has been determined as the non-limiting 

nutrient in eastern boundary regions (Study 2, 3 and 4) and excess P possibly stimulated luxury 

uptake by phytoplankton and intracellular storage (Geider and LaRoche, 2002). A large fraction 

of this P was apparently transferred via exudation into the DOP pool. Exponential growing algae 

like diatoms own a P-rich metabolism (Arrigo, 2005), but cellular P requirements were 

presumably already met by excess DIP. Utilization of DOP by exponentially growing algae was 

consequently not given, as excess concentrations of the more favourable inorganic P were 

available. Offshore flowing surface currents would carry the DOP reservoir generated on the 

shelf to the open ocean, where it may promote growth of diazotrophic cyanobacteria. Hence, 
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enhanced DOP availability as a result of lowered N:P supply ratios could potentially replenish 

the large-scale N-deficit in OMZ-influenced waters via stimulation of N2-fixation in off-shelf 

waters. On that account, great demand exists in collecting further information about the 

channelling of excess P via coastal phytoplankton to DOP and about the fate of this DOP with 

regard to N2-fixation. In order to evaluate bioavailability of different phosphorus sources for 

photoautotrophic nutrition, diazotrophic phytoplankton could be supplied with various 

phosphorus compounds, including inorganic and organic molecules. Alternatively, cultures of 

N2-fixers could be supplied with a naturally DOP-enriched and orthophosphate-exhausted 

medium derived from a shelf phytoplankton culture or community (preferably with diatoms) 

cultivated at variable N:P stoichiometry. Results from this approach could give a confident 

answer whether diazotrophs grow on DOP-containing exudates from shelf phytoplankton. 

Measurement of the activity of extracellular hydrolytic enzymes such as alkaline phosphatase 

as well as radioactively labelled P substrates should be included, in order to elucidate 

processes and fluxes with respect to substrate preferences and assimilation costs. 

The role of DOP in biogeochemical cycling of eastern boundary current systems attains further 

relevance with regard to the model-based study by Mills and Arrigo (2010), who proposed a 

tight regulation of oceanic N2-fixation by non-Redfield nutrient uptake of non-diazotrophic 

phytoplankton. Although N availability was determined as the primary limiting factor for growth 

of the upwelling plankton community, optimal N:P uptake ratios may be rather low during 

exponential growth under nutrient saturation. Low N:P consumption of inorganic nutrients by 

phytoplankton in shelf waters reduces the surplus in P (see Study 1) and its availability for N2-

fixing cyanobacteria in off-shelf waters. Study 4 suggests that large parts of the consumed P are 

shifted into the DOP pool, probably via exudation, thereby attenuating drawdown of excess P by 

shelf phytoplankton. Consequently, increased availability of DOP could potentially fill the gap, 

and replenish the N-deficit by stimulating N2-fixation. Investigations about the production and 

fate of DOP may be combined with an experimental approach testing the theory by Mills and 

Arrigo (2010) via monitoring nutrient drawdown by a culture or community of coastal diatoms 

under saturated nutrient concentrations with variable N:P ratios. Such experiments could 

provide answers whether large coastal microalgae are constraining N2-fixation by exploiting 

excess P or rather facilitating N2-fixation via enhanced DOP exudation in low N:P waters. 

Results from this thesis particularly show that our understanding of the ultimate controls of N2-

fixation in the ocean is quite vague. If we want to reasonably estimate the role of biological N2-

fixation in present and future N budgets of the tropical deoxygenated ocean, we have to define 

the actual drivers of this process. 

However, remineralization of nutrients by bacteria represents a common problem of algal bloom 

experiments in enclosed systems, as detritus cannot sink out of the system and remineralized 

nutrient pools are affecting autotrophic production. The secondary bloom in Study 3 was most 
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likely enabled by decomposition of organic matter produced during the primary bloom. 

Sedimentation and export of organic matter during and after phytoplankton blooms should be 

embedded in the experimental set-up of nutrient enrichment experiments to prevent extensive 

remineralization processes that do not apply for systems with export production dominating like 

upwelling domains and to improve simulation of natural conditions in general. For example, 

sedimented material could be easily removed through a sediment trap at the bottom of the 

mesocosm (see KOSMOS- Kiel Off-Shore Mesocosms). 

Eastern boundary upwelling systems are not only stressed by ocean deoxygenation, but 

represent as well hotspots for ocean warming and acidification (Gruber, 2011). OMZs below the 

euphotic zone of upwelling areas encounter naturally high CO2 concentrations due to enhanced 

remineralization rates (Ianson et al., 2003; Paulmier et al., 2011). Uptake of anthropogenic CO2 

by the ocean since the onset of industrialization exacerbated CO2 conditions within OMZs. 

Feely et al. (2008) described large-scale upwelling of such anthropogenic CO2-enriched water 

into the surface on the Californian continental shelf. Reduced outgassing of CO2 from such 

oversaturated surface waters as a consequence of future elevated atmospheric CO2 

concentrations will probably intensify these acidification events. Thus, phytoplankton 

communities in upwelling areas of the future ocean would face lower inorganic N:P ratios in 

conjunction with particularly high CO2 concentrations. Mono-cultural lab experiments with 

diatoms, dinoflagellates and cyanobacteria demonstrated a stimulation of growth by increased 

CO2 availability under nutrient saturation (reviewed by Riebesell et al., 2011). Tortell and 

colleagues (2002) provided evidence that CO2 concentration can affect the taxonomic structure 

of a marine phytoplankton community. A significant community shift from Phaeocystis towards 

diatoms occurred under high CO2 in the experiment conducted on the Peruvian shelf, while total 

phytoplankton biomass showed no response to CO2 supply. This taxonomic shift appears 

particularly interesting with regard to the specific response of both algal groups to changing 

nutrient N:P supply ratios within Study 2 and 3, suggesting a shift in phytoplankton abundance 

from diatoms towards nanoflagellates such as Phaeocystis under lowered N:P supply 

conditions. The opposing tendency in the response of these typical representatives of upwelling 

phytoplankton assemblages to future increasing CO2 concentrations and decreasing N:P 

stoichiometry leads to the question which types of primary producers will ultimately benefit and 

which will be disadvantaged in coastal upwelling areas under future conditions. Dedicated 

research efforts are necessary to illuminate combined effects of different aspects of global 

change (decreasing N:P, elevated CO2 and warming) on upwelling ecosystems.  



 130

 

 



References 131

References 
 
Alheit, J., Niquen, M., 2004. Regime shifts in the Humboldt Current ecosystem. Progress in 
Oceanography 60, 201-222. 
 
Amante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data 
Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, p. 19. 
 
Arrigo, K.R., 2005. Marine microorganisms and global nutrient cycles. Nature 437, 349-355. 
 
Banse, K., 1974. The nitrogen-to-phosphorus ratio in the photic zone of the sea and the 
elemental composition of the plankton. Deep-Sea Research 21, 767-771. 
 
Banse, K., 1974. The nitrogen-to-phosphorus ratio in the photic zone of the sea and the 
elemental composition of the plankton. Deep-Sea Research 21, 767-771. 
 
Barlow, R.G., Cummings, D.G., Gibb, S.W., 1997. Improved resolution of mono-and divinyl 
chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase 
C-8 HPLC. Marine Ecology Progress Series 161, 303-307. 
 
Bautista, B., Harris, R.P., Tranter, P.R.G., Harbour, D., 1992. In situ copepod feeding and 
grazing rates during a spring bloom dominated by Phaeocystis sp. in the English Channel. 
Journal of Plankton Research, 14, 691-703. 
 
Berman-Frank, I., Cullen, J.T., Shaked, Y., Sherrell, R.M., Falkowski, P.G., 2001. Iron 
availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnology and 
Oceanography 46, 1249–1277. 
 
Berman-Frank, I., Quigg, A., Finkel, Z.V., Irwin, A.J., Haramaty, L., 2007. Nitrogen-fixation 
strategies and Fe requirements in cyanobacteria. Limnology and Oceanography 52, 2260-
2269. 
 
Bertilsson, S., Berglund, O., Karl, D.M., Chisholm, S.W., 2003. Elemental composition of marine 
Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. 
Limnology and Oceanography 48, 1721-1731. 
 
Biddle, K.D., Azam, F., 1999. Accelerated dissolution of diatom silica by marine bacterial 
assemblages. Nature 397, 508-512. 
 
Björkman, K., and Karl, D.M., 1994. Bioavailability of inorganic and organic phosphorus 
compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Marine 
Ecology Progress Series 111, 265-273.  
 
Blackman, F.F., 1905. Optima and limiting factors. Annals of Botany 19, 281-298. 
 
Blain, S., Leynaert, A., Treguer, P., Chretiennot-Dinet, M.C., Rodier, M., 1997. Biomass, growth 
rates and limitation of equatorial Pacific diatoms. Deep-Sea Research 144, 1255-1275. 
 
Bopp, L., Le Quere, C., Heimann, M., Manning, A.C., and Monfray, P., 2002. Climate-induced 
oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global 
Biogeochemical Cycles 16, 1022, doi:10.1029/2001GB001445. 
 
Bower, C.E., Holm-Hansen, T., 1980. Salicylate-hypochlorite method for determining ammonia 
in seawater. Canadian Journal of Fisheries and Aquatic Sciences 37, 794–798. 
 

 



References 132

Boyd, C.M., Cowles, T.J., 1980. Grazing patterns of copepods in the upwelling system off Peru. 
Limnology and Oceanography 25, 583–596. 
 
