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Abstract—For efficient and effective program comprehension,
it is essential to provide software engineers with appropri-
ate visualizations of the program’s execution traces. Empirical
studies, such as controlled experiments, are required to assess the
effectiveness and efficiency of proposed visualization techniques.

We present controlled experiments to compare the trace
visualization tools EXTRAVIS and ExplorViz in typical program
comprehension tasks. We replicate the first controlled experiment
with a second one targeting a differently sized software system.
In addition to a thorough analysis of the strategies chosen by
the participants, we report on common challenges comparing
trace visualization techniques. Besides our own replication of
the first experiment, we provide a package containing all our
experimental data to facilitate the verifiability, reproducibility
and further extensibility of our presented results.

Although subjects spent similar time on program comprehen-
sion tasks with both tools for a small-sized system, analyzing a
larger software system resulted in a significant efficiency advan-
tage of 28 percent less time spent by using ExplorViz. Concerning
the effectiveness (correct solutions for program comprehension
tasks), we observed a significant improvement of correctness for
both object system sizes of 39 and 61 percent with ExplorViz.

I. INTRODUCTION

Software maintenance tasks involve program comprehen-

sion of existing source code. Static analysis may be applied

directly to such code. In contrast, dynamic analysis is applied

to the data gathered during runtime of a program resulting in

execution traces [1], [2]. This can provide a more accurate

picture of a software system by exposing the system’s actual

behavior. It is essential to provide software engineers with

appropriate visualizations of the program’s execution traces to

support efficient and effective program comprehension.

However, few software visualizations provide empirical

evidence for their support in program comprehension [3]. Even

less have empirical evidence comparing software visualization

techniques [4]. Thus, empirically founded guidelines are often

missing, e.g., for which task which visualization technique

should be applied [5]–[8].

For these reasons, Cornelissen et al. [9], [10] conducted a

controlled experiment which provides quantitative, empirical

evidence that the additional availability of a trace visualization

tool (EXTRAVIS [11]) can provide benefits with respect to

time and correctness over using sole static analysis in typical

program comprehension tasks. This kind of empirical evidence

is more convincing than just speculation, anecdotes, and

common wisdom [12], which provide no reliable sources of

knowledge [13].

In this paper, we expand upon the controlled experiment

of Cornelissen et al. to compare different trace visualization

techniques for program comprehension through controlled

experiments. Specifically, we investigate whether EXTRAVIS

provides the most efficient and effective solution to typical

program comprehension tasks compared to other trace visu-

alization tools. The requirement to provide further compar-

isons to other trace visualization techniques is also stated

by Cornelissen et al. [10]: “To characterize the difference

[in performance of the subjects], there is a need for similar

experiments involving other trace visualization techniques.”

We design such a controlled experiment to compare two

trace visualization techniques. For our comparison, we employ

EXTRAVIS using circular bundling and a massive sequence

view, and ExplorViz [14] – developed by the authors of

this paper – using the city metaphor [15]. We conduct two

experiments: A first experiment using PMD as the object

system and a second one to replicate our results using a

smaller-sized object system. To facilitate the verifiability and

reproducibility of our results, we provide a package [16]

containing all our experimental data including raw data and

80 screen recordings of user sessions using EXTRAVIS and

ExplorViz. To the best of our knowledge, our experiments are

the first experiments to compare different trace visualization

techniques to each other.

In summary, our main contributions are:

1. the reusable design and execution of two controlled

experiments comparing the trace visualization tools EX-

TRAVIS utilizing circular bundling and a massive se-

quence view and ExplorViz basing on the city metaphor

in typical program comprehension tasks,

2. a thorough analysis of the strategies chosen by the

participants for each task and visualization technique, and

3. identification of common challenges for controlled exper-

iments comparing trace visualization techniques.

The remainder of this paper is organized as follows. We first

present EXTRAVIS in Section II and ExplorViz in Section III.

The following Section IV describes our two controlled exper-

iments, including their design, operation, results, discussion,

and threats to validity. Related work is discussed in Section V.

Finally, we draw the conclusions and illustrate future work in

Section VI.

Preprint - Copyright: IEEE



Fig. 1. The recorded execution trace of PMD for the first controlled experiment visualized in EXTRAVIS

II. EXTRAVIS IN A NUTSHELL

In this section, we present the features of EXTRAVIS1 which

forms the baseline of our controlled experiments. This lays the

foundation for a later discussion of the chosen strategies of the

subjects, which is presented in the corresponding subsection

of the controlled experiments (Section IV-E). EXTRAVIS has

been developed by Cornelissen et al. [11]. It focuses on the

visualization of one large execution trace. For this purpose, it

utilizes two interactive, linked views: the circular bundle view

and the massive sequence view. Those two views are described

in the following subsections.

A. Circular Bundle View

The centered visualization of EXTRAVIS is the circular

bundle view (� in Figure 1). The classes are arranged at

the inner circle. Due to the high number of classes in the

analyzed software system PMD2 (279 visualized classes), the

names of the classes are only visible through tooltips on the

respective entity. The outer circles represent the packages of

PMD. In the inner field of the circle, the method calls between

classes is represented by lines. The names of the method calls

are visible by hovering over these lines. EXTRAVIS utilizes

color coding for the direction of the visualized communication.

