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ABSTRACT

In this study, the authors discuss two different parameterizations for the effect of mixed layer eddies, one

based on ageostrophic linear stability analysis (ALS) and the other one based on a scaling of the potential

energy release by eddies (PER). Both parameterizations contradict each other in two aspects. First, they

predict different functional relationships between the magnitude of the eddy fluxes and the Richardson

number (Ri) related to the background state. Second, they also predict different vertical structure functions

for the horizontal eddy fluxes. Numerical simulations for two different configurations and for a large range of

different background conditions are used to evaluate the parameterizations. It turns out that PER is better

suited to capture the Ri dependency of the magnitude of the eddy fluxes. On the other hand, the vertical

structure of themeridional eddy fluxes predicted byALS is more accurate than that of PER, while the vertical

structure of the vertical eddy fluxes is well predicted by both parameterizations. Therefore, this study suggests

the use of the magnitude of PER and the vertical structure functions of ALS for an improved parameteri-

zation of mixed layer eddy fluxes.

1. Introduction

High-resolution satellite altimetry and numerical sim-

ulations of the near-surface ocean show variability on

scales much smaller than the typical Rossby radius of the

ocean interior (Munk et al. 2000; Klein et al. 2008). The

dynamics on these scales are often called submesoscales,

and it is assumed that ageostrophic processes have to be

taken into account to describe these phenomena. Sub-

mesoscale dynamics might predominantly occur within

the ocean mixed layer, where the influence of diabatic

effects like convective and wind-induced mixing leads to

dynamic conditions that are not in quasigeostrophic bal-

ance anymore, although out of balance dynamics might

also be met under certain circumstances in the ocean

interior. Haine and Marshall (1998) investigate different

mechanisms that play a role for the upper-ocean mixed

layer dynamics. All these processes act to restratify the

mixed layer and occur on length scales that are too small

to be resolved by today’s climate models. Consequently,

Oschlies (2002) observed a bias in the mixed layer

depth and the surface ocean heat flux in coarser but

eddying ocean models, suggesting that these processes

might also play an important role for, for example, bio-

geochemical cycles.

The discussion of ageostrophic instabilities by Stone

(1966) shows that a key parameter to distinguish be-

tween different kinds of instabilities is the Richardson

number Ri—the ratio between the vertical buoyancy

gradient and the square of the vertical shear of hori-

zontal velocity. Large Ri indicate a geostrophic bal-

ance, while dynamics with smaller Ri show larger

ageostrophic effects. While baroclinic instabilities can

occur for all Ri, symmetric instabilities are only met for

Ri , 1, and Kelvin–Helmholtz instability are only met

for Ri , 0.25. In addition, the growth rate of baroclinic

and symmetric instabilities also depends on Ri. In typi-

cal, idealized model simulations of the spindown of

ocean fronts (e.g., Haine and Marshall 1998; Boccaletti

et al. 2007; Fox-Kemper et al. 2008; Bachman and Fox-

Kemper 2013), symmetric instabilities start to re-

stratify the ocean front if Ri , 1 and lead to stable

conditions with respect to symmetric instabilities (Ri$

1). After this first phase of restratification and after the

geostrophic adjustment, baroclinic instabilities set in

and lead to a further spindown of the front caused by
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baroclinic eddy buoyancy fluxes. Ri representative of

the background field can vary over a few orders of

magnitude during this process, and geostrophic and also

ageostrophic effects can be involved in the mixed layer

restratification. Baroclinic instabilities occur in nearly ev-

ery flow system with vertically sheared velocity and are

therefore important to be parameterized if ocean models

are not able to resolve them.

Stone (1966) and Molemaker et al. (2005) find that

even for small Ri characteristic for the mixed layer,

the dominating baroclinic instabilities are still geo-

strophically balanced to a large extent, although they

might also come in concert with secondary unbalanced

instabilities. This means that, if the mixed layer in-

stabilities are predominantly in geostrophic balance,

they might be well described by mesoscale eddy pa-

rameterizations designed for the interior of the ocean

with large Ri (Green 1970; Gent and McWilliams 1990;

Killworth 1997; Eden and Greatbatch 2008b; Eden

2011). On the other hand, there are also parameteriza-

tions developed for small Ri and thus ageostrophic

baroclinic instabilities (Stone 1972a) and parameteri-

zations especially developed for the mixed layer (Fox-

Kemper et al. 2008). All these parameterizations need to

somehow connect the magnitude of the eddy mixing to

the mean state. Since the Richardson number Ri is an

important measure for the characteristics of the mean

state instabilities, it is not surprising that most parame-

terizations associate the magnitude of the eddy fluxes

by some kind of functional relationship to Ri. Hence,

these parameterizations can be distinguished by their

dependency on Ri.

Fox-Kemper et al. (2008) discuss the difference be-

tween their parameterization and the one of Stone

(1972b). They cast both parameterizations in the form of

an eddy streamfunction that represents the adiabatic

advective effect of the eddy fluxes and use numerical

simulations of a restratifying density front to evaluate

both parameterizations. They find that their parame-

terization is better suited to represent the magnitude of

the eddy streamfunction than the parameterization of

Stone (1972b). By parameterizing the eddy stream-

function only, Fox-Kemper et al. (2008) neglect diabatic

effects, since they assume these to be small in their

scenario of a restratifying density front. However, it is

most likely that diabatic effects, for example, due to

wind-induced turbulence or convective mixing, play a

major role in the upper-ocean mixed layer (Tandon and

Garrett 1996; Treguier et al. 1997). The aim of this study

is to investigate how these diabatic effects modify the

amplitude and vertical structure of the eddy fluxes.

Furthermore, we evaluate to which extent parame-

terizations based on scalings of Stone (1972b) and

Fox-Kemper et al. (2008) are able to represent the eddy

fluxes in a diabatic environment.

The parameterization based on the suggestions by

Fox-Kemper et al. (2008) follows different physical ar-

guments than that of Stone (1972a) [in the quasigeo-

strophic limit the latter is in fact very similar to the one

by Killworth (1997) and Eden (2011)] and thus suggests

a different functional relationship between Ri and the

magnitude of the eddy fluxes. The aim of this study is to

discuss differences in these two classes of parameteri-

zations for mixed layer eddies. We consider two differ-

ent setups. The first one is a diabatic, forced dissipative

scenario in a statistically steady state. In this scenario,

diabatic effects are implemented as an idealized forcing

instead of resolving submesoscale and diabatic turbu-

lence at the same time. The advantage of this idealized

representation of the diabatic effects is that computa-

tional costs are low enough to allow performing simu-

lations for a wide range of parameters. The second

scenario consists of a restratifying density front where

diabatic effects are by far less strong than in the forced

dissipative scenario. The latter scenario is the same that

is also used by Fox-Kemper et al. (2008) and Bachman

and Fox-Kemper (2013).

By comparing the different Ri dependencies of the

parameterizations with the diagnosed dependency in a

numerical model, we aim to clarify which Ri dependency

is more appropriate to parameterize the eddy fluxes.

Since both classes of parameterizations differ also with

respect to the vertical structure of the meridional eddy

fluxes, we furthermore compare the vertical profiles of

the eddy fluxes from the numerical simulations and that

of the parameterizations. All these investigations are

performed for the two different scenarios, the equili-

brated forced dissipative scenario and the spindown

scenario of a density front, and over a wide range of

values for Ri.

In the following, we will introduce the parameteriza-

tions of Stone (1972a) and Fox-Kemper et al. (2008) in

section 2, where we also discuss how our variant of the

latter differs from the original one by Fox-Kemper et al.

(2008). After that, numerical simulations for the two

different scenarios are considered to evaluate these

parameterizations. First, we discuss the forced dissipa-

tive scenario of a baroclinically unstable flow, where

restratification is prevented by temperature restoring.

The description of the setup and a discussion of the re-

sults can be found in section 3. Second, we discuss in

section 4 setup and results of a scenario that consists of

a baroclinically unstable and restratifying density front.

Last, section 5 provides a discussion of the obtained

results and their implications for parameterizing mixed

layer eddy fluxes in numerical ocean models.
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2. Parameterizations for mixed layer eddy fluxes

To discuss the influence of mixed layer eddy fluxes on

the mean buoyancy budget, we average the equation for

buoyancy b:

›tb1$ � ub1$ � u0b0 5D . (1)

In Eq. (1), the local change of mean buoyancy b is given

by the advection of mean buoyancy by themean velocity

u, the divergence of the eddy fluxes u0b0, and diabatic

processes denoted by D. While the mean flux ub is

simulated in a numerical ocean model, the eddy flux u0b0

needs to be parameterized. For simplicity, we consider

zonal averages,1 that is, ( ) denotes a zonal average and

()0 denotes the deviations from that average. Equation

(1) contains only velocity components and gradients in

the meridional–vertical plane.

As described in the following, the structure and

strength of the eddy fluxes depends on the background

state of the flow. A nondimensionalization of the Navier–

Stokes equations shows that basically three parameters

determine the inviscid adiabatic equations, namely, the

Richardson number Ri, the Rossby number Ro, and the

aspect ratio d (see appendix A). Therefore, it is conve-

nient to derive parameterizations for the eddy fluxes in

dependency on these parameters.

a. A parameterization based on linear stability
analysis

The concept of using linear stability analysis to de-

termine eddy fluxes is based on the following ideas (see,

e.g., Green 1970; Stone 1972a; Killworth 1997; Eden

2011): As long as perturbations to a mean state are

small, all perturbation variables can be obtained by

solving a linearized set of equations for waves. From the

solution for these perturbation variables, the eddy fluxes

can be calculated from the correlations between velocity

and buoyancy perturbation. If the frequency for certain

wave modes becomes complex, there is an exponential

increase or decay of these waves. The fastest growing

mode is expected to dominate over the others, and

therefore this fastest growing mode is assumed to be

responsible for the eddy mixing.

As soon as the exponentially growing perturbations

reach the same magnitude as the background state, the

linearization of the equation is certainly no longer

a good approximation, and nonlinear effects become

important. However, as long as there is no significant

energy cascade transporting energy to different scales,

one might assume that the eddies retain their initial

scales and structure and that it is possible to infer on the

eddy fluxes by the linear solutions. Nevertheless, it re-

mains to find a proper scaling for the magnitude of the

eddy fluxes at the end of their exponential growth in the

fully turbulent regime. We note that the assumption of

a small effect of an energy cascade is a major drawback

of approaches, which parameterize nonlinear eddy

fluxes by linear theory. However, such approaches are

successfully used in many studies (e.g., Stone 1972b;

Killworth 1997; Eden 2011) to parameterize geostrophic

adiabatic turbulent eddy fluxes. We thus aim to test if it

also yields reasonable results in the ageostrophic and

diabatic regime investigated in this study.

