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Abstract We investigate how well a suite of regional climate models (RCMs) from the ENSEMBLES
project represents the residual spatial dependence of daily precipitation. The study area we consider is
a 200 km × 200 km region in south central Norway, with RCMs driven by ERA-40 boundary conditions at
a horizontal resolution of approximately 25 km × 25 km. We model the residual spatial dependence with
pair-copula constructions, which allows us to assess both the overall and tail dependence in precipitation,
including uncertainty estimates. The selected RCMs reproduce the overall dependence rather well,
though the discrepancies compared to observations are substantial. All models overestimate the overall
dependence in the west-east direction. They also overestimate the upper tail dependence in the
north-south direction during winter, and in the west-east direction during summer, whereas they tend to
underestimate this dependence in the north-south direction in summer. Moreover, many of the climate
models do not simulate the small-scale dependence patterns caused by the pronounced orography well.
However, the misrepresented residual spatial dependence does not seem to affect estimates of high
quantiles of extreme precipitation aggregated over a few grid boxes. The underestimation of the
area-aggregated extreme precipitation is due mainly to the well-known underestimation of the univariate
margins for individual grid boxes, suggesting that the correction of RCM biases in precipitation might
be feasible.

1. Introduction

Potential regional impacts of future climate change are commonly assessed by impact models. These are
often driven with regional climate change scenarios, downscaled either statistically or dynamically from
global climate model simulations [Fowler et al., 2007; Maraun et al., 2010; Rummukainen, 2010]. For many
advanced impact models, it is indispensable to provide input fields that not only correctly represent rele-
vant meteorological variables at a given location but also their dependence structure in space. For instance,
it is important for distributed hydrological models that the amount of precipitation aggregated across a
catchment is correctly simulated. Temperature and precipitation are generally considered the most relevant
input variables for hydrological models [Bronstert et al., 2007]. Precipitation is considerably more difficult
to simulate, mostly owing to the high spatial-temporal variability of precipitation occurrence and intensity
[Maraun et al., 2010]. Here we apply pair-copula constructions, a new statistical approach, to validate the
spatial dependence of daily precipitation amounts, i.e., the precipitation totals (unit mm) falling within a day,
simulated by regional climate models, with a focus on extreme events.

The overall performance of downscaling methods to simulate precipitation has been assessed by many
intercomparison projects such as STARDEX (Statistical and Regional dynamical Downscaling of Extremes for
European regions) [Haylock et al., 2006; Goodess et al., 2010], PRUDENCE (Prediction of Regional scenarios
and Uncertainties for Defining EuropeaN Climate change risks and Effects) [Christensen and Christensen,
2007], ENSEMBLES [van der Linden and Mitchell, 2009], and NARCCAP (North American Regional Climate
Change Assessment Program) [Mearns et al., 2009]. Other initiatives such as CORDEX (Coordinated Down-
scaling Experiment - European Domain) [Giorgi et al., 2009] and VALUE [Maraun et al., 2015] have just
started; EURO-CORDEX, the European branch of CORDEX, has recently published its first regional climate
model (RCM) validation results [Kotlarski et al., 2014], and VALUE (Validating and Integrating Downscaling
Methods for Climate Change Research) is expected to deliver validation results over the coming years.
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It is generally acknowledged that regional climate models (RCMs) add value to the simulation of
precipitation, in particular of high intensity events and over complex terrain [Frei et al., 2006; Deser et al.,
2011]. RCMs from the PRUDENCE project tend to simulate too wet (dry) winter conditions in regions with
warm (cold) biases. For summer this relationship is reversed. Many of the validation results for earlier
model ensembles still hold for the recent EURO-CORDEX ensemble [Kotlarski et al., 2014]. Interannual
variability in precipitation is in general well represented [Jacob et al., 2007; Kotlarski et al., 2014]. Frei et al.
[2006] found that biases in extreme precipitation over the Alps are in general comparable or even smaller
than biases in mean intensities. Nikulin et al. [2011] report that the Swedish RCA model tends to overes-
timate precipitation extremes over northern Europe and to underestimate them in southern Europe. In
summer, extreme precipitation simulated by RCA is overestimated over mountains and underestimated over
the surrounding slopes. Detailed validation studies of extreme precipitation simulated by ENSEMBLES RCMs
considered, e.g., the dependence on airflow [Maraun et al., 2012] and seasonality [Schindler et al., 2007].

These studies mostly considered the marginal distribution of precipitation at individual sites, i.e., the
unconditional climatological distribution at a certain location, and its systematic spatial variation. Yet,
in several situations, a validation of residual spatial dependence is also required. By residual spatial
dependence we mean joint variations at different locations about the (climatological) systematic spatial
variations. Consider, e.g., two nearby rain gauges along the wind-facing slope of a mountain chain. If a deep
cyclone passes by, heavy rain will likely occur at both gauges. Thus, if rain is heavy at one of the gauges, the
probability of heavy rain is high at the second gauge as well.

Although it is known that RCMs tend to overestimate the spatial extent of precipitation events [e.g.,
Maraun et al., 2010], the validation of spatial dependence has been limited in the context of climate
modeling. In principle two strategies are conceivable. In numerical weather prediction, skill scores such
as the intensity skill score [Casati et al., 2004], the fractions skill score [Roberts and Lean, 2007], and the
Scale-Aspect-Location (SAL) skill score [Wernli et al., 2008] have been developed to verify the forecast of
spatial fields. For an intercomparison of spatial verification methods, see Gilleland et al. [2009] and Gilleland
et al. [2010]. These methods require a temporal correspondence between observational and forecast fields
and thus cannot be directly used with a free-running climate model, whose simulated weather is
uncorrelated with real weather. Their use is therefore limited to simulations driven with observed (so-called
perfect) boundary conditions [Frei et al., 2003]. As a result, spatial verification measures have only
recently been applied in a climate context to assess the added value of convection resolving simulations
[Prein et al., 2013].

Alternatively, spatial statistical measures can be derived, such as correlation lengths, variogram ranges, or
length scales of the tail dependence coefficient [Coles, 2001]. The former two describe the overall spatial
dependence, i.e., the dependence over the full range of the distribution without explicitly accounting for
extremes; the latter explicitly measures the spatial dependence of extreme events (loosely speaking, the
probability that an extreme occurs at one location, given that an extreme has occurred at another location).
The application of such measures for climate model validation is still limited; see Rasmussen et al. [2012] for
a rare example.

Spatial dependence measures can either be calculated empirically from the data or by assuming statistical
models, e.g., from geostatistics [e.g., Diggle and Ribeiro, 2007] or extreme value theory [e.g., Davison et al.,
2012]. Empirical estimates are simple but have severe disadvantages: they suffer from large uncertainties
without providing proper strategies to quantify these uncertainties. In particular empirical estimates of tail
dependence are either biased or very uncertain due to the rareness of extremes. Spatial statistical models
attempt to overcome this problem by assuming parametric models for the dependence structure. These
models first of all constrain the possible dependence structure and thereby greatly reduce uncertainties;
furthermore, they can be utilized to derive confidence intervals. Classical geostatistical models assume
Gaussian processes. But these can describe neither the heavy tails of the marginal distributions nor the spa-
tial extremes of precipitation at daily timescales. Some authors have used transformed Gaussian processes
to successfully model daily precipitation fields [Sansó and Guenni, 2000; Ailliot et al., 2009; Kleiber et al., 2012].
Still, such approaches are not able to capture the spatial dependence of extreme precipitation. Max stable
spatial processes have been developed to model spatial extremes but do not describe nonextreme events
[Davison et al., 2012].
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Figure 1. Study area in southern Norway. Crosses indicate the locations of
the gauges used in the gridded observational data set.