In its default setting, green represents outgoing calls and red

expresses incoming calls. The width of each line corresponds

to the call frequency of the method.

1http://swerl.tudelft.nl/extravis
2http://pmd.sourceforge.net

EXTRAVIS follows a hierarchical, bottom-up strategy [17],

i.e., all packages show their internal details at the beginning.

It is possible to close packages and thus hide the contained

classes to gain further insights into the global structure of

the visualized software system. Furthermore, edge bundling

provides hints about strong relationships between packages.

The communication between two classes can be filtered by

marking both classes. This selection highlights the method

calls in the massive sequence view. In addition to displaying

the communication direction, EXTRAVIS enables switching to

a chronological trace analysis (�) by changing the semantics

of the line colors. In this mode, color is globally used for

representing the occurrence in time of the method call in the

trace. In its default setting, dark blue represents the oldest

method call and yellow corresponds to the newest method call.

B. Massive Sequence View

The massive sequence view (�) visualizes the method calls

over time similar to a compressed UML sequence diagram. On

top, the classes and packages are displayed and their method

calls are listed beneath. The direction of the communication

is color coded as in the circular bundle view. The massive

sequence view enables to filter the method calls according to a

time window from point A in a trace to point B in a trace. This

filtering restricts the massive sequence view and the circular

bundle view to only contain method calls within the selected

time window. A further feature of EXTRAVIS is a history of

the previously selected time windows (�).



Fig. 2. The recorded execution trace of PMD for the first controlled experiment represented in ExplorViz

III. EXPLORVIZ IN A NUTSHELL

This section introduces our web-based ExplorViz3 visualiza-

tion. It has been developed for large software landscapes while

providing details on the communication within an application

on demand. Therefore, ExplorViz features a landscape-level

and an application-level perspective. The experiments pre-

sented in Section IV solely use the application-level perspec-

tive since only one application is visualized and not a whole

software landscape. Thus, we refer to [14] for details on the

landscape-level perspective. The application-level perspective

of ExplorViz addresses the same level of detail as addressed

by EXTRAVIS. The city metaphor and the disabled features of

ExplorViz for the comparative experiment are described in the

following subsections.

A. City Metaphor

Figure 2 displays our application-level perspective. It visu-

alizes the execution trace of PMD used in our first controlled

experiment. The flat green boxes (�) in our visualization rep-

resent packages showing their contained elements. The green

boxes on the top layer are packages (�) hiding their internal

details. They can be opened or closed interactively. Classes are

visualized by purple boxes and the communication is displayed

by orange lines (�). The width of the line corresponds to

the call frequency of the represented methods. The height

of classes maps to the active instance count. The layout is

a modified version of the layout used in CodeCity [18].

3http://www.explorviz.net

ExplorViz follows a hierarchical, top-down approach [19].

Therefore, details about the classes and their communica-

tion are provided on demand following the Shneiderman

mantra [20] of “Overview first, zoom and filter, then details-

on-demand.” To explore the relationships between classes, the

user can mark classes by clicking on them to highlight their

incoming and outgoing communication and to obtain details

through tooltips.

B. Disabled Features for the Experiments

Clicking on a communication line reveals a dialog where

the user can choose which trace to analyze in detail. The

trace analysis is conducted through a trace replayer. Here,

the user can switch between an automatic play mode and

stepping through the trace. We have disabled this feature for

the experiments since there is no similar feature in EXTRAVIS.

As ExplorViz provides a periodically updated live visu-

alization, a further main feature is time shifting (�). It is

designed for analyzing specific situations of interest, for in-

stance, performance anomalies [21]. Again there is no directly

comparable feature in EXTRAVIS. Therefore, we have disabled

this feature for our experiments.

Source code viewing is considered important [3] especially

during a program comprehension process. Therefore, Ex-

plorViz provides the possibility to open a dialog that displays

the source code for each class, if available. Similarly to the

previous features, we have disabled it for the experiments due

to its absence in EXTRAVIS.



IV. CONTROLLED EXPERIMENTS

In this paper we compare the impact of using either EX-

TRAVIS or ExplorViz for program comprehension. Therefore,

we defined typical program comprehension tasks for our object

system PMD. To validate our results, we replicated [22] our

experiment by conducting a second controlled experiment

using a different-sized object system named Babsi.4 We mea-

sured the time spent and the correctness for each task. These

measures are typically used in the context of program compre-

hension [23]. After the experiments, we analyzed the benefits

of using EXTRAVIS with circular bundling or ExplorViz with

the city metaphor on the defined tasks.

We describe both controlled experiments by their design,

operation, data collection, analysis, results, discussion, and

threats to validity. Afterwards, we share lessons learned and

give advice on avoiding some observed challenges.

A. Experimental Design

In addition to general software engineering experimentation

guidelines [24]–[28], we follow the experimental designs of

Wettel et al. [29] and of Cornelissen et al. [9]. Similar to

these experiments, we use a between-subjects design. Thus,

each subject only solves tasks with either EXTRAVIS or

ExplorViz and therefore, uses one tool only. Following the

GQM approach [30], we define the goal of our experiments as

quantifying the impact of using either EXTRAVIS or ExplorViz

for program comprehension.