Stone (1972a) argues that the exponential growth of

the wave is stopped as soon as nonlinear effects become

important. Thus, the perturbation velocity y0 takes the

same order of magnitude as the background velocity, and

y0 } M2H/f yields the scaling for the eigenvectors, where

M2 is the meridional buoyancy gradient, H is the water

depth, and f is the Coriolis parameter. A different idea

to scale the amplitude of the eigenvectors is suggested by

Killworth (1997) who suggests using the time and length

scale of the fastest growing mode to scale the meridional

velocity component y0. For quasigeostrophic conditions

(i.e., largeRi), constantmeridional and vertical buoyancy

gradients M2 and N2, respectively, and the vanishing

planetary vorticity gradient, the growth rate smax of the

fastest growing mode and the corresponding wave-

number kmax can be derived as follows (Eady 1949):

kmax’ 1:6L21
r , smax’ 0:3

fffiffiffiffiffiffi
Ri

p , (2)

where Lr 5 NH/f denotes the Rossby radius, and Ri 5
N2f2/M4 denotes the Richardson number for a flow in

geostrophic balance with depth H. Applying the scaling

of Killworth (1997) then yields y0 5 smax/kmax ’
0.25M2H/f and therefore basically the same scaling as

suggested by Stone (1972a).

Following the ideas of Stone (1972a) and Killworth

(1997), it is possible to calculate exact expressions for

the eddy fluxes of the Eady (1949) model as detailed in

appendix B:

y0b0

H2f 3
521:9CE

ffiffiffiffiffiffi
Ri

p
a3,

w0b0

H2f 3
5CE

1ffiffiffiffiffiffi
Ri

p mE(z)a
2, (3)

where CE denotes a tuning constant of order one,

and a 5 Ro/d is the ratio between the Rossby number

1Note that a zonal average implies a strongly anisotropic aver-

aging operation. Therefore, a zonal average in general differs from

the mean state inferred by a three-dimensional model. This has to

be considered if the results obtained in this study are used to im-

plement the parameterization in a three-dimensional model.
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Ro5U/(fL) and the aspect ratio d5H/L for a flowwith

velocity scaleU and horizontal and vertical length scales

L and H, respectively. While y0b0 is vertically constant,

the vertical dependency of w0b0 is denoted by mE(z),

which has amaximum of one at z52H/2 and is given by

mE(z)5

cosh

�
kmaxLr

�
2z

H
1 1

��
2 cosh(kmaxLr)

12 cosh(kmaxLr)
. (4)

This kind of closure was already successfully imple-

mented and evaluated in numerical ocean models in

Killworth (1997), and Eden (2011, 2012) for general

profiles of N2 and M2 and including also the planetary

vorticity gradient.

Within the mixed layer, especially at fronts, strong ver-

tical shears andweak stratifications are likely to occur such

that Ri becomes small and ageostrophic processes have to

be taken into account. For the ageostrophic equations, it is

no longer possible to find analytical solutions as for the

quasigeostrophic Eady problem even for constantN2 and

M2 and vanishing planetary vorticity gradient. Stone

(1966) derives approximate solutions for the ageostrophic,

linearized equations in order to extent the theory of Eady

(1949) for small Ri. For the fastest growth rate smax and

the corresponding wavelength kmax, Stone (1966) obtains

kmax5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

11Ri

r ffiffiffi
5

2

r
L21
r , smax5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

11Ri

r ffiffiffiffiffi
5

54

r
fffiffiffiffiffiffi
Ri

p .

(5)

The only difference between these results and the ones

from Eady (1949) is an additional factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri/(11Ri)

p
that approaches one for largeRi. Figure 1a indicates that

there is hardly any disagreement between the solutions

of Eady (1949) and Stone (1966) for large Ri, while for

smaller Ri the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri/(11Ri)

p
becomes more and

more important (see, e.g., dashed–dotted lines in Fig. 1a

for Ri 5 1).

As before, it is possible to derive the eddy fluxes by

linear stability analysis up to a proportionality constant

from the correlations of the eigenvectors for y0, w0, and
b0. If we use the same scaling as suggested by Killworth

(1997), namely, assuming
ffiffiffiffiffiffiffiffi
y 0y 0

p
}smax/kmax, we obtain

y0b0

H2f 3
52

8

5
CS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
11Ri

p
a3,

w0b0

H2f 3
5CS

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
11Ri

p mS(z)a
2,

(6)

where CS denotes another tuning parameter of order

one. Formally, these equations are valid only in the long-

wave limit as noted by Stone (1972b). We use this ap-

proximate form and compare the eddy fluxes obtained

by Eq. (6) with numerical solutions of the eigenvalue

problem below and find good agreement. As in Eady’s

solution and depicted in Fig. 1b, there is no vertical de-

pendency of y 0b0 in Stone’s solution. The vertical structure
of w0b0 denoted by mS(z) is derived by Stone (1972b) as

mS(z)524
z

H

� z

H
1 1

�
, (7)

and therefore only marginally deviates from the hyper-

bolic structure of w0b0 obtained for the Eady problem

(see Fig. 1c). The parameterization based on the ap-

proximate analytic solution of the linear stability anal-

ysis is referred to as ALS in the following.

Although the solution of Stone (1972a) accounts for

ageostrophic effects, it is quite similar to the one ob-

tained by Eady (1949) for the quasigeostrophic limit of

large Ri. Figure 1d shows the maximum of the eddy

FIG. 1. (a) Growth rate inferred from linear stability analysis for a5 4 as a function of the along-stream wavenumber k for the solution

by Eady (black) and Stone (gray) for Ri 5 1 (dashed–dotted), Ri 5 10 (dashed), and Ri 5 100 (solid). Maximum growth rates smax

at wavenumbers kmax are indicated by circles. (b)–(d) Eddy fluxes of the parameterizations based on Eq. (3) (dashed), Eq. (6) (solid), and

Eq. (9) (dashed–dotted). (b) and (c) show the vertical structure function of y 0b0 and w 0b0, respectively, for Ri5 1 and a5 4 [note that the

dashed line in (c) is superimposed on the dashed–dotted line]. (d) shows the amplitude of the eddy fluxes y0b0 (black) and w0b0 (gray) as
a function of Ri for a 5 4.
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fluxes y0b0 (solid curves) and w0b0 (dashed curves) for

both parameterizations over a large range of values for

Ri. The only differences for Ri 5 O(1) between Eady’s

and Stone’s solution are due to the additional factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri/(11Ri)

p
in Stone’s solution. For large Ri, this fac-

tor approaches one and Stone’s solution becomes iden-

tical to the one of Eady (1949).

b. A parameterization based on potential energy
release

We also discuss a parameterization following argu-

ments from Fox-Kemper et al. (2008), who derive a pa-

rameterization for the spindown of a baroclinic density

front with typical mixed layer conditions by scaling

the magnitude of the potential energy release. The

key assumption for this class of closure is that the po-

tential energy release (DPE 5 g/r0DrDz) is achieved

by the vertical eddy flux. Thus, it is assumed that

DPE/Dt}2Dz(DyM2 1DzN2)/Dt52w0b0, where Dz
and Dy denote the vertical and horizontal eddy length

scales, respectively, and Dt is the eddy time scale. To in-

fer these eddy length and time scales, the following as-

sumptions are made:

(i) The eddy time scale is an advective time scale Dt }
Dy/Ue, where Ue denotes the eddy velocity.

(ii) The eddy velocity is set to be proportional to the

thermal wind velocity Ue } (M2/f )H.

(iii) The eddy depth scale Dz is assumed to be pro-

portional to the mixed layer depth H.

(iv) The eddy fluxes are along surfaces inclined by half

of the isopycnal slope, that is, Dz/Dy520:5M2/N2

as can be inferred from parcel theory (Haine and

Marshall 1998).

The second assumption is also made by Stone (1972a).

Bachman and Fox-Kemper (2013) argue that this as-

sumption is problematic and find reduced deviations

between parameterized and diagnosed eddy fluxes, if the

diagnosed eddy velocity is used instead of the thermal

wind velocity. We also find this result here (not shown)

but we make no attempt to improve this scaling to keep

the closure as simple as possible. The assumptions iii and

iv do not contradict the results of the linear stability

analysis. Therefore, the parameterizations given by

Eq. (6) and by Eq. (9) below differ only with respect to

the first assumption:2 while this assumption of Fox-

Kemper et al. (2008) leads to a time scale Te 5 Ri/f and

a corresponding length scale Le 5 Ue/Te 5 RiaH, the

scaling by Stone (1972a) as well as that by Killworth

(1997) suggest Te 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Ri

p
/f and correspondingly Le 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11Ri
p

aH.

The assumptions discussed so far yield only the magni-

tude of the eddy fluxes. Fox-Kemper et al. (2008) use the

vertical structure m(z) obtained from the linear stability

analysis for w0b0. In fact, Fox-Kemper et al. (2008) use

a higher-order solution in the zonal wavenumber for the

linear stability analysis than that of Stone (1972b) and

apply to this solution the large Ri limit:

mF(z)524
z

H

� z

H
1 1

�"
11

5

21

�
2z

H
1 1

�2
#
. (8)

To obtain y 0b0, Fox-Kemper et al. (2008) assume y 0b0 5
22w0b0N2/M2 (corresponding to assumption iv). We

thus obtain

y 0b0

H2f 3
522CFmF(z)Ria3,

w0b0

H2f 3
5CFmF(z)a

2 , (9)

where CF is another tuning parameter of order one.

We stress that Fox-Kemper et al. (2008) cast their

parameterization not as in Eq. (9) but as a stream-

function for an eddy-driven velocity that they define as

CHS 52w0b0/›yb in accordance with the definition of

Held and Schneider (1999). To fully represent the eddy

buoyancy fluxes, a residual eddy flux has to be added to

the effect of the eddy-driven advection, which is for

the case of CHS entirely in horizontal direction [other

choices are possible; see, e.g., Plumb andFerrari (2005) or

Eden and Greatbatch (2008a)]. However, Fox-Kemper

et al. (2008) argue that these residual eddy fluxes are

small in comparison to horizontal numerical diffusion

normally implemented in coarse ocean models. There-

fore, they suggest only usingCHS calculated by Eq. (9) to

represent the eddy fluxes. Neglecting the residual eddy

fluxes, the parameterization of Fox-Kemper et al. (2008)

becomes thus fully adiabatic. In contrast to Fox-Kemper

et al. (2008), we will use here the horizontal and the

vertical eddy fluxes as given by Eq. (9), which makes the

closure Eq. (9) diabatic, in order to allow the closure to

also represent the diabatic effect of the eddy fluxes.

Therefore, the closure given by y 0b0 and w0b0 of Eq. (9)
will be referred to as the parameterization based on po-

tential energy release (PER) [and not as the parameter-

ization by Fox-Kemper et al. (2008)].

c. Comparison of the parameterizations

There are two principal differences between PER

given by Eq. (9) and ALS given by Eq. (6). The first one

is a different dependency of the eddy fluxes on Ri re-

sulting from assumption one of the last section. This

means that even if both solutions are accurately tuned

2Note that assumption iv only corresponds to Stone (1972a) at

the steering level.
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for a certain Ri, there might be a difference in the

magnitude of the eddy fluxes for different Ri. Figure 1d

shows the maxima of the eddy fluxes y 0b0 and w0b0 from
Eq. (9) together with the eddy fluxes of the quasigeo-

strophic linear stability problem Eq. (3) and the ageo-

strophic problem Eq. (6). Here, the tuning constants are

chosen in the way that both parameterizations agree

best for Ri 5 1. For Ri 5 100, however, the difference

between both parameterizations is roughly one order of

magnitude. Choosing different tuning coefficients will

shift the curves parallel to the vertical axis in the double

logarithmic plot, but there will always remain a large

difference for certain Ri.

