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ZUSAMMENFASSUNG 

Ziel dieser Studie wares, die physikalischen, chemischen und biologischen Faktoren in bezug 

auf die benthische Primarproduktion von zwei verschiedenen Standorten, namlich M: 

Monkeberg (Grobsand, Hoch-Energie-Fenster) und T: Tirpitzmole (Feinsand, Niedrig­

Energie-Fenster) in der Kieler Forde (westliche Ostsee) zu untersuchen. Sedimentproben 

wurden ein- bis zweimal pro Monat an demselben Tag von den beiden Stationen zwischen 

dem 30. Mai 1994 und dem 31. Juli 1995 genommen. Die benthische Primarproduktion wurde 

mittels der Mikroprofilmethode gemessen bei Benutzung einer Nadel-Elektrode statt der sonst 

iiblichen Glas-Mikroelektrode. Dieses Verfahren wurde, der vorliegenden Literatur nach zu 

urteilen, hier zum ersten Male angewendet. 

1) Das interstitielle Milieu der offenen Lokalitat ist den hydrodynamischen Kraften starker 

ausgesetzt als das geschiitzte Gebiet. In den Feinsand-Sedimenten wurde ein hoherer 

Wassergehalt gefunden als in den Grobsand-Sedimenten. Der hohere Prozentsatz von 

suspendiertem Material in den beiden Sandstrand-Sedimenten ist iiberwiegend auf durch 

Wind hervorgerufene Wellen-Resuspension zuriickzufiihren. 

2) Beide Sedimenttypen zeigten einen niedrigen organischen Kohlenstoffgehalt ( < 1% ), 

wobei die Feinsedimente einen hoheren Corg-Gehalt von < 0,4% aufwiesen als die sandigen 

Grobsedimente ( < 0,1% ). AuBerdem war ein hoherer organischer Gehalt in den Sedimenten 

meistens verbunden rnit einer Zunahme in der Porositat. 

3) In der Regel wurde in den beiden Sandstrandsedimenten ein C:N Verhaltnis von < 12 

gefunden. Hohere Werte > 12 wurden auf einen hoheren Anteil an refraktorischem Material, 

z.B. von Makroalgen, aus Holzriickstanden, Detritus sowie vaskularem Pflanzenmaterial 

zuriickgefiihrt. 

4) Die Mikroflora bestand hauptsachlich aus pennaten Diatomeen (sowohl aus beweglichen 

als auch epipsammischen Arten). An den beiden Stationen wechselten die 

Mikrophytobenthos-Gemeinschaften von groBeren zu kleineren Arten und umgekehrt, 

abhangig von verschiedenen Jahreszeiten und Umweltveranderungen. Die Anzahl lebender 

einzelliger Algen zeigte meistens einen steilen Anstieg im Friihjahr und Herbst, aber eine 

Abnahme im Sommer, die vermutlich durch starkes Grazing verursacht wird. Eine deutliche 

Schichtung der einzelnen Arten aufgrund unterschiedlicher physiologischer Bedingungen 

entlang des Tiefengradienten war ein typisches Merkmal. Die Mikrophytobenthos-Aktivitat 

nahm in der Reihenfolge Friihjahr > Winter> Sommer > Herbst ab. Die ZellgroBe ist ein 

wichtiger Faktor, da die Zellen kleiner Mikroalgenarten aktiver sind als die groBeren Zellen. 

5) Die Artenzusammensetzung der benthischen Diatomeen im Grobsand-Sediment (offen, 

Hoch-Energie-Fenster) bestand iiberwiegend aus kleinen epipsammischen an Sandkornern 



festhaftenden Arten mit einer Abundanz zwischen 17 und 1428 x 106 Zellen/cm-3, wahrend 

das Feinsand-Sediment (geschtitzt und Niedrig-Energie-Fenster) vorwiegend epipelische (oft 

groBere Zellen), bewegliche Arten mit Abundanzen von 45 bis 4005x 106 Zellen/cm-3 

aufwies. Die Besiedlungsdichte variierte an den beiden Stationen raumlich und zeitlich in den 

oberen Sedimentschichten bis 9 mm Tiefe, wies aber keine ausgesprochene Schichtung auf. 

Die 3-6 mm Sedimentschicht enthielt die reichste Mikroalgengemeinschaft. Vertreter aus Q.er 

Familie Naviculaceae herrschten vor und spielten als sehr anpassungsfahige Arten eine 

entscheidende Rolle im Ktistensediment der Kieler Forde. Die haufigste und am weitesten 

verbreitete Gattung, die offensichtlich alien Umweltbedingungen standhalt, war Navicula. 

6) Der Chlorophyll-a-Gehalt war hoher in den Feinsand- (2,05-29,07 ~g Chl-a cm-3) als in 

den Grobsand-Sedimenten (0,95-13,17 ~g Chl-a cm-3). Die Hauptmenge von Chl-a an den 

beiden Stationen lag zwischen 3-6 mm. Die Chl-a-Konzentration war proportional zu der 

Gesamtzellzahl. Die benthischen Mikroalgen bilden mehr photosynthetische Pigmente bei 

bedecktem Himmel als bei Sonnenschein, urn das reduzierte Lichtangebot auszugleichen. 

7) Die durchschnittliche Dicke der oxischen Sedimentschicht betrug zwischen 4,5 und 17 mm 

an der Station M, wahrend sie bei der Station T von 2,5 bis 23 mm reichte. Die oxische Zone 

im Sediment war abhangig von Wetterbedingungen, Sedimenttyp und der Mikrophytoben­

thos-Besiedlung. Daneben existierte eine schwach signifikante Korrelation zwischen der 

Dicke der oxischen Zone und der Sedimenttemperatur. 

8) Die photische Zone betrug an den beiden Stationen meistens < 10 mm in Abhangigkeit von 

Sedimenttyp, PhotonenfluB und der Absorption, bzw. der Streuung des Lichtes. Im 

Durchschnitt wurde eine tiefere photische Zone in den Grobsand-Sedimenten gemessen mit 

einer Variation von 4-16,5 mm als in den Feinsedimenten mit 2,5-21,5 mm. 

9) Die Gesamtsauerstoffzehrung (TSOC) lag im Feinsand mit 29,6 bis 401,5 ~mol 02 m-2 h-1 

hoher als im Grobsand (19,2 bis 340,6 ~mol 02 m-2 h-1). Die Sauerstoff-Fltisse waren am 

hochsten im Sommer und am niedrigsten im Winter. Der Bioirrigations-FluB war aufgrund 

der Meiofauna (kBio) hoher als der 02-diffusive FluB. Dieses war wahrscheinlich der 

Hauptfaktor, der ftir die Beschleunigung der 02-Zehrungsraten verantwortlich war. 

10) Die photosynthetische Aktivitat, gemessen mit der Stahlelektrode, war doppelt so hoch 

wie mit der Glaselektrode, unabhangig von der existierenden Dunkelperiode, d.h. 3 bis 10 s. 

Je !anger die Dunkelperiode, desto geringer ist die benthische Primarproduktion. Die 

Bruttoprimarproduktion gemessen mit der Stahlelektrode wird daher unterschatzt urn den 

Faktor 0,35 ± 0,14 (n=7) bei einer Dunkelperiode von 10 s im Vergleich zur Glaselektrode 

mit 2 s. An der geschtitzten Lokalitat (Feinsand, Niedrig-Energie-Fenster) lagen die 

photosynthetische Aktivitat mit 0,06 bis 18,2 ~mol 02 cm-3 h -1 und die benthische 
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Primarproduktion mit 15,3 bis 454,3 mg C m-2 h-1 hoher als an der offenen Station 

(Grobsand, Hoch-Energie-Fenster) mit 0,13 bis 16,7!lmol 02 cm-3 h-1 beziehungsweise 38,6 

bis 284,8 mg C m-2 h-1. Die benthische Mikroalgen-Produktivitat war 3,2 mal hoher als die 

Phytoplankton-Produktivitat. 

ZusammengefaBt ergibt diese Studie, daB Mikrophytobenthosalgen zu den wichtigsten 

Primarproduktionskomponenten gehoren, an der Sediment-Wasser-Grenzschicht wachsen und 

eine zentrale Rolle im Flachwasserokosystem der Kieler Forde spielen. Sie konnen auch dazu 

beitragen, das schwerwiegende Problem der Eutrophierung in diesem Gebiet zu iiberwinden. 
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Introduction 

1 INTRODUCTION 

Benthic microalgal communities colonize in the upper few mms to few ems of the sediments 

in shallow marine and freshwater systems, where adequate light reaches the sediment surface 

to support the primary production. They grow in different habitats, showing heterogeneous 

patches, mosaic distributions with spatial and temporal variations in shallow intertidal areas, 

ranging from wave-swept beaches to detritus-laden brackwater lagoons (MACINTYRE et al. 

1996), coarse sand to silt muds (PINCKNEY et al. 1994), non cohesive and cohesive marine 

sediments (YALLOP et al. 1994). The term microphytobenthos refers to benthic microalgae, 

autotrophic microbial consortia (PINCKNEY & ZINGMARK 1993C) including cyanobacteria. 

Microphytobenthos are attached to the stones, ice, salt marshes, submerged aquatic vegetation 

as well as on the illuminated sediments. On the basis of their attachment to the substratum in 

different habitats benthic diatoms have been classified as epipelic, episammic, epiphytic, 

epilithic ( SNOEIJS 1993). 

Microphytobenthos have shown to be most important autochthonous primary producers in a 

wide variety of shallow-water habitats (MILLER et al. 1996), constituting an important carbon 

source for the local benthic food web, where macroscopic vegetation is lacking ( SUNDBACK 

et al. 1996). In addition to this, benthic microalgae releases oxygen, as a by-product of 

photosynthesis, which exhibits an important function in estuarine areas prone to hypoxia or 

anoxia, by relieving hypoxic conditions and serving as oxic refuges for estuarine fauna as 

observed in the estuarine shoal areas (RIZZO et al. 1996). Benthic microalgae and detritus may 

also be an important source of food for both macro- and microheterotrophs (WAINRIGHT 

1990, de JONGE & van BEUSEKOM 1992). However, microphytobenthos being suitably sized 

are beneficial food items for meiofauna (SCHWINGHAMER 1983). They may provide as much 

as one third of the total primary production in some estuarine systems (V AN RAAL TE et al. 

1976, SULLIVAN & MONCREIFF 1988, PINCKNEY & ZINGMARK 1993b). Hence, they are an 

important component of the estuarine food webs (PETERS ON & HOW ARTH 1987, SULLIV AN & 

MONCREIFF 1990). 

Most of the studies on benthic microalgal production have been done in estuaries and 

intertidal zones. Annual productivity values as high as 892 g C m-2 and hourly productivity 

rates up to 800 mg C m-2 have been reported by GR0NTVED (1962), HARGRAVE et al. (1983). 

The contribution and importance of microphytobenthos to the carbon budgets of shallow­

water systems has widely been recognized from a range of estuarine ecosystems i.e. intertidal 

flats (CADEE & HAGEMAN 1974, COLIJN & DIJKEMA 1981, LANGE 1983, COLIJN & DEJONGE 

1984, DE JONGE & COLIJN 1994, BROTAS & CATARINO 1995), mud bottomed estuaries 

(HOPKINS 1963, ADMIRAAL et al. 1984) turbid estuaries (MACINTYRE & CULLEN accepted) to 

sandy tidal flats (PAMATMAT 1968, STEELE & BAIRD 1968, VARELA & PENAS 1985, ASMUS 
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Introduction 

& BAUERFEIND 1994, BRUNS 1994) or tidal currents (BALLIE & WELSH 1980, SHAFFER & 

SULLIVAN 1988), salt marshes (POMEROY 1959, SULLIVAN & MONCREIFF 1988), lagoons 

(FIELDING et al. 1988) and sandy beaches (MEYER-REIL et al. 1980). 

Microphytobenthos are an indispensable component of the nutrient cycles (H6PNER & 

WONNEBERGER 1985, RIZZO 1990), as they can alter the sediment water nutrient fluxes 

(RIZZO et al. 1992, REA Y et al. 1995). The biofilms produced by the microbenthic algae at the 

sediment I water interface help in stabilizing sediments (HOLLAND et al. 197 4, PA TERSON at 

al. 1990, DELGADO et al. 1991 a, MADSEN et al. 1993, YALLOP et al. 1994 ). They are the best 

indicators for recording the changes in the shallow water systems on account of their vertical 

migration in the sediment (PINCKNEY et al. 1994). Benthic microalgae can also stabilize 

sediments by producing biofilms, and thus reducing resuspension (HOLLAND et al. 1974, 

GRANT et al. 1986, PATERSON et al. 1990). Besides this, microphytobenthos plays a pivotal 

role in the ecosystem as it can ameliorate water quality (RIZZO et al. 1996) and act as 

indicator of eutrophication and pollution (ASMUS & BAUERFEIND 1994). 

The Baltic Sea, is semi-enclosed, largest brackish Sea in the world (SEIBOLD 1970) having 

many features that determine its unique quasi-stationary properties (SCHULZ et al. 1992). 

From the geological point of view it is a young Sea (SEGERSTRALE 1957), or a big estuary 

(BRETTAR & RHEINHEIMER 1992), showing a high degree of variability in different temporal 

and spatial scales. It is characterized by a large net fresh water supply and a permanent 

halocline at 60-70 m which inhibits seasonal vertical mixing deeper than 70 m (SCHULZ et al. 

1992, SAMUELSSON 1996). It is also a detritus-based system (JANSSON 1972), providing a 

unique habitat for its flora and fauna therefore, making it a very important ecosystem. From 

north to south, it extends over 12° of latitude from 66° N to 54° Nand on the east-west axis 

from 30° E to 10° E. The average depth is 55 m and having total water volume of 

approximately 23.000 km3. It lies in a humid climatic zone with a considerable surplus of 

rains. 

The productive system of the Baltic Sea consists of trophogenic layers of pelagial and litoral 

systems, while the latter is of great importance in the northern part because of long and 

shallow coast (HALLFORS et al. 1981 ). The microphytobenthos production in the Baltic Sea 

varies from 0.3-103 mg C m-2 h- 1 (SUNDBACK 1983 in PEEKEN 1989) at the water depth >1m, 

respectively. The average phytoplanktonic production in the Baltic Sea is 100 g C m-2 yr- 1 

(LASSIG et al. 1978). The present status of the pelagic system in Baltic Sea reflects clear signs 

of eutrophication, which are more pronounced in the coastal areas than the open waters with 

the dramatic increase in chlorophyll-a (biomass) and primary production (WULFFet al. 1986, 

GERLACH 1990). Direct inputs of anthropogenic origin and remobilzed reserves from 
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sediments as well as the effect of the long-lasting stagnation in the Baltic Sea are the main 

sources for the enhancement of the biological production (SCHULZ et al. 1992). 

The western Baltic Sea includes a number of shallow water areas e.g. Kiel Bight and Kiel 

Fjord, with the most prominent hydrographical features. The Kiel Bight, being a separate 

region between the Little Belt, Great Belt and Fehmam Belt, forms the south western part of 

the Belt Sea. It has a mean depth of about 20 m (BABENERD & GERLACH 1987). Besides this, 

areas shallower than 8 m are covered either by sand, or by "Lag sediment", while muddy 

sediments start at about 12 m water depth in sheltered regions. However, their contribution is 

significant only at water depths exceeding 18 m (BABENERD & GERLACH 1987). In such a 

system, the close proximity of the sediment-water interface, to the productive surface layer 

exerts a profound influence on the structure and the functioning of the entire system 

(SMETACEK et al. 1987, GRAF 1992). The remineralization processes in the bottom layers of 

particularly shallow areas of the western Baltic have an immediate influence on the algal 

production in the upper water layers. Furthermore, in comparison to the open areas of the 

Baltic, where long term remineralization processes are less significant as compared to the 

short-term turnovers (PROBST 1977). 

Shallow water sediments of the western Baltic Sea may represent a self-supporting system 

governed by benthic primary production, especially during the periods with sufficient light 

available (MEYER-REIL 1987). The strong diurnal rhythms of benthic primary production 

(J0RGENSEN et al. 1979, KARG 1979, REVSBECH et al. 1981) imply a coupling between 

autotrophic and hetrotrophic processes in shallow water sediments. This has also been well 

observed in sandy sediments of the Kiel Bight (MEYER-REIL and GRAF unpublished data). 