Boyd, P.W., Newton, P.P., 1999. Does planktonic community structure determine downward 
particulate organic carbon flux in different oceanic provinces? Deep-Sea Research I 46, 63-91. 
 
Breitbarth, E., Oschlies, A., LaRoche, J., 2007. Physiological constraints on the global 
distribution of Trichodesmium - effect of temperature on diazotrophy. Biogeosciences 4, 53-61. 
 
Brett, M.T., Müller-Navarra, D.C., 1997. The role of highly unsaturated fatty acids in aquatic 
foodweb processes. Freshwater Biology 38, 483-499. 
 
Bronk, D.A., See, J.H., Bradley, P., and Killberg, L., 2007. DON as a source of bioavailable 
nitrogen for phytoplankton. Biogeosciences 4, 283-296. 
 
Bruland, K.W., Rue, E.L., Smith, G.J., 2001. Iron and macronutrients in California coastal 
upwelling regimes: implications for diatom blooms. Limnology and Oceanography 46, 1661-
1674. 
 
Bruland, K.W., Rue, E.L., Smith, G.J., DiTullio, G.R., 2005. Iron, macronutrients and diatom 
blooms in the Peru upwelling regime: brown and blue waters of Peru. Marine Chemistry 93, 81-
103. 
 
Brzezinski, M.A., 1988. Vertical distribution of ammonium in stratified oligotrophic waters. 
Limnology and Oceanography 33, 1176–1182. 
 
Buesseler, K.O., 1998. The decoupling of production and particulate export in the surface 
ocean. Global Biogeochemical Cycles 12, 297-310. 
 
Calbet, A., Saiz, E., 2005. The ciliate-copepod link in marine ecosystems. Aquatic Microbial 
Ecology 38, 157-167. 
 
Campbell, L., Nolla, H.A., Vaulot, D., 1994.The importance of Prochlorococcus to community 
structure in the central North Pacific Ocean. Limnology and Oceanography 39, 954–961. 
 
Capone, D.G., Zehr, J.P., Paerl, H.W., Bergman, B., Carpenter, E.J., 1997. Trichodesmium, a 
globally significant marine cyanobacterium. Science 276, 1221-1229.  
 
Capone, D.G., Burns, J.A., Montoya, J.P., Subramaniam, A., Mahaffey, C., Gunderson, T., 
Michaels, A.F., Carpenter, E.J., 2005. Nitrogen fixation by Trichodesmium spp.: An important 
source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global 
Biogeochemical Cycles 19, GB2024, doi:1029/2004GB002331.    
 
Carpenter, E.J., Romans, K., 1991. Major role of the cyanobacterium Trichodesmium in nutrient 
cycling in the North Atlantic Ocean. Science 254, 1356-1358. 
 
Carpenter, E.J., O’Neil, J.M., Dawson, R., Capone, D.G., Siddiqui, P.J.A., Roenneberg, T., 
Bergman, B., 1993. The tropical diazotrophic phytoplankter Trichodesmium: biological 
characteristics of two common species. Marine Ecology Progress Series 95, 295–304. 
 
Carpenter, E.J., Subramaniam, A., Capone, D.G., 1999. Biomass and productivity of the 
cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean. Deep-Sea Research I 51, 
173-203. 
 

 



References 133

Cembella, A.D., Antia, N.J., Harrison, P.J., 1984. The utilization of inorganic and organic 
phosphorous compounds as nutrients by eukarytic microalgae: A multidisciplinary perspective: 
Part 1. Critical Reviews in Microbiology 10, 317-391. 
 
Chavez, F.P., 1995. A comparison of ship and satellite chlorophyll from California and Peru. 
Journal of Geophysical Research 100, 24855-24862. 
 
Chavez, F.P., Toggweiler, J.R., 1995. Physical estimates of global new production: The 
upwelling contribution. In: Summerhayes, C.P., Emeis, K.C., Angel, M.V., Smith, R.L., 
Zeitzschel, B. (Eds.), Upwelling in the ocean: Modern processes and ancient records. Wiley, pp. 
313-320. 
 
Chisholm, S.W., 1992. Phytoplankton size. In: Falkowski, W.G., Woodhead, A.D. (Eds.), 
Primary Productivity and Biogeochemical Cycles in the Sea, Plenum Press, New York, pp. 213-
273. 
 
Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., Tanner, S., Chavez, F.P., Ferioli, L., 
Sakamoto, C., Rogers, P., Millero, F., Steinberg, P., Nightingale, P., Cooper, D., Cochlan, W.P., 
Landry, M.R., Constantinou, J., Rollwagen, G., Trasvina, A., Kudela, R., 1996. A massive 
phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the 
equatorial Pacific Ocean. Nature 383, 495-501.  
 
Codispoti, L.A., Packard, T.T., 1980. On the denitrification rate in the eastern tropical South 
Pacific. Journal of Marine Research 38, 453–477. 
 
Codispoti, L.A., Christensen, J.P., 1985. Nitrification, denitrification and nitrous oxide cycling in 
the eastern tropical South Pacific Ocean. Marine Chemistry 16, 277-300. 
 
Codispoti, L.A., 1995. Is the ocean losing nitrate? Nature 376, 724. 
 
Codispoti, L.A., Brandes, J.A., Christensen, J.P., Devol, A.H., Naqvi, S.W.A., Paerl, H.W., 
Yoshinari, T., 2001. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we 
enter the anthropocene. Scientia Marina 65, 85-105. 
 
Conan, P., Søndergaard, M., Kragh, T., Thingstad, F., Pujo-Pay, M., Williams, P. le B., 
Markager, S., Cauwet, G., Borch, N.H., Evans, D., Riemann, B., 2007. Partitioning of organic 
production in marine plankton communities: The effects of inorganic nutrient ratios and 
community composition on new dissolved organic matter. Limnology and Oceanography 52, 
753-765.  
 
Conley, D.J., Malone, T.C., 1992. Annual cycle of dissolved silicate in Chesapeake Bay: 
implications for the production and fate of phytoplankton biomass. Marine Ecology Progress 
Series 81, 121–128. 
 
Cullen, J.J., Lewis, M.R., Davis, C.O., Barber, R.T., 1992. Photosynthetic characteristics and 
estimated growth rates indicate grazing is the proximate control of primary production in the 
equatorial Pacific. Journal of Geophysical Research 97, 639–654. 
 
Cushing, D.H., 1989. A difference in structure between ecosystems in strongly stratified waters 
and in those that are only weakly stratified. Journal of Plankton Research 11, 1-13.  
 
Czeschel, R., Stramma, L., Schwarzkopf, F., Giese, B.S., Funk, A., Karstensen, J., 2011. Mid-
depth circulation of the eastern tropical South Pacific and its link to the oxygen minimum zone. 
Journal of Geophysical Research-Oceans 116, C01015, doi:10.1029/ 2010JC006565. 
 

 



References 134

Davey, M., Tarran, G.A., Mills, M.M., Ridame, C., Geider, R.J., LaRoche, J., 2008. Nutrient 
limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. 
Limnology and Oceanography 53, 1722-1733. 
 
Demarest, M.S., Brzezinski, M.A., Nelson, D.M., Krause, J.W., Jones, J.L., Beucher.C.P., 2011. 
Net biogenic silica production and nitrate regeneration determine the strength of the silica pump 
in the Eastern Equatorial Pacific. Deep-Sea Research II 58, 462-476. 
 
Deutsch, C., Gruber, N., Key, R.M., Sarmiento, J.L., Ganachaud, A., 2001. Denitrification and 
N2 fixation in the Pacific Ocean. Global Biogeochemical Cycles 15, 483–506. 
 
Deutsch, C., Sarmiento, J.L., Sigman, D.M., Gruber, N., Dunne, J.P., 2007. Spatial coupling of 
nitrogen inputs and losses in the ocean. Nature 445, 163-167. 
 
DiTullio, G.R., Hutchins, D.A., Bruland, K. W., 1993. Interaction of iron and major nutrients 
controls phytoplankton growth and species composition in the tropical North Pacific Ocean. 
Limnology and Oceanography 38, 495-508. 
 
DiTullio, G.R., Geesey, M.E., Maucher, J.M., Alm, M.B., Riseman, S.F., Bruland, K.W., 2005. 
Influence of iron on algal community composition and physiological status in the Peru upwelling 
system. Limnology and Oceanography  50, 1887-1907. 
 
Dolan, J.R., Thingstad, T.F., Rassoulzadegan, F., 1995. Phosphate transfer between microbial 
size-fractions in Villefranche Bay (N. W. Mediterranean Sea), France in autumn 1992. Ophelia 
41, 71-85. 
 
Downing, J.A., Osenberg, C.W., Sarnelle, O., 1999. Meta-analysis of marine nutrient-
enrichment experiments: variation in the magnitude of nutrient limitation. Ecology 80, 1157-
1167. 
 
Droop, M.R., 1974. The nutrient status of algal cells in continuous culture. Journal of the Marine 
Biological Association of the United Kingdom 54, 825-855.  
 
Dugdale, R.C., 1985. The effects of varying nutrient concentrations on biological production in 
upwelling regions. CALCOFI Reports 26, 93–96. 
 
Dugdale, R.C., Wilkerson, F.P., Minas, H.J., 1995. The role of a silicate pump in driving new 
production. Deep-Sea Research I 42, 697-719. 
 
Dugdale, R., Wilkerson, F., 1998. Silicate regulation of new production in the equatorial Pacific 
upwelling. Nature 391, 270-273. 
 
