ACM SIGSOFT Software Engineering Notes

Page 1

Including Performance Benchmarks
into Continuous Integration to Enable DevOps

Jan Waller, Nils C. Ehmke, and Wilhelm Hasselbring
Software Engineering Group, Kiel University, 24098 Kiel, Germany

{jwa,nie,wha} @informatik.uni-kiel.de

ABSTRACT

The DevOps movement intends to improve communication, col-
laboration, and integration between software developers (Dev)
and IT operations professionals (Ops). Automation of software
quality assurance is key to DevOps success. We present how auto-
mated performance benchmarks may be included into continuous
integration. As an example, we report on regression benchmarks
for application monitoring frameworks and illustrate the inclusion
of automated benchmarks into continuous integration setups.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging — Test-
ing tools. D.2.8 [Software Engineering]: Metrics — Perfor-
mance measures. D.2.9 [Software Engineering|: Management
— Software quality assurance (SQA).

General Terms
Measurement, Performance.

Keywords
Jenkins, Kieker, MooBench.

1. INTRODUCTION

Based upon our experience with regression benchmarks for appli-
cation monitoring frameworks, we suggest to include automated
benchmarks into continuous integration setups. Applying these
automated benchmarks in an early stage of the development pro-
cess enables an early detection and repair of performance issues
before such issues are propagated into a release.

This approach contributes to the current efforts of the DevOps
movement by presenting a case study of executing and analyzing
regression benchmarks in continuous integration setups. Further-
more, we provide a vision for improved analyses and visualizations
including automated notifications to the developers in charge.

The rest of this article is structured as follows: First, we introduce
the DevOps movement (Section 2) and our case study setup (Sec-
tion 3). In Section 4, a short overview on our present inclusion of
benchmarks into continuous integration is given while our vision
is sketched in Section 5. Finally, we provide a short summary and
advice in Section 6.

2. DEVOPS: DEVELOPMENT + OPERATIONS

In addition to studying the construction and evolution of software,
the software engineering discipline needs to address the operation
of continuously running software services. Often, software devel-
opment and IT operations are detached organizational units, with
a high potential for misunderstanding and conflict. The DevOps
movement intends to improve communication, collaboration, and

DOI:10.1145/2735399.2735416

integration between software developers (Dev) and IT operations
professionals (Ops).

Automation is key to DevOps success: automated building of sys-
tems out of version management repositories; automated execu-
tion of unit tests, integration tests, and system tests; automated
deployment in test and production environments. Besides func-
tional acceptance tests, automated tests of non-functional quality
attributes, such as performance, are required to ensure seamless
operation of the software. In this article, we present how perfor-
mance benchmarks may be included into continuous integration
setups.

Continuous integration [3] and continuous delivery are enabling
techniques for DevOps. A further important requirement for the
robust operation of software services are means for continuous
monitoring of software runtime behavior. In contrast to profil-
ing for construction activities, monitoring of operational services
should only impose a small performance overhead. The Kieker
monitoring framework is an example of providing these means
with a small performance overhead [5]. We report on how we in-
clude micro-benchmarks that measure the performance overhead
of Kieker into the continuous integration process for this moni-
toring framework.

3. KIEKER WITH MOOBENCH

The Kieker framework [5] is an extensible framework for appli-
cation-level performance monitoring of operational services and
subsequent dynamic software analysis.! It includes measurement
probes for the instrumentation of software systems and writers
to facilitate the storage or further transport of collected obser-
vation data. Analysis plug-ins operate on the collected data to
extract and visualize architectural models that can be augmented
by quantitative observations.

In 2011, the Kieker framework was reviewed, accepted, and pub-
lished as a recommended tool for quantitative system evaluation
and analysis by the SPEC Research Group. Since then, the tool
is also distributed as part of SPEC Research Group’s tool repos-
itory.? Although is has originally been developed as a research
tool, Kieker is used in several industrial systems.

A monitored software system has to share some of its resources
(e. g., CPU-time or memory) with the monitoring framework. The
amount of additional resources that are consumed by the moni-
toring framework is called monitoring overhead. In this article,
we are concerned with monitoring overhead measured by the in-
creasing response times of the monitored system.