The benthic primary production of Kiel Fjord has not been studied extensively. However, 

SCHULZ ( 1983) has illustrated the importance of microphytobenthos in the food chain as well 

as in the trophic interrelationships of the western Baltic Sea. However, studies carried out in 

the laboratory demonstrated that the production of the microalgae could be stimulated 

through the feeding of mussel (Macoma baltica) on it (JASCHINSKI 1989). 

Nonetheless, to date the studies on microphytobenthos and eutrophication in regard to 

western Baltic Sea have been insufficiently investigated (GERLACH 1990). Moreover, 

anthropogenic impact not only imply eutrophication and contamination, but also the physical 

disturbances as a result of human activity on shallow coastal areas which might lead to the 

modification or loss of productive habitats (SUNDBACK et al. 1996). The dearth of 

information on the benthic primary production has largely been due to lack of suitable and 

modem techniques. As the methods adopted earlier for carrying out these studies in the Kiel 

Fjord may not have sufficiently been satisfactory e.g. 14C-bicarbonate technique, oxygen 

exchange method (KARG 1979). Revised techniques implying to these important studies were 
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required. Hence, the present study was carried for estimating the benthic primary production 

in the Kiel Fjord, with the help of microprofile technique "light-dark shift method" 

(REVSBECH et al. 1981). Review of literature indicates that till date glass microsensors have 

been popularly used for the measurement of benthic primary production. However, the 

present study is related to the pioneer use of the needle electrode for the measurement of the 

microphytobenthos production. 

Following objectives of the present study were conducted at two different types of wave­

washed sandy beach sediments of the Kiel Fjord: 

I) Seasonal variations in the benthic primary production and 02 uptake with consideration of 

physical, chemical and biological parameters. 

2) Spatial and temporal variations of the microphytobenthos biomass with the factors 

responsible for species abundance and distribution. 

3) Ecological significance of benthic microalgae as primary producers, and their role in the 

energy budgets, in comparison to phytoplankton. 

-4-



Materials and Methods 

2 MATERIALS AND METHODS 

2.1 TOPOGRAPHY 

THE KIEL FJORD 

The Kiel Fjord (54° 21' N, 10° 10' E) is an extended, narrow, southwestern part of the Kiel 

Bight (western Baltic Sea), running around 17 km from north to south and finally terminating 

at its southern end in the town of Kiel (Fig. 1). From its mouth, between Biilk and Laboe, 

roughly 8 km wide the Kiel Fjord tapers in a funnel shape up to its narrowest part at 

Friedrichsort, the width here being only little more than 1 km. This constriction divides the 

Fjord into two more or less equal sections forming a demarcation between the outer and the 

inner Fjord. The latter part broadens out again inwards to a width of about 2.5 km and finally 

ends in a narrow tongue, projecting into the centre of the town called Horn (LENZ 1977). The 

depth here being 7 to 9 m. This innermost section of the Kiel Fjord is more heavily polluted 

by the river Schwentine and smaller effluents from land, everyday ship traffic and ship 

industry (HDW) than its outer section. The quality of water on its outer part is better than on 

its inner part. The average depth of the Kiel Fjord is 15 m. The area and volume of the Kiel 

Fjord (STIENEN 1986) is given in Tab.l. 

Tab. 1: Kiel Fjord: Area and volume 

Depth (m) Area (km2) Volume (106m3) Volume% 

0- 10 15.0 129.78 84 

10- 15 11.1 23.16 15 

> 15 .945 2.01 1 

154.95 

The hydrography of the Kiel Fjord has been well discussed by KANDLER (1959) and OHL 

(1959). As regards bottom topography, the Kiel Fjord is open towards the Kiel Bight, without 

any sill to act as a barrier. As a prolongation of the Fjord, there extends a 17-20 m deep basin 

into the Kiel Bight, enclosed by low banks between 10-13 m deep. Only in the northeast,there 

is a 15 m deep relatively narrow outlet, which leads it into the deeper parts of the Kiel Bight. 

- 5 -



Materials and Methods 

Due to this small outlet, exchange of water between the Fjord and deeper parts of the Bight is 

not unimpeded as is at its surface (LENZ 1977). 

Freshwater input into the Kiel Fjord comes from one minor source, the river Schwentine, 

which is eutrophic and flows on its eastern side. The rainwater drainage of Kiel municipality 

contributes a negligible quantity of the freshwater. Similarly, on its western side, overflow of 

water from the Kiel Canal (Nord-Ostsee-Kanal) is irrelevant, since the water in question is 

brackish, albeit with a low salt content. 

KIEL BAY 

Fig. 1: Map of Kiel Fjord, showing the 2 sampling sites. 

-6-



Materials and Methods 

The Bathymetry and the sediments of the Kiel Fjord have been studied by KOGLER & ULRICH 

( 1985). The Kiel Fjord beaches are similar to other sandy beaches and are dominated by sand 

having grain size ranging from 0.208 to 0.489 mm (mean grain size 0.293 mm) and grain 

shape (62% of grains with rounded edges) (MEYER-REIL et al. 1980). On its eastern side, at 

water depths of< 10 m, sediments constitute mainly of sand and coarse material (SEIBOLD et 

al. 1971). 

2.2 STUDY SITES AND SAMPLING LOCALITIES 

During the present studies samples were collected once or twice a month from the two 

different sandy, wave-washed shallow water localities on both sides of the Kiel Fjord (Fig.1 ), 

Monkeberg (54° 21.18' N, 10° 10.75' E) and Tirpitzmole (54° 21.25' N, 10° 8.55' E). The 

sampling was conducted at a water depth varying from 20 to 50 cm from April 1994 to July 

1995, respectively. However, for the comparison of the microprofile technique "Light-Dark 

Shift method" (precision of the glass and needle microsensor) extra samples were collected 

from the Tirpitzmole in August and November 1995. For each sample acquisition 

approximately 1 m2 area was selected, depending upon the rich development of the micro­

phytobenthos populations. 

The study stations differ not only in their sites but also in their sediment and wave exposure. 

Monkeberg (M) is an exposed beach, situated on the eastern side, clean with coarse sandy 

sediments, predominated by small "epipsammic" diatoms and being to a larger extent 

influenced by the strong hydrodynamic forces which keep its sediments oxygenated. It is 

therefore referred to as high energy window, in contrast to the fine sandy grain sediments of 

the Tirpitzmole (T), which is a sheltered site, placed on the western side of the Fjord, with 

ample of anthropogenic waste matter and dominated by larger sized "epipelic" diatoms and 

designated here as low energy window. 

2.3 PHYSICAL AND CHEMICAL PARAMETERS 

2.3.1 IRRADIANCE 

A daily average value (Wm-2) i.e. from sunrise to sunset for the respective sampling day was 

calculated from the data obtained from the Meteorological Department of the Institut ftir 

Meereskunde, Kiel with the aid of pyranometer (CM 11, KIPP & ZONEN, GERMANY). 
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2.3.2 TEMPERATURE 

Sediment temperature (uppermost sediment layer ea. 1 cm ) was determined each time in situ 

with a (1103 TESTO TERM) thermometer. 

2.3.3 WIND DIRECTION AND SPEED 

The data for the wind direction and speed was achieved by courtesy of the Meteorological 

Department of the Institut fiir Meereskunde, Kiel. On account of the rapid changes in both 

these respective parameters, from the gathered data for the respective sampling day, a mean 

value was further calculated for the time period between 00:00AM to 12:00 PM. Whereas, due 

to the frequent changes in the wind direction on 28 July 1994 and 10 August 1994 mean was 

calculated from 06:00AM to 12:00 PM and 08:00AM to 12:00 PM, respectively. 

2.3.4 SEA-LEVEL 

Data for the sea-level for the respective sampling day was collected from the Meteorological 

Department of the Institut fiir Meereskunde Kiel. From the achieved data, a mean was further 

calculated from 00:00AM to 12:00 PM. 

2.3.5 SALINITY 

Salinity was measured with the help of a salinometer (BECKMAN INSTRUMENTS MODEL- RS -

7B) in the laboratory for which water samples were collected from both the sampling sites. 

The salinometer was calibrated by using Standard Seawater (obtained from IAPSO STANDARD 

SEA WATER OF THE OCEANIC SCIENTIFIC INTERNATIONAL, UK). 

2.3.6 SEDIMENT PARAMETERS 

2.3.6.1 GRAIN SIZE ANALYSIS 

The grain size distribution of sediment was carried out by an initial splitting of the sediment 

sample (upper surface layer 0 to 1 cm, 100-200 g sediment) into sand fraction (particles 

> 63 J.tm) and silt-clay fraction (particles< 63 J.tm) which was achieved with the 63 J.tm sieve, 

employing a wet sieving method (with simultaneous washing). The fraction > 63 J.tm was 

then dried, while the remaining fraction < 63 J.lm was allowed to settle out for several days. 

The overlying water was then decanted, the remaining fraction < 63 J.tm was dried and 

weighed. The washed and dried > 63 J.tm was then sieved through a stacked set of 6 grade 

sieves (mesh 
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sizes 2000, 1000, 500, 250, 125, 63 J.Lm; HAVER & BOECKER, GERMANY), with the aid of an 

electromagnetic sieving apparatus (RETSCH, GERMANY). The material on each individual 

sieve was then weighed and noted together with any material < 63 J.Lm which may have 

passed into the closing pan at the bottom of the sieve stack. The mean size was calculated 

from the curve obtained by plotting grain size against frequency of grain size classes. Mean, 

median, sorting, skewness and kurtosis were calculated according to FOLK & wARD ( 1957) 

and FOLK (1974). 

2.3.6.2 POROSITY 

Water or the moisture content is the difference between the wet weight (WetWt)- dry weight 

(DryWt) of the sediment and is expressed as the percentage of the wet weight, while porosity 

is the percentage volume of pore space or void space in the total volume of the sediment. 

Thus, the porosity of a sediment is the volume of water needed to saturate a given weight of 

dry sand (RULINGS & GRAY 1971 ). It depends on the arrangement of individual grains, in 

other words sediment packing. The packing of a sediment in turn is related to both sorting and 

shape of sand grains, and also to the manner of sediment deposition. Porosity varies markedly 

with the depth of the sediment. 

During the studies, undisturbed sediment samples were collected by making streaks carefully 

with the help of three 5 ml plastic syringes (1.2 cm diameter; top cut off) on the surface of 

sandy sediments 0-1 cm depth in an approximately marked 1 m2 area at three different 

locations as referred earlier. The overlying seawater of each sample was carefully removed, 

then from the collected sediment samples the upper 1 cm3 layer was carefully cut and 

separated. These separated sediment layers were then put into preweighed aluminium 

containers and weighed for their (WetWt), while (DryWt) was determined after drying at 

60°C for 24 hrs. On dividing, the difference between (WetWt-DryWt) with the specific 

density of seawater (DIETRICH et al. 1975) and the average density of sediment (HOLME & 
MCINTYRE 1984) gave the volume percent of the liquid phase. Assuming, that the salinity of 

the interstitial water is similar to the overlying water, the weight could be converted to 

volume using seawater density tables (HOLME & MCINTYRE 1984). The dry weight of the 

sediment could be converted to approximate volume by assuming a mean grain specific 

gravity of 2.97 (sand). 

In the present study, the density of water was calculated assuming salinity 35 PSU. Moreover, 

if salinity between 10-20 PSU is taken into consideration as commonly found in the western 

Baltic Sea, a small error of ea. 1.0-1.7% exists. 
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(WetWt- DryWt I 1.025) 
= Vol% equation 1 

(WetWt-DryWt/1.025) + DryWt/2.97 

where 

WetWt = wet weight 

DryWt = dry weight 

Density of the sea water = 1.008 g cm-3 

(at salinity 10 PSU) 

Density of the seawater = 1.012 g cm-3 

(at salinity 15 PSU) 

Density of the seawater = 1.015 g cm-3 

(at salinity 20 PSU) 

Density of the seawater = 1.025 g cm-3 

(at salinity 35 PSU) 

Density of the solids = 2.97 g cm-3 

(sand) 

The porosity phi (<I>) which is further required for calculating the diffusive fluxes in the 

sediment, is obtained on dividing the volume percent by 100. 

Vol.% 
<I>=---

100 

2.3.7 ORGANIC CARBON AND NITROGEN 

equation 2 

After measuring the porosity of the collected 3 samples, the dried samples were then 

pulverized with the help of mortar and pestle. Owing to the very low organic content in the 

sandy sediments of the Kiel Fjord, for the estimation of the organic carbon (Corg) 15-20 mg 

of the each sample was weighed in silver cylinders. The organic carbon content was then 

determined by a "CHN-ANALYZER" (CARLO ERBA NA-1500) according to VERARDO et al. 

(1990), after removing the carbonates by acidification with HCL (IN) within silver cylinders 
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and dried prior to analysis. The CHN analyser was calibrated with acetanilide (10.36% 

nitrogen, 71.09% carbon). 

2.3.8 CARBON: NITROGEN RELATIONSHIP 

The atomic ratio of carbon and nitrogen ratio was obtained by dividing the measured weight 

values of carbon and nitrogen by their respective atomic weights. 

2.3.9 TOTAL CARBON AND NITROGEN 

The pulverized samples used for the determination of the organic carbon were also used for 

the determination of the total carbon (TC) and total nitrogen (TN). For the estimation 15-20 

mg of the each sample was weighed in tin cylinders as described above. The total carbon (TC) 

and nitrogen (TN) was determined with the aid of CHN analyser (CARLO-ERBA-NA-1500) 

without acidification. The calibration was performed as described above. Inorganic 

(carbonate) carbon was derived from the difference between total carbon and organic carbon. 

Percent calcium carbonate is then calculated according to VERARDO et al. (1990). 

Where: 

8.33 

TC 

Corg 

= 

= 
= 

CaC03% = 8.33x(TC-C0 rg) 

factor 

total carbon 

organic carbon 

2.4. BIOLOGICAL PARAMETERS 

2.4.1 THE OXYGEN MICROPROFILE METHOD 

equation 3 

The oxygen microprofile method (REVSBECH et. al 1981, REVSBECH & J0RGENSEN 1983) 

was used to measure the photosynthesis (microphytobenthos production) in the sediments. 

This new technique has been successfully used by REVSBECH et. al ( 1981 ), REVSBECH & 

WARD (1984 ), LINDEBOOM et al (1985), BAILLIE (1986), PEEKEN (1989), JENSEN & 

REVSBECH (1989), HOFMAN et al. (1991), PINCKNEY & ZINGMARK (1991,1993), LASSEN et 

al.l992), GLUD et al (1992), GATJE (1992), BRUNS (1994), LORENZEN et al. (1995) and 

EPPING & J0RGENSEN ( 1996) for the analysis of microbenthic photosynthesis. 
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The photosynthetic activity of the microphytobenthos is measured with the help of the "light 

-dark shift method" ·(REVSBECH et al. 1981) employing oxygen microsensors (glass or 

needle), which have proved to be very powerful tools for the analysis of oxygen dynamics in 

the sediments. Polarographic Clark-type oxygen microsensors have been used since the last 

decade (REVSBECH &J0RGENSEN 1986). On account of the introduction of a guard cathode 

and more use of insulating glasses (REVSBECH 1989), the performance of the Clark-type 

oxygen microsensors has ameliorated. The oxygen microsensors have now stable signals, 

which often exhibit less than 2% drift per day (REVSBECH 1994). Two parameters could be 

achieved, while using the microsensors for determination of the photosynthetic rates in the 

benthic communities of microorganisms: 

a) Net photosynthesis (the net flux of oxygen out of the photosynthetic community) 

b) Gross photosynthesis (as determined by light and dark shift technique (REVSBECH & 

J0RGENSEN 1986) 

The oxygen production or photosynthesis within the sediment can be measured with excellent 

spatial and temporal resolution with the help of a glass oxygen microsensor, having a guard 

cathode on account of its stable signal, < 2% drift per day, response time of< 0.1 sec and 

with a tip diameter of <10 Jlm. In the present study, it was not possible to measure the oxygen 

production in the coarse sandy sediments (mean grain size 0.516 mm) of the station 

Monkeberg with the glass microsensor, having a tip diameter of <10 Jlm because of its 

extremely fragile nature. Therefore, all the photosynthesis measurements were performed 

with the needle microsensors of DIAMOND GENERAL, USA, having a tip diameters of 0.89 mm 

each, also differing in their response times (Tab. 2). From May to July 1994, needle 

microsensor-type A with a response time of ~ 6 sec and from August 1994 to July 1995 

needle microsensor-type B with ~ 3 sec were used for the measurements (Tab. 2). On account 

of their different response times ( i.e. ~ 3 and ~ 6 sec) and for the accuracy of our results 

especially during the dark phase, which was given for 10 seconds instead of 1 or 2 sec 