1) Research Questions & Hypotheses: We define three

research questions (RQ) for our defined goal:

• RQ1: What is the ratio between EXTRAVIS and Ex-

plorViz in the time required for completing typical pro-

gram comprehension tasks?

• RQ2: What is the ratio between EXTRAVIS and Ex-

plorViz in the correctness of solutions to typical program

comprehension tasks?

• RQ3: Which typical sources of error exist when solving

program comprehension tasks with EXTRAVIS or Ex-

plorViz?

Accordingly, we formulate two null hypotheses:

• H10: There is no difference between EXTRAVIS and Ex-

plorViz in the time spent for completing typical program

comprehension tasks.

• H20: The correctness of solutions to typical program

comprehension tasks does not differ between EXTRAVIS

and ExplorViz.

We define the following alternative hypotheses:

• H1 EXTRAVIS and ExplorViz require different times for

completing typical program comprehension tasks.

• H2 The correctness of solutions to typical program

comprehension tasks differs between EXTRAVIS and Ex-

plorViz.

For RQ3, we conduct an in-depth analysis of the results and

analyze the recorded sessions of each subject in detail.

4http://babsi.sourceforge.net

2) Dependent and Independent Variables: The independent

variable in both experiments is the employed tool used for the

program comprehension tasks, i.e., EXTRAVIS or ExplorViz.

We measured the accuracy (correctness) and response time

(time spent) as dependent variables. These are usually investi-

gated in the context of program comprehension [9], [23], [29].

3) Treatment: The control group used EXTRAVIS to solve

the given program comprehension tasks. The experimental

group solved the tasks with ExplorViz.

4) Tasks: For our task definitions, we stuck to the frame-

work of Pacione et al. [31] which describes categories of

typical program comprehension tasks. It focuses on dynamic

analysis [29] providing a good match for our task definitions.

In addition, Cornelissen et al. [9] used this framework.

For our first experiment, we selected a medium to large-

sized object system and adhered to the tasks defined by Cor-

nelissen et al. [9] as close as possible to prevent bias toward

ExplorViz. Preliminary experiments with their object system

Checkstyle revealed only a small amount of used classes

(41). PMD provides similar functionality to Checkstyle, i.e.,

reporting rule violations on source code. Analyzing a single

source code file (Simple.java by Cornelissen et al.) with

the default design.xml of PMD version 5.1.2 revealed 279

used classes and 421.239 method calls in the resulting trace.

Table I shows our tasks including their context and achiev-

able maximum points. We adapted the tasks from Cornelis-

sen et al. to the context of PMD. Notably, we dismissed two

original tasks to restrict our experiment to one hour. However,

the dismissed tasks are redundant to the remaining tasks with

regard to the program comprehension activity categories which

are still completely covered. Due to space constraints, we refer

to Pacione et al. [31] for an explanation of these categories

(A1 to A9). All tasks were given as open questions to prevent

guessing. In addition, we changed the order of the tasks

compared to Cornelissen et al. since in our experiment no

source code access was provided. Our task set starts with less

complex tasks (identifying fan-in and fan-out) and ends with

complex exploration tasks. This enabled users to get familiar

with the visualization in the first tasks and raises the level of

complexity in each following task.

To validate our results, we conducted a second controlled

experiment as replication. It investigated the influence of

the object system’s size and design on the results. The

visualization of the city metaphor is usually more affected

by these factors than using the circular bundling approach.

Therefore, we selected a small-sized and not well designed

object system. Both criteria are met by Babsi written by under-

graduate students. Babsi is an Android app designed to support

pharmacists in supervising the prescription of antibiotics. The

execution trace generated for our second experiment utilizes

all 42 classes and contains 388 method calls.

The tasks for our replication are given in Table II. To enable

comparisons of the subjects’ performance in our experiments,

we kept the tasks as similar as possible. Notably, there is no

task similar to T3.1 from our PMD experiment and hence we

omitted it in the replication.



TABLE I
DESCRIPTION OF THE PROGRAM COMPREHENSION TASKS FOR THE FIRST EXPERIMENT (PMD)

ID Category Description Score

Context: Identifying refactoring opportunities
T1 A{4,8} Name three classes (from different packages) that have high fan-in (at least 4 incoming communications) and almost no fan-out

(outgoing communication).
3

Context: Understanding the checking process
T2.1 A{3,4,5} Write down all constructor/method calls between RuleChain and JavaRuleChainVisitor. 3
T2.2 A{1,2,5,6} In general terms, describe the lifecycle of GodClassRule: Who creates it, what does it do (on a high level)? 3

Context: Understanding the violation reporting process
T3.1 A{1,5} Which rules are violated by the input file using the design rule set? Hint: Due to dynamic analysis the violation object is created

only for those cases.
2

T3.2 A{1,3} How does the reporting of rule violations work? Where does a rule violation originate and how is it communicated to the user?
Write down the classes directly involved in the process. Hint: The output format is set to HTML.

4

Context: Gaining a general understanding
T4 A{1,7,9} Starting from the Mainclass PMD – On high level, what are the main abstract steps that are conducted during a PMD checking run.

Stick to a maximum of five main steps. Hint: This is an exploration task to get an overview of the system. One strategy is to follow
the communication between classes/packages. Keep the handout of PMD in mind.