1h1:1:p ://kieker-monitoring.net/
2http ://research.spec.org/projects/tools.html

http://doi.acm.org/10.1145/2735399.2735416

March 2015 Volume 40 Number 2

ACM SIGSOFT Software Engineering Notes

Benchmarks are used to compare different platforms, tools, or
techniques in experiments. They define standardized measure-
ments to provide repeatable, objective, and comparable results.
In computer science, benchmarks are used to compare, for in-
stance, the performance of CPUs, database management systems,
or information retrieval algorithms [4].

The MooBench micro-benchmark has been developed to mea-
sure and compare the monitoring overhead of different monitoring
frameworks [6]. We have identified three causes of application-
level monitoring overhead that are common to most monitoring
tools: (1) the instrumentation of the monitored system, (2) col-
lecting data within the system, e.g., response times or method
signatures, and (3) either writing the data into a monitoring log
or transferring the data to an analysis system. With the help of
our micro-benchmark, we can quantify these three causes of mon-
itoring overhead and, for instance, detect performance regressions
or steer performance tunings of the monitoring framework.

Thanks to irregularly performed manual benchmarks of the mon-
itoring overhead of Kieker, we have detected several performance
regressions after the releases of new versions over the last years.
After their detection, these performance regressions have been
transformed into tickets in our issue tracking system. This has
enabled us to further investigate the regressions and to provide
bug fixes for future releases.

The main challenge when patching performance regressions is
identifying the code changes that have triggered the regression.
With irregular manual benchmarks, lots of commits can contain
the possible culprit. Ideally, our benchmark would have been
executed automatically with each nightly build to provide imme-
diate hints on performance problems with each change. Thus, the
continuous integration of benchmarks provides the benefit of an
immediate and automatic feedback to developers.

4. INCLUDING MOOBENCH INTO JENKINS

The continuous integration setup that is employed by Kieker is
based upon Jenkins.?

As our initial approach, we developed a Jenkins plugin to execute
the benchmark. This plugin directly executes MooBench from
within Jenkins. However, this kind of execution violates the com-
mon benchmark requirement for an idle environment: Jenkins and
its periodical tasks, as well as the running plugin itself, influence
the benchmark results. This can be seen in Figure 1. Note that
the changes in the response times of the purple graph are not
caused by actual changes in the source code but rather by back-
ground tasks within Jenkins. Even remote execution with the help
of a Jenkins master/slave setup, i.e., executing the benchmark
within an otherwise idle Jenkins instance on a separate server,
has only provided fluctuating results.

Finally, we have chosen a simpler approach: Instead of using com-
plex plugins, we simply call a shell script at the end of each nightly
build on Jenkins. This script copies the benchmark and the cre-
ated Kieker nightly jar-file to an idle, pre-configured remote server
(e.g., onto a cloud instance). There, the benchmark gets exe-
cuted while Jenkins waits for the results. In addition to the usual
analyses performed by MooBench, e. g., calculating mean and me-
dian with their confidence intervals and quartiles, we also create a
comma-separated values (CSV) file with the mean measurement
results. This file can be read and interpreted by a plot plugin
within Jenkins. An example of such a generated plot based upon

3http://jenkins—ci.org/

DOI:10.1145/2735399.2735416

Page 2

the Kieker nightly builds is presented in Figure 2.

As is evident by the display of the data in Figure 2, the plot plugin
is rather limited. For instance, it is only capable of displaying the
measured mean response times that still contain some variations.
The display of additional statistical method, such as confidence
intervals, would be beneficial to their interpretation.

In addition, we currently only display the gathered results rather
than automatically notifying the developers when a performance
anomaly occurs. The actual detection of the anomalies has to be
performed manually. However, previous work on anomaly detec-
tion within Kieker results can be adapted for this scenario [1].

Finally, as is common with dynamic analysis approaches, the de-
tection and visualization of performance regressions is only pos-
sible within benchmarked areas of Kieker. As a consequence, any
performance regression caused by, for instance, unused probes or
writers cannot be found. However, a more thorough benchmark
requires a higher time cost (currently about 60 minutes per nightly
build). Thus, a balance has to be found between benchmark cov-
erage and time spent benchmarking.