As an alternative approach, copulas
[Sklar, 1959] have become popular
over recent years; see Schölzel and
Friederichs [2008] for an introduction
with a focus on climate research.
The key idea of copulas is to
model the dependence structure
of a multivariate—e.g., spatially
dependent—random variable sepa-
rately from its marginal distribution.
The copula is then the parametric
function (or density) that models
the dependence structure. Various
different families of copulas have
been formulated that differ in their
detailed shape, symmetries, and tail
dependence. A major drawback of
many copulas is that they are not
easily extended to more than three
dimensions, in our context three

boxes. Normal copulas have been applied to model spatial precipitation fields [Wilks, 1998; Serinaldi, 2009;
Yang et al., 2005; Kleiber et al., 2012], but they cannot capture tail dependence or nonlinear dependence.

Pair-copula constructions (PCCs) [Joe, 1996] are a recent approach to overcome these problems, that–to our
knowledge–has not yet been applied in climate science. The underlying idea is to decompose the multivari-
ate dependence structure into layers of bivariate dependencies and model these individually with bivariate
copulas. This approach offers high flexibility and is in principle applicable to any dimension—of course with
the usual limitations to model selection and parameter uncertainties in the light of limited data.

Here we apply PCCs to validate how well a suite of RCMs from the ENSEMBLES project [van der Linden
and Mitchell, 2009] represents the residual spatial dependence of daily precipitation amounts. We restrict
ourselves to modeling the amounts process, i.e., all dependencies are conditional on having precipitation
in the involved grid boxes. As a case study, we consider a region covering south central Norway. The use of
PCCs allows us to separately model marginal distributions and dependence structure, and also to consider
the overall spatial dependence of precipitation separately from tail dependence. The parametric statistical
model provides robust estimates and a straightforward quantification of uncertainties.

In section 2, we lay out the data and models used for the case study. The PCC approach is explained in depth
in section 3, with additional detail in the Appendix A. The model derived for our case study is presented in
section 4, and the actual results are given in section 5.

2. Data and Models

As an example region, we consider a square of 200 × 200 km2 covering the major part of southern Norway
(Figure 1). The northwest corner is located at 60◦06′N, 5◦54′E close to the city of Bergen, the southeast
corner at 58◦48′N, 9◦18′E. The topography is characterized by mountains (>1500m) and fjords in the
northwest and a hilly landscape in the southeast. The central north is covered by the Hardangervidda,
Europe’s largest high plateau (>1000m).

We evaluate 10 RCMs available from the ENSEMBLES project (see Table 1). To isolate the RCM performance
from errors inherited by the driving global climate model, we chose a so-called perfect boundary setting
[e.g., Frei et al., 2006]: simulations are driven with ERA-40 boundary conditions [Uppala et al., 2005] over the
period 1 January 1961 to 31 December 2000. All models provide daily data on the same rotated grid with
a resolution of 0.22◦ × 0.22◦ (approximately 25 km × 25 km). The example region covers a square of 8 × 8
model grid boxes.

The observational reference data have been provided by the Norwegian Meteorological Office. These data
were originally gridded from gauge observations to a 1 km × 1 km grid based on triangular interpolation
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Table 1. RCMs Considered in the Study

RCM Institute Reference

HIRHAM5 DMI Christensen et al. [1996]
HIRHAM METNO Haugen and Haakenstad [2006]
RCA SMHI Kjellström et al. [2005]
RCA3 C4I Kjellström et al. [2005]
CLM ETHZ Böhm et al. [2006]
RACMO2 KNMI van Meijgaard et al. [2008]
HadRM3Q0 UKMO Collins et al. [2006]
HadRM3Q16 UKMO Collins et al. [2006]
HadRM3Q3 UKMO Collins et al. [2006]
REMO MPI-M Jacob [2001]
RPN_GEMLAM EC

[Jansson et al., 2007] and then averaged
to the required 25 km × 25 km grid.
Undercatch has been accounted for by
empirical relationships. The density of
stations is in general high but strongly
varies across space (see Figure 1). In
the western and eastern parts of our
study region it is very high and allows
for a reasonable estimation of residual
spatial dependence. Across the central
Hardangervidda plateau, virtually no
stations are available. Here the inferred
spatial dependence is dominated by
the interpolation method but provides

only little insight into the actual precipitation dependence. The network has changed during the period
we consider, but at any point in time about 100 stations have been operating over the selected study area.
These changes are less important in our context, as we consider a time-independent statistical model.

3. Pair-Copula Constructions

Pair-copula constructions (PCCs) have been proposed by Joe [1996] and later studied by Bedford and Cooke
[2001, 2002] and Aas et al. [2009]. These models enable one to formulate—at least in principle—multivariate
dependence structures in any dimension. We start with a brief review of copulas and then discuss the
concept of PCCs in detail.

3.1. Copulas
The purpose of copulas is to study the dependence structure of some variables of interest, (X1,… , Xd),
by factoring out each variable’s marginal behavior. To this end, all variables are transformed to have
uniform margins, U(0, 1), using the respective marginal cumulative distribution functions (CDFs) Fi(xi).
Sklar’s theorem [Sklar, 1959] states that any d-variate CDF F1…d(x1,… , xd) may be expressed as

F1…d(x1,… , xd) = C1…d(F1(x1),… , Fd(xd)),

where C1…d is a copula. That is, a copula is simply the joint cumulative distribution function (CDF) of
marginally uniform variables U(0, 1). In our application the joint CDF can be assumed to be absolutely
continuous, with strictly increasing marginal CDFs. The copula is then unique and has a density c1…d . For an
introduction to copulas, the interested reader may consult Nelsen [1999] or Joe [1997]. An introduction with
a climatological and meteorological focus can be found in Schölzel and Friederichs [2008].

3.2. Measures of Dependence
To quantify the dependence between variables, different measures have been defined, addressing different
aspects of dependence. Many important measures of dependence are functions merely of the copulas and
not of the univariate margins.

A well-known example of the overall dependence is Spearman’s rank correlation 𝜌, defined as

𝜌S(X1, X2) = 3
(

P
((

X1 − X̃1

) (
X2 − X′

2

)
> 0

)
− P

(
(X1 − X̃1)

(
X2 − X′

2

)
< 0

))

= 12∫
1

0 ∫
1

0
C12(u1, u2)du1du2 − 3 = Cor(F1(X1), F2(X2)).

(1)

Here X̃1 and X′
2 are independent copies of X1 and X2, respectively. Compared to the standard linear

correlation coefficient, Spearman’s rank correlation has the additional advantage of also capturing
nonlinear dependence.

Dependence of rare events cannot be measured by overall correlations. In fact, even if two variables are
completely uncorrelated, there can be a significant probability of a concurrent extreme event in the two,
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i.e., they can still be tail dependent. A measure of upper tail dependence that is a function of just the copula
is given by

𝜆U(X1, X2) = lim
u↗1

P
(

X2 > F−1
2 (u)|X1 > F−1

1 (u)
)

= lim
u↗1

1 − 2u + C12(u, u)
1 − u

.

(2)

This is the conditional probability that both variables are very “large” simultaneously, given that one of them
has a high value. Likewise, the lower tail dependence coefficient is defined as

𝜆L(X1, X2) = lim
u↘0

P
(

X2 < F−1
2 (u)|X1 < F−1

1 (u)
)

= lim
u↘0

C12(u, u)
u

.

