Multi-cyclic and isotopically diverse silicic magma generation in an arc volcano : Gorely Eruptive Center, Kamchatka, Russia.

Seligman, A., Bindeman, Ilya, Jicha, B., Ellis, B., Ponomareva, Vera and Leonov, V. (2014) Multi-cyclic and isotopically diverse silicic magma generation in an arc volcano : Gorely Eruptive Center, Kamchatka, Russia. Journal of Petrology, 55 (8). pp. 1561-1594. DOI 10.1093/petrology/egu034.

[thumbnail of Preprint]
Text (Preprint)
2014_Seligman-etal-Multicyclic_JPet.pdf - Accepted Version
Available under License Creative Commons: Attribution-Noncommercial 3.0.

Download (12MB) | Preview

Supplementary data:


The Kamchatka Peninsula is home to some of the most frequent and prolific subduction-related volcanic activity in the world, with the largest number of caldera-forming eruptions per length of the volcanic arc. Among those, Gorely volcano has a topographically prominent Late Pleistocene caldera (13 km × 12 km, estimated to have produced >100 km3 of magma), which is now almost completely filled by a central cone. We report new 40Ar/39Ar ages and geochemical and isotopic data for newly recognized Mid-Pleistocene ignimbrite units of large but unknown volume sourced from the Gorely eruptive center, most of which were deposited in marginal glacial conditions. These ignimbrites have crystallinities of 9–24% and most are quartz-, amphibole-, and zircon-undersaturated. Additionally, we studied 32 eruptive units, including stratigraphically constrained Holocene tephra, and pre- and post-caldera lava sequences, to understand the petrogenetic and temporal evolution of this long-lived, multi-cyclic, arc volcano. Material erupted prior to the formation of the modern Gorely edifice, including the voluminous ignimbrites and eruptions of the ‘pra-Gorely’ stage, consist primarily of dacite and andesite, whereas sequences of the modern Gorely edifice are represented by basalt to basaltic andesite. MELTS and EC-AFC modeling shows that it is possible to obtain silicic compositions near those of the evolved ignimbrite compositions through 60–75% fractional crystallization at 1 kbar and nickel–nickel oxide (NNO) oxygen fugacity. However, our newly compiled major and trace element data for Gorely yield two separate bimodal peaks in a SiO2–frequency diagram, showing a prominent Daly Gap, with a deficiency in andesite. Trace element concentrations define two separate trends, one for more silicic and another for more mafic sequences. Additionally, δ18Omelt values reconstructed from coexisting plagioclase and clinopyroxene phenocrysts range from a low value of 4·85‰ to a normal value of 6·22‰. The low δ18O values range throughout the known lifespan of Gorely, with the lowest value being from the first known ignimbrite to erupt, indicating episodic but temporally decreasing crustal assimilation of previously hydrothermally altered material. 87Sr/86Sr and 143Nd/144Nd ratios show wide ranges from 0·70328 to 0·70351 and from 0·51303 to 0·51309 respectively, also suggesting incorporation of surrounding crust, although there are less clear trends throughout the lifespan of Gorely. The combination of light and diverse δ18O values with elevated 87Sr/86Sr and low 143Nd/144Nd ratios suggests contamination by older and isotopically diverse, low-δ18O country-rocks, such as the neighboring 11 Ma Akhomten granitic massif, which shows ranges in δ18O, 87Sr/86Sr, and 144Nd/143Nd values overlapping with the Gorely magmas. In addition, the presence of glomerocrysts and mafic enclaves in the majority of Gorely dacites indicates a period of crystal settling and subsequent intrusion of hot, primitive basalt that probably triggered eruption. Finally, elevated Nb concentrations relative to other Kamchatkan volcanoes suggest that Gorely magmas may involve an enriched component, probably caused by delamination of a lower crustal root. Our results argue for an incremental view of silicic magma generation at so-called ‘long-term eruptive centers’, in Kamchatka and worldwide, consisting of alternating episodes of magmatic and hydrothermal activity, and glacial advances and retreats. We demonstrate that large-volume, isotopically distinct, silicic magma can be generated rapidly between cone-building phases of volcanic activity through a combination of fractional crystallization, assimilation of older country rocks, and shallow assimilation of hydrothermally altered but otherwise petrochemically similar older intracaldera tuffs and intrusions. These transient shallow silicic magma chambers empty nearly completely in ignimbrite-forming eruptions after 103–105 years of assembly, partially triggered by glacial surface dynamics.

Document Type: Article
Keywords: EC-AFC; Ignimbrite; Isotope; Kamchatka; Long-term eruptive center
Refereed: Yes
Publisher: Oxford Press
Projects: Otto Schmidt Laboratory
Date Deposited: 10 Apr 2015 10:47
Last Modified: 31 Dec 2015 00:38

Actions (login required)

View Item View Item