(REVSBECH & J0RGENSEN 1983), for determining the rate of photosynthesis at various 

depths. An extra experiment (described later) was executed for evaluating the over- or under 

estimation of the rate of photosynthesis, when a longer dark period is given and a needle 

sensor is used instead of a glass microsensor. 
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Tab. 2: Characteristics of the sensors used in the present study 

TOPIC CLARK-STYLE GLASS OXYGEN NEEDLE OXYGEN NEEDLE 

OXYGEN ELECTRODE ELECTRODE 

MICROELECTRODE TYPE-A TYPE-B 

Material Glass, length 9.4 cm Stainless steel, needle Stainless steel, needle 

length 3.81 cm length 3.81 cm 

Measurement period August 1995 May 1994 30 August 1994 

and to to 

November 1995 10 August 1994 November 1995 

Company* Diamond General, Diamond General, Diamond General 

USA USA USA 

Product No* 737 GC with a guard 768-20R with internal 768-20R with internal 

cathode reference reference 

Clark style non Clark-style non Clark-style 

Reference electrode* Ag/AgCl Ag/AgCl Ag/AgCl 

(Anode) 

Cathode diameter * Approximately 5 jlm, 25 J.lm gold-plated on 25 jlm, gold-plated on 

platinum with gold platinum recessed and platinum recessed and 

plated protected by oxygen - protected by oxygen -

permeable membrane permeable membrane 

Response time 95% in~ 1 sec 90% in~ 6 sec 90% in ~3 sec 

Tip diameter * 5-20 Jlm 0.89 mm 0.89mm 

Sensitivity to stirring * <3% <5% <5% 

Motion artifact <2% 10% 10% 

sensitivity * 

* according to Diamond General, USA 
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2.4.1.1 EXPERIMENTAL SET-UP 

A simple set-up for measuring oxygen in a sediment core is shown in (Fig. 2). Oxygen needle 

or (steel type) electrode, PRODUCT NO. 768-20R (e.g. DIAMOND GENERAL, ANN ARBOR, USA) 

as described above was operated at a polarization voltage -0.75 V, and was introduced 

vertically into the sediment from above with the aid of a motordrive micromanipulator 

(MARZHAUSER WETZLAR, GERMANY), which could be used to introduce the microelectrode 

tip into the substratum, with a depth resolution of better than 10 J.tm. The microsensor could 

thus be continuously moved up and down to measure the oxygen concentration. The sensor 

current (readings) was measured with a picoammeter similar to MODEL- 480 (KEITHLEY 

INSTRUMENTS, GERMANY) having a range of w-6 to w- 12 A, connected to a strip chart 

recorder (LINSEIS, GERMANY), to record the amplified signals. 

MICROMANIPULATOR 
MOTOR-DRIVE 

PI CO AMMETER 

STRIP-CHART RECORDER 

Fig. 2: A simple set-up for measuring oxygen in a sediment core with the aid of oxygen 

microelectrodes. 
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2.4.1.2 POSITIONING OF MICROSENSOR ON THE SEDIMENT SURFACE 

In order to position the microsensor exactly in correspondence to the sediment-water 

interface, the sediment and the electrode tip was simultaneously observed under a dissecting 

microscope. For further confirmation, the differences in oxygen gradients (Fig. 3.), due to the 

altered conditions for diffusion were also used for indicating the position of the sediment 

surface. As close to the sediment-water interface, the linear concentration gradients of 

dissolved oxygen are steeper in the sediment as compared to those in the overlying water 

column. 

2.4.1.3 MEASURING PRINCIPLE, RESPONSE TIME AND CALIBRATION 

MEASURING PRINCIPLE 

Clark electrodes may be classified either as polarographic electrodes or galvanic electrodes. 

Polarographic electrodes consist of a platinum cathode and a silver anode, both immersed in a 

solution of saturated potassium chloride. When two electrodes (i.e. cathode and anode) are 

polarized with a potential of slightly less than -1 .0 Volt in a electrolytic solution containing 

dissolved oxygen, the current will flow as a result of the reduction of oxygen at the cathode 

(negatively polarized surface). A suitable polarization voltage of -0.75 V (versus Ag/AgCl) 

between the anode and the cathode is necessary which selectively reduces oxygen at the 

cathode: 

02 +2H20+4e- --7 40H-cathode 

4Ag + 4Cl- --7 4AgCl + 4e-anode 
equation 4 

These redox reactions (equation 4) result in the production of a current that is quantitatively 

proportional to the concentration of dissolved oxygen in the reaction vessel. 

RESPONSE TIME 

The response time was measured by quickly moving the electrode tip from the water saturated 

with oxygen in a nitrogen sparged "Zero" solution. This was practised 3 times. The thinner 

the electrode and the shorter the distance from the cathode to the tip of the electrode, the 

faster is the response (Tab. 2). 

CALIBRATION 

The electrodes were calibrated by assuming a linear relationship between the oxygen 

concentration and output signal (REVSBECH & J0RGENSEN 1986). A two point linear 

calibration was done for each 0 2 profile between the overlying water of known concentration 
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and the anoxic layer within the sediment. Currents (readings) obtained at each depth were 

recorded and recalculated to the corresponding oxygen concentration, assuming a linear 

current relationship. The actual oxygen concentration in the overlying water was determined 

by Winkler titration. 

2.4.2 BENTIDC PRIMARY PRODUCTION 

Undisturbed sediment samples were collected by pushing gently the Plexiglas cylinders (inner 

diameter 4 cm, length 6.5 cm) with hand into the fine ripples, exhibiting prominent yellowish 

brown patches of microphytobenthos from the different locations of the selected 1 m2 area as 

described earlier. After removal, the cores were stopped with the silicon corks at the bottom 

and on top to maintain the in situ environmental conditions, leaving approximately 3 to 4 cm 

sediment layer and 1 to 2 cm of overlying water enclosed in each core. The cores were then 

immediately brought to the laboratory, where they were submerged in the water bath 

exhibiting in situ temperature and were kept sealed outside the laboratory under natural 

varying light conditions. All the measurements for the gross oxygen production were made 

within the same day in the laboratory. 

Photosynthetic activity of the microphytobenthos was measured with the help of the 

microprofile method (REVS B ECH et al. 1981, REVSBECH & J0RGENSEN 1983), which 

permitted determination of short term variations in the oxygen concentration at various 

sedimental layers during light & dark shifts. Each step consisted of 500 f..Lm depth size, 

alternating light and dark cycles The sensor was introduced into the sediment and the oxygen 

concentration was recorded assuming a steady state before darkening. The rate of decrease in 

oxygen concentration recorded after the sediment was darkened for 10 sec, corresponded to 

the photosynthetic rate. Hence, the photosynthetic activity in each sedimental layer, was 

calculated from the rate of decrease in oxygen concentration after 10 sec of dark incubation. 

The exact time for extinguishing the light was monitored by a stopwatch. Three oxygen 

profiles were measured at random positions in each of the core, due to the patchiness of the 

microphytobenthos. For the oxygen concentration, all the profiles were measured starting 

from the water column to the sediment which was showing zero oxygen reading. The benthic 

primary production was calculated according to following equations: 
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GPR (mmol02 m-2 h-1) = I (P(x) (mmol 02 z-1 h-1) * cP * OZ) equation 5 

GPR (mgCm-2h-1) = 
mmol 02 m-2h-1 

* 12 equation 6 
PQ 

Where: 

GPR = gross photosynthetic rate 

P(x) (mmol 0 2 z-1 h-1) = oxygen production in the whole sedimental layer 

<I> = porosity 

8Z = 500 Jlm (movement of the electrode between the 

two measuring points) 

PQ = 
moles of 02 liberated during photosynthesis 

= 1.2 
moles of C02 assimilated 

12 = conversion factor (lmol C02 corresponds to 12 gC) 

The PQ value of 1.2 STRICKLAND & PARSONS (1972), HARRIS (1978), MORRIS (1981) for 

phytoplankton has also been used frequently for microbenthic algal studies by REVSBECH et 

al.(1981), ASMUS (1982), DAVIS & MClNTIRE (1983), PEEKEN (1989), ASMUS (1992), GATJE 

(1992), CAHOON & COOKE (1992). 

2.4.3 METHOD COMPARISON AND TECHNIQUES EMPLOYED 

Sediment oxygen production rates and actual oxygen concentrations can be measured directly 

in the sediments with the oxygen microsensors. Comparisons have been performed mainly to 

A) Estimate the error in the rate of photosynthesis (i.e. the measured gross photosynthetic 

rate) while employing a needle sensor instead of a glass microsensor 

B) Determine the over or under- estimation in the rate of photosynthesis, when a longer dark 

period of 10 seconds is given instead of I or 2 seconds 

Undisturbed sediment samples were collected from the station Tirpitzmole in the month of 

August and November 1995, oxygen microprofiles in the sediment were measured as 

described above in the laboratory. The calibration and the response time of the microsensors 
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were determined as described earlier. The oxygen production measurements were performed 

with the glass microsensor (Clark-style), non Clark-style (Needle electrode type B) (Tab. 2.). 

The glass microsensor was used prior to needle sensor on account of its fine tip diameter of:::; 

25 J.Lm. While introducing the needle microsensor, it was also made sure that the needle 

sensor was fixed in close proximity to the area where the measurements with glass 

microsensor were performed to estimate the difference in the photosynthetic rates with both 

the microsensors. 

In the .first experiment the whole oxygen profiles with light and dark shifts were measured by 

introducing the microsensors (glass and needle) stepwise into the sediment under the natural 

light conditions. Photosynthetic activity within the sediment was measured in 500 J.Lm depth 

increments until measured rates approached zero. The photosynthetic rate at each depth was 

obtained by the continuous measurement of 0 2 concentration during 10 sec of dark 

incubation and were then calculated with the change in the oxygen concentration at various 

dark incubations i.e. 1 to 10 seconds for the glass and 3 to 10 sec for the needle microsensor, 

respectively. The rate of oxygen disappearance during 10 sec of dark period was equal to the 

rate of oxygen production. The differences between the light and dark readings in each 

respective profile were used to estimate the actual primary production. In each core two or 

three oxygen profiles per electrode were measured at random positions on account of the 

microphytobenthos patchiness, which could result in the over or under-estimation of 

photosynthetic rate. 

The second experiment was conducted according to the fixed point technique (REVSBECH et 

al. 1981, GLUD et al. 1992). The main goal of this experiment was to determine the change in 

the rate of 0 2 disappearance (i.e. the measured gross photosynthetic rate) with the needle and 

glass microsensors, for different duration's of dark incubations. The microsensors were fixed 

one after the other approximately at the same angle, at a certain depth in the sediment (within 

the photic zone), beginning from the sediment surface The glass microsensor was introduced 

prior to the needle as described above. The rates were calculated for time interval ranging 

from 2 to 10 sec for glass and 3 to 10 sec for needle microsensor. The rate of 0
2 

disappearance after each second was calculated according to REVSBECH et al. (1981) & GLUD 

(1992). From this method it can be deduced, how long the assumptions of equation 7 about 

constant rates of diffusive loss and oxygen consumption are valid, pertaining to this 

experimental study when longer periods of dark incubations were given. If they are valid then 

the rate of decrease in oxygen concentration must be linear with time (REVSBECH et. al. 

1981). This method requires one light-dark cycle at each depth with the dark period of 10 sec. 

After each dark period of 10 sec, the sediment was illuminated with the natural daylight for at 

least 10 minutes to re-establish the steady state of oxygen profile. At each depth two or three 

replicates per sensor were obtained and the mean value was calculated. By measuring the rate 
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of oxygen disappearance at different depths in the photic zone, i.e. by integrating the equation 

with respect to x (REVSBECH et al. 1981, REVSBECH & J0RGENSEN 1986), the rate of photo­

synthesis in the sediment was calculated according to equation 7. 

Where: 

P(x) 

JC 
Jt 

P(x)=- JC(x,t) 
at 

the measured rate of photosynthesis at depth x after t sec 

change in the concentration after t sec 

2.4.4 OXYGEN CONSUMPTION 

equation 7 

The microelectrodes have proved to be a very powerful tool for the analysis of oxygen 

dynamics in sediments (REVSBECH & J0RGENSEN 1986). The flux of oxygen into the 

sediment is a fundamental measure of benthic community respiration, which can be 

calculated from the 0 2 microgradients. For measuring these, sediment cores were collected as 

mentioned under primary production heading. Two oxygen microprofiles per core at two 

different positions were measured by darkening the sediment with the aid of a black box for 5 

min. Before darkening, it was made sure with the help of a binocular that the microsensor was 

accurately positioned approximately 2 mm just above the sediment-water interface. 

Immediately after 5 min of darkening, microprofiles were measured at depth intervals of 500 

J.lm with the aid of a needle microsensor, which was moved into the sediment with the help of 

a motor driven micromanipulator. 

The difference in oxygen gradients, due to the altered conditions for the diffusion, indicated 

the position of the sediment surface as discussed earlier. All the profiles of oxygen 

concentration were measured, starting from approximately 2 mm above the sediment-water 

interface into the sediment layer showing zero oxygen reading. The oxygen consumption 

rates were calculated from the oxygen gradient at the surface below the point where the net 

flux of oxygen across the sediment surface equals zero (REVSBECH et al. 1980). Decrease in 

oxygen in the upper part of the profile is almost linear (Fig.3). The slope of the gradient was 

calculated by taking at least 3-4 measuring points into consideration. In the sediments the 

oxygen consumption can thus be calculated, from the sediment molecular diffusion 

coefficient, and the porosity using the Pick's first law of diffusion (REVSBECH & J0RGENSEN 

1986). 
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J(x) = _et> D ( ) 8C(x) 
s x 8(x) equation 8 

where: 

J(x) = oxygen flux (mmol 02 m-2 h-1) 

<I> = porosity 

Ds = the molecular sediment diffusion coefficient of oxygen at depth x. The 

molecular diffusion coefficient is constant over the oxic sediment-

layer 

8C(x) 

8(x) = 02 concentration gradient over depth interval x or linear portion 

of oxygen gradient in the top layer of the sediment 

In the present study, the whole sediment molecular diffusion coefficient Ds of the respective 

sample was empirically determined on multiplying the molecular diffusion coefficient for 

oxygen Do dependant on temperature and salinity of seawater (RAMSING & GUNDERSEN 

1994) by its porosity. 

Where: 

et> = 

porosity< 0.75 (LERMAN 1975) equation 9 

porosity> 0.75 (LERMAN 197 5) equation 10 

molecular sediment diffusion coefficient 

molecular diffusion coefficient for oxygen at a particular temperature 

and salinity of seawater (RAMSING &GUNDERSEN 1994) 

porosity of the sediment 
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Oxygen profile and net 
oxygen flux in the dark 

+ t Net oxygen flux 

Fig.3: Schematic representation of oxygen concentrations and oxygen fluxes J(x) during the 

light and dark measured with the oxygen microsensor. 

2.4.5 CHLOROPHYLL-A 

Chlorophyll-a as an important parameter for the microphytobenthos biomass was measured 

by the method of JEFFREY & HUMPREY (1975). Undisturbed sediment samples were collected 

by pressing 5 ml plastic syringes ( 1.2 cm diameter; top cut off) into the ripples at the different 

sites within an area of 1m2 at three different locations of the sediment. The overlying water of 

each sample was removed and the uppermost layer was carefully cut and separated into 4 

sections (0-3, 3-6, 6-9, 9-12 mm) with 3 parallels each. These cut sediment samples were then 

immediately deep-frozen in 10 ml plastic centrifuge tubes at -22 oc. For the measurements, 

the sediment sections were placed in 10 ml of 90 % acetone and a few glass pearls were 

added to the aliquot. To ensure complete extraction each sample was then homogenized in a 

VIBROGEN ZELLMDHLE for 3-4 min. The extracted pigments of the aliquot were then 

centrifuged at 4000 rpm for 10 min at 0 oc. The absorbance of the supernatant was measured 

as quickly as possible in a 1 cm or 4 cm cuvette (depending upon the concentration) at 

selected wavelengths of 750, 663, 647, and 630 nm with the (SHIMADZU DOUBLE BEAM UV-

150-01) spectrophotometer (LORENZEN 1967, STRICKLAND & PARSONS 1968). 
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2.4.6 CARBON TO CHLOROPHYLL -A RATIO 

Organic carbon (mg C cm-3) to Chl-a (j..lg Chi cm-3) ratio for the microphytobenthos 

populations was determined according to DE JONGE (1980) from May 1994 to July 1995 at 

both the respective sampling sites, for each sampling day. During the calculations of C:Chl-a 

ratio, 0-9 mm sediment layer for Chl-a, while for carbon 1 cm -3 was considered. 