5

5) Population: We used the computer science students’

mailing lists of the Kiel University of Applied Sciences

(FH Kiel) and Kiel University (CAU Kiel) to recruit subjects

for our first experiment. 30 students have participated in the

experiment (6 students from FH Kiel and 24 students from

CAU Kiel). Our replication was conducted with 50 students

recruited from the CAU Kiel course “Software Project” in

summer term 2014 with no overlapping participants.

As motivation, they participated in a lottery for one of five

gift cards of 50 C. Additionally, the best three performances

received a certificate. The students in the replication had the

additional motivation of supporting their task of understanding

the software (Babsi) to be used in their course.

The subjects were assigned to the control or experimental

groups by random assignment. To validate the equal distri-

bution of experiences, we asked the subjects to perform a

self-assessment on a 5-point Likert Scale [32] ranging from

0 (no experience) to 4 (expert with years of experience)

before the experiment. The average programming experience

in the control group was 2.33 versus 2.46 in the experimental

group. Their experience with dynamic analysis was 0.41 and

0.69, respectively. Due to the similarity of the self-assessed

results, we conclude that the random assignments resulted in

a similarly distributed experience between both groups. The

same holds for our replication (Java experience: 1.68 and 1.79;

dynamic analysis experience: 0.28 and 0.25).

B. Operation

In the following, we detail the operation of our experiments.

1) Generating the Input: We generated the input for Ex-

plorViz directly from the execution of the object systems.

ExplorViz persists its data model into files which act as a

replay source during the experiments. EXTRAVIS requires files

conforming to the Rigi Standard Format (RSF) [33]. To the

best of our knowledge, there were no suitable RSF exporter

tool for traces of our Java-based object systems. Therefore,

we implemented such an exporter in ExplorViz.

Two traces were generated for PMD. The configuration of

PMD is conducted in the first trace while the rule checking

is performed in the second trace. Both traces are equally

important for program comprehension. However, EXTRAVIS is

limited to visualize only one trace at a time. Thus, we had to

concatenate the two generated traces. Alternatively, the users

of EXTRAVIS could have manually loaded each trace when

needed. However, this would have hindered the comparison

between EXTRAVIS and ExplorViz. Similar circumstances

applied to our replication.

2) Tutorials: We provided automated tutorials for EX-

TRAVIS and ExplorViz where all features were explained.

This enhanced the validity of our experiments by eliminating

human influences. For ExplorViz, we integrated a guided and

interactive tutorial. Since EXTRAVIS is not open-source, we

could only provide an illustrated tutorial where the user is

not forced to test the functionality. However, we advised the

subjects in the control group to interactively test it. Subsequent

evaluation of the user recordings showed that all of the subjects

have adhered to our advice.

3) Questionnaire: We used an electronic questionnaire

rather than sheets of paper. An electronic version provides

several advantages for us. First, the timings for each task

are automatically recorded and time cheating is impossible.

Second, the user is forced to input valid answers for some

fields, e.g., perceived difficulty in the debriefing part. Third,

we omit a manual and error-prone digitalization of our results.

4) Pilot Study: Before the actual controlled experiment,

we conducted a small scale pilot study with experienced

colleagues as participants. According to the received feedback,

we improved the material and added hints to the tasks which

were perceived as too difficult. In addition, a red-green-color-

blind impaired colleague used both visualizations to asses

any perception difficulties. In the case of ExplorViz, existing

arrows in addition to the colors for showing communication

directions were sufficient. In the case of EXTRAVIS, we added

a tutorial step to change the colors.



TABLE II
DESCRIPTION OF THE PROGRAM COMPREHENSION TASKS FOR OUR REPLICATION (BABSI)

ID Category Description Score

Context: Identifying refactoring opportunities
RT1 A{4,8} Name three classes that have high fan-in (at least 3 incoming communications) and almost no fan-out (outgoing communication). 3

Context: Understanding the login process
RT2.1 A{3,4,5} Write down all constructor/method calls between gui.MainActivity and comm.Sync. 3
RT2.2 A{1,2,5,6} In general terms, describe the lifecycle of data.User: Who creates it, how is it used? Write down the method calls. 3

Context: Understanding the antibiotics display process
RT3 A{1,3} How does the display of antibiotics work? Where and how are they created? Write down the classes directly involved in the process. 6

Context: Gaining a general understanding
RT4 A{1,7,9} Starting from the Mainclass gui.MainActivity - What are the user actions (e.g., Login and Logout) that are performed during

this run of Babsi. Write down the classes of the activities/fragment for each user action. Stick to a maximum of seven main steps
(excluding Login and Logout). Hint: This is an exploration task to get an overview of the system. One strategy is to follow the
communication between classes.

7

5) Procedure: Both experiments took place at CAU Kiel.

For the first experiment, each subject had a single session.

Therefore, most subjects used the same computer. Only in rare

cases, we assigned a second one to deal with time overlaps.

In our replication, six to eight computers were concurrently

used by the participants in seven sessions. In preliminary

experiments, all systems provided similar performance. In all

cases, the display resolution was 1920×1080 or 1920×1200.

Each participant received a short written introduction to

PMD/Babsi and was given sufficient time for reading before

accessing the computer. The subjects were instructed to ask

questions in case of encountered challenges at all times.

Afterwards, a tutorial for the respective tool was started.