Dyhrman, S.T., Webb, E., Anderson, D.M., Moffett, J., Waterbury, J., 2002. Cell specific 
detection of phosphorus stress in Trichodesmium from the Western North Atlantic. Limnology 
and Oceanography 47, 1823-1836. 
 
Dyhrman, S.T., Ruttenberg, K.C., 2006. Presence and regulation of alkaline phosphatase 
activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic 
phosphorus remineralization. Limnology and Oceanography 51, 1381-1390. 
 
Dyhrman, S.T., Chappell, P.D., Haley, S.T., Moffett, J.W., Orchard, E.D., Waterbury, J.B., 
Webb, E.A., 2006. Phosphonate utilization by the globally important marine diazotroph 
Trichodesmium. Nature 439, 68-71. 
 
Ekman, V.W., 1905. On the influence of the earth’s rotation on ocean currents. Arch. Math. 
Astron. Phys. 2. 

 



References 135

Elser, J.J., Marzolf, E.R., Goldman, C.R., 1990. Phosphorus and nitrogen limitation of 
phytoplankton growth in the freshwaters of North America: a review and critique of experimental 
enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47, 1468-1477. 
 
Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Stanley Harpole, S., Hillebrand, H., 
Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and 
phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. 
Ecology Letters 10, 1135-1142. 
 
Falcón, L.I., Cipriano, F., Chistoserdov, A.Y., Carpenter, E.J., 2002. Diversity of diazotrophic 
unicellular cyanobacteria in the tropical North Atlantic Ocean. Applied and Environmental 
Microbiology 68, 5760-5764. 
 
Falcón, L.I., Pluvinage, S., Carpenter, E.J., 2005. Growth kinetics of marine unicellular N2-fixing 
cyanobacterial isolates in continuous culture in relation to phosphorus and temperature. Marine 
Ecology Progress Series 285, 3–9. 
 
Falkowski, P.G., 1997. Evolution of the nitrogen cycle and its influence on the biological 
sequestration of CO2 in the ocean. Nature 387, 272-275. 
 
Falkowski, P.G., 2000. Rationalizing elemental ratios in unicellular algae. Journal of Phycology 
36, 3-6. 
 
Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O., Taylor, F.J.R., 
2004. The evolution of modern eukaryotic phytoplankton. Science 16, 354–360. 
 
Fanning, K.A., 1992. Nutrient provinces in the sea- concentration ratios, reaction-rate ratios, 
and ideal covariation. Journal of Geophysical Research-Oceans 97, 5693-5712. 
 
Fawcett, S.E., Ward, B.B., 2011. Phytoplankton succession and nitrogen utilization during the 
development of an upwelling bloom. Marine Ecology Progress Series 428, 13-31. 
 
Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D., Hales, B., 2008. Evidence for 
upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490-1492. 
 
Ferris, M.J., Palenik, B., 1998. Niche adaption in ocean cyanobacteria. Nature 396, 226-228. 
 
Fernández, C., Farías, L., Alcaman, M.E., 2009. Primary production and nitrogen regeneration 
processes in surface waters of the Peruvian upwelling system. Progress in Oceanography 83, 
159-168. 
 
Fiedler, P.C., Talley, L.D., 2006. Hydrography of the eastern tropical Pacific: A review. Progress 
in Oceanography 69, 143–180. 
 
Fogg, G.E., 1991. The phytoplanktonic ways of life. New Phytology 118, 191–232. 
 
Foster, R.A., Zehr, J.P., 2006. Characterization of diatom-cyanobacteria symbioses on the basis 
of nifH, hetR and 16S rRNA sequences. Environmental Microbiology 8, 1913-1925. 
 
Foster, R.A., Subramaniam, A., Mahaffey, C., Carpenter, E.J., Capone, D.G., Zehr, J.P., 2007. 
Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria 
in the western tropical North Atlantic Ocean. Limnology and Oceanography 52, 517-532. 
 
Foster, R.A., Subramaniam, A., Zehr, J.P., 2009. Distribution and activity of diazotrophs in the 
Eastern Equatorial Atlantic. Environmental Microbiology 11, 741-750. 
 

 



References 136

Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, P., Riebesell, U., 2012. Dynamics and 
stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum zone 
in the tropical eastern Pacific. Deep-Sea Research I 62, 20-31. 
 
Franz, J.M.S., Hauss, H., Sommer, U., Dittmar, T., Riebesell, U. Production, partitioning and 
stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in 
the tropical Pacific and Atlantic ocean. Biogeosciences, submitted for publication.  
 
Franz, J.M.S., Hauss, H., Löscher, C.R., Riebesell, U. Effect of variable nutrient enrichment on 
the functional composition of a phytoplankton community in the eastern tropical Atlantic. 
Unpublished results. 
  
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L., Lange, C., 2009. Vertical and 
horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep-
Sea Research II, 56, 1027-1038. 
 
Galan, A., Molina, V., Thamdrup, B., Woebken, D., Lavik, G., Kuypers, M.M.M., Ulloa, O., 2009. 
Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off 
northern Chile. Deep-Sea Research II 56, 1125–1135. 
 
Galloway, J.N., Schlesinger, W.H., Levy II, H., Michaels, A., Schnoor, J.L., 1995. Nitrogen 
fixation: anthropogenic enhancement-environmental response. Global Biogeochemical Cycles 
9, 235–252. 
 
Gao, Y., Kaufman, Y.J., Tanré, D., Kolber, D., Falkowski, P.G., 2001. Seasonal distributions of 
aeolian iron fluxes to the global ocean. Geophysical Research Letters 28, 29-32. 
 
Garcia, H.E., Locarnini, R.A., Boyer, T.P. and Antonov, J.I., 2010a. World Ocean Atlas 2009, 
Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. In: Levitus, 
S. (Ed.), NOAA Atlas NESDIS 70, U.S. Government Printing Office, Washington, D.C., 344 pp. 
 
Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I., 2010b. World Ocean Atlas 2009, 
Volume 4: Nutrients (phosphate, nitrate, silicate). Levitus, S. (Ed.), NOAA Atlas NESDIS 71, 
U.S. Government Printing Office, Washington, D.C., 398 pp. 
 
Geider, R.J., LaRoche, J., 2002. Redfield revisited: variability of C:N:P in marine microalgae 
and its biochemical basis. European Journal of Phycology 37, 1-17. 
 
Gervais, F., Riebesell, U., 2001. Effect of phosphorus limitation on elemental composition and 
stable carbon isotope fractionation in a marine diatom growing under different CO2 
concentrations. Limnology and Oceanography 46, 497-504. 
 
Goericke, R., 2002. Top-down control of phytoplankton biomass and community structure in the 
monsoonal Arabian Sea. Limnology and Oceanography 47, 1307-1323. 
 
Goldman, J.C., McCarthy, J.J., Peavey, D.G., 1979. Growth rate influence on the chemical 
composition of phytoplankton in oceanic waters. Nature 279, 210-215. 
 
Granéli, E., Hansen, P.J., 2006. Allelopathy in harmful algae: a mechanism to compete for 
resources? In: Granéli, E., Turner, J.T. (Eds.), Ecology of harmful algae, Ecological Studies 
189, pp. 189-201. 
 
Graziano, L.M., Geider R.J., Li, W.K.W., Olaizola, M., 1996. Nitrogen limitation of North Atlantic 
phytoplankton: Analysis of physiological condition in nutrient enrichment experiments. Aquatic 
and Microbial Ecology 11, 53-64. 
 

 



References 137

Gruber, N., Sarmiento, J.L., 1997. Global patterns of marine nitrogen fixation and denitrification. 
Global Biogeochemical Cycles 11, 235-266.  
 
Gruber, N., 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global 
change. Philosophical Transactions of the Royal Society A 369, 1980-1996. 
 
Hall, R.I., Leavitt, P.R., Dixit, A.S., Quinlan, R., Smol, J.P., 1999. Limnological succession in 
reservoirs: a paleolimnological comparison of two methods of reservoir formation. Canadian 
Journal of Fisheries and Aquatic Sciences 56, 1109-1121. 
 
Hall, S.P., Smith, V.H., Lytle, D.A., and Leibold, M.A., 2005. Constraints on primary producer 
N:P stoichiometry along N:P gradients. Ecology 86, 1894-1904.  
 
Hamersley, M.R., Lavik, G., Woebken, D., Rattray, J.E., Lam, P., Hopmans, E.C., Sinninghe 
Damsté, Krüger, S., Graco, M., Gutiérrez, Kuypers, M.M.M., 2007. Anaerobic ammonium 
oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography 52, 923-933.  
 
Hansen, H.P., Koroleff, F., 1999. Determination of nutrients. In: Grasshoff, K., Klaus Kremling, 
K., Ehrhardt, M. (Eds.), Methods of seawater analysis, Wiley-VCH Verlag GmbH, Weinheim, 
Germany, pp. 159-228. 
 
Hare, C.E., DiTullio, G.R., Trick, C.G., Wilhelm, S.W., Bruland, K.W., Rue, E.L., Hutchins, D.A., 
2005. Phytoplankton community structure changes following simulated upwelled iron inputs in 
the Peru upwelling region. Aquatic Microbial Ecology 38, 269-282. 
 
Harrison, W.G., Platt, T., Calienes, R., Ochoa, N., 1981. Photosynthetic parameters and primary 
production of phytoplankton populations off the northern coast of Peru. In: Richards, F. (Ed.), 
Coastal Upwelling. American Geophysical Union, Washington, DC, pp. 303–311. 
 