(3)

The copula C12 is said to have upper tail dependence if 𝜆U(X1, X2)> 0 and lower tail dependence if
𝜆L(X1, X2)> 0. See Figure S1 in the supporting information for simulations from four classical bivariate,
i.e., pair-copulas; the Gaussian, which is symmetric and has no tail dependence; the Student’s t, also
symmetric but with upper and lower tail dependence; the Clayton copula, which is asymmetric with only
lower tail dependence; and the Gumbel, with only upper tail dependence. Independent variables can
formally be “connected” by the independence copula

C12(u1, u2) = u1u2.

3.3. Pair-Copula Constructions
Whereas the list of bivariate copulas is long and varied, the choice is much more limited in dimensions
3 and higher. Some of the bivariate copulas have multivariate extensions, among others the Gaussian or
Archimedean copulas. However, these typically have very confined parameter spaces as the dimension
increases, which restricts the degree of dependence they are able to portray. Moreover, they assume that
all the bivariate dependencies are of the same type, for instance, that they are either tail dependent or not.
The key idea of PCCs is to decompose multivariate copulas into a product of bivariate components. These
bivariate components can then be modeled individually by appropriate pair-copulas.

To introduce the concept of PCCs, we start with a three-dimensional example. Let f123 be the joint proba-
bility density function (pdf) of (X1, X2, X3), and fi, i = 1, 2, 3 the corresponding marginal pdfs. Further, let f2|3
and f1|23 be the conditional pdfs of X2 given X3 = x3 and X1 given (X2, X3) = (x2, x3), respectively, defined by

f2|3(x2|x3) =
f23(x2, x3)

f3(x3)

f1|23(x1|x2, x3) =
f123(x1, x2, x3)

f23(x2, x3)
.

Let us begin with the factorization

f123(x1, x2, x3) = f1|23(x1|x2, x3)f2|3(x2|x3)f3(x3). (4)

A corresponding PCC is obtained by expressing (4) as a product of fi and three bivariate copula densities.

Sklar’s theorem, written in terms of densities, states that, e.g., for x1 and x2,

f12(x1, x2) = c12(F1(x1), F2(x2))f1(x1)f2(x2). (5)

This means that the conditional density f1|2 of X1, given X2 = x2, can be expressed as

f1|2(x1|x2) = c12(F1(x1), F2(x2))f1(x1).

As mentioned earlier, copulas allow us to isolate the dependence, i.e., the joint behavior of the variables,
from the variables’ individual behavior and are naturally linked to many important measures of dependence.
The purpose of PCCs is to extend (5) to more than two variables, while keeping all components at most
bivariate. Now let c12|3 be the copula density corresponding to the conditional distribution of (X1, X2), given
X3 = x3, determined by

f12|3(x1, x2|x3) = c12|3(F1|3(x1|x3), F2|3(x2|x3))f1|3(x1|x3)f2|3(x2|x3).

HOBÆK HAFF ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2628



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022748

Figure 2. Components of a four-dimensional pair-copula construction. The components of the PCC are organized in
three levels L1 (the ground level), L2, and L3.

Note that this copula is a function of conditional CDFs. The factor f1|23 from (4) may then be replaced by

f1|23(x1|x2, x3) =
f12|3(x1, x2|x3)

f2|3(x2|x3)
= c12|3(F1|3(x1|x3), F2|3(x2|x3))f1|3(x1|x3)
= c12|3(F1|3(x1|x3), F2|3(x2|x3))c13(F1(x1), F3(x3))f1(x1).

Finally, inserting the above expressions in (4), we obtain the PCC

f123(x1, x2, x3) = f1(x1) f2(x2) f3(x3)
c13(F1(x1), F3(x3))c23(F2(x2), F3(x3))
c12|3(F1|3(x1|x3), F2|3(x2|x3)).

(6)

A key point is that all copulas involved in this decomposition are pair-copulas. In equation (6), the two
arguments of the pair-copula in the last line are conditional CDFs. In higher dimensional PCCs, this is the
case for all pair-copulas, except the ones at the lowest level of the dependence structure, the ground level,
on line 2 of equation (6).

Moreover, the above decomposition is not unique. There are two alternative ways of decomposing f123 into
a PCC, which are obtained by permuting x3 with either x1 or x2.

Under the given conditions, any d-dimensional absolutely continuous pdf can be decomposed, as described
above, into a product of the d marginal pdfs and d(d − 1)∕2 pair-copulas organized in d − 1 levels. Each of
these copulas is a function of two CDFs, more specifically unconditional marginal CDFs at the ground level
and conditional CDFs on subsequent levels. The conditioning sets of these conditional CDFs, i.e., the sets of
variables that one conditions on, increase in size by 1 with each level. A key result from Joe [1996] states that
the pair-copulas and the CDFs are linked through

F1|3(x1|x3) =
𝜕C13(F1(x1), F3(x3))

𝜕F3(x3)

for one conditioning variable, and in general,

Fx|v(x|v) =
𝜕Cxvj|v−j

(Fx|v−j
, Fvj|v−j

)

𝜕Fvj|v−j

, ∀j,

where V is a random vector, not containing X , and V−j is the same vector reduced by variable Vj .
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When using a PCC in practice, one must be able to compute the conditional distributions, which constitute
the pair-copula arguments, in a straightforward manner. This is done using the above formula recursively,
as demonstrated in Figure 2. This figure shows how a four-dimensional pdf is decomposed into a PCC. The
components of the PCC are shown in black, while the copula arguments, which must be computed based on
other components of the PCC, are shown in red. For instance, one obtains F1|2(x1|x2) by applying the formula
to the copula C12, i.e., by taking the derivative of C12 with respect to its second argument and substituting
F1(x1) and F2(x2) for u1 and u2, respectively. Further, F1|23(x1|x2, x3) results from applying the same formula to
C13|2, and so on. This requires that the necessary pair-copulas Cxvj|v−j

are available when needed, hence that
they are present in the preceding levels. This is not always the case. Consider, for example, the four-variate
distribution with pdf

f1234 = f1f2f3f4

c12(F1, F2)c13(F1, F3)c14(F1, F4)
c23|1(F2|1, F3|1)c34|1(F3|1, F4|1)
c34|12(F3|12, F4|12).

The conditional CDF F3|12, given by

F3|12 =
𝜕C31|2(F3|2, F1|2)

𝜕F2|1
,

is then needed. Yet C31|2 is not used in the previous level and thus is not directly available. It may be recov-
ered via integration. However, as d increases, so does the dimension of the required integrals. Therefore, it
is important to develop a mechanism to construct PCCs, guaranteeing that all the necessary elements are
available when needed. We call such a PCC self-contained.

3.4. Building PCCs and Parameter Estimation
Self-contained PCCs can be built by regular (R-) vines [Bedford and Cooke, 2001, 2002], see Appendix A. All
the pair-copulas can be selected completely freely, and they are available when needed downstream in
the construction. The resulting structure is guaranteed to be valid. This makes PCCs extremely flexible and
able to portray a wide range of complex dependencies. Inference on these constructions requires (i) the
choice of structure, i.e., which pairs of variables with corresponding conditioning sets should be connected
on the different levels, (ii) the choice of each parametric pair-copula, and (iii) the estimation of the copula
parameters. In principle, these three steps should be performed simultaneously. Of course it is not feasible
in practice and has to be done stepwise, which is suboptimal but still satisfactory.