Subsequently, the questionnaire part was started with personal

questions and experiences, followed by the tasks, and finally

debriefing questions.

The less complex tasks (T1, T2.1, T3.1, RT1, RT2.1) have

a time allotment of 5 minutes, while the more complex tasks

(T2.2, T3.2, T4, RT2.2, RT3, RT4) have 10 minutes. The

elapsed time was displayed during the task and highlighted

when reaching overtime. The subjects were instructed to

adhere to this timing but were not forced to do so.

C. Data Collection

In addition to personal information and experience, we

collected several data points during our experiments.
1) Timing and Tracking Information: All our timing in-

formation was automatically determined within our electronic

questionnaire. Furthermore, we recorded every user session

using a screen capture tool (FastStone Capture). These record-

ings enabled us to reconstruct the user behavior and to look

for exceptional cases, e.g., technical problems. In the case of

such problems, we manually corrected the timing data.
2) Correctness Information: We conducted a blind review

process due to the open questions format. First, we agreed

upon sample solutions for each task. A script randomized the

order of the answers of the subjects. Thus, no association

between answers and group was possible. Then, both review-

ers evaluated all solutions independently. Afterwards, small

discrepancies in the ratings ware discussed.

3) Qualitative Feedback: The participants were asked to

give suggestions to improve their used tool. Due to space

constraints, we restrict ourselves to listing the three most

mentioned suggestions for each tool. Ten participants sug-

gested hiding not related communication lines when marking

a class in EXTRAVIS. Four users missed a textual search

feature, which is not available in EXTRAVIS and ExplorViz,

and four other users suggested that the performance of fetching

called methods should be improved. In the case of ExplorViz,

ten subjects suggested to resolve the overlapping of com-

munication lines. Seven users found it difficult to see class

names due to overlapping. Five users wished for an opening

window containing a list of method names when clicking on

communication lines.

D. Analysis and Results

Table III provides descriptive statistics of the overall results

related to time spent and correctness for both experiments.

We removed the users with a total score of less than three

points from our analysis. This effected five users for our first

experiment, i.e., three users from the control group and two

users from the experimental group. A single user from the

experimental group of our second experiment was effected. In

total, three users did not look at the object systems. Hence,

they guessed all answers. Two users did not use the “Show

full trace” feature in EXTRAVIS, thus analyzing only 0.02%

of the trace. One user did not take any look at method names

as required for the tasks. For similar reasons, one user for our

first experiment and two users in our replication had missing

values and are omitted from the overall results but included

in the single results.

In Task T3.1, most users searched for a non-existing class

design file before giving up. This hints at an ambiguous

task. Thus, we removed Task T3.1 from our overall analysis.

We use the two-tailed Student’s t-test which assumes nor-

mal distribution. To test for normal distribution, we use the

Shapiro-Wilk test [34] which is considered more powerful [35]

than, for instance, the Kolmogorov-Smirnov test [36]. To

check for equal or unequal variances, we conduct a Levene

test [37].



TABLE III
DESCRIPTIVE STATISTICS OF THE RESULTS RELATED TO TIME SPENT (IN MINUTES) AND CORRECTNESS (IN POINTS)

PMD Babsi
Time Spent Correctness Time Spent Correctness

EXTRAVIS ExplorViz EXTRAVIS ExplorViz EXTRAVIS ExplorViz EXTRAVIS ExplorViz

mean 47.65 34.27 8.42 13.58 31.55 29.14 9.40 13.04
difference -28.06% +61.28% -7.64% +38.72%
sd 9.96 3.14 4.29 2.46 7.25 6.48 3.60 3.23
min 23.04 29.43 3 4 18.94 19.38 3 6
median 48.89 33.84 7 14 31.27 27.19 9 13.5
max 65.07 38.99 16 18 43.20 41.56 18 18

Analyzed users 12 12 12 12 24 23 24 23
Shapiro-Wilk W 0.8807 0.9459 0.9055 0.9524 0.9618 0.9297 0.9738 0.9575
Levene F 2.4447 2.0629 0.4642 0.0527
Student’s t-test

df 22 22 45 45
t 4.4377 -3.6170 1.2006 -3.6531
p-value 0.0002 0.0015 0.2362 0.0007

Fig. 3. Overall time spent and correctness for both experiments

For all our analysis tasks, we used the 64-bit R package in

version 3.1.1.5 In addition to the standard packages, we utilize

gplots and lawstat for drawing bar plots and for import-

ing Levene’s test functionality, respectively. Furthermore, we

chose α = .05 to check for significance in our results. The

raw data, the R scripts, and our results are available as part of

our experimental data package [16].

RQ1 (Time Spent): We start by checking the null hypothesis

H10 which states that there is no difference in time spent

between EXTRAVIS and ExplorViz for completing typical

program comprehension tasks.

Figure 3, left-hand side, displays a box plot for the time

spent in both experiments. In Table III the differences between

5http://www.r-project.org

the mean values of EXTRAVIS and ExplorViz are shown. For

our first experiment, the ExplorViz users required 28.06% less

total time for completing the tasks and in our replication they

required 7.64% less total time.

The Shapiro-Wilk test for normal distribution in each group

and each experiment succeeds and hence we assume normal

distribution. The Levene test also succeeds in both experiments

and hence we assume equal variances between both groups.