Hasle, G.R., Syvertsen, E.E., 1997. Marine diatoms. In: Tomas, C.R. (Ed.), Identifying marine 
phytoplankton, pp. 5-385.  
 
Hauss, H.M., Franz, J., Sommer, U. Changes in N:P stoichiometry influences taxonomic 
composition and nutritional quality of phytoplankton in the Peruvian upwelling - a mesocosm 
experiment. Journal of Sea Research, submitted for publication. 
 
Healey, F.P., 1973. Inorganic nutrient uptake and deficiency in algae. Critical Reviews in 
Microbiology 3, 69-113. 
 
Helly, J.J., Levin, L.A., 2004. Global distribution of naturally occurring marine hypoxia on 
continental margins. Deep-Sea Research 51, 1159-1168. 
 
Henriksen, P., Riemann, B., Kaas, H., Sørensen, H.M., Sørensen, H.L., 2002. Effects of 
nutrient-limitation and irradiance on marine phytoplankton pigments. Journal of Plankton 
Research 24, 835-858.   
 
Hertzberg, S., Jensen, S.L., 1966. The carotenoids of blue-green algae II: The carotenoids of 
Aphanizomenon flos-aquae. Phytochemistry 5, 565-570. 
 
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume 
calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403-424. 
 
Holl, C.M., Montoya, J.P., 2005. Interactions between nitrate uptake and nitrogen fixation in 
continuous cultures of the marine diazotroph Trichodesmium (Cyanobacteria). Journal of 
Phycology 41, 1178-1183. 

 



References 138

Holmedal, L.E., Utnes, T., 2006. Physical-biological interactions and their effect on 
phytoplankton blooms in fjords and near-coastal waters. Journal of Marine Research 64, 97–
122. 
 
Holmes, R.M., Aminot, A., Kérouel, R., Hooker, B.A., Peterson, B.J., 1999. A simple and precise 
method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of 
Fisheries and Aquatic Sciences 56, 1801-1808. 
 
Hood, R.R., Coles, V.J., 2004. Modeling the distribution of Trichodesmium and nitrogen fixation 
in the Atlantic Ocean. Journal of Geophysical Research 109, C06006, 
doi:10.1029/2002JC001753. 
 
Howard, J.B., Rees, D.C., 1996. Structural basis of biological nitrogen fixation. Chemical 
Reviews 96, 2965-2982. 
 
Hutchins, D.A., Bruland, K.W., 1998. Iron-limited diatom growth and Si:N uptake ratios in a 
coastal upwelling regime. Nature 393, 561-564.  
 
Hutchins, D.A., Hare, C.E., Weaver, R.S., Zhang, Y., Firme, G.F., DiTullio, G.R., Alm, M.B., 
Riseman, S.F., Maucher, J.M., Geesey, M.E., 2002. Phytoplankton iron limitation in the 
Humboldt Current and Peru Upwelling. Limnology and Oceanography 47, 997-1011. 
 
Hutchins, D.A., Pustizzi, F., Hare, C.E., DiTullio, G.R., 2003. A shipboard natural community 
continuous culture system for ecologically relevant low-level nutrient enrichment experiments. 
Limnology and Oceanography: Methods 1, 82-91. 
 
Ianson, D., Allen, S.E., Harris, S.L., Orians, K.J., Varela, D.E., Wong, C.S., 2003. The inorganic 
carbon system in the coastal upwelling region west of Vancouver Island, Canada. Deep-Sea 
Research I, 50, 1023-1042.  
 
Ingall, E., Jahnke, R., 1994. Evidence for enhanced phosphorus regeneration from marine 
sediments overlain by oxygen depleted waters. Geochimica et Cosmochimica Acta 58, 2571-
2575.  
 
IPCC: Climate Change 2007. The Physical Science Basis. In: Solomon, S., Qin, D., Manning, 
M., Chen, Z., Marqis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Contribution of Working 
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007. 
 
Irwin, A.J., Oliver, M.J., 2009. Are ocean deserts getting larger? Geophysical Research Letters 
36, L18609. 
 
Jaeschke, A., Abbas, B., Zabel, M., Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., 
2010. Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental 
shelf and slope sediments off northwest Africa. Limnology and Oceanography 55, 365-376. 
 
Johnson, K.S., Chavez, F.P., Friederich, G.E., 1999. Continental-shelf sediment as a primary 
source of iron for coastal phytoplankton. Nature 398, 697-700. 
 
Jónasdóttir, S.H., Fields, D., Pantoja, S., 1995. Copepod egg production in Long Island Sound, 
USA, as a function of the chemical composition of seston. Marine Ecology Progress Series 119, 
87-98. 
 
Kainz, M., Arts, M.T., Mazumder, A., 2004. Essential fatty acids in the planktonic food web and 
their ecological role for higher trophic levels. Limnology and Oceanography 49, 1784-1793. 
 

 



References 139

Karl, D.M., Björkman, K.M., 2002. Dynamics of DOP. In: Hansell, D.A., Carlson, C.A. (Eds.), 
Biogeochemistry of Marine Dissolved Organic Matter, Academic Press, San Diego, pp. 250-
366, 2002. 
 
Karstensen, J., Stramma, L., Visbeck, M., 2008. Oxygen minimum zones in the eastern tropical 
Atlantic and Pacific oceans. Progress in Oceanography 77, 331-350. 
 
Keeling, R.F., Garcia, H., 2002. The change in oceanic O2 inventory associated with recent 
global warming. Proceedings of the National Academy of Sciences 99, 7848-7853. 
 
Keeling, R.F., Körtzinger, A., Gruber, N., 2009. Ocean deoxygenation in a warming world. 
Annual Review in Marine Science 2, 463-493. 
 
Kerouel, R., Aminot, A., 1997. Fluorometric determination of ammonia in sea and estuarine 
waters by direct segmented flow analysis. Marine Chemistry 57, 265-275.  
 
Kirchman, D.L., 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial 
Ecology 28, 255-271.  
 
Kimor, B., Reid, F.M.H., Jordan, J.B., 1978. An unusual occurrence of Hemiaulus 
membranaceus Cleve (Bacillariophyceae) with Richelia intracellularis Schmidt (Cyanophyceae) 
off the coast of Southern California in October 1976. Phycologia 17, 162-166. 
 
Kiørboe, T., 1989. Phytoplankton growth rate and nitrogen content: implications for feeding and 
fecundity in a herbivorous copepod. Marine Ecology Progress Series 55, 229-234. 
 
Klausmeier, C.A., Litchman, E., Daufresne, T., Levin, S.A., 2004a. Optimal nitrogen-to-
phosphorus stoichiometry of phytoplankton. Nature 429, 171-174. 
 
Klausmeier, C.A., Litchman, E., Levin, S.A., 2004b. Phytoplankton growth and stoichiometry 
under multiple nutrient limitation. Limnology and Oceanography 49, 1463-1470. 
 
Klausmeier, C.A., Litchman, E., Daufresne, T., and Levin, S.A., 2008. Phytoplankton 
stoichiometry. Ecological Research 23, 479-485. 
 
Klein Breteler, W.C.M., Schogt, N., Baas, M., Schouten, S., Kraay, G.W., 1999. Trophic 
upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. 
Marine Biology 135, 191-198. 
 
Klein Breteler, W.C.M., Schogt, N., Rampen, S., 2005. Effect of diatom nutrient limitation on 
copepod development: role of essential lipids. Marine Ecology Progress Series 291, 125-133. 
 
Kleppel, G.S., 1993. On the diets of calanoid copepods. Marine Ecology Progress Series 99, 
183-183. 
 
Koroleff, F., 1977. Simultaneous persulphate oxidation of phosphorus and nitrogen compounds 
in water. In: Grasshoff, K. (Ed.), Report of the Baltic Intercalibration Workshop, Annex Interim 
Commission for the Protection of the Environment of the Baltic Sea, pp. 52-53.  
 
Kudela, R.M., Dugdale, R.C., 2000. Nutrient regulation of phytoplankton productivity in 
Monterey Bay, California. Deep Sea Research II 47, 1023-1053. 
 
Kudela, R., Cochlan, W., Roberts, A., 2002. Spatial and temporal patterns of Pseudo-nitzschia 
species in central California related to regional oceanography. Harmful Algae, 347-349. 
 

 



References 140

Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., 
Sinninghe Damste, J.S., Strous, M., and Jetten, M.S.M., 2003. Anaerobic ammonium oxidation 
by anammox bacteria in the Black Sea. Nature 422, 608-611. 
 
Kuypers, M.M.M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B.M., Amann, R., Jørgensen, 
B.B., Jetten, M.S.M., 2005. Massive nitrogen loss from the Benguela upwelling system through 
anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences 102, 6478-
6483. 
 
Lam, P., Lavik, G., Jensen, M.M., van de Vossenberg, J., Schmid, M., Woebken, D., Gutiérrez, 
D., Amann, R., Jetten, M.S.M., Kuypers, M.M.M., 2009. Revising the nitrogen cycle in the 
Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the 
United States of America 106, 4752-4757. 
 
Langlois, R.J., Hümmer, D., LaRoche, J., 2008. Abundances and distributions of the dominant 
nifH phylotypes in the Northern Atlantic Ocean. Applied and Environmental Microbiology 74, 
1922-1931. 
 
Latasa, M., Berdalet, E., 1994. Effect of nitrogen and phosphorus starvation on pigment 
composition of cultured Heterocapsa sp. Journal of Plankton Research 16, 83-94. 
 