Strategies for the structure selection step (i) are described in Appendix A. We use the algorithm of
Dißmann et al. [2013], which is the state-of-the-art for structure selection in R-vines. It has the advantage of
using Kendall’s 𝜏 coefficients, which can also capture nonlinear dependence. As mentioned earlier, there is
a long list of bivariate copulas from which to choose in step (ii). A catalogue of pair-copula families can be
found in, for instance, Joe [1997] or Nelsen [1999]. For smaller problems, the pair-copulas may be chosen by
goodness-of-fit tests, such as the ones studied in Genest et al. [2009]; Berg [2009]. As the p values of those
tests are computed by bootstrap, this is not feasible for problems of the size treated in this paper. Instead,
we use Akaike’s information criterion (AIC), which is not justified by likelihood arguments in this setting
[Grønneberg, 2011] but has been shown to work rather well in practice [Dißmann et al., 2013]. Finally, the
model parameters are estimated based on the stepwise semiparametric (SSP) estimator; see Appendix A.

4. Statistical Model

We describe the spatial dependence of daily precipitation amounts by PCCs and compare the results for the
RCMs with those from observations. To avoid modeling the seasonal cycle, we divide the year into a winter
season from October to March and a summer season from April to September. Both seasons are treated
independently.

Commonly, precipitation occurrence Ii,t and amount Xi,t on a day t in grid box i are modeled separately as
independent random variables [Wilks, 1998; Chandler and Wheater, 2002]. As our focus is on high quan-
tiles of precipitation, we only consider the amount process. We assume Xi,t to be independent in time
(see Appendix B for a justification) but not in space. As the wet day threshold, we choose 0.1 mm.
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Figure 3. Empirical K function for 12 pairs of grid boxes from the ground level of the PCC for the observations for
summer, plotted against the corresponding parametric K function.

The marginal amount distributions vary strongly with orography and are in general rather different from
location to location. Therefore, we model the marginal distribution of each grid box independently with
the best fitting gamma distribution. To join these 64 univariate margins, we use a PCC, more specifically a
regular vine. We follow the three steps described in section 3, i.e., (i) selecting the structure, (ii) choosing the
pair-copula types, and (iii) estimating the copula parameters.

In step (i), we choose to select a common structure for all RCMs and the observational data; the copula types
and parameter estimates are of course individual. This means that the connected pairs and corresponding
conditioning sets on all levels are the same for the observed data and the RCMs. For instance, all the
regular vines contain the copula C14|23 in the third level. However, C14|23 may be Gumbel in the R-vine of
the observed data and Student’s t in the R-vine of one of the RCMs. The advantage of a common structure
is that the resulting statistical models are much easier to compare. The measures we compare, e.g., rank
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Table 2. Percentage of Copulas of Each Family Chosen at the 10 First Levels of the Structure
for the Observations and the RCMs for Winter

Independent Gaussian Student’s t Clayton Gumbel

Observations 25.5 17.4 42.9 5.1 9.1
METNO-HIRHAM 9.6 10.1 67.4 3.4 9.6
C4IRCA3 12.1 7.5 69.4 2.4 8.5
DMI-HIRHAM5 13.7 10.4 59 4.6 12.3
ETHZ-CLM 14.4 9.4 60.9 5.1 10.3
KNMI-RACMO2 15.7 7.9 64.1 1.9 10.4
METO-HC_HadRM3Q0 19 21.4 39.8 5.6 14.2
METO-HC_HadRM3Q16 18.1 22.6 39 6.2 14.2
METO-HC_HadRM3Q3 15.6 15.7 47.2 5.5 16.1
MPI-M-REMO 13.7 7 65.5 5.3 8.5
RPN_GEMLAM 21.2 12.3 62.2 2.6 1.7
SMHIRCA 19.5 6.5 70.3 2.4 1.4

correlations, are defined for all the copula families considered in the paper. Comparison between the
statistical models is therefore straightforward also when the selected copula families are different from
model to model. Since the copula types can be chosen freely, they are still very flexible, and the structure is
guaranteed to be a valid copula density, so that the estimates will be consistent. We stress that we do not
intend to use the statistical models for prediction, in which case it would be more important to choose the
best fitting model for each data set.

The idea is to select the structure based on all data sets, so that they all influence the resulting structure
more or less. If the structure does not fit one of the data sets very well, the parameter estimates may have
larger uncertainty. This will be reflected in broader confidence intervals for the parameters of interest.
Selecting the structure based on all data sets is rather time consuming. Moreover, it may be argued that the
RCMs are biased and that it would be better to use only the observed data in the selection. In addition, a
preliminary study indicated that apparently very different structures produced very similar results, and that
the structure selected based only on the observed data is essentially the same as the one selected based on
all data series. Hence, the statistical models seem to compensate through the choice of copula types, as well
as the parameter estimates.

In the estimation of the marginal gamma distributions, we use all values above the wet day threshold in
each location for the given season. Likewise, each bivariate copula in the PCC is fitted based on all observa-
tions that are above the threshold in the variables involved in the given copula simultaneously. For instance,
the parameters of copula C14|23 are estimated using the observations where X1, X2, X3, and X4 are all above
the wet day threshold. For most of the series and both season, this corresponds to between 1700 and 6000
observations, depending on the copula, and at least 1000.

In order to assess how well the PCC fits the data, we have computed the parametric K function

K(w) = P(C12(U1,U2) ≤ w)

Table 3. Same as Table 2 but for Summer

Independent Gaussian Student’s t Clayton Gumbel

Observations 29.2 15.2 38.3 8.7 8.5
METNO-HIRHAM 16.6 10.4 60.7 4.8 7.5
C4IRCA3 17.1 12 58.6 4.6 7.7
DMI-HIRHAM5 15.6 13 57.8 4.1 9.6
ETHZ-CLM 16.6 10.8 57.9 4.8 9.9
KNMI-RACMO2 22.9 6.7 59.7 3.4 7.4
METO-HC_HadRM3Q0 22.1 15.4 41.4 6.5 14.7
METO-HC_HadRM3Q16 25.5 15.7 38.3 4.8 15.7
METO-HC_HadRM3Q3 22.7 12.3 45 6 14
MPI-M-REMO 20.9 5.1 63.4 3.8 6.8
RPN_GEMLAM 37.4 6.8 49.9 3.1 2.7
SMHIRCA 24.3 8.7 61.4 3.9 1.7

HOBÆK HAFF ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2632



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022748

Figure 4. Ground-level pairs selected for (left) the observations, (middle) METNO-HIRHAM, and (right) C4IRCA3 from the (top) winter and (bottom) summer
seasons. The color of the lines represents the corresponding copula family (red = Student’s t, blue = Gumbel, black = Gaussian, green = Clayton; note that the
Clayton copula is never chosen on the ground level.)

for each of the pair-copulas of the ground level, as well as the empirical equivalent based on the
empirical copula

Cn(u, v) = 1
n

n∑
j=1

I(ũ1j ≤ u, ũ2j ≤ v),

where ũkj =
1

n+1

∑n
l=1 I(xkl ≤ xkj), k = 1, 2. These K functions are suggested as diagnostic tools for bivariate

copulas in Genest and Favre [2007]. Figure 3 shows the empirical function for selected pairs plotted against
the parametric for summer observations. The resulting lines follow the main diagonal closely, indicating
a good fit of the model. A similarly good fit for the remaining pairs, as well as for winter and the
METNO-HIRHAM model (not shown) indicates the general suitability of the PCC model.