The Student’s t-test reveals a probability value of 0.0002

in our first experiment which is lower than the chosen signif-

icance level. Therefore, the data allows us to reject the null

hypothesis H10 in favor of the alternative hypothesis H1 for

our first experiment. Thus, there is a significant difference in

timings (-28.06%) between EXTRAVIS and ExplorViz (t-test

t=4.4377, d.f. = 22, P = 0.0002).

In the replication, the Student’s t-test reveals a probability

value of 0.2362 which is larger than the chosen significance

level and we fail to reject the null hypothesis in this case.

RQ2 (Correctness): Next, we check the null hypothesis

H20 which states that there is no difference in correctness

of solutions between EXTRAVIS and ExplorViz in completing

typical program comprehension tasks.

Figure 3, right-hand side, shows a box plot for the overall

correctness in both experiments. Again, Table III shows the

differences between the mean values of each group. For our

first experiment, the ExplorViz users achieve a 61.28% higher

score and in our replication they achieve a 38.78% higher score

than the users of EXTRAVIS.

Similar to RQ1, the Shapiro-Wilk and Levene tests succeed

for both experiments. The Student’s t-test reveals a probability

value of 0.0015 for our first experiment and 0.0007 for our

replication which is lower than the chosen significance level

in both cases. Therefore, the data allows us to reject the null

hypothesis H20 in favor of the alternative hypothesis H2 for

both experiment. Hence, there is a significant difference in

correctness (+61.28% and +38.72%) between the EXTRAVIS

and ExplorViz groups (t-test t=-3.6170, d.f. = 22, P = 0.00015

and t-test t=-3.6531, d.f. = 45, P = 0.0007).



Fig. 4. Average time spent and correctness per task for PMD experiment

E. Discussion

The time spent in our first experiment is significantly

lower using ExplorViz. The results for the time spent in our

replication are not significant, hence there is no statistical

evidence for difference in the time spent. However, due to

the median of 31 minutes for EXTRAVIS and 27 minutes for

ExplorViz, the box plot, and the fact that our first experiment

had a significant difference in time spent, it is unlikely that the

time spent with EXTRAVIS is much less than with ExplorViz.

Therefore, we can interpret our results such that using either

EXTRAVIS or ExplorViz had only a negligible effect in time

spent in the replication. Thus, we focus on the correctness in

our following discussion.

The analysis of the results reveals a significant higher

correctness for users of ExplorViz in both experiments. We

conclude that the effect of using ExplorViz for solving typical

program comprehension tasks leads to a significant increase

in correctness and in less or similar time spent on the tasks in

comparison to using EXTRAVIS.

We conducted an in-depth analysis of each user recording to

investigate the reasons for the drawn conclusions. Due to space

constraints, we focus on our PMD experiment and briefly

describe any differences in our replication. The results for each

task are shown in Figure 4. For our replication, the graphics

for each task are contained in our provided experimental data

package. We omit the discussion of Task T3.1 due to its

unclear task description.
T1: Most EXTRAVIS users investigated the classes with

incoming red lines. They evaluated each of the found classes

for the amount of incoming connections by counting the

method calls. This was hindered by the large amount of

displayed method calls and hence they had to restrict the

shown trace using the massive sequence view. A source of

error was the used color coding. Some users confused the

incoming color and the outgoing color, i.e., they searched for

green lines. In the smaller object system of our replication,

the method call counting was easier.

Most of the ExplorViz users used random searching for a

class. However, the amount of incoming and outgoing method

calls of a class was directly visible.

T2.1: The EXTRAVIS users searched for the first class

by closing unrelated packages. Then, the second class was

searched. Due to the large amount of method calls, the users

had to filter them with the massive sequence view. The last

call visitAll was sometimes missed due to being a thin

line in the massive sequence view.

In ExplorViz, the users searched for the first class and

marked it. For the second class, the users opened two packages

and hovered over the communication to get the method names.

With both tools, the users were faster due to a smaller object

system in our replication.

T2.2, T3.2, T4: Each of these three tasks required an

exploration of the system. For EXTRAVIS, the users started

at the class from the task assignment. They marked the class

to view its communication and used the massive sequence

view to filter it. Therefore, they often divided the trace into

arbitrary sequences. Then, the users investigated the method

names in each sequence. During this process, some users

skipped sequences since EXTRAVIS provides no hints on

already viewed sequences. This resulted in misses of method

calls and called classes.

The ExplorViz users started with the class described in the

task. They looked at the incoming and outgoing method calls.

Upon finding a method name of interest, they marked the

called class and investigated further communication.

Summary: In our experiments, the massive sequence view

of EXTRAVIS led to missing method calls, if the trace is large.

This is caused by missing hints on already viewed sequences

and by single method calls being visualized by thin lines.

Furthermore, the color coding of directions became a source

of error. We attribute this circumstance to easily forgettable

semantics of color coding while concentrating on a task. Thus,

some users had to regularly look up the semantics.

Some users of ExplorViz had difficulties in hovering the

communication lines. Some users tried to hover the triangles

used for displaying the communication direction instead of the

required lines. Furthermore, the overlapping method names

and communication lines resulted in taking more time to get

the required information.

F. Threats to Validity

In this section, we discuss the threats to internal and external

validity [38]–[40] that might have influenced our results.