Despite these remaining challenges in the current implementation,
the inclusion of MooBench into the continuous integration setup of
Kieker already provides great benefits. Any performance regres-
sions are now detected immediately. Furthermore, the regressions
can directly be linked to small sets of changes. Thus, diagnosis
of performance problems is aided. The current and future im-
plementations of our integration of benchmarks into Jenkins are
available as open source software with MooBench.* Furthermore,
the current state of our implementation is available with our con-
tinuous integration setup.®

S. EVALUATION AND VISION

In this section, we present our vision for improved analyses and
visualizations of regression benchmarks within continuous inte-
gration setups. Of special interest are automated detections of
performance regressions and corresponding notifications to the
developers in charge. We demonstrate the capabilities of our
envisioned approach with the help of our case study system by
studying a previous performance regression.

Since our inclusion of MooBench into the continuous integration
setup of Kieker, no additional major performance regressions have
occurred. Instead of artificially creating an anomaly to demon-
strate the capabilities of our setup, we have recreated earlier
nightly builds and executed the benchmark as it would have been
included. This post-mortem benchmarking also allows for an out-
look on a more advanced visualization and anomaly detection than
is currently realized within our Jenkins implementation.

Specifically, we have selected a performance regression that hap-
pened in March 2013 and that was detected in Kieker release
version 1.7: An unintended increase of the first part of monitor-
ing overhead (instrumentation) that was related to a bug in our
implementation of adaptive monitoring. To further narrow down
the cause of this regressions, we haven taken a look at the nightly
builds between Kieker releases 1.6 and 1.7. For each build, we
have run the MooBench benchmark in a configuration identical
to the one used in our continuous integration setup. The result-
ing visualization of a few of the relevant benchmark results of the
nightly builds is presented in Figure 3.

4http://kieker-monitoring.net/MooBench/

5http://build.kieker—monitoring.net/job/kieker—nightly—release/plot/

http://doi.acm.org/10.1145/2735399.2735416

March 2015 Volume 40 Number 2

ACM SIGSOFT Software Engineering Notes

Page 3

Mean Overhead of Kieker

130.000
120.000
110.000
100.000
90.000
80.000
70.000

60.000

Time {in ns)

50.000

40.000

30.000
20.000

10.000

o

#1750 (M 13)
#1752 (M 13)
#1755 (M 19
#1757 (M 1)
#1759 (M 15)
#1761 (M 172
#1763 (M 172
#1765 (M 12)
#1767 (Mrz 12)
#1769 (M 20)
#1771 (M 22)
#1773 (M 24

#1776 (M 272

T R m g T & 9 @ L~ @ & 8
S % %9 % &8 &8 & & & &5 & & & -
b 8 ¥ M g a4 £ & £ I £ g L B
z 2z = = 2 3 £ & 2 & 3 3 & &
w o o 3 8 8 8 &8 &5 5 38 5 8 o
g B 8 & EE 2 EREEEREEE g
BB BB S OFFFE E R R R om o2
£ £ £ £ £
Build

9= kieker-bench-none-mean -# kieker-bench-deactv-mean == kisker-bench-nologaing-mean =#= kieker-bench-logging-mean

Figure 1: Initial inclusion of MooBench into Jenkins

In Figure 3, the mean benchmark results are depicted as stacked
bars. Each bar is annotated to the right with its respective 95%
confidence interval. The lowest bar is barely visible and represents
the base time of the benchmark without any monitoring overhead.
The other three bars correspond to the three causes of overhead
(instrumentation, data collection, and writing). Our focus in this
analysis is on the orange bar, representing the instrumentation.
The actual anomaly is highlighted with a red ellipse.

The first four presented nightly builds are part of our analysis:
two builds before and after the performance regression occurred.
The final three builds demonstrate our bug fixing two and a half
month after the performance regression. With the help of our
presented vision of including benchmarks into continuous integra-
tion and performing automated anomaly detections on the results,
e.g., similar to [1], the time to fix performance regressions can be
reduced.

The necessity to automate the continuous execution of bench-
marks has also been recognized in other contexts. For instance,
the academical BEEN project is concerned with automated re-
gression benchmarking [2]. An industrial approach for continuous
benchmarking of web-based software systems is presented in [7].