The second difference concerns the vertical structure

of the horizontal eddy flux y 0b0. Because for PER,

w0b0/y 0b0 5 0:5M2/N2 is assumed everywhere and not

only at the steering level; y 0b0 has a parabolic vertical

structure that vanishes at the surface and the mixed

layer base. In contrast, linear stability analysis suggests

a constant horizontal flux throughout the whole mixed

layer (see Fig. 1b).

The differences between both parameterizations be-

come more illustrative if we consider for the moment

a downgradient closure for the horizontal eddy fluxes and

the ratio of the horizontal and the vertical eddy fluxes:

y 0b052K›yb, w0b05 gy 0b0 (10)

with the lateral diffusivity K52y 0b0/›yb and the eddy

flux ratio g5w0b0/y 0b0. To parameterize K, it is common

to use mixing length theory and to express K as the

product of a typical eddy velocityUe and a length scaleLe:

K}UeLe . (11)

Both parameterizations, PER and ALS, assume that

the eddy velocity scale is proportional to the thermal

wind velocity and that the eddy fluxes are along surfaces

inclined by s/2 at the steering level, where s 5 2M2/N2

denotes the isopycnal slope. Thus, the difference be-

tween both parameterizations concerning the amplitude

of the eddy fluxes can be identified from a different

choice of the eddy length scale. Linear stability analysis

predicts Le 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ri1 1)/Ri

p
Lr and therefore a length

scale essentially given by the Rossby radius Lr with only

small deviations for Ri5O(1). In contrast, PER implies

Le 5HN2/jM2j5 ffiffiffiffiffiffi
Ri

p
Lr as a characteristic eddy length

scale, that is, a length scale that deviates from the pa-

rameterization based on linear stability analysis.

One might now construct the amplitude of the eddy

fluxes y0b0 and w0b0 with Eqs. (10) and (11). By assum-

ing Ue 5 M2H/f, g ’ 1/2s and L0 5
ffiffiffiffiffiffi
Ri

p
Lr or L0 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Ri1 1)/Ri
p

Lr, we obtain either PER or ALS,

respectively. Instead of composing the lateral diffusivity

by a velocity and a length scale, it would also be possible

to compose it by a length and a time scaleTe. If we assume

the latter to be Te5 Le /Ue, we obtain Te 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri1 1

p
/f for

ALS and Te 5 Ri/f for PER. Both time scales as well as

the length scales differ.

In an adiabatic steady state, the diapycnal component

of the eddy fluxes will vanish (except for a possible ro-

tational component), and gwill be equal to the isopycnal

slope as assumed by, for example, Gent et al. (1995),

Killworth (1997), and Eden (2011). In the presence of

small-scale diabatic processes, however, there will be a

net diapycnal transport of the eddies (Tandon and Garrett

1996; Eden and Greatbatch 2008a). Because the mixed

layer is predestined to those diabatic processes (Tandon

and Garrett 1996; Treguier et al. 1997), it is reasonable to

expect nonvanishing diapycnal eddy fluxes and diapycnal

diffusivities also in equilibrated scenarios for the mixed

layer. In fact, we explicitly apply diabatic conditions to

prevent the buoyancy front from slumping down in our

equilibrated scenarios. Therefore, it seems more prom-

ising to assume g , s than g 5 s for our equilibrated

scenario but probably also for the real mixed layer.

If the system is not steady, as is the case for a restra-

tifying density front, g is likely to be smaller than the

isopycnal slope even if the flow is completely adiabatic.

Green (1970) and Stone (1972a) suggest that g takes

values at the steering level close to 0.5s. Similarly, Fox-

Kemper et al. (2008) suggest g 5 0.5s for the whole

vertical profiles of y0b0 and w0b0 and not only at the

steering level. As detailed below, we also expect diabatic

effects to occur in our spindown scenario due to nu-

merical diffusion. Therefore, we cannot expect a com-

pletely adiabatic restratification process in the spindown

scenario, although the diabatic effects are likely to be

much smaller than in the equilibrated scenario. How-

ever, as mentioned above, a diabatic scenario is proba-

bly not unrealistic with respect to the ocean mixed layer,

where diabatic processes will certainly accompany the

restratification by baroclinic instabilities.

These considerations bring us to the following ques-

tions, which we aim to answer by the diagnosis of nu-

merical model results:

(i) Which dependency of y 0b0 and w0b0 on Ri is more

appropriate, the one based onALS given by Eq. (6)

or the one based on PER given by Eq. (9)?

(ii) What is the vertical structure of the horizontal eddy

fluxes y 0b0, a constant profile as suggested by ALS

or a parabolic-shaped structure as suggested by

PER?

(iii) Are there qualitative differences of the parameter

dependency of the eddy fluxes in a spindown
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scenario in comparison to an equilibrated, diabatic,

forced dissipative scenario?

3. Baroclinic instabilities in a forced dissipative
scenario

a. Numerical simulations

To simulate mixed layer instabilities, we use the

Massachusetts Institute of Technology general circula-

tion model (MITgcm; Marshall et al. 1997). The con-

figuration resembles that of Eady (1949) and Stone (1966).

Our model domain consists of a reentrant channel with

periodic boundary conditions at zonal boundaries and

solid walls at meridional boundaries. For simplicity, we

use temperature as the only active tracer and a linear

equation of state; thus, temperature and buoyancy are

equivalent. To test the parameterization for different

Ri and a, we vary vertical and meridional buoyancy

gradientsN2
0 andM2

0 to obtain specific values for Ri0 and

a0 in accordance with

Ri0 5
N2

0 f
2

M4
0

, a05
M2

0

f 2
. (12)

The initial temperature T0 is chosen to resemble the ver-

tical and meridional stratification N2
0 and M2

0. The initial

velocity is chosen to be in thermal wind balance with the

initial temperature. A uniform depth of H 5 200m and

Coriolis parameter of f 5 7 3 1025 s21 are applied

throughout all simulations. The domain width is chosen

equal in the zonal and meridional direction and allows for

four wave lengths of the most unstable wave to fit in the

domain. Since we use a resolution of 120 grid points in the

horizontal, the horizontal resolution varies in dependency

on Ri0 and a0 (see Table 1). In contrast, we use a constant

vertical resolution of 40 layers and 5-m depth for each

experiment (results from sensitivity experiments for dif-

ferent spatial resolutions are described in section 3c).

The described setup is baroclinically unstable, and

small perturbations that we add to T0 exponentially

grow to eddies that drain their kinetic energy out of the

mean state by relaxing the temperature front. To obtain

an equilibrated scenario, we apply a temperature forcing

that counteracts the restratification effect. This forcing is

achieved by a restoring of the zonal-mean temperature

T to the target temperature T0 that is identical to the

initial condition with an inverse time scale lT 5 2smax,

where smax is the growth rate determined byEq. (5) with

Ri0 and a0. This means we add a tendency term

lT(T0 2T) to the temperature conservation equation

in the model. This kind of restoring has the advantage

that the zonal-mean front is preserved without damping

zonal deviations. In this sense the method is similar

to the spectral nudging of Thompson et al. (2006). The

restoring is diabatic and yields diapycnal fluxes of

buoyancy that are certainly present within the ocean

mixed layer (Tandon and Garrett 1996; Treguier et al.

1997), and we consider the zonal restoring as a surrogate

for more realistic diabatic processes that would retain

a surface buoyancy front in the real ocean.

The instability of the flow yields a conversion of po-

tential energy into eddy kinetic energy. Because of the

restoring, there is a permanent source of energy that has

to be balanced by dissipation to obtain an equilibrated

energy budget. Here, we use a Rayleigh damping of

zonal and meridional momentum to extract kinetic en-

ergy and to damp the inverse energy cascade at the

largest scales. The applied time scale is chosen to be

proportional to the maximum growth rate, that is, the

drag coefficient is set to lu 5 0.5smax. In addition to the

linear drag, we use biharmonic horizontal and harmonic

vertical friction with no-slip boundary conditions at the

sidewalls and free-slip at the bottom (viscosities can be

found in Table 1). Temperature is advected by a third-

order upwind advection scheme. No explicit diffusion is

used, except in statically unstable conditions (N2 , 0),

where an implicit vertical diffusion with diffusivity of

1 3 1022m2 s21 parameterizes convection. Since we do

not expect nonhydrostatic effects to become relevant for

the parameter range chosen in this study, we use the

hydrostatic version of the MITgcm (tests with the non-

hydrostatic version do not yield different results).

Snapshots of the equilibrated flow are shown in

Figs. 2a–c for one simulation dominated by ageostrophic

TABLE 1. Overview of model parameters.

Symbol Meaning Value

(nx, ny, nz) Number of grid points

in x, y, z directions

(120, 120, 40)

H Depth of the basin 200m

f Coriolis parameter 7 3 1025 s21

U0 Zonal velocity a0H f

M0 Meridional buoyancy

gradient

ffiffiffiffiffi
a0

p
f

N0 Vertical buoyancy gradient a0

ffiffiffiffiffiffiffiffi
Ri0

p
f

kmax Wavenumber of fastest

growing wave

ffiffiffiffiffiffiffi
5/2

p
/(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Ri0

p
a0H)

smax Growth rate of fastest

growing wave

ffiffiffiffiffiffiffiffiffi
5/54

p
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Ri0

p
f

Dx Horizontal resolution 8p/kmax/nx

A4 Biharmonic horizontal

viscosity

U0dx
3/20

Ay Harmonic vertical viscosity U0dz/200

lu Linear drag coefficient 0.5smax

lT Inverse restoring time

scale

2smax
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dynamics (Ri0 5 1 and a0 5 4) and in Figs. 2d–f for one

with predominantly quasigeostrophic balanced dynam-

ics (Ri0 5 1000 and a0 5 0.25). The snapshots of tem-

perature in Figs. 2a and 2d indicate large eddy activity.

Typical for ageostrophic dynamics, the simulation with

Ri05 1 and a05 4 features a relative vorticity z5 ›xy2
›yu shown in Fig. 2b that is much larger than f within

the spiral-like, structured eddies indicating large local

Rossby numbers. Within these regions of large relative

vorticity, values of the horizontal velocity divergence

D5 ›xu1 ›yy are of the same order as z (Fig. 2c). In the

simulation with Ri05 1000 and a05 0.25, smaller values

of z occur, andD is much smaller than the vorticity (Figs.

2e,f), which is typical for a flow in quasigeostrophic

balance.

Figure 3a shows a time series of globally averaged

available potential energy (APE), eddy kinetic energy

(EKE), mean kinetic energy (MKE), and total energy

(TE): TE5APE1 EKE1MKE for Ri0 5 1 and a0 5
4. APE is defined as the difference between the globally

integrated potential energy zb and a minimum potential

energy state. For the latter, we adiabatically rearrange

the water parcels such that all horizontal gradients

vanish and calculate the global-mean potential energy of

this state. Mean kinetic energy is calculated by

MKE5 1/2(u2 1 y2) where u and y denote zonal aver-

ages of the zonal and meridional velocity components u

and y, respectively. Eddy kinetic energy is determined

by EKE 5 1/2(u02 1 y02), with u0 5 u2 u and y0 5 y2 y.