2.4.7 SPECIES COMPOSITION AND ABUNDANCE 

Samples were gained in the same manner as described above for the chlorophyll-a estimation. 

Following collection, the samples were cut into 3 sections (0-3, 3-6, 6-9 mm) with 3 parallels 

of each sample, on the respective day or latest by early morning of the next day, after having 

kept them overnight in the refrigerator. The sectioned samples were then immediately fixed 

with 2 ml of 40% Formaldehyde (Formalin) + 20 ml of filtered sea water in 100 ml dark­

brown glass bottles. Subsequently, they were gently shaken for about 1-2 min to facilitate 

instantaneous fixation. Before cell counting, each sample was sieved through a 100 !J.m nylon 

mesh, as most diatoms are 10-100 !J.m in size. The sediment on the sieve was carefully 

washed 3-4 times with filtered seawater, to separate the microphytobenthos from the 

sediment. The bottles containing the filtrate were shaken in jerks to evenly distribute the 

particles and then poured into the sedimentation chamber. This consisted of combined plate 

chamber (HYDRO-BIOS, K.IEL) with a top cylinder (sedimentation cylinder) of 10 and 20 ml 

(10 ml for the station Tirpitzmole and 20 rnl for Monkeberg) capacity and a bottom-plate 

chamber, respectively. The cell counting was done under the inverted microscope 

(UTERMOHL METHOD 1958) modified by SANDGREN & ROBINSON (1984) after sedimentation 

for 24 hrs, as the settling time is dependant on the size of the chamber and preservative used 

(LUND et al. 1958). 

Only living cells, which could be distinguished from the dead ones by intact chloroplasts, 

were counted. Cells were counted forming two crossed transects (vertical crossed by 

horizontal) on the area of the chamber. Cells falling in these transects were easily countable 

under the inverted microscope by moving the mechanical stage horizontally to give one 

transect and then vertically to give the second one, at least 400 cells and valves were counted, 

giving an approximate error of± 10% (VENRICK 1978). However, at the time of scanty 

growth of microphytobenthos, at least 100-200 cells were counted, which result in an 

approximate error of± 20 % (VENRICK 1978). During the dense population of the micro­

phytobenthos, counting was done by taking either random fields or by counting one transect 

(vertical or horizontal) of the chamber area. This examination was done under a 400-fold 

magnification. The quantitative estimation of the cell counts was obtained according to 

EDLER ( 1979). Permanent slides were also made for the further identification and 
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confirmation of the microphytobenthos algae (Fig. 4.). Microphytobenthos were identified 

according to HUSTEDT (1959, 1961-66), HENDEY (1964), VAN DER WERFF & HULS (1957-74), 

KRAMMER (1985, 1986), THRONDSEN (1985) unpublished, THRONDSEN (1993), SOURNIA 

(1986) , RICHARD (1987), PANKOW (1990), CHRETIENNOT-DINET (1990), ROUND & 

CRAWFORD (1990), WENDKER (1990), SNOEUS (1993). 

Add saturated 
KMN04 

Agitate and 
leave for 24 hrs 

130% HCl + 30% H 20 21 

+ 
After about 20 minutes, the 
solution turns dark broww 

+ Heat gently until it becomes 
transparent and colourless 
or light yellow-green 

+ Rinse with distilled 
water several times 

+ 
Centrifugate 

+ Embedded in Mountex 

+ 
Light microscope 

Fig. 4: Diagramatic presentation for cleaning diatom cells and preparing slides after 

SIMONSEN ( 1974). 
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3 RESULTS 

3.1 PHYSICAL AND CHEMICAL PARAMETERS 

3.1.1 IRRADIANCE 

The daily averaged irradiation during 1994-1995, for the respective sampling days is 

summarized in (Fig. 5). It varied from 42 to 485 wm-2. The observed minimum intensity of 

42 wm-2 was evident on 23 January 1995, while the maximum of 485 wm-2 on 12 July 1994. 

The actual amount of radiation, reaching the sea surface during the day at any point of the 

surface, depends upon the function of the sun angle, the length of the day, and the weather 

conditions. 

During 1994 and 1995, two prominent peaks of approximately similar intensities were 

accomplished on 12 July 1994 and 30 June 1995 with values of 485 wm-2 and 483 wm-2, 

respectively. A continuous but gradual fall in the light intensity existed from June 1994, 

touching its minimum on 23 January 1995. From March onwards, a prominent increase in the 

intensity was clearly observed, achieving the maximum intensity in June 1995. Besides this, 

during 1995 (i.e. 18 April and 20 June 1995) more fluctuations in the intensity of light were 

observed which were probably due to cloud coverage and foggy conditions. 
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Fig. 5: Irradiance (daily averaged) for the investigation location (inner Kiel Fjord). Values 

gathered from (Meteorological Department of the Institut fiir Meereskunde, Kiel). 
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3.1.2 TEMPERATURE 

During experimental investigation period of 1994-1995, sediment temperature generally 

varied from 2.8 °C to 23.5 oc at the sampling station M, while at T it varied in the similar 

manner i.e. 3.0 °C to 23.5 oc (Fig. 6). In July 1994 and 1995, two peaks showing maximum 

temperature at each study site were obtained. On 28 July 1994, 23.5 °C temperature was 

recorded at both the stations, whereas in July 1995 also at station M and T the temperature 

was within the same range as shown in the Figure. However, a gradual decrease in 

temperature was observed at both the locations beyond July 1994. Lower temperatures below 

3 °C were recorded at T and M during high winter (January and February) of 1995. 
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Fig. 6: Seasonal distribution of sediment temperature (0 C) at Monkeberg and Tirpitzmole. 

3.1.3 WIND DIRECTION AND SPEED 

Data for the wind direction shown in (Fig. 7) indicate a domination of southerly and 

south westerly winds on both the study locations. Westerly winds are generally connected 

with low pressure, low irradiance and higher velocity winds. On the contrary, the easterly are 

with high pressure, stronger irradiance and weaker velocities. These were not commonly 

observed during the present investigation. Influence of the easterly winds was accomplished 

only on 3 instances i.e. 28 June 1994, 27 April and 31 July 1995, respectively. On these 

specific days comparatively placid conditions prevailed and a remarkable increase in the 

water level was noticed. 

The average wind speed at the sampling days in 1994-1995 was mostly below 6.0 ms-1, while 

more than 7.0 ms-1 was registered only twice (Fig. 7). The data was collected from the 
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Meteorological department of the Institut fiir Meereskunde, Kiel. It ranged from 1.0-8.0 ms-1, 

with the minimum value of 1.0 ms-1 on 28 June 1994, while the maximum of 8.0 ms-1 on 17 

March 1995. The maximum wind speed is very well correlated with southern westerly winds 

coming from 180°- 250°. Between 30 May to 12 October 1994, it was 1.0 to 4.0 ms-1, with an 

increase observed on 27 October and on 17 November 1994, being 6.0 and 5.0 ms- 1, 

respectively. Wind speeds with greater magnitude (7.0- 8.0 ms-1) were recorded between late 

winter and early spring (January and March 1995). 

3.1.4 SEA-LEVEL 

The averaged sea-level data presented in (Fig. 7) show values below and above the normal 

0.00 m encountered in 1994 & 1995. It was dependent on the prevailing wind direction and 

speed, as Kiel Fjord opens to the north. Values above the normal 0.00 m ranged from 0.02 m 

on 28 July 1994 to 0.37 m on 30 March 1995, i.e.- 0.01 to- 0.23 m on 17 November 1994 

and on 17 March 1995. Both the sampling sites were highly influenced by the prevailing 

westerly winds. 

Sea levels above the normal prevailed with a maximum of 0.37 m on 30 March 1995. When 

the sea levels were under the normal 0.00 m, quieter weather conditions exhibited. Easterly 

winds resulted in an increase of the sea level of 0.20 m, 0.31 m & 0.10 m on 28 June 1994, 27 

April and 31 July 1995, respectively. The sea-level below 0.00 m was observed during all the 

seasons at both the stations. But was mostly dominant during autumn 1994 i.e. - 0.18 m on 12 

October and in spring 1995 (- 0.23 m on 17 March 1995). Influence of south westerly winds 

coming from 180° to 270° brought the sea-level below the normal 0.00 m. 
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Fig. 7: Daily averaged wind speed (m s-1 ), wind direction and sea-level (m) at Monkeberg 

and Tirpitzmole. Data obtained from the Meteorological Department, Institut fi.ir 

Meereskunde,Kiel. 

3.1.5 SALINITY 

Salinity data at the stations M and T are depicted in (Fig. 8). Salinity during the different 

seasons of 1994-1995 varied from 10-19 PSU at station M, while at station Tit was 9-20 PSU. 

At the station M, the minimum salinity values of 10 PSU was obtained in May and June, 

during both the years 1994 and 1995, respectively. The maximum value touching 19 PSU was 

encountered on 27 October 1994. Comparatively, higher salinity values occurred between 

October 1994 and March 1995. On an average gradual decrease in salinity occurred from 

March to July 1995. 

At station T, the minimum salinity value of 9 PSU was accounted on 27 April 1995, while the 

maximum value of 20 PSU on 27 October 1994. Higher salinity values existed between 

October 1994 and January 1995. However, continuous fall in the salinity was observed from 

February to July 1995. 
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Fig. 8: Seasonal variation of salinity (PSU) at Monkeberg and Tirpitzmole. 

3.1.6 SEDIMENT PARAMETERS 

3.1.6.1 GRAIN SIZE ANALYSIS 

Surface sediments in the upper intertidal zone at the study site during the present study ( 1994-

1995) consisted primarily of sand, with the mean grain size of 516 J.lm at M, while at T it was 

214 J.lm as shown in the Fig. 9. At station M the surface sediments were coarser than at T 

during all the seasons. 

The sediments of the respective stations were moderately well sorted and had the ranges of 

0.50-0.71 (for sorting classes see HOLME & MCINTYRE 1984). Station T showed negative 

skewness while M positive skewness. A positive value of the skewness indicates that the 

mean quartile lies to the right of the Md and hence prefixed as '+',when lying to the left then 

prefixed '-'. At both the stations, the values of the kurtosis (Ko) were found to be in the range 

0.67 -0.90, during the investigation and therefore classified as platykurtic. Kurtosis- "which 

measures the ratio between the sorting in the tails as well as in the central portion of the 

distribution. When the central portion is better sorted than the tails - 'leptokurtic', if the tails 

are better sorted than the central portion - 'platykurtic"' (LINDHOLM 1987). 
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Fig. 9: Cumulative curve of the grain size composition of the sediment at Monkeberg and 

Tirpitzmole 

Tab. 3: Summary of sediment grain size analysis in the top cm of the sediment (sieve analysis 

data) at Monkeberg and Tirpitzmole. Median and mean grain size are expressed in J.lm, while 

measures of sorting, skewness and kurtosis are dimensionless. 

Parameters Station M Station T 

Median (Md) 526 205 

Mean size (Mn) 516 214 

Sorting 0.637 0.603 

Skewness (Skq) 0.059 -0.158 

Kurtosis (KG) 0.828 0.936 
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3.1.6.2 POROSITY 

The average annual porosity during 1994-1995 at station M ranged from 0.34-0.47 and at 

station T it was 0.37 - 0.59 (Fig. I 0). Higher porosity values were accounted in 1995 than in 

1994, at both the stations. Station T showed higher porosity values than station M, indicating 

finer and better sorted sand grains at station T as compared to M. 

At station M, minimum porosity value of 0.34 was noted on 12 October 1994, while the 

maximum value (0.47) was on 30 June 1995, respectively. Between May 1994 and March 

1995, only minor changes were perceived. While, a gradual increase after middle of March 

1995 was significant. 

Contrary to this at station T, minimum porosity value was 0.37 on 30 May 1994 and 

maximum 0.59 on 30 June 1995. From November 1994 to March 1995 insignificant changes 

in porosity were noticed. However, after March, a gradual decrease and an eventual increase 

(0.45-0.59) in the porosity was seen. 
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Fig. 10: Sediment porosity at Monkeberg and Tirpitzmole. 

3.1.7 ORGANIC CARBON 

3.1.7.1 SEASONAL VARIATION IN THE ORGANIC CARBON (CORG) CONTENT 

Fig. 11 shows the mean organic carbon content (Corg) during 1994-1995. Station M showed 

< than 0.1% (Corg), while T < 0.4 % except for 30 May 1994 when value > 0.9 was recorded. 

During winter comparatively lower Corg content was accounted at both the sites. 
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Conspicuously, higher Corg content was accomplished at Station T than at M. The standard 

deviations increased as the Corg content enhanced at both the stations. 

In comparison to station T, relatively lower Corg values 0.04% to 0.1% existed at station M. 

During 1994 minimum value of 0.04% was accounted on 12 July while lower values were 

also observed in January, March, and April of 1995, respectively. Maximum values of0.09% 

were observed on 12 October and 21 December 1994, respectively. No prominent fluctuations 

were seen at M during the investigation period. 

At T the minimum value of Corg 0.06% was achieved on 28 June 1994, while the maximum 

of 0.941 % was measured on 30 May 1994. A steep fall in the Corg from May and June 1994 

was noticed. From June 1994 onwards a gradual increase in the Corg prevailed, with an 

obvious small peak in September 1994. Between October 1994 to March 1995 it mostly 

remained low. The values increased after March 1995 reaching maximum in June 1995. 
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Fig. 11: Seasonal variation of organic carbon (Corg) in the upper 1 cm sediment layer at 

Monkeberg and Tirpitzmole. 

3.1. 7.2 SEASONAL VARIATION IN THE CARBON TO NITROGEN RATIO 

The average atomic ratio of organic carbon to nitrogen (C/N) during 1994-1995 at station M 

and T is presented in Fig. 12. Due to relatively low concentration of nitrogen in the sediment 

samples at both the study sites, it was not possible to evaluate the C/N ratio in all the 

respective samples. Therefore, for the C/N ratio only those sediments were taken into 

consideration, where nitrogen was measurable, while the rest were omitted. 
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Station T showed relatively higher C/N ratios than M, which may be due to the different sites 

(i.e. exposed and open, discussed later). In general the C/N ratio at both the study sites was 

found to be< 25, with an exception on 30 May 1994. 

At station M, minimum value of 4 existed on 17 June, 22 September, 27 October and 28 

November 1994, respectively. The maximum C/N ratio 10 was accounted on 17 November 

and 30 August 1994. During 1995 it ranged from 6-15. The minimum value of 6 was 

accounted in June, while the maximum CIN ratio of 15 in July 1995. 

At station T, relatively higher C/N ratios 9-38 were accomplished. The c/N ratio of 9 prevailed 

on 17 June and 27 October 1994, while the peak with maximum value of 38 was on 30 May 

1994. In September and November 1994, CIN ratios> 20 were accounted. During 1995 c/N 

ratios ranged from 9-23, the c/N ratio 9 was accounted on 20 June &31 July 1995, while 23 

was on 30 March 1995. 
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Fig. 12: Atomic c/N ratio in the upper 1 cm sediment layer at Monkeberg and Tirpitzmole 

from May 1994 to July 1995. Dotted lines indicate missing values. 

3.1.7.3 FLUCTUATION IN THE MEAN ORGANIC CARBON TO CHLOROPHYLL-A RATIO FOR 

SEDIMENTS 

Fig. 13 shows the organic carbon (Corg) to chlorophyll-a ratios (C/Chl-a) averaged for 0-9 

mm sediment depths during the investigated period (1994-1995) at both the sampling stations 

M and T. C/Chl-a at both the respective sites varied both spatially and seasonally. Generally 

higher values were obtained at station T (36-454) as compared to M (36-490), indicating a 
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higher amount of microphytobenthos and detrital matter within the sediment. Interestingly, 

higher C/Chl-a ratios were found during spring and summer at T, whereas at M during spring. 

At station M, the minimum C/Chl-a ratio of 36 existed on 12 July & 17 November 1994, 

whereas the maximum of 490 prevailed on 18 April 1995, respectively. Observations revealed 

that the values were <100 throughout 1994-95. However, from December 1994 to April 1995, 

a gradual increase in the C/Chl-a ratio prevailed with the ratios exceeded the values of 100 in 

March, April and May 1995. After the peak in April a sudden fall accounted in the later part 

of the same month and the value decreased by a factor of 5.56. Nevertheless, the C/Chl-a ratio 

remained on the lower side between June and July 1995. 