Lenton, T.M., Watson, A.J., 2000. Redfield revisited 1. Regulation of nitrate, phosphate, and 
oxygen in the ocean. Global Biogeochemical Cycles 14, 225-248. 
 
Lepére, C., Vaulot, D., Scanlan, D.J., 2009. Photosynthetic picoeukaryote community structure 
in the South East Pacific Ocean encompassing the most oligotrophic waters on Earth. 
Environmental Microbiology 11, 3105–3117. 
 
Levitus, S., Antonov, J.I., Boyer, T.P., Stepens, C., 2000. Warming of the world ocean. Science 
287, 2225-2229. 
 
Lewin, J.C., 1962. Silicification. In: Lewin, J.C. (Ed.), Physiology and biochemistry of the algae, 
Academic Press, pp. 445-455. 
 
Liebig, J. von, 1855. Principles of Agricultural chemistry with special reference to the late 
researches made in England. 17-34. Reprinted in: Pomeroy, L.R., 1974. Cycles of essential 
elements. Benchmark papers in Ecology 1, Dowden, Hutchinson & Ross Inc., Stroudsburg, 
Pennsylvania, 11-28. 
 
Lincoln, J.A., Turner, J.T., Bates, S.S., Léger, C., Gauthier, D.A., 2001. Feeding, egg 
production, and egg hatching success of the copepods Acartia tonsa and Temora longicornis on 
diets of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-
nitzschia pungens. Hydrobiologia 453, 107-120. 
 
Liu, H.B., Nolla, H.A., Campbell, L., 1997. Prochlorococcus growth rate and contribution to 
primary production in the equatorial and subtropical North Pacific Ocean. Aquatic Microbial 
Ecology 12, 39–47.  
 
Liu, H., Probert, I., Uitz, J., Claustre, H., Aris-Brosou, S., Frada, M., Not, F., deVargas, C., 2009. 
Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open 
oceans. Proceedings of the National Academy of Sciences of the United States of America 106, 
12803–12808. 
 
Löscher, C.R., Großkopf, T., Gill, D., Schunck, H., Joshi, F., Pinnow, N., Lavik, G., Kuypers, 
M.M.M., LaRoche, J., Schmitz, R.A. Nitrogen fixation in the oxygen minimum zone off Peru. 
Unpublished results.  

 



References 141

Loladze, I., Elser, J.J., 2011. The origins of the Redfield nitrogen-to-phosphorus ratio are in a 
homoeostatic protein-to-rRNA ratio. Ecology Letters 14, 244-250. 
 
Luyten, J.R., Pedlosky, J., and Stommel, H., 1983. The ventilated thermocline. Journal of 
Physical Oceanography 13, 292-309. 
 
Mackey, M.D., Mackey, D.J., Higgins, H.W., Wright, S.W., 1996. CHEMTAX—a program for 
estimating class abundances from chemical markers: application to HPLC measurements of 
phytoplankton. Marine Ecology Progress Series 144, 265–283. 
 
Mackey, M.D., Higgins, H.W., Mackey, D.J., Wright, S.W., 1997. CHEMTAX User’s Manual: A 
Program for Estimating Class Abundances from Chemical Marker – Application to HPLC 
Measurements of Phytoplankton Pigments. CSIRO Marine Laboratories Report 229, Hobart, 
Australia, 47 pp. 
 
Mague, T.H., Friberg, E., Hughes, D.J., and Morris, I., 1980. Extracellular release of carbon by 
marine phytoplankton: A physiological approach. Limnology and Oceanography 25, 262-279. 
 
Malone, T.C., 1980. Algal size. In: Morris, I. (Ed.), The Physiological Ecology of Phytoplankton. 
Blackwell Scientific Publications, Oxford, pp. 433–463. 
 
Malzahn, A.M., Hantzsche, F., Schoo, K.L., Boersma, M., Aberle, N., 2010. Differential effects of 
nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162, 
35-48. 
 
Margalef, R., 1973. Fitoplancton marino del la region de afloramiento del NW de Africa: II. 
Composition y distribucion del fitoplancton. Res Exp Cient B/O Cornide 2, 65–94. 
 
Margaelf, R., 1978. Phytoplankton communities in upwelling areas. The example of Northwest 
Africa. Oecologia Aquatica 3, 97-132. 
 
Matear, R.J., Hirst, A.C., 2003. Long-term changes in dissolved oxygen concentrations in the 
ocean caused by protracted global warming. Global Biogeochemical Cycles 17, 1125, 
doi:10.1029/2002GB001997. 
 
Mayzaud, P., Chanut, J.P., Ackman, R.G., 1989. Seasonal changes of the biochemical 
composition of marine particulate matter with special reference to fatty acids and sterols. Marine 
Ecology Progress Series 56, 189-204. 
 
Menden-Deuer, S., Lessard, E.J., 2000. Carbon to volume relationships for dinoflagellates, 
diatoms, and other protist plankton. Limnology and Oceanography 45, 569-579. 
 
Michaels, A.F., Silver, M.W., 1988. Primary production, sinking fluxes and the microbial food 
web. Deep-Sea Research 35, 473-490. 
 
Michaels, A.F., Olson, D., Sarmiento, J.L., Ammerman, J.W., Fanning, K., Jahnke, R., Knap, 
A.H., Lipschultz, F., Prospero, J.M., 1996. Inputs, losses and transformations of nitrogen and 
phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35, 181-226. 
 
Mills, M.M., Ridame, C., Davey, M., LaRoche, J., Geider, R.J., 2004. Iron and phosphorus co-
limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292-294. 
 
Mills, M.M., Arrigo, K.R., 2010. Magnitude of oceanic nitrogen fixation influenced by the nutrient 
uptake ratio of phytoplankton. Nature Geoscience 3, 412-416. 
 

 



References 142

Minas, H.J., Minas, M., Packard, T.T., 1986. Productivity in upwelling areas deduced from 
hydrographic and chemical fields. Limnology and Oceanography 31, 1182–1206.  
 
Minas, H.J., Minas, M., 1992. Net community production in ‘‘High Nutrient-Low Chlorophyll’’ 
waters of the tropical and Antarctic Oceans: grazing versus iron hypothesis. Oceanologica Acta 
15, 145–162. 
 
Mohamed, H.E., van de Meene, A.M.L., Roberson, R.W., Vermaas, W.V.J., 2005. 
Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the 
cyanobacterium Synechocystis sp. strain PCC6803. Journal of Bacteriology 187, 6883–6892. 
 
Moisander, P.H., Beinart, R.A., Hewson, I., White, A.E., Johnson, K.S., Carlson, C.A., Montoya, 
J.P., Zehr, J.P., 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation 
domain. Science 327, 1512-1514. 
 
Montoya, J.P., Holl, C.M., Zehr, J.P., Hansen, A., Villareal, T.A., Capone, D.G., 2004. High rates 
of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430, 1027-
1032. 
 
Montoya, J.P., Voss, M., Capone, D.G., 2007. Spatial variation in N2-fixation rate and diazotroph 
activity in the Tropical Atlantic. Biogeosciences 4, 369-376. 
 
Moore, L.R., Goericke, R., Chisholm, S.W., 1995. Comparative physiology of Synechococcus 
and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and 
absorptive properties. Marine Ecology Progress Series 116, 259-275. 
 
Moore, J.K., Doney, S.C., 2007.  Iron availability limits the ocean nitrogen inventory stabilizing 
feedbacks between marine denitrification and nitrogen fixation. Global Geogeochemical Cycles 
21, GB2001, doi:10.1029/2006GB002762. 
 
Moore, C. M., Mills, M.M., Langlois, R., Milne, A., Achtberg, E.P., LaRoche, J., Geider, R.J., 
2008. Relative influence of nitrogen and phosphorus availability on phytoplankton physiology 
and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnology and 
Oceanography 53, 291-305.   
 
Müller-Navarra, D.C., Brett, M.T., Liston, A.M., Goldman, C.R., 2000. A highly unsaturated fatty 
acid predicts carbon transfer between primary producers and consumers. Nature 403, 74-77. 
 
Myklestad, S., Holm-Hansen, O., Vârum, K.M., and Volcani, B., 1989. Rate of release of 
extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. 
Journal of Plankton Research 11, 763-773. 
 
Needoba, J.A., Foster, R.A., Sakamoto, C., Zehr, J.P., Johnson, K.S., 2007. Nitrogen fixation by 
unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. 
Limnology and Oceanography 52, 1317-1327. 
 
Niemi, A., 1979. Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Botanica Fennica 
110, 57-61. 
 
Nixon, S.W., Ammerman, J.W., Atkinson, L.P., Berounsky, V.M., Billen, G., Boicourt, W.C., 
Boynton, W.R., Church, T.M., Ditoro, D.M., Elmgren, R., Garber, J.H., Giblin, A.E., Jahnke, 
R.A., Owens, N.J.P., Pilson, M.E.Q., Seitzinger, S.P., 1996. The fate of nitrogen and 
phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35, 141-180.     
 
 

 



References 143

Okin, G.S., Baker, A.R., Tegen, I., Mahowald, N.M., Dentener, F.J., Duce, R.A., Galloway, J.N., 
Hunter, K., Kanakidou, Kubilay, N., prospero, J.M., Sarin, M., Surapipith, V., Uematsu, M., Zhu, 
T., 2011. Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, 
phosphorus, and iron. Global Biogeochemical Cycles 25, GB2022, doi:10.1029/2010GB003858. 
 