After a period of approximately 20s21
max, the simula-

tion has reached a statistical equilibrium in which the

global-mean potential and kinetic energy are fluctuating

around their time-mean value without showing a sys-

tematic trend. In Fig. 3b, the time series of global-mean

Ri and a are shown, both parameters are scaled by their

initial value Ri0 5 1 and a0 5 4. Ri and a are calculated

as Ri0 and a0 in Eq. (12), but using the globally averaged

instead of the initial values of the vertical and meridio-

nal stratification N2 andM2, respectively. While there is

hardly any change in a, Ri increases by a factor of 7 after

baroclinic instability sets in. A time average from

t5 40s21
max to t5 160s21

max (indicated by the vertical black

lines in Fig. 3) is applied for each simulation to obtain

diagnosed values for Ri and a that are used to identify

the parameter dependency of the eddy fluxes. For the

experiment shown in Fig. 3, this yields Ri5 6.9 and a5
3.7. Note that the ratio Ri/Ri0 becomes smaller in ex-

periments with larger Ri (not shown).

FIG. 2. Instantaneous horizontal sections of (a),(d) temperature, (b),(e) vorticity z 5 ›xy 2 ›yu, and (c),(f) horizontal velocity di-

vergence D 5 ›xu1 ›yy. The terms z and D are normalized with f and shown at t5 160s21
max for an experiment with Ri0 5 1 and a0 5 4 in

(a)–(c) and an experiment with Ri0 5 1000 and a0 5 4 in (d)–(f).
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b. Evaluating the parameterizations

To investigate the dependency of the eddy fluxes on

Ri and a, we perform different experiments by varying

the initial and restoring temperature T0. All other pa-

rameters are chosen as detailed in Table 1. Each ex-

periment is integrated over a time period of more than

150s21
max. Time-mean values of Ri and a are derived as

described in the previous section where we use global

and time averages of M2 and N2. This time average is

performed over a period of more than 100s21
max as in-

dicated in Fig. 3 by the vertical black lines and the me-

ridional mean is limited to regions with y . 0.1Ly and

y , 0.9Ly, where Ly denotes the basin width in order to

exclude boundary effects. Eddy fluxes are determined

by considering a zonal and time mean of y, w, and b and

the corresponding deviations to determine y 0b0 andw0b0.
An eddy streamfunction C and a diapycnal diffusivity

Kdia are calculated from the diagnosed y 0b0 and w0b0 as

C5
y 0b0›zb2w0b0›yb

j=bj2
, Kdia52

y 0b0›yb1w0b0›zb

j=bj2
.

(13)

To compare the diagnosed y 0b0, w0b0, C, and Kdia with

the vertical profiles of the parameterizations, we take an

additional meridional average of the respective quanti-

ties where we again exclude the meridional boundaries

as mentioned above.

Note that in their parameterization Fox-Kemper et al.

(2008) use a different representation of the stream-

function following Held and Schneider (1999). In this

case, the streamfunction CHS 52w0b0/›yb is defined by

the vertical eddy flux only, and the residual flux is in the

horizontal direction [and not in the isopycnal direction

as it is if Eq. (13) is used]. Since Fox-Kemper et al. (2008)

represent the eddy fluxes by CHS only, their parame-

terization is adiabatic. We stress that this is different

from our approach. It is important to note that the pa-

rameterization based on Eq. (9) referred to as PER as

well as the parameterization based on Eq. (6) referred to

as ALS are not adiabatic and thus Kdia 6¼ 0.

The parameterizations for y 0b0 and w0b0 based on the

analytic solution of the ALS by Stone (1972a) and that

based on the PER are given by Eq. (6) and Eq. (9), re-

spectively. In addition, we parameterize the eddy fluxes

by a third method very similar to ALS, namely, a nu-

merical solution of the linearized eigenvalue problem

(NLS) for a given background state instead of using

the approximate solution by Stone (1972a). In NLS,

M2 and N2 are allowed to vary vertically. Details on

the method can be found in Thomsen et al. (2014). As

before for ALS, we scale the eigenvectors by assuming

y0 5 CNsmax/kmax, where smax and kmax are now de-

termined numerically, and CN is a tuning factor. Since

the computational costs of this method are very high, it

is probably not appropriate to be implemented in a nu-

merical ocean model. Nevertheless, a consideration of

NLS enables us to differentiate if differences between

diagnosed eddy fluxes and ALS are due to approx-

imations made in Stone (1972a) and how much im-

provement could be achieved with more accurate

eigenfunctions.

We determineCS andCF by a least squares fit between

the mean diagnosed and parameterized eddy fluxes.

Since we are aiming to achieve a variation of the

eddy fluxes over several orders of magnitude, we

apply a logarithmic weighting and therefore minimize

�i[log10(yi)2 log10(xi)2 log10(C)]
2 to obtain the fitting

constant C 5 CS or C 5 CF, where yi denotes the

FIG. 3. (a) Global-mean total energy (gray dashed), mean kinetic energy (black solid), eddy

kinetic energy (gray solid), and available potential energy (black dashed) as a function of time for

an experiment with Ri0 5 1 and a0 5 4. (b) Diagnosed Ri (solid) and a (dashed) normalized by

their initial values Ri0 and a0 as a function of time. Time is scaled by the initial growth rate amax.

Vertical black lines indicate the time point from which time averages are applied (see text).
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diagnosed mean of y 0b0 and w0b0 and xi denotes the pa-

rameterized counterpart of ALS or PER, respectively,

for an experiment i characterized by a certainRi0 anda0.

With this, we obtain CS 5 1.1 and CF 5 0.16 for the

corresponding parameterizations. Fox-Kemper et al.

(2008) find CF 5 0.06 for their spindown simulations,

thus a significantly smaller value.

Note that Fox-Kemper et al. (2008) determine CF by

considering CHS 52w0b0/›yb instead of considering

both y 0b0 and w0b0 as we do here. In the case that CF is

determined with CHS alone as done by Fox-Kemper

et al. (2008), we obtain CF 5 0.2. Capet et al. (2008) find

values in the range of 0.15–0.25 and thus 2 to 3 times

larger than the value estimated by Fox-Kemper et al.

(2008) and within the range that we find for the equili-

brated scenario. Similarly, Bachman and Fox-Kemper

(2013) find CF 5 0.17 in good agreement with our find-

ing. However, the exact values of CS and CF might

strongly depend on the strength of the diabatic effects as

can be inferred from sensitivity simulations discussed in

the following section. Note that we also find a sub-

stantially smaller value in the spindown scenario (see

section 4) where the diabatic processes are substantially

smaller.

In Fig. 4, we show the scaled parameterizations for

y 0b0 and w0b0 for the three parameterizations as a func-

tion of the diagnosed y 0b0 andw0b0. The closer the points
are to the black diagonal line, the better the diagnosed

eddy fluxes match their parameterized counterparts.

Note that different tuning coefficients would mean

a shift parallel to the vertical axis of the points in Fig. 4.

In principle, the quality of the single parameteriza-

tions might be inferred from the scatter of the points in

Fig. 4, but for a more detailed analysis we want to

consider the Ri and a dependency separately. Plotting

the mean values of the profiles of y 0b0, w0b0, C, and Kdia

against Ri in Figs. 5a–d for experiments with a0 5 4

shows the dependency of the eddy fluxes on Ri. A linear

regression in these double logarithmic plots yields the

exponents k of the leading-order Rik dependency of the

eddy fluxes. Similarly, we obtain the leading-order al

dependency from a set of experiments with Ri0 5 1 by

a linear regression of the eddy fluxes against a in the

double logarithmic plots shown in Figs. 5e–h. It turns out

that there is no qualitative change of the Ri dependency

for experiments witha05 1 anda05 0.25, and vice versa

there is no change of the a dependency for different Ri

(not shown).

The slopes determined by the linear regressions for

Fig. 5 that indicate the leading-order dependency on Ri

and a are given in Table 2. Note that in some cases, the

slopes for ALS and PER do not perfectly agree with

Eqs. (6) and (9), respectively. The reason for that is that

a does not stay strictly constant throughout the experi-

ments shown in Figs. 5a–d and also Ri slightly varies

within the experiments for differenta shown inFigs. 5e–h.

Thus, the eddy fluxes do not only vary due to a change of

Ri in Figs. 5a–d, but also due to slight changes of a,

causing the slopes of ALS and PER to differ from what

would be expected for a 5 const. The same is true for

the slopes determined by the experiments shown in Figs.

5e–h. Equation (6) suggests for ALS and large Ri a slope

of k5 0.5 and l5 3 for y 0b0 and k520.5 and l5 2 for

w0b0, while Eq. (9) suggests for PER k5 1 and l5 3 for

y 0b0 and k 5 0 and l 5 2 for w0b0. However, as can be

inferred by Table 2, the resulting deviations from the

determined slopes to these theoretical slopes for ALS

and PER are rather small.

FIG. 4. (a)–(c) Fitting of the different parameterizations for y 0b0 (dots) and w0b0 (crosses). Tuning parameters are obtained by a least

squares fit as CS 5 0.90 in (b) and CF 5 0.08 in (c).
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Despite these issues, it can be noted that the Ri de-

pendency of the diagnosed eddy fluxes y 0b0 and w0b0 is
not perfectly matched by any parameterization and that

the estimated exponents k for the diagnosed eddy fluxes

are in between the PER and ALS parameterizations.

Furthermore, the numerical simulations indicate a strong

decay of w 0b0 for larger Ri that is in contradiction to

PER. Although the tendency for decreasing w0b0 with
larger Ri is correctly described by the NLS and ALS, the

decrease in the numerical model is not as strong as sug-

gested by these parameterizations. For the eddy stream-

function C and the diapycnal diffusivity Kdia, we obtain

similar findings, sinceC andKdia are functions of y 0b0 and
w0b0. However, it should be noted that all parameteriza-

tions have a low bias in predicting diffusivities.

Figure 6 shows the vertical structure of the eddy fluxes

for a0 5 4 and different Ri. Because there are large var-

iations of the magnitude of the eddy fluxes between the

parameterizations, Fig. 6 shows all profiles normalized by

their maximum values. The diagnosed profiles resemble

what we expect from linear stability analysis. While y 0b0 is
almost constant in the vertical, w0b0 has a parabolic ver-

tical dependency with a maximum at middepth (red lines

in Figs. 6a,b). The structure of y 0b0 is quite well matched

by ALS, but does not share the same vertical dependency

as predicted by PER. All parameterizations capture quite

well the diagnosed profile ofw 0b0. Note that we use global

averages ofM2 andN2 for PER and ALS. In contrast, we

use horizontally averaged profiles of M2 and N2 in NLS.

The profiles ofC andKdia depend not only on y 0b0 and
w 0b0, but also on the vertical structure of M2 and N2.

While M2 has nearly no vertical structure, N2 increases

at the top and the bottom (not shown) and therefore

influences the structure of C and Kdia. The resulting

profiles are shown in Figs. 6c and 6d. The vertical

structure of C (red line) is quite well captured by NLS

andALS (blue and green lines) in contrast; the profile of

the PER parameterization decays too strong at the top

and at the bottom.