1) Internal Validity:
a) Subjects: The subjects’ experience might not have

been fairly distributed across the control group and the exper-

imental group. To alleviate this threat, we randomly assigned

the subjects to the groups which resulted in a fair self-assessed

experience distribution as described in Section IV-A5.



Another threat is that the subjects might not have been

sufficiently competent. Most participants stated regular or

advanced programming experience in our first experiment

involving PMD. For the replication, most subjects stated

beginner or regular programming experience which should be

sufficient for the small-sized object system Babsi.

The subjects might have been biased towards ExplorViz

since the experiments took place at the university where it is

developed. To mitigate this threat, the subjects did not know

the goal of the experiments and we did not tell them who

developed which tool.

A further threat is that the subjects might not have been

properly motivated. In our first experiment, the participants

took part voluntarily. Furthermore, we encountered no unmo-

tivated user behavior in the screen recordings – except for the

subjects scoring below three points that we have excluded from

our analysis (Section IV-D). Therefore, we assume that the

remaining subjects were properly motivated. In our replication,

the student subjects had the additional motivation to under-

stand the object system. Its maintenance and the extension of

Babsi was the main goal of their upcoming course. Hence,

we assume that they were properly motivated. This is also

confirmed by the screen recordings.

b) Tasks: Since we – as the authors of ExplorViz –

created the tasks, they might have been biased towards our

tool. We mitigated this threat by adapting the tasks defined by

Cornelissen et al. [9] as similar as possible.

The tasks might have been too difficult. This threat is

reduced by the fact that users from both groups achieved the

maximum score in each task except for the last. Furthermore,

the average perceived task difficulty, shown in Table IV, is

between easy (2) and difficult (4), and never too difficult (5).

To reduce the threat of incorrect or biased rating of the

solutions, we used a blind review process where two reviewers

independently reviewed each solution. The seldom discrepan-

cies in the ratings were at most one point which suggests a

high inter-rater reliability.

Omitting the unclear Task T3.1 might have biased the

results. As can be seen in Figure 4, this task had similar results

as the others tasks. Thus, not omitting Task T3.1 would result

in only a small difference of one percent in time spent (27

percent) and two percent in correctness (63 percent).

c) Miscellaneous: The results might have been influ-

enced by time constraints that were too loose or too strict.

This threat is reduced by the average perceived time pressure

which are near an appropriate (3) rating for both groups.

The tutorials might have differed in terms of quality. This

might have led to slower subject performance with one tool.

In both groups, the subjects had the possibility to continue to

use the tutorial until they felt confident in their understanding.

Users of EXTRAVIS had to switch between the questionnaire

application and EXTRAVIS. This could have let to a disadvan-

tage of the EXTRAVIS group. This threat is mitigated by the

fact that the users had only to switch to enter answers and both

applications were tiled on the screen. In addition, the users of

ExplorViz had also to click into the input field.

TABLE IV
DEBRIEFING QUESTIONNAIRE RESULTS FOR OUR PMD EXPERIMENT

1 IS BETTER – 5 IS WORSE

EXTRAVIS ExplorViz
mean stdev. mean stdev.

Time pressure (1-5) 3.67 0.78 2.62 0.50
Tool speed (1-5) 3.08 0.90 2.15 0.99
Tutorial helpfulness (1-5) 2.75 1.14 1.92 0.86
Tutorial length (1-5) 3.58 0.67 3.00 0.41
Achieved PMD comprehension (1-5) 3.42 0.79 3.15 0.90

Perceived task difficulty (1-5)
T1 2.33 0.65 2.42 1.00
T2.1 3.17 0.72 2.31 0.75
T2.2 3.58 0.67 3.46 1.05
T3.1 3.83 0.58 3.54 0.88
T3.2 3.75 0.75 3.38 0.65
T4 3.75 0.87 3.54 0.88

For reasons of fairness, we disabled some features in

ExplorViz for the experiment. This might have influenced the

results since the participants had less features to learn. The

impact of the disabled features should be investigated in a

further experiment.

2) External Validity: To counteract the threat of limited

representativeness of a single object system, we conducted a

replication and varied the system. We chose an object system

that differed in size and design quality. However, there might

be more attributes of the object system that impacted the

results. Therefore, further experiments are required to test the

impact of other systems on the results.

Our subjects were only made up of students. Thus, they

might have acted different to professional software engineers.

Further replications are planned with professionals to quantify

the impact of this threat.

The short duration of the tool’s usage endangers the gen-

eralizability of the results. To investigate the impact of this

threat, longer experiments should be conducted.

Another external validity threat concerns the program com-

prehension tasks, which might not reflect real tasks. We

adapted our tasks from Cornelissen et al. [10] who used the

framework of Pacione et al. [31]. Thus, this threat is mitigated.

G. Lessons Learned and Challenges Occurred

We consider the user recordings very useful. They enabled

us to analyze the users’ strategies in detail. Furthermore, we

can investigate unsuitable answers as in the case of the users,

who did not access the visualization of the correct object

system. Thus, the user recordings are a method of quality

assurance resulting in more confidence in the data set.