6. SUMMARY AND ADVICE

Based on our experience with regression benchmarks, we suggest
to include benchmarks into continuous integration early in the
development process. In current practice, benchmark and moni-
toring instrumentation is often only integrated into the software
when problems occur after release in the production environment
of IT operations. Measurement instrumentation, i. e., benchmarks
as well as monitoring, should be integrated into software devel-
opment right from the start. Automated benchmarks are then
able to detect performance issues that may have been introduced
between versions, before these issues are propagated via the de-
ployment pipeline. Monitoring then can aid in the early detection
of further performance issues that only manifest in the actual de-
ployment of the software.

DOI:10.1145/2735399.2735416

References

(1] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring. Self-
adaptive software system monitoring for performance anomaly
localization. In Proceedings of the 8th IEEE/ACM Interna-
tional Conference on Autonomic Computing (ICAC 2011),
pages 197-200. ACM, June 2011.

T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi,
A. Tomecek, P. Tuma, and J. Urban. Automated bench-
marking and analysis tool. In Proceedings of the 1st Interna-
tional Conference on Performance FEvaluation Methodologies
and Tools (Valuetools 2006), pages 5-14. ACM, Oct. 2006.

2]

M. Meyer. Continuous integration and its tools. IEEE Soft-
ware, 31(3):14-16, May 2014.

[4] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmark-
ing to advance research: A challenge to software engineering.
In Proceedings of the 25th International Conference on Soft-
ware Engineering (ICSE 2003), pages 74-83. IEEE Computer

Society, May 2003.

A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitoring and
dynamic software analysis. In Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engi-
neering (ICPE 2012), pages 247-248. ACM, Apr. 2012.

[5]

J. Waller and W. Hasselbring. A benchmark engineering
methodology to measure the overhead of application-level
monitoring. In Proceedings of the Symposium on Software Per-
formance: Joint Kieker/Palladio Days (KPDays 2013), pages
59-68. CEUR Workshop Proceedings, Nov. 2013.

C. Weiss, D. Westermann, C. Heger, and M. Moser. Sys-
tematic performance evaluation based on tailored benchmark
applications. In Proceedings of the 4th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE 2013),
pages 411-420. ACM, Apr. 2013.

http://doi.acm.org/10.1145/2735399.2735416

March 2015 Volume 40 Number 2

ACM SIGSOFT Software Engineering Notes Page 4 March 2015 Volume 40 Number 2

Jenkins ___________________________ ==

Jenkins 0 Kieker-mightly-release
4 bkt bittong lgKiekeroverhead
O, stans
2 Jumg to Plot 1: Mean Ovarhead of Kisker v
a\ Tac
o Pot=
mug 248967124 [0.962187844 [5. 261322476 42.074501788 [15.566105377.

2005 . mu:smﬁls_'mm‘
@ =2010 Jul 28, 2014 3:24:00 M 2008 [0.248212454 [0.978093147 [5.277375026 [45.320901965 [47.430300026
[2008 (0247771758 [0.962133944 [5.269567715 [39.654406273 [47.411603364
'[0.969150603 [5.290644047 44430650767 [40. 760450175

2011 0. 247532605 (0.9457 76 447770166 |49. 168842976 |50. 244165739

@ #2005 Jul28, 2004 5:01:10 AM Mean Overhead of Kieker

@ =2000 123, 2014 §:76:53 1 s
@ =1999 Jul 23, 2014 4:51:49 PM T
@ #1998 123, 2014 1:59:37 P s
@ #1997 123, 2014 12:08:52 P é

@ #1003 Jul 22, 3014 5:01:10 AM F— e — P
@ #1992 Jul21, 2014 7:07:22 M A W S L S A —— T S S N W W S S—
@ #1991 Jul 21, 2014 4:56:10 O™ # 8 R 8 B A 8 A B B 8 @ € R 8 E 8 8 ®
o SE R LR TR RS L
© #1999 M 212010 1z o H E £ 5 I T % % g E g g Eg g g § &
4 . Build
[+ NoProe Probe —- Collacting Data =~ Writar (ASCl) =~ Writar (@in)|

Figure 2: Performance measurements within Jenkins

Figure 3: Scenario for detecting performance anomalies between releases via benchmarks in continuous integration

DOI:10.1145/2735399.2735416 http://doi.acm.org/10.1145/2735399.2735416

	acm.org
	Including Performance Benchmarks into Continuous Integration to Enable DevOps