FIG. 5. (a),(e) Meridional and (b),(f) vertical eddy fluxes y 0b0 and w0b0, (c),(g) eddy streamfunctionC, and (d),(h) diapycnal diffusivity

Kdia are plotted in (a)–(d) against Ri for simulations with a0 5 4 and in (e)–(h) against a for simulations with Ri0 5 1. Red dots indicate

diagnosed results, and black, blue, and green dots are the corresponding PER, NLS, and ALS parameterizations. Colored lines denote

respective linear least squares fits. The slopes of these fits in the double logarithmic plots indicate the leading-order dependency on Ri in

(a)–(d) and the dependency on a in (e)–(h) (slopes are given in Table 2).

TABLE 2. Exponents k and l of the estimated Rik and al de-

pendency of the eddy fluxes, streamfunction, and diapycnal diffu-

sivity in the forced dissipative scenario.

kdiag kPER kNLS kALS ldiag lPER lNLS lALS

y 0b0 0.7 0.9 0.5 0.4 3.0 3.0 3.0 3.0

w0b0 20.3 20.0 20.5 20.5 2.0 2.0 2.0 2.0

C 20.2 20.0 20.5 20.5 1.0 1.0 1.0 1.0

Kdia 21.2 21.0 21.5 21.5 0.0 0.1 0.0 0.1
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While the structure of Kdia is not matched at all by

PER, it is also only partly matched by ALS and NLS. At

top and bottom ALS and NLS closely follow the di-

agnosed profile, but at middepth they underestimate the

minimum of Kdia. Note that Kdia becomes negative for

small Ri that is probably due to the influence of rota-

tional eddy fluxes (Eden and Greatbatch 2008a). It

might also be that the strong middepth minimum would

be less marked if the rotational eddy fluxes are sub-

tracted from the total eddy fluxes, such that the profiles

of NLS and ALS match better the diagnosed profiles of

Kdia, but we have made no attempt to do so.

c. Sensitivity simulations in the forced dissipative
scenario

It is assumed in ALS and PER that the functional re-

lationship between the eddy fluxes andRi and a does not

depend on parameters controlling dissipation, diffu-

sion, or forcing. To evaluate this hypothesis, we perform

different sensitivity studies where we vary the linear

drag, zonal restoring, resolution, and small-scale dissi-

pation. How these sensitivity experiments vary with

respect to the standard configuration (STD) discussed so

far is depicted in Table 3. The magnitude of the eddy

fluxes of these experiments is shown in Fig. 7, and the

estimated Ri dependency is depicted in Table 4.

Since the energy conversion between potential and

kinetic energy is influenced by the temperature restoring

and the linear damping, we test the sensitivity of the Ri

dependency of the eddy fluxes for different restoring

time scales lT and drag coefficients lu (experiments ZR

and LD, respectively). These experiments indicate that

lT has a minor influence on the Ri dependency and the

magnitude of the eddy fluxes. In contrast, we find that lu
has an influence on the magnitude of the eddy fluxes.

This influence is strongest for large Ri. Therefore, lu
changes both the Ri dependency and the mean magni-

tude of the eddy fluxes. As a consequence, the pro-

portionality constants CS and CF decrease for increasing

lu. The three simulations LD25, STD, and LD75 suggest

that CS and CF are inversely proportional to lu. Note

that not only the eddy fluxes but also the EKE decreases

with increasing lu (not shown), and lu has therefore

a strong influence on the entire eddy activity.

FIG. 6. Vertical profiles for (a) y 0b0, (b) w0b0, (c) C, and (d) Kdia for the diagnosed eddy fluxes (red) and the PER, NLS, and ALS

parameterizations (black, blue, and green). All profiles are normalized by their maximum value and shifted for each experiment, while the

dashed black lines indicate the respective zero lines. The three experiments are for a05 4, and for Ri varying from left to right as Ri5 3.2,

Ri 5 46, and Ri 5 1200.

TABLE 3. Parameters for different sensitivity experiments in the forced dissipative scenario. Note that kmax andsmax are derived byEq. (5)

using the initial Ri0 and a0 and U0 5 a0H f with a0 5 4 for all listed experiments.

Name (nx, ny, nz) lT /smax lu/smax lu/smax kmaxdx U0dx
3/A4 U0dz/Ay

STD (120, 120, 40) 2 0.5 0 0.21 20 200

LD25 (120, 120, 40) 2 0.25 0 0.21 20 200

LD75 (120, 120, 40) 2 0.75 0 0.21 20 200

ZR15 (120, 120, 40) 1.5 0.5 0 0.21 20 200

ZR25 (120, 120, 40) 2.5 0.5 0 0.21 20 200

H2 (240, 240, 40) 2 0.5 0 0.10 20 200

H4V2 (512, 512, 80) 2 0.5 0 0.05 1 10

CW2 (120, 120, 40) 2 0.5 0 0.42 20 200

ZD (120, 120, 40) 2 0 2 0.42 2 200

ZDH2 (240, 240, 40) 2 0 2 0.42 2 200

ZDV2 (120, 120, 80) 2 0 2 0.42 2 200
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We furthermore test the sensitivity with respect to

increased resolution and reduced horizontal and vertical

friction by reducing the viscosities and applying free-slip

boundary conditions. We find small sensitivities of the

eddy fluxes for a doubled horizontal resolution (H2) and

a fourth time increased horizontal and a doubled verti-

cal resolution (H4V2) to STD.

Instead of using the local velocity values for the

Rayleigh damping, we use the zonal-mean velocity as

damping velocity in different sets of experiments (ZD,

ZDH2, and ZDV2) with a proportionality constant

lu 5 2smax. This type of damping is similar to the zonal-

mean restoring of temperature used in all simulations of

the forced dissipative scenario. Note that it extracts

energy predominantly at large scales. The damping at

intermediate and small scales is reduced by this zonally

averaged drag in comparison to the classical Rayleigh

damping used in STD. While these simulations roughly

reflect the Ri dependency of the experiments with the

standard zonal drag, the magnitude of the eddy fluxes is

roughly a factor of 3 larger for the experiments with the

zonally averaged drag. Doubling the horizontal resolu-

tion (ZDH2) or the vertical resolution (ZDV2) does not

show much difference with respect to the standard res-

olution (ZD). We also perform sensitivity simulations

with different meridional density gradients (a0 5 0.25

and a0 5 1) in the STD configuration (not shown), but

we do not find any qualitative sensitivities of the Ri

dependency for the experiments with different a0.

With respect to the quality of the different parame-

terizations, we note that the Ri dependency of PER

better matches than ALS for the experiments with re-

duced linear drag and for the simulations with the zon-

ally averaged drag (see Fig. 7 and Table 4). While the

largest deviations between the eddy fluxes and PER

occur for largeRi, these differences nearly vanish for the

experiments with the reduced linear drag. The ALS

parameterization best matches for experiments with

large linear drag coefficients and at large Ri.

Note that there are hardly any changes in the vertical

structure functions for y0b0 and w0b0 between the differ-

ent sensitivity experiments (not shown). Especially, we

find a nearly constant vertical profile for y0b0 throughout
all simulations except for those with the smallest Ri. As

shown in Fig. 6, y0b0 is slightly smaller at middepth for

small Ri. We find this shape of y0b0 for Ri0 5 1 in all

sensitivity simulations. Therefore, y0b0 is still curved in

the opposite direction than PER suggests for small Ri.

Besides these small deviations from the constant profile

for small Ri, the vertically constant profile of ALS quite

well reproduces the diagnosed profiles.

4. Baroclinic instabilities in a spindown scenario

a. Numerical simulations

To simulate mixed layer instabilities at a restratifying

density front, we choose a setup similar to that used in

FIG. 7. Ri dependency for the sensitivity experiments listed in Table 3 for (a) y 0b0, (b) w0b0, (c)C, and (d) Kdia. Note that we normalize

the eddy fluxes not only byH and f, but also by the nondimensional parameter a in accordance to the respective dependency of the eddy

fluxes on a. The marker associated with the different experiments is depicted in the legend. Solid red lines indicate the slopes with respect

to PER and solid blue lines with respect to ALS.

TABLE 4. Estimated functional relationship of y0b0 andw0b0 onRi

and proportionality constants CS and CF estimated for the re-

spective sensitivity experiments listed in Table 3 and shown in

Fig. 7. Since we normalize here the eddy fluxes by the respective a

dependency, the exponents that indicate the Ri dependency for

STD slightly differ from those that can be found in Table 2.

Name y 0b0/(H2f 3a3) w0b0/(H2f 3a2) CS CF

STD 0.43Ri0.79 0.32Ri20.21 1.3 0.15

LD25 0.51Ri0.92 0.33Ri20.08 3.0 0.29

LD75 0.34Ri0.66 0.28Ri20.34 0.6 0.08

ZR15 0.34Ri0.79 0.27Ri20.21 1.2 0.12

ZR25 0.44Ri0.77 0.33Ri20.23 1.3 0.15

H2 0.35Ri0.79 0.29Ri20.22 1.2 0.13

H4V2 0.22Ri0.83 0.18Ri20.19 0.9 0.09

ZD 1.10Ri1.06 0.54Ri0.07 11.5 1.07

ZDH2 1.63Ri0.95 0.89Ri20.03 11.9 0.98

ZDV2 1.51Ri1.00 0.91Ri20.02 11.0 1.12
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Fox-Kemper et al. (2008) and Bachman and Fox-

Kemper (2013) to infer the magnitude and vertical

structure of the eddy fluxes. While Fox-Kemper et al.

(2008) directly diagnose the eddy buoyancy fluxes in the

spindown scenario, Bachman and Fox-Kemper (2013)

use the eddy fluxes of several passive tracers to estimate

a mixing tensor common to all passive tracers, which is

assumed to be also representative for buoyancy. This

allows the authors to infer the eddy buoyancy fluxes

from the diagnosed tensor elements. Here, however, we

diagnose the eddy buoyancy fluxes directly as done by

Fox-Kemper et al. (2008).

As in the setup of section 3, the model domain consists

of a reentrant zonal channel with solidwalls atmeridional

boundaries. To prevent effects from the solid meridional

boundaries, we limit the zonal jet and thereby the loca-

tion where the instabilities grow to a region of width

Lf at the center of the channel. This is done by choos-

ing b05N2
0(z1H)1[(LfM

2
0)/2] tanhf2[y2 (Ly/2)]/Lfg,

where Ly denotes the width of the channel in meridional

direction. This initial condition deviates slightly from that

considered by Eady (1949) and Stone (1966), who as-

sumed ›yyb0 5 0 and ›yb0 5M2
0, but we will focus our

analysis on the center of the front where these conditions

are fulfilled. To dissipate momentum, we use harmonic

frictionwith a viscosity depending on the resolvedmotion

after Smagorinsky (1963)with a ‘‘Smagorinsky coefficient’’

of one that was also used by Fox-Kemper et al. (2008).

No-slip conditions are applied at the sidewalls but free

slip at the bottom. No other boundary conditions are

used for momentum or density. As before, we use tem-

perature as the only active tracer and a linear equation

of state. Because of the numerical dissipation of the

applied third-order upwind advection scheme, we do not

use any explicit diffusion. All simulations for the spin-

down experiments are performed with the non-

hydrostatic version of the MITgcm, although we do not

expect nonhydrostatic effects to be relevant for the pa-

rameter range considered in this study.