5. Results

We calibrate the spatial statistical model against both the different RCM simulations and the observational
reference data set and compare the results separately for winter and summer. Specifically, we compare the
selected model structures, the overall spatial dependence, the tail dependence, and spatially aggregated
amounts. Summary statistics are shown for all models and individual maps only for METNO-HIRHAM (one of
the best performing) and C4IRCA3 (a representative model). Corresponding maps for the remaining models
are shown in Figures S2–S4 in the supporting information.

5.1. Model Structure
As explained above, all 11 data sets from a given season share the same structure, but the associated copula
families and parameter estimates may be different. A comparison of the selected copulas and the direction,
in which the ground level copulas connect the different grid boxes, already provides insight both into the
dependence structure itself, and into the performance of the RCMs to represent it.

Tables 2 and 3 show the percentage of each copula chosen for the observations and RCMs in the first
10 levels for winter and summer, respectively; corresponding tables for all levels are to be found in the
supporting information (Tables S1 and S2). The proportion of independence and Gaussian copulas is higher
in observed than in simulated precipitation, especially in the first levels. Vice versa, more Student’s t
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Figure 5. Rank correlation for neighboring grid box pairs. Shown for (left) observations, (middle) METNO-HIRHAM, and
(right) C4IRCA3 for (top) winter and (bottom) summer seasons. Grey dots: positions of underlying grid box centers; color:
strength of correlation. Black (grey) diamond borders for RCMs indicate a correlation significantly lower (higher) than
for observations.

copulas have been chosen for RCM-simulated precipitation than for the observations. These findings
indicate that RCM-simulated precipitation exhibits stronger tail dependence than observations. It is,
however, worth noting that above the first level, the PCCs model conditional dependencies. Thus, there may
be conditional dependencies that are larger in the tails for simulated precipitation.

The ground level is in general dominated by the Gumbel copula, for observations and all RCMs but
RPN_GEMLAM and SMHIRCA (see Figure 4 and supporting information). Thus, neighboring pairs tend to
exhibit upper, but not lower, tail dependence. Moreover, the selected pairs at this level are mostly in the
north-south direction, indicating a stronger dependence in this direction rather than from west to east.

5.2. Overall Dependence
As a measure for the overall spatial dependence, we choose Spearman’s rank correlation 𝜌, equation (1).

Figure 5 shows rank correlations between the amounts of precipitation in neighboring grid boxes for
the observations, METNO-HIRHAM, and C4IRCA. The differences between RCMs and observations could
in principle stem from parameter uncertainty. We have therefore assessed whether the differences are
significant at the 95% level. The critical values for the distribution under the null hypothesis were obtained
with parametric bootstrap. More specifically, we have simulated 1000 samples of the same size as the data
series in question, estimated the parameters of the statistical model for each of the samples, computed
pairwise rank correlations for each set of parameters, and finally determined the empirical 2.5 and 97.5%
quantiles of the resulting differences in rank correlations.

Most neighboring grid boxes show a correlation close to 1, i.e., strong dependence. Recall that the values
for observed data in the central north should be interpreted carefully due to the low station density on the
Hardangervidda plateau. A band showing a tendency of weaker dependence crosses the study area from
the northwest to the central south that is particularly pronounced during summer (the very low correlation
in the southern part of this band should not be overinterpreted, as the station density is low in that region).
This band corresponds to major divides, namely, the Sørfjord in the north and the Setesdal in the south.
The area means of the rank correlation and their biases are shown in Table 4. All in all, most models tend
to slightly—though often significantly—overestimate the rank correlation, i.e., precipitation is simulated
slightly too smooth in space.
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Table 4. Area Means of the Dependence Measures and Their Biases

Spearman Correlation Upper Tail Dependence

Winter Summer Winter Summer

Value Bias Value Bias Value Bias Value Bias

Observations 0.894 N.A. 0.871 N.A. 0.716 N.A. 0.695 N.A.

METNO-HIRHAM 0.898 0.003 0.867 −0.004 0.774 0.058 0.763 0.068
C4IRCA3 0.937 0.042 0.912 0.041 0.807 0.09 0.767 0.073
DMI-HIRHAM5 0.89 −0.004 0.894 0.022 0.765 0.049 0.775 0.081
ETHZ-CLM 0.894 0.000 0.881 0.01 0.766 0.05 0.778 0.084
KNMI-RACMO2 0.949 0.055 0.931 0.059 0.848 0.132 0.789 0.095
METO-HC_HadRM3Q0 0.871 −0.023 0.884 0.013 0.743 0.027 0.755 0.06
METO-HC_HadRM3Q16 0.881 −0.013 0.868 −0.003 0.77 0.053 0.756 0.061
METO-HC_HadRM3Q3 0.905 0.011 0.885 0.014 0.775 0.058 0.75 0.055
MPI-M-REMO 0.903 0.009 0.86 −0.011 0.755 0.038 0.733 0.038
RPN_GEMLAM 0.934 0.04 0.902 0.03 0.775 0.059 0.793 0.098
SMHIRCA 0.956 0.062 0.943 0.071 0.825 0.109 0.839 0.144
Multimodel mean 0.911 0.017 0.894 0.022 0.782 0.066 0.773 0.078

To investigate how well the spatial patterns—apart from mean biases shown in Table 4–of the rank
correlation are simulated, we calculated pattern correlations and standard deviations, summarized as Taylor
diagrams [Taylor, 2001] (see Figure 6). The pattern correlations scatter strongly across models; interestingly,
they are slightly higher during summer than winter. Pattern standard deviations are also widely spread.
In winter they are distributed around the observed value, whereas in summer most model patterns are
too smooth.

The minimum scale at which climate models skillfully simulate climate is considerably larger than an
individual grid box [Grotch and MacCracken, 1991]; hence, it is recommended to validate RCMs at aggre-
gated scales [Maraun et al., 2010]. Also, the dependence at scales of typical larger catchments is relevant
for hydrological impact studies [Maraun et al., 2010]. Therefore, we have computed the rank correlation as a
function of distance in the north-south and the west-east directions (Figure 7). The values were obtained by

Figure 6. Taylor diagram of rank correlation over all neighboring pairs for (left) winter and (right) summer. Angle:
correlation between the spatial patterns of simulated and observed rank correlations; radius: standard deviation of
simulated rank correlations, normalized with the standard deviation of the observed rank correlations; distance from
(1,1): root-mean-square error between the simulated and observed rank correlation deviations from the corresponding
spatial means.
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Figure 7. Rank correlation as a function of distance (for definition, see text). Shown for the (first row) west-east and
(second row) north-south directions, for (left column) winter and (right column) summer.

averaging the rank correlations between all pairs of grid boxes with the given distance between their center

points in the direction in question. This averaging also reduces the influence of the inhomogeneous station

coverage. The values decrease with distance, as the spatial dependence is strongest between locations that

are close to each other.

As indicated by the selected PCC (section 5.1), the dependence structure is highly anisotropic: it is higher

in the north-south than in the west-east direction, and moreover it decays much slower in the north-south

direction. The anisotropy reflects the prevailing weather situation: the westerly winds are lifted across the

mountain chain, causing a spatially coherent north-south rain band. Most of the RCMs overestimate the

spatial dependence, especially for the longer distances in the west-east direction. The orography-related

north-south dependence is relatively well simulated.