At station T, the minimum C/Chl-a ratio of 36 was observed on 27 April 1995 while the 

maximum value recorded was 454 on 10 August 1994, respectively. The values were on the 

lower side during June & July, 1994. Subsequently, an increase in the C/Chl-a ratio reaching 

the maximum 454 on 10 August was observed. Lower values existed from September to 

January. However, two peaks were obtained in 1995, having values of 430 and 371 on 3 

February and 30 March 1995, respectively. From April to July 1995 the C/Chl-a ratio was 

relatively variable. 
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Fig. 13: Seasonal fluctuation in the mean org-anic carbon to chlorophyll-a ratio at Monkeberg 

and Tirpitzmole. 
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3.2 BIOLOGICAL PARAMETERS 

3.2.1 OXYGEN CONCENTRATION AT THE SEDIMENT WATER INTERFACE 

3.2.1.1 SEASONAL VARIATION IN THE OXYGEN CONCENTRATION 

Fig. 14 illustrates the seasonal variation in the oxygen concentration at both the respective 

stations, during 1994-1995. The oxygen concentration in the water column at station M varied 

from 216 to 413 flM, while at T from 167 to 406 flM. At both the study sites, relatively higher 

oxygen concentrations were measured in 1995 than during 1994. Station M showed relatively 

higher oxygen concentrations than T. At both the research areas the whole water column was 

well mixed and oxygenated during winter, spring and autumn than in the summer. 

The minimum concentration of 216 flM was recorded on 30 August 1994 at station M, while 

the maximum concentration of 413 flM was attained on 31 July 1995. Nonetheless, the value 

increased from August 1994 upto 30 March 1995. After this a decrease was seen which 

resulted in the minimum of 284 flM. 

At station T, minimum oxygen concentrations of 167 and 199 flM were encountered on 12 

July and 30 August 1994, respectively. However, after this a gradual increase in oxygen 

concentration with low temperature during windy and stormy periods of autumn, winter and 

spring was observed. As during these seasons the water masses were well mixed, which 

probably led to a maximum of 406 flM on 30 March 1995. From March 1995, a fall in the 

concentration was evident. 

3.2.1.2 OXYGEN DYNAMICS WITHIN PHOTIC ZONE OF THE SEDIMENTS 

The euphotic zone I photosynthetic zone according to planktologist is defined as that part of 

the pelagic realm which is lighted and is the zone of primary production. It varies in depth 

with transparency of the water (NYBAKKEN 1988). Generally, the lower boundary is 

approximately the depth where 1% of the surface light is found ea. 100 and 200 m in the 

ocean (NYBAKKEN 1988). On the other hand, photic zone is the depth of light penetration, 

max. 1000 m. Moreover, while dealing with sediments the photosynthetic zone can either be 

referred as euphotic or photic as there is practically no major difference (ea. few mms) 

amongst the two. Thus, the euphotic zone is a thin layer in the sediments in which benthic 

phototrophic microorganisms form dense laminated communities and where gross 

photosynthesis is detectable i.e. where differences during light and dark shifts are evident. 
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Fig. 14: Seasonal fluctuation of oxygen concentration in the water column (J.LM), maximum 

oxygen concentration (J.!M) within the photic zone, oxygen maximum concentration depth 

(mm) and oxygen penetration depth (mm) of sediment at Monkeberg & Tirpitzmole. 
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The thickness of the euphotic zone varies with sediment type, photon flux, absorption/ 

scattering of the light and density of the photosynthetic communities (REVSBECH & 

J0RGENSEN 1986). It varies from a few tenths of a mm to several mms or even ems (LASSEN 

et al. 1992). The photosynthetic activity within the euphotic zone can be measured with the 

help of the microelectrode. 

Station M with coarse sandy sediments showed thicker photic zone ranging from 4 to 16.5 

mm than at T with finer sediments from 2.5 to 21.5 mm (Fig. 15). The photic zone at both the 

stations was mostly< 10 mm. Exceptionally, in January and February when it was 21.5 & 

16.5 mm, respectively . Thicker photic zone occurred at both the sites indicating more 

scattered diatom populations during winter and early spring than in summer. 

Oxygen concentration peaks are quite common in photosynthetically active sediments on 

account of high photosynthetic activity. This was clearly depicted through the elevated 

oxygen concentrations within the sediment, obtained in oxygen profiles. Comparing the 

maximum oxygen concentrations in the (photic zone), the sediments of the station T were 

found to be photosynthetically more active than M. Maximum Oxygen concentrations 

obtained at both the sites within the photic zone were higher during 1994 than in 1995. 

At station M, the oxygen concentrations due to the microphytobenthic photosynthetic activity 

ranged from minimum of 244 ~M to a maximum value as high as 632 ~M, between 0 to 4 

mm sediment depth (Fig. 14). Moreover, these oxygen concentrations within the sediment 

were 1.1- to 1.8 - fold higher than the water column. The minimum oxygen concentration of 

244~M prevailed at 1.5 mm sediment depth on 30 August 1994. The maximum 

concentrations of 632 ~M at 0.5 mm on 28 July 1994. Furthermore, maximum oxygen 

concentrations also existed in 3.5 mm on 3 February and 4 mm on 19 July 1995. No distinct 

differences in the oxygen concentrations were evident on 28 June, 12 July 1994 and 31 July 

1995 between the sediment and the water column. 

At station T, the oxygen concentrations obtained varied from 219 to 769 ~M, on account of 

photosynthesis in the 0 to 4 mm, below the sediment surface (Fig. 14). These accounted 

oxygen concentrations in the sediment, were 1.1- to 2.5 - fold higher than the water column. 

The minimum value of 219 ~M was recorded on 19 July 1995 and maximum value of 425 

~M on 3 February 1995 at 4 mm sediment depth. Maximum oxygen concentrations of 769 

~M on 10 August and 751 ~M on 22 September 1994 existed at 1 mm, below the sediment 

surface. However, on 12 October 1994, 18 April & 30 June 1995 no significant differences in 

the oxygen concentrations in the sediment and the water column were observed. 
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Fig. 15: Seasonal variaton in the photic-zone (mm) at Monkeberg and Tirpitzmole. 

3.2.1.3 SEASONAL FLUCTAUATION IN THE OXIC SEDIMENT ZONE 

Oxygen penetration depth or the oxic sediment zone corresponds to the sediment depth, where 

oxygen gets depleted (i.e. the zero current). The depth of 02 penetration into the sediment 

varied from 2.5 to 23 mm at the station T, while at M from 4.5 to 17 mm as shown in fig.14. 

The 02 penetration depth at both the research areas was substantially greater during winter 

and in early spring than in summer. Nevertheless, there was a slight increase in the oxic 

penetration zone in June and July 1995 at both the locations. 

The minimum 02 penetration depth at M of 4.5 mm was seen on 20 June whereas the 

maximum of 17 mm on 23 January 1995. The oxic zone throughout the summer 1994 varied 

between 6 to 11 mm. On 28 November there was a sudden fall in 02 penetration of 6 mm. 

From December 1994 to April 1995 (i.e. early to late spring) it remained at 9-12.5 mm and 

decreased on 20 June 1995 to 4.5 mm. However, at this time green algae Enteromorpha 

intestinalis and brown algae Fucus vesiculosus were observed on the sediment surface, which 

perhaps resulted in the decrease of the oxic zone. The 02 penetration during summer 1995 

varied from 4.5 to 14 mm, depicting more 02 penetration than in summer 1994. The 02 

penetration augmented once again in later part of June 1995 (6.5 mm) and remained so till 

middle of July (14 mm). 

At station T, the minimum 02 penetration of 2.5 mm existed on 30 May 1994 and maximum 

of 23 mm on 3 February 1995. The thickness of the oxic zone throughout the summer 1994 

remained at 6 to 8 mm, but reached a new minimum (4 mm) on 22 September (Fig 14). 
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During winter, oxygen penetrated slowly deeper into the sediment, with an exception on 21 

December, when it suddenly reduced to 5.5 mm. But from January 1995 to April 1995 (i.e. 

from early to late spring) it varied from 7 to 23 mm and deceased gradually in summer. The 

0 2 penetration during summer 1995 remained at 4 to 6.5 mm, revealing less 02 penetration 

than in summer 1994. 

3.2.1.4 CORRELATION BETWEEN THE SEDIMENT TEMPERATURE AND OXIC SEDIMENT 

ZONE 

A weak inverse correlation between the oxygen penetration depth (oxic sediment zone) and 

the sediment temperature was accounted i.e. the lower the temperature, the thicker is the oxic 

sediment zone and vice-versa (Fig. 16). 
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Fig. 16: Regression line showing the inverse relationship between the sediment temperature 

and the oxic sediment zone with r = 0.482, n = 45, P< 0.05. 

3.2.1.5 OXYGEN UPTAKE AS CALCULATED FROM THE OXYGEN MICROPROFILES 

The flux of oxygen into the sediment is a fundamental measure of benthic community 

respiration. It fluctuated significantly over time at both the stations. The rate of 02 

consumption in the sediment was calculated from the 02 microprofiles assuming a diffusive 

uptake of 02 into the sediments. The presented 02 microgradients . at both the study areas 

showed decreasing 02 concentrations into the sediment as shown in Fig. 17. Oxygen 

gradients were steeper in the sediment as compared to the overlying water at T than at M. 

Besides this, the seasonal changes in the oxygen uptake of the sediments at both the sites 
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could not be caused by the fluctuations in the sediment temperature alone. The depth of 02 

penetration as observed in the sediments at both the stations M and T was substantially 

greater in winter and spring than in summer. 

The TSOC (Total sediment oxygen consumption rate) ranged from 29.6 to 401.5 Jlmol m-2 h-1 

at T, and from 19.2 to 340.6 Jlmol m-2 h-1 at station M (Fig. 18). During 1994-1995 at the 

station M, the microprofiles were less steep and had deeper 02 penetration depths than at T as 

shown in Fig. 17. Since the sediments of station M were coarser and therefore had lower 

amount of organic carbon, resulting in deeper oxygen depths. Two peaks showing minimum 

value with regard to the total oxygen uptake of the sediments were encountered i.e. on 21 

December 1994 and 30 March 1995 with values of 19.2 and 24.1 J.Lmol m-2 h-1, respectively. 

The highest values for TSOC was observed to be 340.6 J.Lmol m-2 h-1 in June 1995. Two more 

peaks with lower values of 91.1 Jlmol m-2 h-1 and 91.8 Jlmol m-2 h-1 on 28 July occurred on 

10 August 1994, respectively. From late August till February 1995 a fall in TSOC rates was 

observed. On 3 February 1995, the oxygen consumption rate at station M was higher than at T 

by about 1.36 times, as shown in the Fig. 18. However, during winter the trend at both the 

stations M and T with the exception of lower values varying between 19.2 to 40.3 Jlmol m-2 

h-1 at M. 

Station T showed 1.2-1.5 fold higher oxygen consumption rates than at M. From the 02 

profiles it can clearly be illustrated that the diffusive 02 uptake rates at station T were 

significantly higher in the summer than in winter, when the sediments contained low organic 

content. Lowest benthic metabolic activity 29.6 J.Lmol m-2 h-1 was recorded on 3 February 

1995, while the highest value of 401.5 J.Lmol m-2 h-1 on 30 June 1995. However, two 

prominent peaks with maximum TSOC occurred in July 1994 and June 1995 as shown in the 

Fig 18. Subsequently, after July 1994, TSOC deceased dramatically, which eventually resulted 

in 45.9 Jlmol m-2 h-1 on 30 August 1994. Following this an increase on 22 September 1994 

(152.9 Jlmol m-2 h-1) was accomplished. These rates being (2.64-fold) higher than at M. From 

September 1994 to February 1995 lower values in the diffusive oxygen uptake prevailed. 

Furthermore, during spring 17 March 1995 increase in the 02 uptake was evident with an 

oxygen penetration depth of 13 mm, though the temperature was still low i.e. 4.0 °C. It was 

also observed that during winters when the temperatures were low the penetration depth was 

higher. On the whole, after the minimum value in February 1995 a steady increase in the 

rsoc resumed, resulting in the maximum on 30 June 1995 when the sediment temperature 

was 19 °C. However, within 2 weeks, in the month of July, TSOC decreased by 2.5 fold to 159 

Jlmol m-2 h-1 with the sediment temperature being the same at l9°C. 
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Fig. 17: Profiles of oxygen concentration measured in the dark on (a) 17 June 1994 (b) 12 

July 1994 (c) 22 September 1994 (d) 23 January 1995 (e) 17 March 1995 if) 30 June 1995 

were used to calculate the diffusive oxygen uptake within the oxic sediment layer at 

Monkeberg and Tirpitzmole. Negative depths represent measurements above the sediment­

water interface. 
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A steady increase in the total oxygen uptake from December onwards was noticed which 

resulted in the maximum 340.6 Jlmol m -2 h-I on 30 June 1995 with sediment temperature of 

l9°C. After having reached this maximum, TSOC decreased upto 4.5 fold within 2 weeks in 

July 1995. Conspicuously, higher Oz consumption rates were recorded during summer 1995. 
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Fig. 18: Total seasonal oxygen uptake (Jlmol m-2 h- 1) at Monkeberg and Tirpitzmole. 

3.2.2 MICROPHYTOBENTillC SPECIES COMPOSITION AND ABUNDANCE 

3 .2.2.1.SEASONAL VARIATION 

Seasonal variations during May 1994 to May 1995 in the population of microphytobenthos 

are given in Fig. 19. The microflora consisted mainly of pennate diatoms at both the stations, 

while the station T being dominated by larger sized diatoms than M. Higher proportions of 

viable cells at various sediment depths (i.e. 0-3, 3-6, and 6-9 mm) were present at station T, as 

compared to M. The average number of cells in the top 9 mm ranged from 45 to 4005 x 106 

cm -3 at T, while at M it was 17 to 1428 x 106 cm -3. On account of insignificant cell number in 

3-6 and 6-9 mm sediment layers from December to February, 1995, the counting for the 

microphytobenthos population in these layers was discontinued. Hence, during these months 

only 0-3 mm sediment layer of the samples was investigated at both the sites. 

At T, two distinctive peaks were obtained on 22 September 1994 ( 2770 x 106 cm -3 at 0-3 mm 

sediment depth) and 27 April 1995 (4005 x 106 cm-3 at 3-6 mm) during 1994-95 , while the 

lowest cell counts of 45 x 106 cm-3 in 6-9 mm) was noted on 28 July 1994, respectively. 
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Lower number of microphytobenthos prevailed from May to 30 August 1994. A sudden 

increase in cell number led to the prominent peak on 22 September 1994. After this there was 

a gradual decrease in the cell number, reaching its minimum 127 x 106 cm-3 on 3 February 

1995 in the 0-3 mm sediment layer. However, the microphytobenthos number shooted up 

once again leading to its maximum on 27 April 1995. 

The number of microphytobenthos at station M was comparatively lower than at T. 

Throughout the period of 1994-95, lower cell counts were noted with its lowest number of 17 

x 106 cm-3 on 12 July 1994 at 6-9 mm sediment depth. Nevertheless, relatively two short 

peaks were endeavoured on 30 Aug 1994 (843 x 106 cm-3 at 3-6 mm depth) as well as on 16 

May 1995 (1428 x 106 cm-3 at 0-3 mm depth), respectively. There was an obvious fall in the 

cell number from September to February, attaining the minimum value of 74 x 106 cm -3 at 0-

3 mm depth during 1995. 

3.2.2.2 DEPTH DISRIBUTION 

Distribution of the microphytobenthos at the three sediment depths (i.e. 0-3, 3-6, and 6-9 mm) 

showed wide variation in the cell counts at both the sampling locations (Fig. 19). 

Surprisingly, at M and T no stratification of the microalgae in the upper 9 mm was seen. 

Nevertheless, at both the stations sediment depth of 3-6 mm was found to be optimal for 

microphytobenthos distributions, due to which Chl-a concentration was also found to be 

higher at this particular depth (Fig. 21). The living cells in the depth range of 0-3 and 6-9 mm 

were moderately distributed. Averaging all the measured values for the samples at each 

sediment depth, clearly revealed that the mean at 3-6 mm sediment was highest, showing 

richest microalgal assemblage of the three sediment layers. 