We vary the initial stratification to obtain Ri0 5 1 to

Ri0 5 160 and a0 5 4 in a first set of experiments. Cor-

respondingly, in a second set of experiments withRi05 1,

we vary a0 from a0 5 0.2 to a0 5 10. The horizontal

resolution is set toDx5p/(5kmax) (128 points in x and y)

and the vertical resolutions to Dz5 5m (60 levels). The

basin depth ofH5 300m and the Coriolis parameter of

f 5 7.29 3 1025 s21 are not varied.

Small white-noise perturbations of O(1 3 1023K) in

the initial conditions lead to exponentially growing

baroclinic instabilities. In contrast to the simulations in

the equilibrated scenario, there is no source of potential

energy, and baroclinic instability induces a slumping of

the temperature front by converting all APE into EKE.

Figure 8 shows that this restratification process takes

place on a time scale of about 10s21
max that corresponds to

a few days for the chosen parameters. As in the equili-

brated scenario for Ri 5 O(1), the flow features local

Rossby numbers z/f 5 (›xy 2 ›yu)/f . 1 and a normal-

ized horizontal velocity divergenceD/f5 (›xu1 ›yy)/f of

the same order of magnitude. Both indicate ageo-

strophic dynamics. For larger Ri, and therefore quasi-

geostrophic conditions, z/f is smaller than one and D� z

(not shown).

Figure 8 shows that the flow field is dominated by

large individual eddies, and the same is true for the

magnitude of the eddy fluxes (not shown). Since the

occurrence of single eddy events is a random process, it

is necessary to average over these events. In the equili-

brated scenario, a temporal mean over some eddy time

scales is sufficient to exclude single eddy events, but the

strong time dependencies in the spindown scenario rules

out this possibility here. Instead, we perform 10 en-

semble simulations for each experiment characterized

by its initial Ri0 and a0. Each ensemble member only

differs in the small random perturbations added to the

initial temperature.

In Fig. 9a, we show an ensemble-averaged time series

of the conversion of APE into EKE by baroclinic in-

stability for an experiment with Ri0 5 1 and a0 5 4.

During the restratification phase, the MKE stays con-

stant until boundary effects become important, sug-

gesting that there is no significant interaction between

the eddies and the mean current. Total mechanical en-

ergy (TE) is dissipated due to the applied viscous

damping. Figures 9b and 9c show time series of Ri and a,

respectively, averaged over the domain. In accordance

with the rather small changes inMKE, a, or equivalently

the meridional buoyancy gradient, hardly changes. The

large increase in Ri soon after the onset of the re-

stratification is mainly caused by changes in the vertical

stratification.

b. Evaluating the parameterizations

In contrast to a quasi-stationary system as considered

in section 3, a time-dependent system requires slight

changes in our analysis to determine the diagnosed and

parameterized eddy fluxes. Most of the diagnostics de-

scribed in the following are performed similar as in Fox-

Kemper et al. (2008) to allow for a comparison between

their and our results. We use a zonal average to estimate

mean quantities. By doing so, we obtain eddy fluxes that

are two-dimensional and change in time. We further-

more average y0b0 and w0b0 over y within the active area

of the eddies because we are interested in the mean ef-

fect of the eddies. Thus, the meridional averaging is

restricted to the center of the front [all points for which
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M2 , 0:1max(M2)]. Finally, we perform an average over

10 ensemble simulations as described above.

Such averages over the frontal width ofM2 andN2 are

also performed to diagnose Ri and a given by Eq. (12).

The diagnosed Ri and a enter Eqs. (6) and (9) to de-

termine y0b0 and w0b0 for ALS and PER, respectively.

For NLS, we calculate y0b0 and w0b0 with the use of the

horizontally (over the frontal width) averaged vertical

FIG. 8. Instantaneous horizontal sections of (a),(d) temperature, (b),(e) vorticity z 5 ›xy 2 ›yu, and (c),(f) horizontal velocity di-

vergenceD5 ›xu1 ›yy. The terms z andD are normalized with f and shown for an experiment of the spindown scenariowith initial Ri05 1

and a0 5 4. (a)–(c) show a snapshot at the beginning of the averaging period (t5 17s21
max) and (d)–(f) show a snapshot at the end of the

averaging period (t5 28s21
max).

FIG. 9. (a) Time dependency of global-mean total mechanical energy (gray thin line), mean kinetic energy (black thick line), eddy kinetic

energy (gray thick line), and available potential energy (black thin line) for an experiment in the spindown scenariowithRi05 1 anda05 4. The

time dependency of (b) Ri and (c) a. Small vertical lines denote the standard deviation of the ensemble spread. Time is scaled by the initial

growth rate smax. Vertical black lines indicate the period over which the time average is taken to diagnose the eddy fluxes (see text for details).
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profiles ofM2 andN2. Finally, we calculate the ensemble

mean of the diagnosed and parameterized eddy fluxes to

eliminate the effect of single eddy events as described

above.

Figure 10 shows the time evolution of the vertical

maximum of the eddy fluxes for a specific set of en-

semble experiments. In the initial phase, y0b0 and w0b0

are zero as long as the eddies have not reached finite

amplitude yet. After a time of roughly 5s21
max, y

0b0 and
w0b0 start to increase. While w0b0 saturates after ap-

proximately 15s21
max, y

0b0 further increases until 30s21
max.

Fox-Kemper et al. (2008) restrict their analysis on the

restratification phase of the eddies. Therefore, they de-

fine a time period that starts as soon as the eddies have

reached finite amplitude and ends when the eddies reach

the meridional boundaries. We also only consider times

for which
ffiffiffiffiffi
y2

p
. 0:1U0 for half of the mixed layer grid

points and where [DT(t)2DT(t0)]/DT(t0), 0:03 with

DT 5hT(y 5 0.08Ly) 2 T(y 5 0.92Ly)ixz, denoting the

zonally and depth-averaged temperature difference

near the boundaries and t0 the initial time. This period is

indicated in Figs. 9 and 10 by vertical black lines. In the

following, we apply time averages over this period to

consider the effect of the eddy restratification.

To scale the eddy fluxes, we proceed similar as in

the equilibrated scenario. As before, we minimize

�i[log10(yi)2 log10(xi)2 log10(C)]
2 with respect to the

tuning constant C for each parameterization where yi
denotes the diagnosed y0b0 orw0b0 and xi the parameterized

counterpart for an experiment i. We obtainCS5 0.90 and

CF 5 0.08. Hence, CS is quite similar to the value we

obtain for the equilibrated scenario for ALS. In contrast,

CF is slightly smaller than the value we find for the

equilibrated scenario but still a bit larger than the value of

CF5 0.06 determined by Fox-Kemper et al. (2008). Note

that we obtain the same value for CF if we consider CHS

to determine CF instead of considering both y0b0 and w0b0

as done by Fox-Kemper et al. (2008). Our estimate of CF

also agrees well with findings by Bachman and Fox-

Kemper (2013).

Figures 11a–d show the Ri dependency of the eddy

fluxes in the spindown scenario. As noted above, Kdia

cannot entirely be associated with a diapycnal flux since

it additionally represents the effect of the time-

dependent restratification. In such a scenario, Kdia

would also be nonzero if the flow is entirely adiabatic.

The ensemble-averaged vertical mean of the eddy flux

profiles are shown as a function of Ri for experiments

with a0 5 4 and varying Ri0 from Ri0 5 1 to Ri0 5 160.

Similar to that, Figs. 11e–h show the dependency of the

eddy fluxes on a for a second set of experiments with

Ri0 5 1 and a0 varying from a0 5 0.4 to a0 5 4. We

obtain the exponents k and l of the leading-order Rik

andal dependency by a least squares fit and show them in

Table 5. Note that as before in the equilibrated scenario,

the estimated slopes for ALS and PER slightly differ

from what would be expected by Eqs. (6) and (9), re-

spectively. The reason for this are again slight deviations

FIG. 10. Vertical maximum of the eddy fluxes (a) y 0b0 and (b) w0b0 for an experiment with

Ri0 5 1 and a0 5 4 as a function of time. Solid lines denote the ensemble-mean and mean over

the restratification region (see text for details), while the ensemble means of ALS and PER are

denoted by dashed and dashed–dotted lines, respectively. The small vertical lines indicate the

standard deviation over 10 ensemble simulations. Time is scaled by the initial growth rate smax

for ALS and PER, respectively. The period of the restratification phase determined as detailed

in the text is indicated by vertical black lines.
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ina throughout the experiments shown inFigs. 11a–d and

slight variations in Ri within the experiments shown in

Figs. 11e–h.

In the spindown scenario, PER tends to better de-

scribe the diagnosed eddy fluxes in comparison to NLS

and ALS. The slopes that indicate the leading-order

dependency on Ri and a and that are determined by

the linear regressions in Fig. 11 are given in Table 5.

For instance, y 0b0 determined by PER matches quite

well with the diagnosed y 0b0 for the experiments with

varying Ri0 (Fig. 11a). Note that the Ri dependency

estimated here quite well agrees with findings from

Bachman and Fox-Kemper (2013). However, the de-

crease of w0b0 and C for larger Ri in Figs. 11b and 11c,

respectively, is not captured by PER.On the other hand,

it is too strong in ALS and NLS. Although Fig. 11d

suggests that Kdia is better represented by ALS and

NLS, the diagnosed slope of the Ri dependency is better

matched by PER. As in the equilibrated scenario,

the simulations with fixed Ri0 and varying a0 shown in

Figs. 11e–h indicate that both parameterizations predict

the correct dependency on a for y 0b0 and w0b0. De-

viations occur only between parameterized and di-

agnosedC and Kdia, since all parameterizations seem to

overestimate C and Kdia.

In Fig. 12, we show the vertical structure of y 0b0, w0b0,
C, and Kdia normalized by the corresponding maximum

value of each profile. Note that again only the global-

mean values of M2 and N2 enter the calculations of y0b0

and w0b0 for the PER and ALS parameterization, while

the zonally andmeridionally averaged profiles ofM2 and

N2 enter the calculations of C and Kdia and also the

calculation of y 0b0 and w0b0 for NLS. The meridional

eddy flux y 0b0 decreases slightly at the top and at the

bottom, but the decrease is not as strong as suggested by

the parabolic structure function for y 0b0 by PER. There

is a better agreement between the constant profile sug-

gested by NLS and ALS and the diagnosed profile in

the spindown scenario, especially for larger Ri. On the

other hand, the diagnosed profile for w0b0 is again well

FIG. 11. Dependency of the horizontal and vertical eddy fluxes (a),(d) y 0b0 and (b),(e) w0b0, (c),(f) eddy streamfunction C and (d),(g)

diapycnal diffusivityKdia onRi fora05 4 in (a)–(d) and ona for Ri05 1 in (e)–(g) in the spindown scenario. Red dots denote the ensemble

mean of the diagnosed variables, blue of the NLS, green of the ALS, and black of the PER parameterization, and crosses indicate the

standard deviation of the ensemble spread. Each ensemble consists of 10 simulations that deviate only in small random initial pertur-

bations. Straight lines are a least squares linear fit as detailed in the text. The slopes of these fits in the double logarithmic plots indicate the

leading-order dependency on Ri for (a)–(d) and on a for (e)–(h) (values are given in Table 2).