Tables 5 and 6 show typical decay lengths of the rank correlation, defined as the distance at which the aver-

age rank correlation as shown in Figure 7 is reduced to 0.25 for winter and summer, respectively. We derived

the decay lengths from third-order polynomials fitted to the decay curves; corresponding 95% confidence

intervals are obtained by a parametric bootstrap. In general, the decay lengths for RCMs are longer than

for the observed data. This overestimation is significant for all of the RCMs except METNO-HIRHAM and

DMI-HIRHAM5.
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Table 5. Decay Length of Rank Correlation in Kilometers (for Definition,
See Text) for Wintera

West-East North-South

Observations 108 (99,123) 176 (151,187)
METNO-HIRHAM 153 (133,190) 195 (169,216)
C4IRCA3 216 (180,273) 227 (197,259)
DMI-HIRHAM5 130 (117,163) 194 (187,205)
ETHZ-CLM 141 (126,166) 250 (234,302)
KNMI-RACMO2 146 (132,178) 261 (236,296)
METO-HC_HadRM3Q0 121 (112,136) 297 (243,406)
METO-HC_HadRM3Q16 123 (112,138) 264 (226,351)
METO-HC_HadRM3Q3 137 (124,154) 281 (242,369)
MPI-M-REMO 152 (132,190) 230 (212,267)
RPN_GEMLAM 140 (128,169) 248 (165,305)
SMHIRCA 247 (203,346) 223 (158,292)

aCorresponding 95% confidence intervals are shown in parentheses.

5.3. Tail Dependence
The spatial dependence of extreme
events is quantified by the coefficients
of upper tail dependence, equation (2).
Figure 8 shows the upper tail depen-
dence between the amounts of
precipitation in neighboring grid boxes
for the observations, METNO-HIRHAM
and C4IRCA. Area average values and
the corresponding model biases are
listed in Table 4. Again, results for
observed data in the central north
should be interpreted carefully.

In the observations, many grid boxes
exhibit a rather high upper tail depen-
dence. There is a marked difference
between the high dependence in the

north-south direction and the comparably low dependence in the southeast direction. The divide between
west and east, marked by a band of low dependence values (again, note the relatively low station coverage
in the southern part of that band), is strongest for dependence in the north-south direction and spreads
over a broad region toward the south. It is much more pronounced than the corresponding pattern for
rank correlations.

The spatial pattern of upper tail dependence is reasonably well simulated by both RCMs for winter, whereas
both models basically fail during summer. METNO-HIRHAM tends to underestimate the west-east depen-
dence and overestimate the north-south dependence for both seasons; C4IRCA4 generally overestimates
the dependence for both seasons.

Figure 9 displays Taylor diagrams for the upper tail dependence. Pattern correlations are in general lower
than for the overall dependence; pattern standard deviations are underestimated by almost all models for
both seasons.

The decay of the upper tail dependence as a function of distance is shown in Figure 10; the corresponding
decay lengths (reduction in upper tail dependence to 0.25) are shown in Tables 7 and 8 for winter and
summer, respectively. Like the rank correlation, the upper tail dependence is strongest and decays slower in
the north-south direction. Further, about half the RCMs underestimate the upper tail dependence, while the
remaining overestimate it. The decay in the north-south direction levels off for long distances at quite high
dependencies, indicating that the strongest events occur in large-scale weather systems.

5.4. Spatially Aggregated Amounts
The results indicate that the spatial dependence in the RCMs is considerably misrepresented. To assess
how this model deficiency affects the simulation of area-aggregated amounts, we computed upper

Table 6. Same as Table 5 but for Summer

West-East North-South

Observations 131 (118,150) 188 (178,201)
METNO-HIRHAM 181 (154,222) 179 (152,192)
C4IRCA3 250 (221,319) 134 (40,169)
DMI-HIRHAM5 195 (159,258) 209 (193,227)
ETHZ-CLM 184 (155,221) 225 (205,250)
KNMI-RACMO2 152 (135,179) 241 (221,269)
METO-HC_HadRM3Q0 178 (155,213) 443 (336,605)
METO-HC_HadRM3Q16 171 (144,189) 389 (291,517)
METO-HC_HadRM3Q3 176 (158,2169 435 (340,636)
MPI-M-REMO 204 (169,279) 238 (210,274)
RPN_GEMLAM 156 (141,184) 222 (206,257)
SMHIRCA 264 (219,339) 207 (143,264)

quantiles of precipitation sums in two
neighboring grid boxes. As we do not
model the occurrence process, these
quantiles are conditional on having a
wet day in both considered grid boxes.
Given precipitation amounts X1 and
X2 recorded in two grid boxes on a
given day, the aggregate quantiles q𝛼,12,
given by

P(X1 + X2 ≤ q𝛼,12|X1 > 0, X2 > 0) = 𝛼,

represent the amount that the total pre-
cipitation in the two grid boxes exceeds
with a certain (small) probability. As
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Figure 8. Upper tail dependence for neighboring grid box pairs. Shown for (left) observations, (middle) METNO-HIRHAM,
and (right) C4IRCA3 for (top) winter and (bottom) summer. Grey dots: positions of underlying grid box centers; color:
strength of tail dependence. Black (grey) diamond borders for RCMs indicate a tail dependence significantly lower
(higher) than for observations.

opposed to rank correlations and coefficients of tail dependence, which are functions only of the depen-
dence structure, the quantiles also depend on the univariate margins, i.e., the unconditional amount
distribution at a given location. Differences between RCM-simulated and observed quantiles could thus
stem from deficiencies in the representation of both spatial dependence and univariate marginal distribu-
tions. Here we assess the relative importance of both contributions. Note also that the full, unconditional
distribution of spatially aggregated precipitation relies on the occurrence process.

The aggregate 95% quantiles are shown in the top row of Figures 11 (winter) and 12 (summer) for the
observations, METNO-HIRHAM and C4IRCA3. Again, results for observed precipitation in the central north

Figure 9. Taylor diagram of upper tail dependence over all neighboring pairs for (left) winter and (right) summer. Angle:
pattern correlation; radius: pattern standard deviation; distance from (1,1): pattern root-mean-square error.
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Figure 10. Upper tail dependence as a function of distance (for definition, see text). Shown for the (first row) west-east
and (second row) north-south directions, for (left column) winter and (right column) summer.

Table 7. Decay Length of Rank Correlation in Kilometers (for
Definition, See Text) for Wintera

RCM West-East North-South

Observations 205 (99,324) 232 (125,432)

METNO-HIRHAM 194 (109,331) 228 (133,391)

C4IRCA3 322 (136,598) 218 (77,491)

DMI-HIRHAM5 157 (89,275) 232 (133,299)

ETHZ-CLM 169 (58,709) 355 (143,498)

KNMI-RACMO2 195 (121,505) 288 (105,517)

METO-HC_HadRM3Q0 170 (106,395) 377 (166,795)

METO-HC_HadRM3Q16 242 (113,427) 371 (161,866)

METO-HC_HadRM3Q3 310 (138,547) 376 (165,806)

MPI-M-REMO 208 (119,324) 228 (104,440)

RPN_GEMLAM 217 (95,260) 250 (163,437)

SMHIRCA 174 (117,418) 239 (165,396)

aCorresponding 95% confidence intervals are shown in
parentheses.

should be interpreted carefully. All RCMs
appear to underestimate these quan-
tiles, and for almost all of them the
underestimation is significant. Thus,
area-aggregated extreme precipitation is
too low in RCMs.

As expected for RCMs [Maraun et al.,
2010], the 95% quantiles of the univari-
ate margins are underestimated (see
Figures S25 to S28 in the supporting
information), indicating a major con-
tribution to the misrepresentation of
area-aggregated precipitation.