3.2.2.3 SEASONAL VARIATION OF MICROPHYTOBENTHIC ASSEMBLAGES 

Dynamics of the microphytobenthos is supported by the succession of various species at 

different seasons of the year. This succession was better observed, when the sediments of the 

sampling sites were densely covered with different members of microphytobenthos. Besides 

this, cell counting was conducted taking into consideration the qualitative point of view. 
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Fig: 19: Seasonal distribution of the microphytobenthos cell number (x 106 cm-3) at three 

sediment depths (0-3, 3-6, 6-9 mm) at Monkeberg and Tirpitzmole. Dashed lines indicating 

missing cell counting. 

During the investigation, station T showed richer population dominated by motile epipelic 

species (Fig. 20b) with bimodal size spectrum i.e. small and large in size, but often dominated 

by large sized diatom cells e.g. Amphiprora sp., Amphora sp., Cocconeis sp., Mastogloia sp., 

Navicula sp., Nitzschia sp., Pleurosigma sp. etc. In contrast to its counter part M, with smaller 

diatoms (Fig. 20a)Achnanthes sp., Amphora sp., Rhabdonema sp., Navicula sp., etc. However, 

besides the above mentioned diatoms minor portions of planktonic diatoms (i.e. 

Actinoptychus senarius, Chaetoceros sp., Thalassiosira baltica, Coscinodiscus sp., 
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Fig. 20a: Microphytobenthos assemblage from [0-9 mm] sediment depth at Monkeberg 

characterized by sparse and small sized taxa such as of Achnanthes sp., Actinoptychus 

senarius, Cyanophyceae - Anabaena, Navicula sp. 

Fig. 20b: Microphytobenthos assemblage from [0-9 mm] sediment depth at station 

Tirpitzmole consisting of Achnanthes sp., Amphora sp., Navicula sp., Nitzschia sp., Opephora 

sp. Assemblage was heavily dominated by large sized and abundant pennate diatoms. 
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Prorocentrum minium , Stephanodiscus sp. etc.) were rarely seen and were also included for 

the investigation. It was observed that the members of family Naviculaceae dominated at both 

the stations and were covering major proportions of the microalgal flora than the members 

belonging to other families. 

Most frequent and ubiquitous diatom genera throughout the investigation at both the study 

areas was Navicula, having approximately ( 10 to 30 J..Lm) size and rarely> 30 J..Lm (e.g. on 28 

June, 10 August, 22 September 1994, 23 January 1995 etc.), which specially added to the 

biomass. The growth of Microphytobenthos varied extensively with the season during 1994-

1995 at both the research sites. This mainly depended upon the microphytobenthos 

distribution in the sediments of the sites as shown in (Fig. 20 a,b) of 22 September 1994. Fig. 

20b illustrates that the sediments of station T were dominated by large sized, dense and rich 

assemblages of microphytobenthos having (Achnanthes sp., Amphora sp., Navicula sp., 

Nitzschia sp., Mastogloia sp., Opephora martyi, Pinnularia sp. etc.) while at M 

(Actinoptychus senarius, Cyanophyceae - Anabeana and Merismopedia, Navicula sp. etc.) 

were of smaller size. Besides these Coscinodiscus, phytoflagellates, Fragilaria sp., 

Rhabdonema sp, Melosira sp. were also prevelant during autumn. 

The microphytobenthos species at both the stations changed from larger to smaller and vice­

versa, depending upon the seasonal and environmental changes .i.e. during summer large 

sized microphytobenthos dominated (Amphiprora sp., Cocconeis sp., Cyanophyceae­

Anabeana, Merismopedia, Epithemia sorex, Fragilaria sp., Gyrosigma sp., Phytoflagellates­

Porocentrum minimum, Pleurosigma sp., Tabularia sp., Tetraselmis sp., Navicula sp., 

Navicula humerosa, Stauroneis sp. etc.) were noticed. Comparatively, in winter the number of 

species reduced (i.e. Achnanthes sp., Fragilaria sp., Navicula sp. (small sized), Opephora 

martyi, Rhabdonema sp., Tetraselmis sp.) they were relatively smaller in size. It was also 

accounted that the species type present in the sediments during spring, summer, autumn and 

winter were dependent on the season. 

The species prevailing during spring (Atheya decora, Biddulphia sp., Cyclotella sp., 

Cylindrotheca sp., Cymbella sp., Diatoma sp., Diploneis sp., Eunotia sp., Licmophora 

abbreviata, Phytoflagellates - Heterosigma sp., Melosira sp., Nitzschia closterium, Synedra 

sp. etc.) were absent or rarely present in other seasons. In addition to this, the changes in the 

species composition along the depth gradient (0-3, 3-6, 6-9, 9-12 mm) was a significant 

feature at both the stations. 
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3.2.3 CHLOROPHYLL-A 

3.2.3.1 SEASONAL VARIATION 

Chlorophyll-a data were collected to provide an estimate of the standing stock of microalgae 

living on and in the shallow water sediments of the study sites (M and T). Spatial and 

seasonal variations of the mean Chl-a concentrations in the upper 0 to 12 mm sediment layer 

at both stations are presented in Fig. 21. A subjective assessment of the graphs exhibited 

dissimilarity in Chl-a concentrations among both the stations. Significantly, higher Chl-a 

concentrations were accounted at T (2.06 to 29.07 J.lg Chl-a cm-3) with finer sediments than at 

M (0.95 to 13.17 J.lg Chl-a cm-3) with coarser and sandy sediment. The graphs illustrate that 

the standard deviations increased with increasing Chl-a concentrations. 

At station M relatively low Chl-a concentrations between 5.43 and 9.22 J.lg Chl-a cm-3 were 

prevalent during summer 1994 (Fig. 21 ). However, a progressive increase in the Chl-a 

concentrations from 10 August was noted, which subsequently resulted into the maximum 

value of 13.17 J.lg Chl-a cm-3 on 12 October at 6-9 mm sediment depth. Succeeding this the 

concentrations rapidly decreased to (4-5 J.lg Chl-a cm- 3) on 27 October. However, in 

November the chlorophyll a concentrations reached a value of 12.42 J.lg Chl-a cm-3 at 9-12 

mm, after which it gradually fell down, showing the minimum concentration of 0.95 on 18 

April 1995 in the 0-3 mm sediment layer. A slow and continuous increase in the concentration 

was noted upto 20 June 1995, when the second peak with 9.53 J.lg Chl-a cm-3 was perceived 

at 3-6 mm sediment depth. 

During 1994-1995 at station T, two distinctive peaks were observed on 22 September 1994 

(29.07 J.lg Chl-a cm-3) at 0-3 mm and 27 April 1995 (28.72 J.lg Chl-a cm-3) at 3-6 mm 

sediment depth, respectively. Nevertheless, the minimum value prevailed on 28 June 1994 

(3.33 J.lg Chl-a cm-3) and on 3 February 1995 (2.06 J.lg Chl-a cm-3) at 0-3 mm sediment depth 

each. During summer and winter comparatively lower Chl-a concentrations were noted than 

in other seasons. 

An increase in the Chl-a concentration was observed on 12 July (10.38 J.lg Chl-a cm-3 at 0-3 

mm), after which values declined between July and August 1994. Subsequently, after this in 

September there was an increase in the Chl-a concentration reaching the maximum. After this 

month onwards a precipitous reduction in the concentration prevailed, resulting in the 

minimum value on 3 February 1995. From February until 27 April 1995 there was a steady 

increase in the Chl-a concentrations (28.72 J.lg Chl-a cm-3) at 3-6 mm sediment depth. 
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Fig. 21: Mean Chlorophyll-a concentrations (Jlg Chl-a cm "3) with standard deviations in 4 

sediment depths (0-3 mm; 3-6 mm; 6-9 mm; 9-12 mm) at Monkeberg and Tirpitzmole. 
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3.2.3.2 DEPTH DISTRIBUTION 

The Chl-a concentrations at different depths (0-3, 3-6, 6-9, 9-12 mm) are shown in Fig. 21 for 

both the locations. In general higher concentrations of Chl-a were found at station T as 

compared to its counter part M. However, no major differences in the Chl-a concentrations 

were encountered at the various sediment depths on both the sites. Calculating mean and 

standard deviation of all the readings (i.e. 30 May 1994-July 1995) in the different sediment 

zones (Tab. 4). The observations clearly indicated no distinct differences in the upper 0-9 mm 

sediment depth were visible. Nonetheless, comparing the data the maximum Chl-a 

concentration was found in the depth range of 3-6 mm, as compared to the concentrations at 

other depth levels (0-3, 6-9, and 9-12 mm). However, this was not significant at the respective 

sites. 

Tab. 4: Mean± standard deviation for all the Chl-a values at each sediment depth (0-3, 3-6, 6-

9, 9-12 mm) at Monkeberg n = 80 and Tirpitzmole n = 76, expressed in (J!g Chl-a cm-3) 

averaged from May 1994 to July 1995. 

Depth [mm] M [J!g Chl-a cm -3] T [ J!g Chl-a cm-3] 

0-3 6.26 ± 2.84 11.04 ± 6.57 

3-6 7.30 ± 3.01 14.00 ± 6.86 

6-9 7.16±3.19 12.98 ± 6.05 

9-12 7.12 ± 3.26 12.46 ± 6.37 

3.2.4 BENTHIC PRIMARY PRODUCTION 

3.2.4.1 MICROPROFILES OF PHOTOSYNTHESIS 

Oxygen microprofiles of photosynthesis, measured at M and T showed temporal and spatial 

variations during the different seasons of 1994-1995 are illustrated in Fig. 22. The oxygen 

microprofiles of the two respective sites under dark and light phase depicted no distinct 

differences, with an exception on 17 March, when the fluctuations were observed in dark Fig. 

22. The oxygen concentration, photosynthetic rate, photosynthetically active layer, 
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penetration depth (oxic zone) and the shape of the profiles varied with weather conditions, the 

sediment type and the microphytobenthos distribution within the sediment. The oxygen 

concentration within the sediment (photic zone) was frequently higher than in the water 

column, and abated with increase in the sediment depth. At both the sides of the 

photosyntheticaiiy most active layer the concentration of oxygen significantly decreased. 

Rates of photosynthetic activity ranged from 0.13 to 16.7 J.Lmol Oz cm-3 h-1 at M, while at T 

0:06 to 18.2 J.Lmol Oz cm-3 h-1. Higher rates were occasionaiiy measured at T than M. Micro­

profiles at station M generaiiy indicated thicker oxic zone (i.e. oxygen penetration depth) than 

at T as depicted in Fig. 22. 

On 17 June 1994, overcast sky and duii light conditions prevailed at both the experimental 

sites. The sediment samples of M had pale brown patches of microphytobenthos, along with 

the mosaic patches of green algae Enteromorpha intestinalis, brown algae Fucus and red 

algae Ceramium strictum at T, the superficial layer (1 mm) was brown, with patches of brown 

algae Fucus, red algae Ceramium and the deeper layers were greyish black. At station M 

photosynthesis resulted in an oxygen concentration of 380 J.LM at a sediment depth, 2.5 mm 

below the sediment surface, with the photosynthetic rate in this layer being 4.8 J.Lmol Oz cm-3 

h-1. However, the maximum photosynthetic rate of 9.3 J.Lmol Oz cm-3 h-1 occurred in the most 

active layer, 5 mm below the sediment surface. The total photosynthetic activity integrated 

over ail layers was 16.4 mmol Oz m-2 h-1 with photic zone 7.5 mm. At T, the maximum 

oxygen concentration was measured at 0.5-1 mm, the photosynthetic rate in this layer was 0-

1.3 J.Lmol Oz cm-3 h-1, with the integrated total photosynthetic activity as high as 10.4 mmol 

Oz m-2 h-1 and photic zone 5 mm. The photosynthetic rate in the most active layer was 7. 7 

J.Lmol 02 cm-3 h-1, which existed at 3 mm sediment depth. Thicker oxic zone (8 mm) existed 

at M than at T (6 mm). 

Bright sunshine with clear sky existed on 12 July 1994, at both the research sites. The 

sediment of T was fine, brownish yeiiow (3-4 mm) superficial layers of microalgae and 

greyish black deeper layers, with anthropogenic matter. However, this sediment also included 

large numbers of green algae Enteromorpha intestinalis, Ulvaria and brown algae Fucus 

patches. At M, sediment was coarse, clean with no anthropogenic matter and less prominent 

yeiiowish-brown microphytobenthos patches with meagre amount of green Cladophora, 

Enteromorpha intestinalis, Ulvaria and brown algae Fucus. At station M maximum 02 

concentration of 337 J.LM existed at 0.5 mm and the photosynthetic rate within this layer was 

as high as 0.26 Jlmol 0 2 cm-3 h-1, while the maximum photosynthetic activity of 10.6 J.Lmol 

Oz cm-3 h-1 in the most active layer, 1.5 mm below the sediment surface (Fig. 22). 
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Fig. 22: Vertical oxygen profiles of oxygen concentration during light (filled circles) and 

photosynthetic activity (bars) in shallow, sandy sediments of the stations Monkeberg and 

Tirpitzmole, indicating seasonal changes from May 1994- July 1995. 
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Apparently no major differences in the oxygen concentration between the water column and 

the uppermost sediment layers were seen. However, a gradual decline in the oxygen 

concentration was obvious indicating no peak. The oxic zone was only 5.5 mm, while the 

photic zone was 4.5 mm. The total photosynthetic activity integrated over all sediment layers 

was 6.7 mmol 02 m-2 h- 1. Station T showed the highest oxygen concentration 781 J.LM as a 

result of photosynthesis, occurred at 1 mm, within the sediment and corresponded to 3.92-

times the oxygen concentration of the water column, with 5.5 mm thick oxic zone. The 

photosynthetic rate within this layer, was 6.1 Jlmol 02 c m-3 h- 1. While, the maximum 

photosynthesis activity of 12.8 J.Lmol 02 cm-3 h-1 was measured at 2.5 mm in the most active 

layer. The activity integrated over all layers was 17.2 mmol 02 m-2 h-1 with photic zone of 

5.5 mm thickness. 

The weather on 22 September 1994 showed overcast sky with fog and dull light at both the 

locations. However, at T there was low sea-level and had receded 10-15 m away from the 

seashore from where the samples were then collected. Upper sediment layers were pale brown 

with cyanobacterial mats of Anabaena sp. and microphytobenthos patches of Amphora sp., 

Mastogolia sp., Navicula sp., Nitzschia sp., Opephora sp., etc., while the lower layers were 

greyish black. Whereas the sediment at M was coarse, soft, pale brown, clean without greyish 

black layers, devoid of algal mats and brown patches, higher sea-level, and with jelly-fishes in 

abundance. The microprofiles at station T showed high oxygen concentration of 751 J.LM at 

1.5 mm below the sediment surface and at M with 299 J.LM at 0.5 mm due to photosynthesis 

(Fig. 22). The oxygen concentrations at T were 3.0 times higher than the water column. 

Oxygen penetration depth at M was 6.5 mm and only 4.5 mm at T. The photosynthetic 

activity integrated overall the depths was 5.53 mmol 02 m-2 h-1 at T while at M it was 3.56 

mmol 02 m-2 h-1, respectively. The photic zone was 4 mm at T and 6 mm at M. The 

maximum photosynthetic activity in the most active layer of 7.2 J.Lmol 02 cm-3 h-1 was 

measured at 0.5 mm below the sediment surface at T while at M of 2.76J.Lmol 02 cm-3 h- 1 at 

3mm. 

On 23 January 1995 covered sky (i.e. cloudy, with no sunshine) prevailed at both the stations. 

Upper sediment layers at T were fine, light greyish black (3-4 mm), while the rest was black, 

with less anthropogenic matter. The sediment included compost, crushed brown Fucus sp. and 

prominent black patches. At station M the sediment was coarse, soft, yellowish brown, having 

striking black patches. It exhibited scanty decomposed leaves and crushed brown algae Fucus 

sp. Furthermore, the water column at both the locations exhibited higher oxygen 

concentrations than the sediment, without eminent oxygen concentration peaks. Maximum 

oxygen concentration due to photosynthesis was found to be in the uppermost sediment layer, 

0.0 mm. Oxygen concentration of 217 J.LM existed in the uppermost sediment layer, 0 mm at 

station T, i.e. a factor 1.1 less than in the water column, with photosynthetic rate within this 
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layer was 0.26 Jlmol 02 cm-3 h-1 and the oxygen penetration depth 7 mm. The maximum 

oxygen concentration at M within the sediment was 309 !J.M, 1.1 fold less than its water 

column, rate of photosynthesis within this layer accounted was 0.3 IJ.mol 02 cm-3 h-1 and with 

17 mm oxic penetration depth. A zig-zag pattern of the profile, with no oxygen peak was 

obtained. The photosynthetic rate within the most active layer at 1.5 mm (5.27 !J.mol 0 2 cm-3 

h- 1) at T, while at 15 mm (4.3 IJ.mol 02 cm-3 h-1ht M. At T the total photosynthetic activity 

integrated over all the depths was 15.2 mmol 02 m-2 h-1 and photic zone (6.5 mm), whereas 

at M the respective values amounted to be 26.3 mmol 02 m-2 h-1 and 16.5 mm, respectively. 