However, we also experienced some challenges during our

experiments. Implementing a generator for the input files of

tools should be superfluous for using the tool. Therefore, we

advise other visualization tool developers, who use externally

generated input files, to bundle a working input file generator

and a manual with their distribution (if the license permits

this). External tools might change or become unavailable,

rendering it hard for others to employ the tool.



Furthermore, tutorial material and source code for EX-

TRAVIS were unfortunately not available. Therefore, we had to

create our own tutorial materials which might have influenced

the experiment. With the source code, we could have, for

instance, integrated an interactive tutorial into EXTRAVIS. To

facilitate a better and easier comparison of visualization tools,

research prototypes should be developed as open source.

Tool developers should contribute to overcome those chal-

lenges and to lower the hurdle for comparison experiments.

V. RELATED WORK

In this section, we discuss related work on controlled

experiments with software visualization tools in a program

comprehension context. Many approaches for software visual-

ization of single applications exist and for reasons of space, we

refer to [11] and [14] for a detailed comparison of EXTRAVIS

and ExplorViz to other software visualization approaches.

A. Experiments Comparing to an IDE

In this subsection, we list related experiments that compare

visualizations to an IDE. In general, contrary to our experi-

ments, we compare two visualization techniques without the

use of an IDE to investigate the efficiency and effectiveness

of the visualization techniques. Further differentiations are

presented in each experiment discussion.

Marcus et al. [41] present a controlled experiment compar-

ing Visual Studio .NET and sv3D for program comprehension.

The usage of sv3D led to a significant increase in the time

spent. In contrast to our experiments, they compared a visual-

ization basing upon static analysis and not trace visualization.

Quante [42] assessed whether additionally available Dy-

namic Object Process Graphs provide benefits to program

comprehension when using Eclipse. The experiment involved

two object systems and for the second system the results

were not significant. In contrast to our experiments, the author

investigated only the additional availability of a visualization

and did not compare two visualizations.

Wettel et al. [29] conducted a controlled experiment to com-

pare the usage of Eclipse and Excel to their tool CodeCity with

professionals. They found a significant increase in correctness

and decrease of time spent using CodeCity. They investigated

a single visualization basing upon static analysis, contrary to

our comparison of two trace visualizations.

Sharif et al. [43] present a controlled experiment compar-

ing Eclipse and the additional availability of the SeeIT 3D

Eclipse plug-in using eye-tracking. The experimental group

with access to SeeIT 3D performed significantly better in

overview tasks but required more time in bug fixing tasks.

In contrast to our experiments, they investigated only the

additional availability of SeeIT 3D basing on static analysis.

Cornelissen et al. [10] performed a controlled experiment

for the evaluation of EXTRAVIS to investigate whether the

availability of EXTRAVIS in addition to Eclipse provides

benefits. The availability of EXTRAVIS led to advantages in

time spent and correctness. In contrast, we compare two trace

visualization techniques.

B. Experiments Comparing Software Visualizations

Storey et al. [4] compared three static analysis tools in an

experiment. The authors performed a detailed discussion of

the tools’ usage but provided no quantitative results.

Lange and Chaudron [44] investigated the benefits of their

enriched UML views by comparing them with traditional

UML diagrams. In contrast, we compared two different trace

visualization techniques with similar features.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we presented two controlled experiments with

different-sized object systems to compare the trace visual-

ization tools EXTRAVIS and ExplorViz in typical program

comprehension tasks. We performed the first experiment with

PMD and conducted a replication as our second experiment

using the smaller Babsi system.

Our first experiment resulted in a significant decrease of

28 percent of time spent and increase in correctness by 61 per-

cent using ExplorViz for PMD. In our replication with the

smaller-sized system, the time spent using either EXTRAVIS

or ExplorViz was similar. However, the use of ExplorViz

significantly increased the correctness by 39 percent.

Our in-depth analysis of the used strategies revealed sources

of error in solving the tasks caused by, for instance, color

coding or overlapping communication lines. In addition, we

identified common challenges for controlled experiments to

compare software visualization techniques. For instance, avail-

able visualization tools miss sufficient tutorial material.

Our results provide guidance towards ExplorViz for new

users who search for a trace visualization tool and have similar

tasks as we examined. Since our experiments investigated first

time use, the results might be different in long term usage.

This should be addressed in further experiments.

We provide a package containing all our experimental data

to facilitate the verifiability and reproducibility for further

replications [45]. It contains the employed version of Ex-

plorViz v0.5-exp (including source code and manual), input

files, tutorial materials, questionnaires, R scripts, datasets of

the raw data and results, and 80 screen recordings of the

user sessions. We explicitly invite other researches to compare

their trace visualizations with ExplorViz and we provide as

complete material as possible to lower the effort for setting

up similar experiments. The package is available online [16]

with source code under the Apache 2.0 License and the data

under a Creative Commons License (CC BY 3.0).

In our future work, we plan to further replicate our ex-

periments with professional software engineers. Furthermore,

several other trace visualization techniques can be compared

to EXTRAVIS and ExplorViz, for instance, the technique used

by Trümper et al. [46]. Further future work is the development

of a validated programming experience questionnaire.

For ExplorViz, we have gained precious in-depth knowledge

on how our tool is used by a large group of users. The

experiments produced a large amount of valuable qualitative

feedback, which we will integrate into future releases of Ex-

plorViz, for instance, improvements of the layout algorithm.
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