To disentangle the effects of misrep-
resented spatial dependence and
univariate marginal distributions on the
underestimation, we have reestimated
the aggregate quantiles for each RCM:
first using each RCM’s own dependence
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Table 8. Same as Table 7 but for Summera

RCM West-East North-South

Observations 193 (99,331) 203 (97,333)
METNO-HIRHAM 247 (123,416) 177 (121,302)
C4IRCA3 255 (146,580) 182 (75,325)
DMI-HIRHAM5 226 (120,479) 211 (91,341)
ETHZ-CLM 225 (118,310) 320 (145,380)
KNMI-RACMO2 266 (126,404) 274 (143,541)
METO-HC_HadRM3Q0 199 (117,378) 379 (147,871)
METO-HC_HadRM3Q16 155 (120,362) 355 (147,742)
METO-HC_HadRM3Q3 194 (124,434) 410 (160,944)
MPI-M-REMO 189 (116,319) 256 (128,428)
RPN_GEMLAM 192 (96,266) 219 (154,332)
SMHIRCA 239 (121,481) 251 (157,345)

aCorresponding 95% confidence intervals are shown in
parentheses.

structure but the (correct) margins of
the observations and second the other
way around, i.e., using the RCM’s own
margins but the (correct) observed
dependence structure.

The misspecified RCM spatial depen-
dence together with the correct
margins represents the aggregate
quantiles fairly well (Figures 11 and 12,
bottom row), whereas the misspecified
RCM margins with the correct spatial
dependence strongly underestimates
the aggregate quantiles (see Figures
S17 and S18 in the supporting
information). In fact, the latter result
basically resembles the pure RCM
results, where both dependence

and margins are taken from the RCMs. Thus, the spatial dependence is misrepresented in RCMs, but the
crucial contribution to the misrepresentation of spatially aggregated amounts is the wrong univariate
marginal distribution.

In principle, problems in the representation of RCM-simulated marginal distributions can be mitigated by
bias correction [Maraun et al., 2010]. But—even though the systematic misplacement of precipitation is
to some extent correctable [Widmann et al., 2003]—the spatial extent of actual events can hardly be bias
corrected. The case shown in the bottom row of Figures 11 and 12, where marginal distributions are taken
from observations and spatial dependence from the RCM, thus corresponds to a bias-corrected RCM.

Figure 11. Area-aggregated 95% quantiles of daily winter precipitation. Shown are (left) observations, (middle) METNO-HIRHAM, and (right) C4IRCA3. For
models: (top row) RCM margins and dependence (black (grey) diamonds: significantly lower (higher) than observations); bottom row: observed margins and
RCM dependence (see text for details).
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Figure 12. As in Figure 11 but for summer.

6. Conclusions

We have investigated how well a suite of regional climate models from the ENSEMBLES project
[van der Linden and Mitchell, 2009] represents the residual spatial dependence of daily precipitation
amounts. In the current work, we only considered the amount process of precipitation. To fully evaluate the
performance of RCMs to simulate spatial precipitation fields, one additionally has to account for the occur-
rence process. As study area, we considered a 200 km × 200 km region in south central Norway. The RCMs
were driven by ERA-40 boundary conditions at a horizontal resolution of approximately 25 km × 25 km.

We quantified the residual spatial dependence by spatial rank correlations for mean precipitation and tail
dependence coefficients for extreme precipitation. To model the residual spatial dependence, we employed
pair-copula constructions. These are capable of modeling the dependence structure, independently of
the marginal distributions, but additionally allow one to easily model extended spatial fields and potential
anisotropies in both mean and extreme precipitation. In contrast to purely empirical estimates, in particular
of tail dependence, PCCs reduce uncertainties as well as biases and directly provide uncertainty estimates.
As we did not consider the occurrence of precipitation, all results for a given copula of the PCC are based on
days where all involved grid boxes showed precipitation.

The study area is dominated by fjords and high mountains to the west, a high plateau in the north, and
hills toward the southeast. The main mountain ridges and valleys all run in the north-south direction. The
topography strongly controls the residual spatial dependence of observed daily precipitation: first of all,
deep valleys and fjords tend to separate precipitation events, in particular extremes, in space. Mean
precipitation exhibits a strong and highly anisotropic spatial dependence; it decays slowly and almost
linearly in the north-south direction, indicating an important influence of orographic lifting of the westerly
flow on precipitation. For the same reason, the west-east decay is much faster—precipitation in the west of
the domain is independent of that in the east. The north-south decay is similar in both winter and summer,
yet the west-east decay is faster during winter than summer. Reasons for this slightly unexpected behavior
are (1) that precipitation in southern Norway even in summer is not dominated by small-scale convective
events and (2) that the westerly flow is not so dominant during summer, reducing the fraction of orographic
precipitation and allowing for extended rainfall approaching from the south and east. The tail dependence
is similar, with some interesting differences: the decay in the west-east direction in winter is slower than in
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summer—in summer it is very similar to the mean behavior. This result indicates that convective events may
be important at least for extreme events during summer. The decay of tail dependence in the north-south
direction is overall very similar to the mean behavior.

The selected RCMs reproduce the overall dependence realistically although with considerable discrepancies
compared to observations: for mean precipitation, all models overestimate the dependence in the west-east
direction, whereas the RCMs scatter evenly around the observed dependence in the north-south direction.
For the tail, RCM performance depends on season and direction: during winter, the RCMs scatter evenly
around the observed decay in the west-east direction but consistently overestimate the dependence in the
north-south direction. During summer, the RCMs overestimate the dependence in the west-east direction
but tend to underestimate the dependence in the north-south direction. The shape of the decay is in all
cases correctly simulated.

The small-scale dependence patterns caused by the pronounced orography, however, are not very well
simulated by many climate models. The spread in performance for mean precipitation is large: pattern
correlations range from about 0.3 to over 0.9 (with slightly better performance during summer), pattern
standard deviations range from 50% to almost 200% of the observed one during winter and from 20%
to 100% during summer. For the representation of tail dependence patterns, the spread is lower, but the
performance is also weaker: pattern correlations range from 0.2 to 0.6 during winter and from 0.4 to 0.7
during summer. Pattern standard deviations range from around 30% to 80% of the observed one during
both seasons.

A limitation of this—and any—validation study is the limited observational data quality. Overall, the
station network underlying the gridded data set is very dense, but in remote mountainous regions only
few if any stations are operated. The gridded precipitation data for such regions are thus dominated by the
interpolation of distant stations and thus do not provide local area average information, in particular,
extreme precipitation. In our study, the results for the observational data on the central Hardangervidda
plateau have to be interpreted very carefully.

The misrepresented residual spatial dependence might have important consequences for assessing
hydrological impacts of climate change, in particular at small scales. Yet if interpreted at scales of a few
grid boxes, the problem is of minor importance. The major contribution to the underestimation of high
quantiles of area-aggregated extreme precipitation stems from the well-known underestimation of the
univariate margins for individual grid boxes. Problems in the representation of RCM-simulated marginal
distributions, however, can in principle be mitigated by bias correction [Maraun et al., 2010]. Note, however,
that bias correction should be applied only after demonstrating the skill of the RCM at the scale of interest
[Eden et al., 2012, 2014]. If the aim is to downscale to subgrid scales, stochastic bias correction should
be applied [Maraun, 2013; Wong et al., 2014]. After a proper bias correction, the remaining differences in
area-aggregated quantiles are relatively small.