The weather conditions on 17 March 1995 at M and T were unfavourable, with heavy clouds, 

rain and no sunshine. On this particular day at T, the water from the seashore had receded 10 

to 15 m away, and from there the samples were pooled. Sediment properties revealed that it 

was fine, pale brown, exhibiting dark brown fecal pellets and lebenspuren GERMAN, LIFE 

TRACES (GAGE & TYLER 1991) from Hydrobia ulvae, Arenicola casts. At M the sediment was 

coarse and not compact, yellowish brown and clean. The photosynthesis at T resulted in the 

maximum oxygen concentration of 392 !J.M was revealed at 1 mm, below the sediment 

surface. This was 1.2-fold higher than in the water column (342 !J.M). The photosynthetic rate 

in this layer was as high as 3.9 IJ.mol 02 cm-3 h-1, whereas the photosynthetic rate in the most 

active layer was measured at 4 mm (18.2 IJ.mol 02 cm-3 h-1) and the total photosynthetic 

activity integrated over all layers was 75.9 mmol 02 m-2 h-1. The sediment oxic zone was of 

11.5 mm and the photic zone was 7.5 mm thick. The zone of maximum oxygen concentration 

at M was 2 mm, revealing an oxygen concentration of 377 !J.M, i.e. factor 1.2 more than the 

water column (361 !J.M). The oxygen penetration depth and the photic zone were 9.5 mm 

thick. The photosynthetic rate in this layer was 1.93 IJ.mol 02 cm-3 h-1 and the total 

photosynthetic activity integrated over all layers was 14.3 mmol 02 m-2 h-1. The peak rate of 

photosynthetic activity (5.11J.mol 02 cm-3 h-1) occurred at 8 mm, below the sediment surface. 

The sediment on 30 June 1995 was fine, dark brown (2-5 mm), while the middle layer was 

grey and the lowermost layer dark, black smudgy with pungent smell of H2S. There was 

anthropogenic matter, heavy casts of Arenicola sp. on the superficial layer, dominated by 

green algae Enteromorpha intestinalis, brown algae Pilayella littoralis, red algae Ceramium 

strictum. In addition to this, at random places black spots were also observed. The weather 

conditions at both the sites were optimal i.e. bright sunshine and with low sea level. The 

sediment of M was clean, not compact, coarse with upper layers of approximately 4 cm 

yellowish brown, while the deeper layers were black, without H2S smell. The overlying water 

was turbid. No prominent microphytobenthos patches were noticed on the sediment surface, 

while the algal patches of green algae Vivaria, Enteromorpha intestinalis, brown algae 

Zostera marina (sea grass), Fucus, Pilayella littoralis sps. were common. No conspicuous 

differences in the oxygen concentrations between the water column and (uppermost 0.5 mm) 
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sediment layer with 332 J..LM were observed at station T, where a relatively thin oxic zone of 

3.0 mm was found. The photosynthetic rate within this layer was 0.7 J..lmol 02 cm-3 h-1 (Fig. 

22). The highest photosynthetic rate of 5.7 J..Lmol 02 cm-3 h- 1 was measured at 2 mm, in the 

most active layer below the sediment surface. Besides this, at station M the highest oxygen 

concentration of 355 J..LM, 0 mm on the sediment surface. The photic zone and oxic zone in the 

sediment were 6.5 mm thick each. Peak rate of photosynthesis in the most active layer was 

5.9 J..Lmol 0 2 cm-3 h-1, 3 mm below the sediment surface. The total photosynthetic activity 

integrated over all layers was 4.5 !lmol 02 cm-3 h-1 at T and 8.61 J..lmol ~ cm-3 h-1 at M, 

respectively. 

3.2.4.2 SEASONAL PRIMARY PRODUCTION CYCLE OF MICROPHYTOBENTHIC ALGAE 

Results given in Fig. 23 depict the seasonal variations in the benthic primary production of the 

experimental stations M and T. Both the stations were readily accessible under all weather 

conditions and enabled the measurements throughout the year. The benthic primary 

production ranged during the period of May 1994 to July 1995 from (38.6 to 284.8 mg C m-2 

h- 1) and 15.3 to 454.3 mg C m-2 h-1 at M and T, respectively. Overall observations of the two 

respective locations, clearly indicated that the amount of production at T was generally higher 

than M. Throughout the investigation period, it was accounted that the microphytobenthos 

production was lesser during summer and autumn, while it was higher during the months of 

winter and spring, respectively. 

At station M, the minimum gross productivity of 38.6 mg cm-2 h- 1 was observed on 12 

October 1994 ,while the maximum of 284.8 mg C m-2 h- 1 was attained on 23 January 1995, 

respectively. The productivity increased significantly 3.4 -fold in June 1994. However, this 

value remained on the higher side even in July. Lower productivity existed between October 

and November 1994. Following this, the productivity augmented during the months of 

December 1994 and January 1995, and attained a peak of 284.8 mg m-2 h- 1. During these 

months such results were not observed at T. After which the primary production once again 

abated, reaching a secondary peak of 58.4 mg C m-2 h- 1 on 27 April. 

At station T, the minimum value of 15.3 mg C m-2 h- 1 existed on 30 May 1994, while the 

sharp peak with maximum production of 454.3 mg C m-2 h- 1 was accounted on 17 March 

1995, respectively. From May 1994 a gradual increase in the benthic production was 

noticeable until reaching its maximum on 12 July 1994. Besides this, a prominent decrease in 

the production was obvious from July till end of August. From January to March a dramatic 

increase in the benthic primary production took place, which led to the formation of the 

second peak on 17 March 1995. This peak was 2.1 - fold higher than the previous peak of 12 

July 1994. Nonetheless, this value suddenly deceased by 2.5 - fold on 30 March 1995, which 
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kept on further dwindling and ultimately reaching a value of 43 .3 mg C m-2 h-1 on 19 July 

1995. 
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Fig. 23: Seasonal primary production cycle of microphytobenthos at Monkeberg and 

Tirpitzmole. 

3.2.4.3 COMPARISON AND ERROR IN THE PRIMARY PRODUCTION MEASURED WITH GLASS 

AND NEEDLE MICROSENSORS 

The first experiment conducted to compare the rate of photosynthesis within the sediments of 

station T, with the aid of two different microsensors i.e. glass and needle (steel type) in light 

and dark shifts, indicated that the photosynthetic activity measured by the needle sensor was 

factor 2 higher than with the glass sensor, with 10 sec of dark phase at each sediment depth of 

500 J.Lm, when integrated over all the depth intervals yielded a gross primary production of 

77± 8.54 with glass and steel 154.33 ± 12.66 mg C m-2 h- 1, n= 3. Furthermore, taking only 

one measurement into account a factor difference of 2.2 in gross production i.e. 76 mg C m-2 

h- 1 for glass, needle 152 mg C m-2 h- 1 was estimated i.e. the longer the dark period the lesser 

is the benthic primary production taking only one oxygen microprofile into account as Fig 24. 

It was also observed that the overestimation by 2 or 2.2- fold in the photosynthetic activity 

came irrespective of the existing duration of the dark period i.e. 3 to 10 sec and remained 

constant irrespective of the increase or decrease in the primary production. 
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Fig. 24: Estimated gross production mg C m-2 h- 1 measured with needle and glass microprobe 

and plotted against each other. Regression line indicates an overestimation by a factor 2.2 in 

the gross primary production measured with needle compared to glass microprobe, with 10 

sec of dark phase at each sediment layer, taking one measurement into consideration. Each 

point represents the calculated production every sec i.e. from 3 to 10 sec of dark period. The 

coefficient of determination r = 0.999. 

With the fixed point microsensor technique, the slope of the recorded current gave the oxygen 

accumulation rate at fixed depths of the sediment, and the initial slope to estimate the rate of 

oxygen production, when the light was turned off for 10 seconds , after the sediment had 

already been exposed to light for 10 minutes. The calculated rates showing the change in 

oxygen concentrations with time revealed that the highest oxygen concentration below the 

sediment surface existed at 0.5 mm and at 1 mm with glass and needle, respectively. 

However, the glass microsensor responded by showing the change in the oxygen 

concentrations at a particular depth of the sediment after 1-2 sec as compared to the needle 

where it was 3 to 4 sec, after the illumination was extinguished. It was observed that the 

oxygen concentration remained almost constant after the mentioned time till 10 seconds 

indicating steady state. The gross primary production calculated from the measurements 

conducted by the two respective sensors indicated that the estimated production measured 

with the needle sensor, after having given 10 seconds of dark phase at each sediment depth, 

showed lower primary production as compared to the glass sensor, when it was given 2 sec of 

dark phase Fig. 25 and Tab. 5. Thus the gross primary production when measured with needle 

was underestimated by factor of 0.35 ± 0.14 (n= 7) as compared to the glass. 
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Fig. 25: Gross primary production (mg C m -2 h -1) measured with needle and glass 

microprobes Vs time (sec). Plot shows the underestimation in the gross primary production by 

mean factor 0.35, when the sediment was incubated for 10 sec at each depth interval instead 

of 2 sec. Average incident light intensity= 53 Wm-2; temperature 4.3- 5.3 oc. 

3.2.4.4 DISTINCTION BETWEEN THE OXYGEN PROFILES MEASURED BY GLASS AND 

NEEDLE MICROSENSORS 

The major differences observed amongst the microprofiles measured by both the sensors are 

depicted in Fig.: 26 and Tab. 5. A prominent 02 peak of 389 J.1M at 0.5 mm sediment depth 

was measured when the glass microsensor was employed, while maximum 02 concentration 

of 249 f...LM at 1.0 mm depth was recorded with the needle sensor. However, no prominent 

peak was obtained by this microsensor. Peak rates of photosynthesis in the most active layer 

measured by both the sensors were of similar magnitude (glass 6.4 Jlmol 02 cm-3 h-1 at 3 

mm; needle 6.5 Jlmol 0 2 cm-3 h-1 at 5.5 mm). The only distinction was evident in the depth 

where these respective peaks existed. Besides this the oxygen concentration within the 

sediment measured by the needle was factor 1.56 times less than the glass microsensor. Major 

differences accounted amongst both the sensors have been summarized in the following 

Tab. 5. 
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Fig. 26: Oxygen profiles during light and dark phase, and photosynthetic activity measured 

with needle and glass microsensor, with 10 sec of dark period within the sediment of 

Tirpitzmole. The porosity of the sediment was 0.48, the average incident light intensity was 

53 Wm -2. The temperature of water ranged from 4.3 to 5.3 °C. Oxygen concentrations during 

light (filled circles) and dark (open circles), photosynthetic activity (bars). 
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Tab. 5: Depicting distinct differences and performance of glass and needle sensors, while 

employing them to evaluate the under or overestimation in the gross primary production. 

CHARACTERISTICS GLASS NEEDLE PERFORMANCE OF 

SENSOR SENSOR NEEDLE SENSOR 

(FOLD) 

Response time (sec) 1 to 2 3 

Sensitivity more less 

0 2 concentration (water column J.1M) * 316 316 -

Oxygen profile peak* prominent less prominent -

Depth of maximum oxygen concentration 0.5 with 1.0 with < 1.56 

(sediment J.lM) 389 J.!M 249 J.1M 

Photosynthetic activity (Jl mol cm-3 h-1) 6.4 at 3 mm 6.5 at 5.5 mm -

and most active layer (mm)* 

Oxygen production (J.1M) * 8 11 > 1.38 

Oxygen penetration depth (mm)* 5.5 8.0 > 1.45 

Photic zone (mm)* 5.5 7.5 > 1.36 

Mean benthic primary production 77 ± 8.54 154.3 ± 12.66 >2 

(mg C m-2 h-1 ); 10 sec dark phase; n=3 overestimated 

Mean benthic primary production 435.3 ± 95.22 147.3 ± 23.68 <0.35 

(mg C m-2 h-1 ); dark phase 2 or 10 sec; 2 sec 10 sec underestimated 

n=7 

* within same sample 
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4 DISCUSSION 

4.1 EXPOSURE TO METEOROLOGICAL, HYDROGRAPHICAL & TOPOGRAPIDCAL FACTORS 

The western Baltic Sea is a channel like, strongly stratified, southernmost part of the 

transition zone between Baltic Sea and Kattegat. It is influenced by local winds, sea-level 

differences between Kattegat and Baltic proper, and also by baroclinic pressure gradient 

sustained by outflowing freshwater and inflowing saline water (FENNEL & STURM 1992). A 

prominent feature of the Baltic is the presence of seiches i.e. pronounced oscillations which 

are strongly stimulated by sea-level changes and wind stress conditions in the northern 

Kattegat. Due to these forced oscillations Kiel Bight gets "filled" and also "emptied" 

(WERNER et al. 1987, LASS & MAGAARD 1996) from time to time. However, both the study 

locations during the studies were dominated by southwesterly winds. These easterly and 

southerly winds along with the wind velocity play a key role in regulating different 

parameters i.e. salinity, oxygen concentration, nutrients etc. in the Kiel Fjord. North easterly 

winds are connected with high sea-level, while south westerly with low sea-level. However, 

this does not holds always true and should be applied cautiously, as the changes in sea level 

are delayed to the changes in the wind vector. 

4.1.1 SEDIMENT CHARACTERISTICS 

Shallow-water environments are extremely dynamic (JING et al. 1996), associations of micro­

and macro-habitats, each performing its own role, but all interacting in a unity as material for 

energy transfer among themselves (ABOOD & METZGER 1996). 

Populations of microphytobenthos living on tidal flats and shallow water localities are 

exposed to the water currents and waves which transport sand and generate ripples. Sediment 

stability, water currents (ADMIRAAL 1984, DE JONGE & VAN DEN BERGS 1987, SUNDBACK & 

JONSSON 1988, DELGADO et al. 1991 b) and sediment type (AMSPOKER & MCINTIRE 1978, 

LANGE & LENZ 1980, P ATERSON & UNDER WOOD 1990) etc. may be important parameters 

influencing the development and the growth of the microphytobenthos. Sediments with small 

grain-size allow only limited light penetration, and thus are not suitable for colonisation of 

cyanobacteria, but the rapidly moving diatoms adapt well in such environments (PATERSON 

1989, PINCKNEY & ZINGMARK 1991 ). Subsequently, growth and metabolism of micro­

organisms in coastal sediments have been conceived to influence sediment transport as well as 

coastal morphodynamics (PATERSON 1989, YALLOP et al. 1994). On the other hand, 

colonization of sediment particles and excretion of extracellular polymeric affect the sediment 

erodibilty (DADE et al. 1990). 
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During the present study, it was observed that the characteristics of sediments e.g., sediment 

movement, sediment type, water content, influence of wind and water turbulence due to 

shallow depths, caused frequent sediment resuspension, and also affected the distribution of 

benthic diatoms in the sediment thereby directly affecting the benthic primary production. The 

sediment analysis depicted that the mean grain size at both the sites ranged from 0.214 to 

0.514 mm (see Section 3.1.6.1). Similar results have been reported in the sandy beach 

sediments of the Kiel Fjord and Kiel Bight earlier (KARG 1979, MEYER-REIL et al. 1980). 

Moreover, variations in the mean grain size are more dependent on location than on seasonal 

variations (MEYER-REIL et al. 1978). Fine sediments at station Tirpitzmole (T) were 

influenced by smooth swash actions of waves with little turbulence, hence providing more 

suitable habitat for the beach flora and fauna than at Monkeberg (M). Increasing particle size 

with harsh swash climate not only affected the species composition but also reduced their 

number and size. Similar observations were also made by (MCLACHLAN 1996). 