Oschlies, A., Schulz, K.G., Riebesell, U., Schmittner, A., 2008. Simulated 21st century’s 
increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochemical 
Cycles 22, GB4008, doi:10.1029/2007GB003147. 
 
Paerl, H.W., Prufert-Bebout, L.E., Guo, C., 1994. Iron-stimulated N2 fixation and growth in 
natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. 
Applied and Environmental Microbiology 60, 1044-1047. 
 
Partensky, F., Blanchot, J., Vaulot, D., 1999. Differential distribution and ecology of 
Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin de l’Institute 
océanographique, Monaco, spécial 19.  
 
Partensky, F., Hoepffner, N., Li, W.K., Ulloa, O., Vaulot, D., 1993. Photoacclimation of 
Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the 
Mediterranean Sea. Plant Physiology 101, 295–296. 
 
Patoine, A., Graham, M.D., Leavitt, P.R., 2006. Spatial variation of nitrogen fixation in lakes of 
the northern Great Plains. Limnology and Oceanography 51, 1665-1677. 
 
Paulmier, A., Ruiz-Pino, D., Garçon, V., 2011. CO2 maximum in the oxygen minimum zone 
(OMZ). Biogeosciences 8, 239-252. 
 
Pauly, D., Christensen, V., 1995. Primary production required to sustain global fisheries. Nature 
374, 255-257. 
 
Pennington, J.T., Mahoney, K.L., Kuwahara, V.S., Kolber, D.D., Calienes, R., Chavez, F.P., 
2006. Primary production in the eastern tropical Pacific: A review. Progress in Oceanography 
69, 285-317. 
 
Penno, S., Campbell, L., Hess, W.R., 2000. Presence in phycoerythrin in two strains of 
Prochlorococcus (cyanobacteria) isolated from the subtropical North Pacific Ocean. Journal of 
Phycology 36, 723–729. 
 
Pitcher, G.C., Bolton, J.J., Brown, P.C., Hutchings, L., 1993. The development of phytoplankton 
blooms in upwelled waters of the southern Benguela upwelling system as determined by 
microcosm experiments. Journal of Experimental Marine Biology and Ecology 165, 171-189. 
 
Poulton, A.J., Stinchcombe, M.C., Quartly, G.D., 2009. High numbers of Trichodesmium and 
diazotrophic diatoms in the southwest Indian Ocean. Geophysical Research Letters 36, L15610. 
 
Probyn, T.A., 1985. Nitrogen uptake by size-fractionated phytoplankton populations in the 
southern Benguela upwelling system. Marine Ecology Progress Series 22, 249-258. 
 
Quigg, A., Finkel, Z.V., Irwin, A.J., Rosenthal, Y., Ho, T.-Y., Reinfelder, J.R., Schofield, O., 
Morel, F.M.M., Falkowski, P.G., 2003. The evolutionary inheritance of elemental stoichiometry in 
marine phytoplankton. Nature 425, 291–294. 
 
Rabalais, N.N., Diaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D., Zhang, J., 2010. Dynamics and 
distribution of natural and human-caused hypoxia. Biogeosciences 7, 585-619.   
 

 



References 144

Ranhofer, M., Lawrenz, E., Pinckney, J., Benitez-Nelson, C., and Richardson, T., 2009. Cell-
specific alkaline phosphatase expression by phytoplankton from Winyah Bay, South Carolina, 
USA. Estuaries and Coasts 32, 943-957. 
 
Redfield, A.C., 1958. The biological control of chemical factors in the environment. American 
Scientist 64, 205-221. 
 
Reid, J.L., Jr., 1965. Intermediate waters of the Pacific Ocean. Johns Hopkins Oceanographic 
Studies 2, 85. 
 
Řezanka, T., Dembitsky, V.M., 2006. Metabolites produced by cyanobacteria belonging to 
several species of the family Nostocaceae. Folia Microbiologica 51, 159-182. 
 
Rhee, G.-Y., 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell 
composition, and nitrate uptake. Limnology and Oceanography 23, 10-25. 
 
Richardson, T.L., Jackson, G.A., Ducklow, H.W., Roman, M.R., 2004. Carbon fluxes through 
food webs of the eastern equatorial Pacific: an inverse approach. Deep-Sea Research I 51, 
1245–1274. 
 
Riebesell, U., Tortell, P.D., 2001. Effects of Ocean Acidification on Pelagic Organisms and 
Ecosystems. In: Gattuso, J.-P., Hansson, L. (Eds.), Ocean Acidification, Oxford University 
Press, Oxford, UK, pp. 99-121.  
 
Riebesell, U., Körtzinger, A., Oschlies, A., 2009. Sensitivities of marine carbon fluxes to ocean 
change. Proceedings of the National Academy of Sciences of the United States of America 106, 
20602-20609. 
 
Riegman, R., Noordeloos, A.A.M., Cadée, G.C., 1992. Phaeocystis blooms and eutrophication 
of the continental coastal zones of the North Sea. Marine Biology 112, 479-484. 
 
Rojas de Mendiola, B., 1981. Seasonal phytoplankton distribution along the Peru coast. In: 
Richards, F.A. (Ed.), Coastal Upwelling research, American Geophysical Union, Washington, 
DC, pp. 345-356. 
 
Ryabenko, E., Kock, A., Bange, H.W., Altabet, M.A., Wallace, D.W.R., 2011. Contrasting 
biogeochemistry of nitrogen in the Atlantic and Pacific oxygen minimum zones. Biogeosciences 
Discussions 8, 8001-8039. 
 
Ryther, J.H., 1969. Photosynthesis and fish production in the sea. Science, 166, 72-76. 
 
Ryther, J.H., Dunstan, W.M., 1971. Nitrogen, phosphorus, and eutrophication in the coastal 
marine environment. Science 171, 1008-1013, 10.1126/science.171.3975.1008. 
 
Saino, T., Otobe, H., Wada, E., Hattori, A., 1983. Subsurface ammonium maximum in the 
northern Pacific and the Bering Sea in summer. Deep-Sea Research 30, 1157–1171. 
 
Saito, M.A., Moffet, J.W., Chisholm, S.W., Waterbury, J.B., 2002. Cobalt limitation and uptake in 
Prochlorococcus. Limnology and Oceanography 47, 1629-1636. 
 
Saito, M.A., Goepfert, T.J., Ritt, J. T., 2008. Some thoughts on the concept of colimitation: 
Three definitions and the importance of bioavailability. Limnology and Oceanography 53, 276–
290. 
 

 



References 145

Sanders, R., Morris, P.J., Poulton, A.J., Stinchcombe, M.C., Charalampopoulou, A., Lucas, M.I., 
Thomalla, S.J., 2010. Does a ballast effect occur in the surface ocean? Geophysical Research 
Letters 37, L08602, doi:10.1029/2010GL042574.    
 
Sañudo-Wilhelmy, S.A., Kustka, A.B., Gobler, C.J., Hutchins, D.A., Yang, M., Lwiza, K., Burns, 
J., Capone, D.G., Raven, J.A., Carpenter, E.J., 2001. Phosphorus limitation of nitrogen fixation 
by Trichodesmium in the central Atlantic Ocean. Nature 411, 66-69 
 
Sarthou, G., Timmermans, K.R., Blain, S., Tréguer, P., 2005. Growth physiology and fate of 
diatoms in the ocean: a review. Journal of Sea Research 53, 25-42. 
 
Schneider, B., Engel, A., Schlitzer, R., 2004. Effects of depth- and CO2-dependent C:N ratios of 
particulate organic matter (POM) on the marine carbon cycle. Global Biogeochemical Cycles 
18, GB2015, doi:10.1029/2003GB002184. 
 
Seeyave, S., Probyn, T.A., Pitcher, G.C., Lucas, M.I., Purdie, D.A., 2009. Nitrogen nutrition in 
assemblages dominated by Pseudo-nitzschia spp., Alexandrium catenella and Dinophysis 
acuminata off the west coast of South Africa. Marine Ecology Progress Series 379, 91-107. 
 
Shaffer, G., Olsen, M.S., Pedersen, J.O.P., 2009. Long-term ocean oxygen depletion in 
response to carbon dioxide emissions from fossil fuels. Nature Geoscience 2, 105-109.   
  
Sharp, J.H., 1974. Improved analysis for particulate organic carbon and nitrogen from seawater. 
Limnology and Oceanography 19, 984-989. 
 
Sherr, E., Sherr, B., 1988. Role of microbes in pelagic food webs: a revised concept. Limnology 
and Oceanography 33, 1225-1227. 
 
Shuman, F.R., Lorenzen, C.J., 1975. Quantitative degradation of chlorophyll by a marine 
herbivore. Limnology and Oceanography 20, 580–586. 
 
Smetacek, V., 1999. Diatoms and the ocean carbon cycle. Protist 150, 25-32. 
 
Smith, S.L., Whitledge, T.E., 1977. The role of zooplankton in the regeneration of of nitrogen in 
a coastal upwelling system off northwest Africa. Deep-Sea Research 24, 49–56 
 
Smith, V.H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in 
lake phytoplankton. Science 221, 669. 
 
Sohm, J.A., Capone, D.G., 2006. Phosphorus dynamics of the tropical and subtropical north 
Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series 317, 21-28.  
 
Soma, Y., Imaizumi, T., Yagi, K., Kasuga, S., 1993. Estimation of algal succession in lake water 
using HPLC analysis of pigments. Canadian Journal of Fisheries and Aquatic Sciences 50, 
1142-1146. 
 