TABLE 5. Exponents k and l of the estimated Rik and al de-

pendency of the eddy fluxes, streamfunction, and diapycnal diffu-

sivity in the spindown scenario.

kdiag kPER kNLS kALS ldiag lPER lNLS lALS

y 0b0 1.0 1.2 0.6 0.7 3.3 3.1 3.1 3.1

w0b0 20.0 0.1 20.4 20.4 2.3 2.0 1.9 2.0

C 20.1 0.1 20.5 20.5 1.3 1.0 1.0 0.9

Kdia 21.2 21.0 21.6 21.5 0.4 20.1 20.1 20.2
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matched by all parameterizations. The diagnosed pro-

files ofC and Kdia are better matched by NLS and ALS

than by PER.

c. Sensitivity simulations in the spindown scenario

Although diabatic and dissipative effects are reduced

in the spindown scenario, they do not vanish due to the

implicit numerical mixing inherent to the advection

scheme we use and the explicit harmonic friction. To

investigate how the Ri dependencies of the eddy fluxes

depend on these effects, we perform sensitivity experi-

ments in which we switch between different dissipation

and mixing schemes and vary the corresponding vis-

cosities and diffusivities.

In one set of experiments, we half (LS) and double

(HS) the Smagorinsky coefficient CSmag in comparison

to STD. In another set of experiments, we use bi-

harmonic friction with different viscosities instead of the

harmonic Smagorinsky friction (experiments ALK3,

AIK3, and AHK3). Different strengths of the diffusive

effects are simulated by using biharmonic diffusion with

different diffusivities K4 together with biharmonic fric-

tion (experiments AIKL, AIKI, and AIKH). In these

experiments we use a centered, second-order advection

scheme instead of the third-order upwind scheme. Ad-

ditionally, we perform a set of experiments with a

4 times increased horizontal and a doubled vertical res-

olution (H4V2). A detailed overview of the parameters

used for this sensitivity study can be found in Table 6.

As can be inferred from Fig. 13, the sensitivity ex-

periments in the spindown simulations show a similar

behavior as in the forced dissipative scenario: the less

dissipative and diffusive the simulations are, the stron-

ger are the eddy fluxes. While we find that nearly all

simulations follow the Ri dependency of PER of

y0b0 }Ri1 and w0b0 }Ri0, as also found by Bachman and

Fox-Kemper (2013), the magnitude of the proportionality

constant CF varies about 30%, as can be inferred from

Table 7. Although the scaling of PER seems better suited

than that of ALS to capture the Ri dependency of the

eddy fluxes in the spindown scenario, uncertainties arise

due to the variations of the proportionality constant CF.

For very diffusive and dissipative simulations (AHK3 and

AIKH), we diagnose values of CF ’ 0.06, close to what

Fox-Kemper et al. (2008) find from their simulations.

For simulations with small diffusion and dissipation

(H4V2, LS, ALK3, and AIKL), we find values of CF ’
0.09. Therefore, we conclude that the strength of the

eddy fluxes depends much stronger on the strength of

the mixing and dissipation than on the resolution (note

that H4V2 has a 4 times increased horizontal and a

doubled vertical resolution in comparison to the other

experiments).

Note that the vertical structure of the eddy fluxes

shows hardly any sensitivities to the different sensitivity

experiments (not shown). In particular, y0b0 is constant

FIG. 12. Vertical profiles for (a) y 0b0, (b) w0b0, (c) C, and (d) Kdia for the diagnosed eddy fluxes in red and the PER, NLS, and ALS

parameterizations in black, blue, and green, respectively. All profiles are normalized by theirmaximumvalue, while the dashed black lines

indicate the respective zero lines. The three experiments are all performed with a0 5 4, but with Ri0 varying from left to right as Ri0 5 1,

Ri0 5 10, and Ri0 5 160.

TABLE 6. Parameters for different sensitivity experiments in the

forced dissipative scenario. Note that a third-order upwind ad-

vection scheme is applied in all simulations where the biharmonic

diffusivityK4 is zero. In all other simulations we use a second-order

scheme with central differences that does not produce any nu-

merical diffusion.

Expt nx 3 nz kmax,0dx CSmag U0dx
3/A4 U0dx

3/K4

STD 128 3 60 0.63 1 ‘ ‘
H4V2 512 3 120 0.16 1 ‘ ‘
LS 128 3 60 0.63 0.5 ‘ ‘
HS 128 3 60 0.63 2 ‘ ‘
ALK3 128 3 60 0.63 0 100 ‘
AIK3 128 3 60 0.63 0 10 ‘
AHK3 128 3 60 0.63 0 1 ‘
AIKL 128 3 60 0.63 0 10 20

AIKI 128 3 60 0.63 0 10 10

AIKH 128 3 60 0.63 0 10 1
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over the whole depth range for large Ri. For smaller Ri,

it is constant in the interior and slightly decays at the

surface and the bottom as shown in Fig. 12, but the decay

is never stronger than 50%. Therefore, the constant

structure function for y0b0 suggested from ALS better

matches the diagnosed profile than the parabolic struc-

ture function suggested by PER.

5. Summary and discussion

Mixed layer eddies play an important role in influ-

encing, for example, air–sea gas exchange, surface heat

and freshwater fluxes, mixed layer depth, and thus bio-

geochemical cycles. The spatial scales of these eddies

and the related mixing processes range from 100m to

10 km and thus are too small to be resolved by cur-

rent ocean models. Without accurate parameterization

for mixed layer eddies, these models might therefore

show a bias. Large velocity shear and low stratification

are typical of the dynamics within the mixed layer fea-

turing Richardson and Rossby numbers of order one.

Therefore, the flow is not in quasigeostrophic balance

anymore and parameterizations developed for interior

quasigeostrophic dynamics have to be modified.

Stone (1972a), Killworth (1997), and Eden (2011)

suggest a parameterization for baroclinic instabilities

based on linear stability analysis. Fox-Kemper et al.

(2008), however, suggest a competing approach based

on a scaling of potential energy release by eddies. The

main contradiction between the two approaches lies in a

different dependency of the eddy fluxes on background

conditions characterized by the Richardson number Ri.

Since large variations of Ri occur within themixed layer,

this contradiction can lead to large differences of the

predicted eddy fluxes between the two parameteriza-

tions. Another difference between both parameteriza-

tions is the vertical structure of the meridional eddy

flux. While the approach by Fox-Kemper et al. (2008)

implies a parabolic profile, linear stability analysis sug-

gests a constant vertical profile (Stone 1972b).

Fox-Kemper et al. (2008) compare these parameteri-

zations with eddy fluxes diagnosed from numerical

FIG. 13. Ri dependency for the sensitivity experiments listed in Table 6 for (a) y 0b0, (b) w0b0, (c) C, and (d) Kdia. The colors associated

with the different experiments are depicted in the legend. Solid red lines indicate the slopes with respect to PER and solid blue lines are

with respect to ALS. Note that we have only plotted every third experiment for STD, and note also that we have not plotted results from

the experiments AHK3, AIK3, and ALK3.

TABLE 7. Estimated functional relationship of y 0b0 and w0b0 on Ri and proportionality constantsCS and CF estimated for the respective

sensitivity experiments listed in Table 6 and shown in Fig. 13. Since we normalize the eddy fluxes by the respective a dependency, the

exponents that indicate the Ri dependency for STD slightly differ from those that can be found in Table 5. We use the standard deviation

of the ensemble spread to estimate the uncertainties of the depicted values.

Expt y 0b0/(H2f 3a3) w0b0/(H2f 3a2) CS CF

STD (1.09 6 0.13)Ri1.046 0.02 (0.32 6 0.03)Ri0.016 0.02 1.16 6 0.02 0.083 6 0.002

H4V2 (0.28 6 0.17)Ri1.356 0.11 (0.12 6 0.03)Ri0.256 0.05 1.20 6 0.07 0.096 6 0.006

LS (0.69 6 0.34)Ri1.176 0.10 (0.16 6 0.04)Ri0.176 0.05 1.10 6 0.06 0.094 6 0.005

HS (1.28 6 0.53)Ri0.946 0.07 (0.44 6 0.14)Ri20.106 0.05 1.01 6 0.06 0.062 6 0.004

ALK3 (1.83 6 0.65)Ri0.976 0.07 (0.49 6 0.13)Ri20.056 0.05 1.35 6 0.08 0.090 6 0.005

AIK3 (2.26 6 0.72)Ri0.956 0.06 (0.65 6 0.13)Ri20.116 0.04 1.27 6 0.07 0.085 6 0.005

AHK3 (1.33 6 0.64)Ri0.976 0.09 (0.37 6 0.15)Ri20.076 0.08 0.91 6 0.09 0.062 6 0.006

AIKL (0.54 6 0.18)Ri1.226 0.07 (0.25 6 0.07)Ri0.076 0.06 1.28 6 0.07 0.089 6 0.005

AIKI (0.87 6 0.27)Ri1.156 0.06 (0.44 6 0.13)Ri20.056 0.06 1.24 6 0.006 0.089 6 0.004

AIKH (2.19 6 1.02)Ri0.986 0.09 (1.63 6 0.58)Ri20.466 0.08 1.05 6 0.08 0.079 6 0.006
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simulations of a restratifying density front. However,

they focus only on the adiabatic component of the eddy

fluxes in a restratifying density front. This study aims to

clarify to which extent diabatic effects of themixed layer

eddies can also be represented by the parameterizations.

We consider thusmodifications of the parameterizations

of Fox-Kemper et al. (2008) and Stone (1972b) to also

account for diabatic effects.

To evaluate the ability of the parameterizations to

reproduce the eddy fluxes, we use idealized eddy-

permitting simulations. These simulations are performed

for two different configurations, which consist of a dia-

batic, forced dissipative scenario and a scenario of

a restratifying density front [similar to that investigated by

Fox-Kemper et al. (2008) and Bachman and Fox-Kemper

(2013)]. In each configuration, we run experiments for

a large range of Ri to simulate ageostrophic and geo-

strophic dynamics and to estimate the Ri dependency of

the eddy fluxes across these dynamical regimes. This di-

agnosed Ri dependency is compared to both parameter-

izations in order to evaluate to which extent the

parameterizations are able to reproduce the simulated

eddy fluxes.

In general, we find that PER is better suited to capture

the magnitude of the eddy fluxes in the spindown sce-

nario than ALS. Therefore, we confirm results by Fox-

Kemper et al. (2008) and Bachman and Fox-Kemper

(2013). The largest deviations from PER can be found

for simulations with large mixing and dissipation. Simi-

lar findings result from simulations in the forced dissi-

pative scenario. For these simulations with stronger

diabatic effects, the estimated Ri dependency is in be-

tween what is proposed by PER and ALS but still closer

to PER if sensitivity experiments with reduced mixing

and dissipation are taken into account. An important

parameter that influences the Ri dependency is the lin-

ear drag. Simulations with a reduced linear drag are

closer to PER than to ALS. Additionally, we find that

the eddy fluxes proposed by PER better match in sim-

ulations where we apply a zonally averaged linear drag

than those proposed by ALS.