We have demonstrated the usefulness of PCCs in spatially modeling the precipitation amount process.
We believe that the flexibility of PCCs in accounting for anisotropy and asymmetric tail behavior makes
them a valuable tool in many fields of climatology such as statistical downscaling or the modeling of
compound events.

Appendix A: Regular Vines and Inference

Regular (R-) vines [Bedford and Cooke, 2001, 2002] are graphical tools to build self-contained PCCs. An
R-vine representation of a d-dimensional density is a collection of d − 1 trees or levels. The first tree has
the d variables as nodes, and its edges represent the pairs it connects in the ground level. The nodes in
the next tree are the edges from the first tree, and in general, the edges at level j become the nodes at
level j + 1. Two nodes in tree j + 1 may be connected by an edge only if these nodes, seen as edges in
tree j, share a common node. This is called the proximity condition. The edges are indexed with two sets,
called the conditioned set and the conditioning set. The former includes the variables which belong to
only one of the nodes, and the latter includes the ones that are common for both nodes, i.e., the differ-
ence and union of the variables, respectively. See Figure A1 for an example in six dimensions. T1 is the
first tree, connecting the original variables. Its edges denote the pair-copulas from the ground level of
the decomposition, i.e., c12, c23, c25, c45, and c56. In the next level, T2, the five edges from T1 are the nodes,

HOBÆK HAFF ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2642



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022748

Figure A1. Levels of a regular vine for six variables.

and the new edges represent the second-
level copulas c13|2, c15|2, c24|5, c26|5, etc.
The two key results of Bedford and Cooke
[2001, 2002] are that the collection of
edges identifies all the pair-copulas needed
for a legal PCC and that the construction
is self-contained; that is, when looking
higher up in the hierarchy one finds exactly
one pair-copula to differentiate in order
to obtain the conditional distribution
one needs. For example, in Figure A1, the
conditional distributions F1|2 and F3|2 are
necessary for the copula c13|2. These are
computed by differentiating c12 and c23,
respectively, from the preceding level.

There are two special classes of R-vines,
called canonical (C-) and drawable (D-)
vines. These have been given most atten-
tion in applications. If there is a variable that
governs all the others, the former is useful,
whereas the latter is appropriate when there
is a natural linear ordering of the variables.
This is not the case for the application in
this paper. We therefore focus on the more
general class of R-vines.

The selection of a globally optimal R-vine
is essentially an unsolved problem, but
there are several useful strategies. The
state-of-the-art is to select the structure that
captures the most dependence in the lower
levels. The reason for this is that the lower
levels are the most influential for the total
dependence and that the statistical model
uncertainty increases through the structure.
Dißmann et al. [2013] have proposed
such an algorithm, based on Kendall’s 𝜏
coefficients. This algorithm proceeds level
by level, searching among the possible
spanning trees for the one with the
maximum sum of absolute values of 𝜏s. At
the ground, all spanning trees are allowed.

In the following levels, the possible trees are the ones that satisfy the proximity condition. Kendall’s 𝜏
coefficients may be substituted by other measures of dependence, such as Spearman’s 𝜌. The properties
of Spearman’s 𝜌 are somewhat different from the ones of Kendall’s 𝜏 , but the two essentially measure
the same type of dependence. Other dependence measures include the tail dependence coefficients. If
focus is on simultaneous extreme events, it would be a good idea to use these measures in the selection
algorithm. Unfortunately, they are very difficult to estimate empirically [Frahm et al., 2005], as opposed to
Kendall’s 𝜏 and Spearman’s 𝜌. A different selection approach is to build the structure top down, minimizing
the dependence in the upper levels. Kurowicka [2011] proposed such a procedure, based on partial
correlation coefficients.

The algorithm of Dißmann et al. [2013] requires the simultaneous choice of pair-copula families as well
as parameter estimation. At the ground level, the pairwise dependence measures may be estimated
empirically from the data. From the second level on, the variables are conditional distributions. To be able
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to compute them using the formula of Joe [1996], one needs estimates of the pair-copulas in the preceding
level. The steps (ii) and (iii) of the inference procedure (see section 3) must therefore be part of the selection
procedure.

A fast, stable, and convenient way of estimating the parameters is to use the stepwise semiparametric (SSP)
estimator, which is designed for PCCs. The SSP estimator proceeds as follows. The univariate margins Fi are
estimated in a separate step. The estimation of the copula parameters is based on the empirical distribution
functions

Fin(y) = 1∕(n + 1)
n∑

k=1

I(xki ≤ y).

The log likelihood of an R-vine for n independent d-dimensional samples is given by

n∑
k=1

d∑
i=1

log fi(xik)

+
n∑

k=1

d−1∑
i=1

∑
e∈Ei

log cj(e),k(e)|D(e)
(

F
(

xj(e),k|xD(e),k
)
, F

(
xk(e),k|xD(e),k

))
,

where Ei is the set of edges e = j(e), k(e)|D(e) in level i, j(e) and k(e) being the conditioned set and D(e)
the conditioning set, and xD(e) denotes the subvector of x = (x1,… , xd) determined by the indices in D(e).
The SSP procedure consists in estimating the ground-level parameters first, by maximizing the correspond-
ing part of the log likelihood function. Subsequently, the second-level parameters are estimated in a similar
manner, inserting the ground-level estimates into the relevant terms of the log likelihood function. It contin-
ues in this stepwise manner until it reaches the top of the structure. For instance, for the three-dimensional
example, the univariate margins F1, F2, and F3 are estimated separately. Next, c13 and c23 are estimated, by
inserting the empirical margins Fin, i = 1, 2, 3, into the terms of the log likelihood function, corresponding
to the ground level. The conditional distributions F1|3 and F2|3 are then estimated using the formula of Joe
[1996] on the estimated copulas ĉ13 and ĉ23. Finally, c12|3 is estimated based on the second-level terms of the
log likelihood function. For more details, see Hobæk Haff [2013, 2012].

Appendix B: Temporal Independence

An initial study revealed that the daily series of wet days are weakly temporally dependent and that this
dependence is well modeled by an AR(1) process for each series. In agreement with Serinaldi [2009], the
resulting AR coefficients were, however, small and moreover very similar across grid boxes and data sets.
We therefore choose to ignore the temporal dependence. Without correcting for autocorrelation, the result-
ing spatial dependence models are easier to interpret, since they are related directly to the amounts of
precipitation and not to the residuals from a time series model.

In a general model including temporal dependence, the measures we are interested in, such as Spearman
rank correlation 𝜌S(Xi,t, Xj,t) and the coefficients of upper tail dependence 𝜆U(Xi,t, Xj,t) between two neigh-
boring grid boxes i and j, would in general be time-varying. Our assumption of temporal independence,
however, enforces these measures to be constant in time. Thus, in order to justify the choice of temporal
independence, we have to assess whether these measures are indeed reasonably constant in time. To this
end, we have estimated the time-varying Spearman’s 𝜌 and upper tail dependence coefficients of three
different pairs of grid boxes during each of the two seasons for the observations and the simulations by
METNO-HIRHAM and DMI-HIRHAM5. They are computed in a moving window of 500 days that is shifted
ahead 50 days at a time. Moreover, we have estimated the measures parametrically, based on the bivariate
copula that fits each pair best. Variations in time turned out to be small. In those cases where there appears
to be a difference between the constant measures, the ordering between the time-varying estimates
remains constant (see Figures S29 and S30 in the supporting information for details). In other words, if
our approach favors one RCM above another based on the constant measures, the same RCM would be
preferred based on the corresponding time-varying measures. We conclude that the above statistical model
with serial independence is sensible and adequate for our purpose.
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