Sommer, U., Hansen, T., Stibor, H., Vadstein, O., 2004. Persistence of phytoplankton 
responses to different Si: N ratios under mesozooplankton grazing pressure: a mesocosm study 
with NE Atlantic plankton. Marine Ecology Progress Series 278, 67-75. 
 
Staal, M., te Lintel Hekkert, S., Brummer, G.J., Veldhuis, M., Sikkens, C., Persijn, S., Stal, L.J., 
2007. Nitrogen fixation along a north–south transect in the eastern Atlantic Ocean. Limnology 
and Oceanography 52, 1305–1316. 
 
Stal, L.P., 2009. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to 
temperature? Environmental Microbiology 11, 1632–1645. 

 



References 146

Sterner, R.W., Schulz, K.L., 1998. Zooplankton nutrition: recent progress and a reality check. 
Aquatic Ecology 32, 261-279. 
 
Sterner, R.W., Elser, J.J., 2002. Ecological stoichiometry: The biology of elements from 
molecules to the biosphere. Princeton Univ. Press. 
 
Stevens, H., and Ulloa, O., 2008. Bacterial diversity in the oxygen minimum zone of the eastern 
tropical South Pacific. Environmental Microbiology 10, 1244–1259. 
 
Stewart, F.J., Ulloa, O., DeLong, E.F., 2011. Microbial metatranscriptomics in a permanent 
marine oxygen minimum zone. Environmental Microbiology 14, 23-40. 
 
Stramma, L., Johnson, G.C., Sprintall, J., Mohrholz, V., 2008. Expanding oxygen-minimum 
zones in the tropical oceans. Science 320, 655-658. 
 
Strickland, J.D.H., Eppley, R.W., de Mendiola, B.R., 1969. Phytoplankton populations, nutrients 
and photosynthesis in Peruvian coastal waters. Bol. Inst. del Mar del Peru 2, 4–45. 
 
Suess, E., 1981. Phosphate regeneration from sediments of the Peru continental margin by 
dissolution of fish debris. Geochimica et Cosmochimica Acta 45, 577-588. 
 
Sunda, W.G., Huntsman, S.A., 1995. Iron uptake and growth limitation in oceanic and coastal 
phytoplankton. Marine Chemistry 50, 189-206. 
 
Talbot, R.W., Harriss, R.C., Browell, E.V., Gregory, G.L., Sebacher, D.I., Beck, S.M., 1986. 
Distribution and geochemistry of aerosols in the tropical North Atlantic troposphere: relationship 
to Saharan dust. Journal of Geophysical Research 91, 5173-5182.  
 
Tang, K.W., Jakobsen, H.H., Visser, A.W., 2001. Phaeocystis globosa (Prymnesiophyceae) and 
the planktonic food web: feeding, growth, and trophic interactions among grazers. Limnology 
and Oceanography 46, 1860-1870. 
 
Tang, S., Jiang, L., Wu, Z.J., 2009. Adding nitrate and phosphate separately or together in the 
Central Indian Ocean: a nutrient enrichment experiment. Ocean Science Discussions 6, 2649-
2666.  
 
Thamdrup, B., Dalsgaard, T., 2002. Production of N2 through anaerobic ammonium oxidation 
coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology 68, 
1312-1318. 
 
Thingstad, T.F., Skjodal, E.F., Bohne, R.A., 1993. Phosphorus cycling and algal-bacterial 
competition in Sandsfjord, western Norway. Marine Ecology Progress Series 99, 239-259.  
 
Thomas, W.H., 1969. Phytoplankton nutrient enrichment experiments off Baja California and in 
the eastern equatorial Pacific Ocean. Journal of the Fisheries Research Board of Canada 26, 
1133-1145. 
 
Thomas, W.H., Seibert, D.L.R., Dodson, A.N., 1974. Phytoplankton enrichment experiments 
and bioassays in natural coastal sea water and in sewage outfall receiving waters off Southern 
California. Estuarine and Coastal Marine Science 2, 191-206. 
 
Thomas, W.H., 1979. Anomalous nutrient-chlorophyll interrelationships in the offshore eastern 
tropical Pacific Ocean. Journal of Marine Research 37, 327–335. 
 
Tilman, D., 1982. Resource competition and community structure. Princeton University Press, 
Princeton, New Jersey. 

 



References 147

Tortell, P.D., DiTullio, G.R., Sigman, D.M., Morel, F.M.M., 2002. CO2 effects on taxonomic 
composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine 
Ecology Progress Series 236, 37-43. 
 
Trimmer, M., Nicholls, J.C., 2009. Production of nitrogen gas via anammox and denitrification in 
intact sediment cores along a continental to slope transect in the North Atlantic. Limnology and 
Oceanography 54, 577-589.  
 
Tripp, H.J., Bench, S.R., Turk, K.A., Foster, R.A., Desany, B.A., Niazi, F., Affourtit, J.P., Zehr, 
J.P., 2010. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 
464, 90-94. 
 
Turner, J.T., Ianora, A., Esposito, F., Carotenuto, Y., Miralto, A., 2002. Zooplankton feeding 
ecology: does a diet of Phaeocystis support good copepod grazing, survival, egg production 
and egg hatching success? Journal of Plankton Research 24, 1185-1195. 
 
Tyrrell, T., Marañón, E., Poulton, A.J., Bowie, A.R., Harbour, D.S., Woodward, E.M.S., 2003. 
Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. Journal of 
Plankton Research 25, 405-416. 
 
Uitz, J., Claustre, H., Gentili, B., Stramski, D., 2010. Phytoplankton class-specific primary 
production in the world’s oceans: Seasonal and interannual variability from satellite 
observations. Global Biogeochemical Cycles 24, GB3016, doi:10.1029/2009GB003680. 
 
Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. 
Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9, 
263–272. 
 
Van Cappellen, P., Berner, R.A., 1988. A mathematical model for the early diagenesis of 
phosphorus and fluorine in marine sediments; apatite precipitation. American Journal of Science 
288, 289-333. 
 
Van Cappellen, P., Ingall, E.D., 1994. Benthic phosphorus regeneration, net primary production, 
and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and 
phosphorus. Paleoceanography 9, 677-692. 
 
Vaquer-Sunyer, R., Duarte, C.M., 2008. Thresholds of hypoxia for marine biodiversity. 
Proceedings of the National Academy of Sciences 105, 15452. 
 
Vargas, C.A., Escribano, R., Poulet, S., 2006. Phytoplankton food quality determines time 
windows for successful zooplankton reproductive pulses. Ecology 87, 2992-2999. 
 
Veldhuis, M.J.W., Kraay, G.W., 2004. Phytoplankton in the subtropical Atlantic Ocean: towards 
a better assessment of biomass and composition. Deep-Sea Research I 51, 507–530. 
 
Vince, S., Valiela, I., 1973. The effects of ammonium and phosphate enrichments on clorophyll 
a, pigment ratio and species composition of phytoplankton of Vineyard Sound. Marine Biology 
19, 69-73.  
 
Voss, M., Croot, P., Lochte, K., Mills, M., Peeken, I., 2004. Patterns of nitrogen fixation along 
10°N in the tropical Atlantic. Geophysical Research Letters 31, doi:10.1029/2004GL020127. 
 
Vrede, T., Ballantyne, A., Mille Lindblom, C., Algesten, G., Gudasz, C., Lindahl, S., Brunberg, 
A.K., 2009. Effects of N: P loading ratios on phytoplankton community composition, primary 
production and N fixation in a eutrophic lake. Freshwater Biology 54, 331-344. 
 

 



References 

 

148

West, J.A., McBride, D.L., 1999. Long-term and diurnal carpospores discharge patterns in the 
Ceramiaceae, Rhodomelaceae and Delesseriaceae (Rhodophyta). Hydrobiologia 298/299, 101-
113.  
 
Webb, E.A., Ehrenreich, I.M., Brown, S.L., Valois, F.W., Waterbury, J.B., 2009. Phenotypic and 
genotypic strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the 
open ocean. Environmental Microbiology 11, 338-348. 
 
Wetz, M.S., Wheeler, P.A., 2003. Production and partitioning of organic matter during simulated 
phytoplankton blooms. Limnology and Oceanography 48, 1808-1817. 
 
White, E., Payne, G.W., 1977. Chlorophyll production, in response to nutrient additions, by the 
algae in Lake Taupo water. New Zealand Journal of Marine and Freshwater Research 11, 501-
507. 
 
White, K.K., Dugdale, R.C., 1997. Silicate and nitrate uptake in the Monterey Bay upwelling 
system. Continental Shelf Research 17, 455-472. 
 
Wilkerson, F.P., Dugdale, R.C., Kudela, R.M., Chavez, F.P., 2000. Biomass and productivity in 
Monterey Bay, California: contribution of the large phytoplankton. Deep-Sea Research II 47, 
1003-1022.  
 
Winkler, L.W., 1888. Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber. Dtsch. Chem. 
Ges. 21, 2843–2855. 
 
Wu, J.F., Sunda, Boyle, E.A., Karl, D.M., 2000. Phosphate depletion in the western North 
Atlantic Ocean. Science 289, 759-762.  
 
Wurl, O., Min Sin, T., 2009. Analysis of dissolved and particulate organic carbon with the HTCO 
technique. In: Wurl, O. (Ed.), Practical Guidelines for the Analysis of Seawater. CRC Press, 
Boca Raton, pp. 33–48. 
 