We note that estimates of the proportionality con-

stants CF and CS of PER and ALS strongly depend on

the strength of the diabatic effects. For simulations

with reduced mixing and dissipation, estimated values

ofCF andCS are in general larger. Within the spindown

scenario, we find variations of about 30%. In the dia-

batic, forced dissipative scenario, CS and CF vary by

a factor of 3 and are larger than in the spindown sce-

nario. In the simulations with the applied zonally av-

eraged linear drag, CS and CF are even one order of

magnitude larger than in simulations with the standard

linear drag.

In any case, PER does not predict the correct vertical

structure of the horizontal eddy fluxes y0b0. The di-

agnosed profiles of y0b0 in both scenarios suggest a con-

stant profile rather than a parabolic-shaped one predicted

by PER. Therefore, we suggest combining both pa-

rameterizations in the sense that the magnitude is cho-

sen as suggested by PER but that the vertical structure

functions are taken from ALS.

Considering the eddy fluxes cast in an eddy stream-

function C and a diapycnal diffusivity Kdia, we find

values for C on the order of 10m2 s21 and Kdia on the

order of 0.1m2 s21 for the smallest Ri and values for C
on the order of 0.1m2 s21 and Kdia on the order of 1 3
1025m2 s21 for the largest Ri. Thus, the adiabatic part of

the dynamics dominates the diabatic part that is repre-

sented in our model by the idealized buoyancy forcing

and numerical mixing. This is also true for small Ri,

where the dynamics aremore diabatic than for larger Ri.

Within this study, we make some assumptions to

simplify the diagnostics. There is no consideration of

a change of planetary vorticity (b effect, where b de-

notes the meridional gradient of the Coriolis parameter

f). An influence of b on mesoscale eddies can be ex-

pected as soon as the Rhines scale Lb 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Urms/b

p
be-

comes smaller than the Rossby radius Lr 5NH/f (e.g.,

Eden 2007). If we approximate the root-mean-square

velocityUrms by the thermal wind, the ratio between the

Rhines scale and Rossby radius can be expressed as

Lr/Lb 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRiHb/f

p
. Even for the largest Ri and a

considered here, this ratio is small for midlatitude values

of f and b and for a water depth H appropriate for the

mixed layer. Therefore, we do not expect changes in

the planetary vorticity to be relevant for eddy fluxes in

the mixed layer at midlatitudes. For interior dynamics,

with large H and probably larger Ri, however, it is rea-

sonable to assume that effects by the planetary vorticity

gradient become important and we refer to Eden (2011)

and Eden (2012) where linear stability analysis was

successfully used to parameterize eddy fluxes for qua-

sigeostrophic flows including the b effect.

Another simplification we make in this study is to

consider the mixed layer isolated from the abyssal ocean

and to apply a solid bottom at the mixed layer base.

However, we do not expect large influences of the

abyssal circulation on the mixed layer eddy fluxes as

long as the increase of N2 within the pycnocline is large

and changes in the vertical shear of the horizontal ve-

locity are small. In these cases, the mixed layer and the

interior ocean can be considered as separated regimes.

Thomsen et al. (2014) show for a typical situation of

a boundary current that NLS suggests twomaxima of the

growth rate: one corresponding to an interior mode and

the other one to themixed layer mode considered within

SEPTEMBER 2014 BRÜGGEMANN AND EDEN 2543



this study. The eddy fluxes of the mixed layer mode

quickly vanish below the mixed layer base as also ob-

served in numerical model studies of Fox-Kemper and

Ferrari (2008). However, Badin et al. (2011) show that

there can be an influence ofmixed layer eddies on lateral

tracer mixing within the pycnocline. To account for in-

teractions between the mixed layer and the pycnocline,

both parameterizations considered in this study have to

be modified. For the parameterization based on linear

stability analysis, this would mean to derive analytical

approximations for more complicated profiles ofN2 and

M2 as in Killworth (1997) and Eden (2012).

Neither of the parameterizations accounts for hori-

zontal changes ofN2 andM2. As long as these variations

occur on scales larger than the mixed layer Rossby ra-

dius, the eddy fluxes might be calculated with the vary-

ing N2 andM2 in a Wentzel–Kramers–Brillouin (WKB)

sense. For variations of N2 andM2 on scales at or below

themixed layer Rossby radius, it is not clear whether the

parameterizations yield reasonable results, since lateral

shear instabilities might have other characteristics than

baroclinic instability. Furthermore, we have not accounted

for nonhydrostatic effects. Guidance of how these effects

might be implemented in ALS can be drawn from Stone

(1971). According toMahadevan (2006), who does not find

major differences between a nonhydrostatic and hydro-

static spindown simulation for parameters similar to those

applied here, and in accordance to Stone (1971), who re-

ports that nonhydrostatic effects become relevant only for

a� 1, we do not expect these effects to play an important

role for the parameter range considered in this study. Since

the thermal wind relation is a basic ingredient to determine

the eddy velocity scale, both parameterizations are also not

likely to make accurate predictions at the equator. On the

other hand, it might be possible to extend both parame-

terizations to regions at the equator by replacing jfj withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 t22

p
(Young 1994; Eden 2006; Fox-Kemper et al.

2011).
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APPENDIX A

Nondimensionalized Equations of Motion

We nondimensionalize the inviscid, adiabatic, Navier–

Stokes equations inBoussinesq approximation to identify

important characteristic parameters. By using the fol-

lowing scales as in, for example, Stone (1970),

t5
L0

U0

t̂, f 5 f0 , (A1)

(x, y)5L0(x̂, ŷ), z5H0ẑ , (A2)

›zb5N2
0›zb̂, ›yb5M2

0›yb̂ (A3)

p5N2
0H

2
0 p̂, b5N2

0H0b̂, and (A4)

(u, y)5U0(û, ŷ), w5H0f0ŵ , (A5)

where dimensionless variables are denoted by hats, we

obtain

RoDt̂û2 ŷ52RoRi›x̂p̂ , (A6)

RoDt̂ ŷ1 û52RoRi›ŷp̂ , (A7)

d2Dt̂ŵ52Ri(›ẑp̂2 b̂) , (A8)

›x̂û1 ›ŷŷ1 ›ẑŵ5 0, and (A9)

Dt̂b̂5 0. (A10)

This set of equations contains three parameters, namely, the

aspect ratio d5H0/L0, theRossby numberRo5U0/(L0f0),

and the Richardson number Ri5N2
0H

2
0 /U

2
0 . While the

magnitude of d determines if nonhydrostatic effects are

important, themagnitude ofRi andRodetermines towhich

extent ageostrophic effects have to be considered.

Note that a slightly different scaling w5 f0U
2
0 /(N

2
0H0)ŵ

and p5 fU0L0p̂ was proposed by McWilliams (1985)

andMolemaker et al. (2005). Although this scaling yields

a different weighting between the single terms in the

Navier–Stokes equations, the resulting set of equations

is still sufficiently described by Ri, Ro, and d.

The background flow determines only two parameters

Ri and a5Ro/d. To evaluate themagnitude of the single

terms in Eqs. (A6)–(A10), an additional assumption on,

for example, the length scale L0 is necessary. Three dif-

ferent assumptions for L0 are made by different authors:

(i) L0 5N0H0/f0 5
ffiffiffiffiffiffi
Ri

p
(Ro/d)H0, that is, L0 is chosen

to be the Rossby radius (Molemaker et al. 2005),

leading to

d5
f0
N0

, Ro5
M2

0

f0N0

, Ro2Ri5 1. (A11)

(ii) L0 5U0/f05 (Ro/d)H0 (Stone 1970), leading to

d5
f 20
M2

0

, Ro5 1. (A12)
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(iii) L0 5 (N2
0 /M

2
0)H0 5Ri(Ro/d)H0 (Fox-Kemper et al.

2008), leading to

d5
M2

0

N2
0

, Ro5
M4

0

N2
0f

2
0

, RiRo5 1. (A13)

Each of these assumptions relates the aspect ratio to

the characteristic properties of the background flow

N2
0 , M2

0, and f0, and it reduces the number of the

characteristic parameters of the problem. Since we only

consider a 5 Ro/d, these different scalings have no di-

rect influence on the parameterizations Eqs. (6) and (9)

or the prescribed initial conditions of our numerical

simulations. However, for identifying which terms in

Eqs. (A6)–(A10) are relevant for a certain background

state, one of the above choices for L0 has to be made in

order to relate Ro and d separately to this background

state.

APPENDIX B

Eddy Fluxes in the Eady Problem

We linearize the quasigeostrophic potential vorticity

equation to obtain

(›t 1U›x)

�
=2
hc

0 1
f 2

N2
›zzc

0
�
5 0, (B1)

where c0 5c2c is the perturbation of the horizontal

streamfunction c with respect to the streamfunction of the

background flow,which is given byc52U0(z/H1 1)y for

a zonal flow in thermal wind balance U 5 U0(z/H 1 1)

with amplitude U0 5 2M2H/f, where M2 denotes a con-

stant meridional buoyancy gradient,H is the water depth,

and f is the Coriolis parameter. Using a wave ansatz

c0 5 f(z)ei(vt2kx2ly), we obtain a differential equation for

f(z):

f2
H2

L2
r k

2
h

›zzf5 0, (B2)

where kh 5 (k2 1 l2)21/2 denotes the horizontal

wavenumber. Equation (B2) has the solution f 5
A cosh(Lrkhz/H) 1 B sinh(Lrkhz/H). The vertical

velocity w is derived from c by w52(f/N2)Dt›zc that

reads in the linearized form

w52
f

N2

�
(iv2 iUk)›zf1 i

U0

H
kf

�
. (B3)

Rigid-lid boundary conditions w 5 0 at z 5 0 and z 5
2H yield

A5
U0k2v

U0k
kB , (B4)

v

U0k
5

1

2
6 i

F(k)

k
, (B5)

with F(k)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k coth(k)2 k2/42 1

p
and k 5 Lrkh. Expo-

nential growth and therefore instability can be expected if

vi 5 Im fvg, 0, especially if the maximum exponential

growth rate smax 5 max(2vi) is obtained for k 5 k1/Lr

and l 5 0 with k1 ’ 1.6 and F(k1) ’ 0.3 (Eady 1949).

As soon as the perturbations reach finite amplitude,

the exponential growth is inhibited. We assume that this

happens if y 0 } smax/kmax (Killworth 1997). Therefore,

we obtain B5Csmax/k
2
max with a tuning constant C of

order one. Hence, we can calculate the meridional eddy

fluxes y 0b0,

y 0b0 5
1

2
Ref2ifkf›zf*g5

C2

2

F(k)3

k2
M4H2N

f 2
, (B6)

and the vertical eddy fluxes w0b0,

w0b05
f 2

2N2
Re

	
2i

�
(v2Uk)j›zfj21

kU0

H
f›zf*

�


52
C2

4

F(k)3

k
tanh

�k
2

�M6H2

N3f 2
mE(z) ,

(B7)

with the structure function mE(z) that peaks at one and

for which we obtain

mE(z)5

cosh

�
k

�
2z

H
1 1

��
2 cosh(k)

12 cosh(k)
. (B8)

Note that for z 5 2H/2 and for the maximum growth

rate with k 5 k1 ’ 1.6, the eddy flux ratio is w0b0/y 0b0 5
2(k1/2) tanh(k1/2)M

2/N2 ’20:53M2/N2.
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