Zehr, J.P., Waterbury, J.B., Turner, P.J., Montoya, J.P., Omoregie, E., Steward, G.F., Hansen, 
A., Karl, D.M., 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. 
Nature 412, 635-637. 
 
Zehr, J.P., Bench, S.R., Carter, B.J., Hewson, I, Niazi, F., Shi, T., Tripp, J., Affourtit, J.P., 2008. 
Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. 
Science 322, 1110-1112.  
 
Zani, S., Mellon, M.T., Collier, J.L., Zehr, J.P., 2000. Expression of nifH genes in natural 
microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. 
Applied Environmental Microbiology 66, 3119-3124. 
 

 

 

 

 

 

 

 

 



Contribution of authors 149

Contributions of authors 
 
Study 1. 

Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T., Riebesell, U.: Dynamics and 

stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum zone 

in the tropical eastern Pacific, Deep-Sea Research Part I 62, 20-31, 2012. 

Jasmin Franz performed sampling, analysis of the samples, evaluation of the data and wrote 

the manuscript. Gerd Krahmann provided CTD data and assisted with the hydrography of the 

study area. Gaute Lavik and Patricia Grasse provided nutrient data. Thorsten Dittmar provided 

data on dissolved organic carbon. Ulf Riebesell assisted with input to the manuscript and 

revision. 

 
Study 2. 

Hauss, H.M., Franz, J.M.S., Sommer, U.: Changes in N/P stoichiometry influence taxonomic 

composition and nutritional quality of phytoplankton in the Peruvian upwelling, under review, 

Journal of Sea Research. 

Helena Hauss and Jasmin Franz conducted the experiments and analysis of the samples. 

Helena Hauss furthermore evaluated the data and wrote the manuscript. Ulrich Sommer 

provided data on phytoplankton counts, assisted experiment performance and manuscript 

revision. 

 
Study 3. 

Franz, J.M.S., Hauss, H.M., Löscher, C.R., Riebesell, U.: Effect of different nutrient conditions 

on the taxonomical composition of a phytoplankton community in the eastern tropical Atlantic, to 

be submitted. 

Jasmin Franz and Helena Hauss conducted the experiments and analysis of the samples. 

Jasmin Franz furthermore evaluated the data and wrote the manuscript. Carolin Löscher 

provided molecular data on gene copies. Ulf Riebesell assisted with input to the manuscript and 

revision. 

 
Study 4. 

Franz, J.M.S., Hauss, H.M., Dittmar, T., Sommer, U., Riebesell, U.: Production, partitioning and 

stoichiometry of organic matter under different nutrient supply during mesocosm experiments in 

the tropical Pacific and Atlantic Ocean, submitted for peer-review to Biogeosciences. 

Jasmin Franz and Helena Hauss conducted the experiments and evaluated the data. Jasmin 

Franz furthermore analyzed the samples and wrote the manuscript. Thorsten Dittmar provided 

 



Contribution of authors 

 

150

data on dissolved organic matter. Ulrich Sommer assisted with experiment performance and 

manuscript revision. Ulf Riebesell assisted with input to the manuscript and revision. 

 
 
 
In addition, I have contributed to the following publications and manuscripts in the framework of 

the SFB 754 (Climate-Biogeochemical Interactions in the Tropical Ocean): 

 
Hauss, H.M., Franz, J.M.S., Hansen, T., Struck, U., Sommer, U.: Relative contribution of 

upwelled and atmospheric nitrogen to zooplankton production in the eastern tropical North 

Atlantic: Spatial distribution and relation to dissolved nutrient dynamics, submitted for peer-

review to Deep-Sea Research Part I. 
 
Ehlert, C., Grasse, P., Mollier‐Vogel, E., Böschen, T., Franz, J.M.S., de Souza, G.F., Reynolds, 

B.C., Stramma, L., Frank, M.: Silicon isotope distribution in waters and surface sediments of the 

Peruvian coastal upwelling, to be submitted. 

 
 



Danksagung 151

 

Danksagung 

Ich danke meinem Betreuer Ulf Riebesell, dass er mir die Möglichkeit gegeben hat, an so einem 

spannenden Thema zu arbeiten, sowie für den wertvollen Input und die lehrreichen Tipps  bei 

der Erstellung der Manuskripte. 

Vielen Dank auch an Uli Sommer, besonders für den Einsatz und die Zusammenarbeit auf der 

Peru-Ausfahrt. 

Liebe Leni, du bist einfach ne Wucht und es war mir eine Ehre und wahre Freude mit dir dieses 

Abenteuer „Mesokosmen auf großer Reise im tropischen Ozean“ inklusive aller Höhen und 

Tiefen bestreiten zu dürfen. Ob beim Kampf mit dem störrischen GS „Arizona“, beim 

nächtlichen Grübeln über Nährstoffeinwaagen, Nährstofflösungen, Nährstoffkonzentrationen, 

Nährstoffverhältnisse, Nährstoffzugaben, Nährstoffaufnahme, Nährstofflimitation usw., beim 

„Wie bastel ich mir einen Mesokosmos?“, beim „Wo zum Teufel ist der Boden des Mesokosmos 

geblieben?“, oder beim Turnen auf, zwischen oder unter Zargeskisten, dein zupackendes 

Naturell und dein unerschütterlicher (zynischer) Humor haben vieles erträglicher gemacht und 

mich in höchstem Maße amüsiert.  

Ich möchte auch der ganzen Mannschaft des SFB 754 für vier Jahre in einem großartigen 

Projekt (finanziert durch die DFG) danken. Besonderer Dank geht an die Fahrtleiter der Meteor-

Reisen (Martin Frank, Doug Wallace und Martin Visbeck), an die CTD-Teams (Gerd Krahmann, 

Rudi Link, Lothar Stramma) und an einen wirklich umwerfenden Haufen an Doktoranden, mit 

denen ich sehr schöne und vor allem lustige Zeiten verbringen durfte. Harry, Paddy, Caro, Tobi, 

Tim, Anna, Oli, es war mir wirklich ein großes Vergnügen!  

Vielen Dank auch an die Crew der Meteor, die uns drei tolle und erfolgreiche Ausfahrten 

ermöglicht hat. 

Liebe Kerstin und lieber Peter, was hätte ich nur ohne euch angestellt?! Ihr habt diese ganze 

Arbeit erst möglich gemacht, durch Einarbeiten in Messmethoden, durch Messen tausender 

Nährstoffproben, durch den erstaunlichen Überblick beim Packen (79! Packstücke lieber Peter 

für eine Ausfahrt) und letztendlich durch Weitergabe eines unerschöpflichen 

Erfahrungsschatzes. Vielen Dank euch beiden! Danke aber natürlich auch an Master Hansen, 

Aljoscha und Martina. Und was hätt ich nur ohne den unermüdlichen Laboreinsatz von dir, 

lieber Scarlett gemacht. Muchas gracias princessa, para tu trabajao y tu amistad!   

Danke an meine BI-Arbeitsgruppe, vor allem an meine langjährigen Bürozimmer-Kollegas 

Lennart und Sarah, aber auch an Kai S. (Stichwort: Matlab), Joana, Signe, Kai L., Andrea, Jan 

B. und wen ich noch vergessen hab…Ihr seid spitze und habt mir die Arbeitszeit sehr versüßt. 

Lieber Benni, danke dass ich mich immer beim Fussballschauen mit dir und deinem Beamer 

von der „Arbeit“ erholen konnte und einfach dass du so nen dufter Kumpel bist. Das gleiche gilt 

für Matze und Enrico.  



Danksagung 

 

152

Lieber Janni, dir möchte ich zuallererst für deine langjährige treue Freundschaft danken, dafür, 

dass du einfach immer für mich da warst! Zudem weiß ich deine kritischen Hinterfragungen und 

deinen Input zu meiner Arbeit durchaus sehr zu schätzen, auch wenn es manchmal nicht so 

den Anschein gemacht hat…Danke auch, dass ich mich auf den zahlreichen Segeltörns auf 

deinem Boot von meiner anstrengenden Doktorarbeit erholen durfte.  

Liebe Family (vor allem natürlich Mama und Papa Franz), ihr seid sowieso die Allercoolsten! 

Vielen Dank für eure Liebe und Unterstützung.  



Erklärung 153

Eidesstattliche Erklärung 

Hiermit erkläre ich an Eides statt, dass die vorliegende Dissertation, abgesehen von der 

Beratung durch meinen Betreuer, nach Inhalt und Form meine eigene Arbeit ist und ich keine 

anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Ferner versichere ich, 

dass die vorliegende Dissertation weder im Ganzen noch zum Teil einer anderen Stelle im 

Rahmen eines Prüfungsverfahrens vorgelegen hat und unter Einhaltung der Regeln guter 

wissenschaftlicher Praxis der Deutschen Forschungsgemeinschaft entstanden ist.  

 

 

 

Kiel, den        Jasmin Franz 

 


	cover page_diss
	Table of contents_neu
	blank_page2
	Zusammenfassung
	Summary
	Introduction
	blank_page22
	Study 1 - Kopie
	blank_page49_50
	Study 2
	2.1. Experimental setup
	2.2. Analyses
	2.3. Statistics
	3.1. Nutrients
	3.2. Total diatom biomass 
	3.3. Cyanobacterial marker pigment 
	3.4. Individual taxa
	3.5. Fatty acid composition 

	blank_page73_74
	Study 3
	blank_page95_96
	Study 4
	Synthesis
	blank_page132
	References_diss
	Author contribution
	Danksagung
	Erklärung