During the studies, higher porosity was accounted during 1995 than in 1994 at both the 

research sites (M & T). Nevertheless, station T showed relatively higher value than at its 

counter part M (see Section 3.1.6.2). This could be attributed to the fact that station T was a 

sheltered station with less influence of wave action, while M was an exposed one with greater 

influence of wave action. The amount of variability at a location that can be ascribed to any 

single factor varies with season (V AN ES 1982), as well as with the mean grain size of the 

sediment (DAVIS & MCINTIRE 1983, SHAFFER & ONUF 1983). Similarly, the relative 

importance of these variables can differ between adjacent habitats (SULLIVAN & MONCREIFF 

1988, PINCKNEY & ZINGMARK 1993a). This might be due to varied grain sizes and their 

arrangement, investigated at both the stations. It was clear from the investigation that porosity 

depended upon the size, sorting and packing of the sediment, the finer the sediment the lesser 

are the chances of the still finer particles filling the voids, as also reported by CRISP & 

WILLIAMS (1971), MCLACHLAN & TURNER (1994). However, depending upon this, station T 

showed higher porosity. It was recorded from the present study that the porosity at both the 

locations was maximum during June 1995, which might have been on account of the calmer 

prevailing conditions, with well sorted grains. From earlier studies, it is well known that there 

tends to be an increase in porosity with the decrease in mean grain size (WEBB 1958). 

4.1.2 RESUSPENSION 

Resuspension can be a quantitatively an important mass flux (MACINTYRE et al. 1996) in the 

shallow water ecosystem. Benthic diatoms are the major component of the microphyto­

benthos, inhabiting in the boundary layer between the sediment and the water, hence are 

susceptible to resuspension (DE JONGE 1994). Resuspension may be caused by winds (PEJRUP 

1986, DE JONGE 1992, ARFI et al. 1993, ARFI et al. 1994), tides (SANFORD et al. 1991, 
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LITAKER et al. 1993) and anthropogenic activity e.g. dredging (DE JONGE 1994, MACINTYRE 

et al. 1996) and boat traffic (ANDERSON 1976). In aquatic environments, it plays a pivotal role 

by cycling the sediments, nutrients, carbon and contaminants (SANFORD 1992). 

Sediment surface, particularly in shallow tidal waters may be disturbed by turbulent water 

currents, especially those generated by wind waves regulate resuspension (DELGADO et al. 

1991a). The degree of disturbance depends upon sediment type and hydrodynamic conditions 

(e.g., water currents, sea level, wave height) and influenced by macrofaunal abundance and 

their activity. It is impossible to judge the impact of a single parameter responsible for 

resuspension due to different frequencies with which these factors interact with each other. 

Higher percentage of suspended matter at both the locations in the Kiel Fjord was 

predominantly influenced by wind induced wave and tidal resuspension. Tides play only a 

minor role in the western Baltic Sea ranging ea. 10-15 cm (LENZ 1977). Still, the impact of 

tidal resuspension could be at times significant. However, effect of boat traffic at M cannot be 

neglected as it being more important. 

In the present study impact of all these mentioned factors probably triggered resuspension at 

both the stations, but it was more pronounced at M as compared toT. Thus, a significant loss 

of microphytobenthos populations at both the sites might have also been due to the 

resuspension. As a result of which probably the cells were mixed in the water column. Similar 

results were also obtained by CADEE & HAGEMAN (1974), DEMERS (1987). Besides this, DE 

JONGE (1985) estimated that the total amount of benthic (i.e. pennate) diatom cells present in 

the water column of Ems Estuary can equal the total amount present in the 0.5 cm top layer of 

the sediments. Under higher angular velocity at the sediment surface, DELGADO et al. (1991a) 

found that maximum microphytobenthos resuspension in terms of cell numbers was up to 45 

% , while sediment chlorophyll-a upto to 11% and 6% in the 0.5 mm top layer of the 

sediment. Despite this, in shallow waters under natural conditions resuspension begins with 

current velocities as low as ea. 10 cm s-1 (DE JONGE & BERGS 1987). 

The role of these resuspended populations for the pelagic systems has been earlier discussed 

BAILLIE & WALSH (1980), ADMIRAAL (1984), DE JONGE (1985), DE JONGE & VAN 

BEUSEKOM ( 1992). Resuspended microphytobenthos may contribute significantly to the 

primary productivity in shallow water column (SHAFFER & SULLIVAN 1988), with an 

exception of St. Lawrence Estuary, where no change in the water column primary 

productivity was seen succeeding microphytobenthos resuspension (DEMERS et al. 1987). 

Resuspended microphytobenthos contributes, on an average, 30% of the Chl-a and annual 

primary production of the water column, in the lower reaches of the Ems estuary, while ea. 

85% in the Dollard estuary (DE JONGE 1994). Consequently, from this it can be concluded that 
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perhaps in the present study, due to resuspension at times less Chl-a and primary production 

was accounted. 

At times, resuspension makes the overlying water turbid by transporting the cells into the 

water column and subsequently reducing the irradiance that penetrates the benthos and 

thereby indirectly affecting the primary production (MACINTYRE et al. 1996). On the other 

hand, the resuspended viable microphytobenthos in the water column might play an important 

role by enhancing the food chain efficiency of shallow water ecosystems, where at times 

phytoplankton biomass is relatively low specially during winters. This is in accordance with 

the observations made by GABRIELSON & LUKATELICH (1985) and DEMERS et al. (1987). 

Turbid conditions were mostly observed during late summer, more often at Tirpitzmole (T) 

than at Monkeberg (M). When the number of the stabilizers (microphytobenthos) is reduced 

due to grazing and nutrient limitation. The diatom films (thicker microphytobenthos 

population) help to increase the sediment stability, thereby suppressing resuspension of the 

sediment and diatoms (DELGADO et al . 1991 a, MILLER et al. 1996). Therefore, chances of the 

remaining low microphytobenthos populations to be displaced and resuspended in the water 

column are greater at T (fine sand) than at M (coarse sand). In addition to this, finer particles 

are resuspended faster than the coarser ones. On the other hand, Station M predominately 

consisted of small episammic diatoms, living attached to sand grains and having capability to 

resist resuspension forces (DELGADO et al. 1991b). However, the sediment movement can also 

keep the sand grains free from diatoms (MEADOWS & ANDERSON 1968). But, as they are only 

tenaciously attached to the sand grains the chances to be resuspended due to frequent 

resuspension and being carried away to the deeper parts (SUNDBACK & JONSSON 1988) are 

higher than at T. In addition to this, as a consequence of frequent sediment instability and 

lower diatom abundance in the high energy habitats, the possibility of biofilms to remain 

intact is very low. 

4.1.3 SALINITY 

The diatom flora of the Baltic Sea is representative of low salinity conditions. Therefore, the 

distribution of diatom species along the Baltic Sea salinity gradient is determined more by 

their absolute salt tolerances than by their ability to tolerate salinity fluctuations ( SNOEIJS 

1994). He further confirmed that nearly all diatoms species in the Baltic Sea are 

cosmopolitan. Salinity becomes an important physical factor to diatoms in estuaries, by 

influencing the species composition and their abundance (HOPKINS 1964, MCINTIRE & 

OVERTON 1971, WHITING & MCINTIRE 1985, OPPENHEIM 1991, ASMUS & BAUERFEIND 1994, 

MONTI et al. 1996). 
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During the studies it was observed that maximum salinity occurred at both the stations 

Monkeberg (M) and Tirpitzmole (T) in October, while low values of salinity were 

encountered during summer (see Section 3.1.5). Salinity variations (M: 10-19 PSU, T: 9-20 

PSU) in this study are in accordance with the pervious studies performed in the Kiel Fjord. 

High and low salinity values during different months, in the present studies could be on 

account of it being influenced by easterly and westerly winds, which bring about salt rich 

water from Kattegat into the Kiel Bight. Nonetheless, the salinity record taken from the study 

sites, clearly depicts that salinity fluctuated frequently on account of shifting water, specially 

more at station M being an exposed station. Such shifts of water masses and salinity 

fluctuations were also observed earlier in reference to Kiel Fjord by OHL (1959), KANDLER 

( 1959), KARG ( 1979), MOIGIS ( 1983) and STIENEN ( 1986). 

In the present study, a weak correlation between salinity and density of benthic diatoms was 

found. Relatively low population of microphytobenthos among other factors could be as a 

result of low salinity values coupled with high temperatures and calm weather conditions in 

summer, which probably deceased the cell division capacity of the microalgae and lowered its 

photosynthetic activity. This is in accordance with the reports of COLIJN & VAN BUURT 

(1975), ADMIRAAL & PELETIER (1980a) that some benthic diatoms are inhibited by high 

summer temperature. 

There is a possibility that such prevailing conditions were ideal for the growth of grazers, 

which might have suppressed the number of microphytobenthos cells during summer. 

Although, in the present study it seemed that a correlation existed between salinity and the 

cell number during summer i.e. with the decrease in the salinity there was a decrease in the 

cell number. Moreover, low salinity conditions coupled with low nutrient concentration 

(specially silicate) and high temperature were ideal for the growth and multiplication of 

ciliates and phytoflagellates e.g. Heterosigma sp. etc. Therefore, salinity alone may not be the 

single factor responsible for decrease in cell density. This is in accordance with the citations 

of SIMONSEN (1962), WENDKER (1990) who found that the species richness of the benthic 

diatoms was not affected by salinity in the Schlei Estuary (western Baltic Sea 3-18 PSU). 

Similarly, SNOEIJS ( 1994) reported that epiphytic diatoms as a group are not stressed by 

salinity in the Baltic sea. In the present study, it was also observed that with the maximum 

salinity value at both the stations, high number of cell were accounted. This could be on 

account of high tolerance against the salinity fluctuations as also experienced by ADMIRAAL 

(1977a), LANGE (1983). According to them, the estuarine benthic diatoms were able to 

withstand the salinity fluctuations. Consistent with other studies (MCINTIRE 1978, ADMIRAAL 

& PELETIER 1980b, OPPENHEIM 1991, UNDER WOOD 1994) who also accounted that different 

salinity promoted the domination of certain species at the expense of others in the mixed 

assemblages of epipelic diatoms in estuarine mudflat. 
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Furthermore, in an experimental study, Admiraal (1977a) accounted an insignificant impact of 
a wide range of salinity (4-60 PSU) on the photosynthetic rate of the benthic diatoms, 

measured as oxygen production. Besides this, ADMIRAAL (1977a), ADMIRAAL & PELETIER 

(1980b) noticed that the growth rate and photosynthetic activity of Navicula arenaria, 

Navicula phyllepta, Gyrosigma fasciola was retarded, in the salinity range below 2-8 PSU. 

This is in agreement with the presence of Navicula sp. and Gyrosigma sp. during the present 

study in the higher salinity variability period. Similar observations have been also made by 

GATJE (1992). Williams (1964) also accounted higher division rate (6-68 PSU) than at (1-2 

PSU). 

In the present study maximum Chl-a value and primary production was accounted between 

the salinity range of 15-17 PSU. In contrast, VANES (1982), COLIJN & DE JONGE (1984) 

accounted these from < 1 to 17 PSU in the Ems Dollard. On the other hand, RASMUSSEN et al. 

(1983) found maximum photosynthesis at salinities between 15 and 30 PSU and decreased to 

37% at a salinity of 50 PSU. Distinction in the species composition and the diversity of 

microalgal assemblages at both the sites was probably related to the specific salt concentration 

of the overlying water. It has been also cited by MCINTIRE & OVER TON ( 1971 ), and 

WILDERMAN (1987). 

4.1.4 ORGANIC CARBON 

The supply of organic material is a major factor determining the structure and activity of 

benthic microbial communities (MEYER-REIL 1991). Coastal sediments may be a significant 

reservoir for the cycling of organic matter (BLACKBURN 1988, SEITZINGER 1988, LOHSE et al. 

1996), the mineralization rate of which depends primarily on the quantity and quality present 

(BOUDREAU 1992, MIDDELBURG 1989, 1996). Organic sources of nitrogen are more 

significant for the microphytes inhabiting estuarine and marine sediments, rather than for the 

phytoplankton (ADMIRAAL et al. 1987). Benthic microflora constitutes a major source of 

organic input via primary production in the interstices (MCLACHLAN & TURNER 1994), while 

being insignificant at exposed beaches but are extremely important in sheltered areas (STEELE 

& BAIRD 1968) 

Our results of the low Corg content are in accordance with the earlier studies conducted in the 

western Baltic Sea. ZEITZSCHEL (1964) reported low amount of Corg (0.58-1.45%) in the 

sandy sediments of the Baltic Sea. The presence of higher Corg content at station Tirpitzmole 

(T) could be attributed as it being calm, protected locality, consisting of finer sandy sediment 

which generally contain higher organic content (RIZZO & WETZEL 1985, RIZZO et al. 1992, 

RIZZO et al. 1996), higher microbial activity (due to the greater surface area for bacterial 

attachment of the fine sediments) and less influence of harsh windy waves causing sediment 
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disturbances than its counter part Monkeberg (M). This is in accordance to the reports of 

MEYER-REIL et al. (1980) who also found not only low values ranging from 0.43-2.40 mg g-1 

but also higher microbial activity in the finer sediments of the Kiel Bight and Fjord. They 

further stated that Corg and microbial activity deceased with the increase in distance from the 

inner part to the outer part of the Kiel Fjord. BALZER (1978) also observed low Corg values 

ranging from 0.60-0.90 % in the Kiel Bight at 20 m sediment depth. High organic content in 

the sediment was mostly connected with an increase in the porosity. 

Station T consisted not only anthropogenic waste matter (due to human activities and land 

waste) but might also be associated with enhanced nutrient concentrations i.e. NH 4+ or 

phosphorus releases. This is in accordance with RIZZO et al . ( 1996). The minimum value in 

the Corg content accounted during summer 28 June 1994 might have been due to enhanced 

bacterial activity and decomposition of the organic matter (see Section 3.1.7.1). However, it 

could also be speculated as a grazing affect of deposit feeding organisms (e.g., Arenicola sp., 

Hydrobia ulvae, Pygospio sp.) as also reported by VARELA & PENAS ( 1985). Interestingly, 

this decrease in the Corg was correlated with the fall in Chl-a content. A close relation 

between chlorophyll and POC (particulate organic carbon) existed as also observed by STEELE 

& BAIRD (1968). During both summers 1994-1995, Corg content remained around 0.2 % 

except for the minimum value discussed above. This relatively higher content could also be 

associated with the influx of dense populations of macroalgae such as Enteromorpha sp. and 

Sea grass Zostera sp. during these months, which might have got buried into the sediment as a 

result of slight intermixing. Similarly, DAVIS & MCINTIRE (1983) also accounted maximum 

organic matter during summer as a result of macroalgae. 

Station M depicted relatively uniform concentration of Corg of ( < 0.1%) in the period of 

investigation (see Section 3.1.7.1). This may be due to the coarser sandy sediments with lot of 

intermixing as a result of which most of the fresh organic matter is transported into the deeper 

parts of the basin, leaving behind coarse and clean sand. Moreover, in such sandy systems 

where there is low percentage of Corg, the living substance is of more importance as 

compared to the muddy sediments. 

Interestingly, both the sites depicted low nitrogen content. Nitrogen is probably assimilated by 

the micro and macro algae at a faster rate or lost from the sediment either through 

denitrification, particle resuspension or mineralization processes as also mentioned by 

NIELSEN et al. (1995). Besides this, benthic nutrient remineralization is more dependent on 

nitrogen than on carbon supply (HARG RAVE 1980, GRAF et al. 1983). It has been 

demonstrated by KRISTENSEN & BLACKBURN (1987) that particulate organic nitrogen (PON) 

decay constants are 2-3 times higher than those for particulate organic carbon (POC). 

Furthermore, it has been also proved in anexic cultures (ADMIRAAL et al. 1984, 1986) that the 
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benthic diatoms utilize amino acids as nitrogen source. Similarly, SEITZINGER (1988, 1990) 

speculated from her data taken from the Baltic Sea and 6 estuaries in the different parts of the 

world that 40 to 50% of the estuarine nitrogen load is retained by nitrification. 

Station T depicted relatively higher ClN ratio than M, which may be due to the different 

location sites (i.e. exposed and open, discussed earlier). In general the C/N ratio at both the 

study sites was found to be< 12 (see Section 3.1.7.2). The samples with values> 12 are 

probably be due to the significant contribution of the refractory organic matter i.e. detritus 

derived from terrestrial vascular plant material (BURRELL 1988) namely leaves, wood residues 

etc. (containing low nitrogen content cellulose and rich phenolic compounds and lignin). 

Similarly, POCKLINGTON & LEONARD (1979) accounted a C/N value of 20 in the innermost 

sediments of Saguenay Fjord (Quebec) on account of discharges of numerous wood and pulp 

directly into the Saguenay river. Moreover, higher C/N ratios ranging from 1.21-95.9 have 

also been accomplished in the sandy beach sediments of the Kiel Fjord and Kiel Bight by 

MEYER-REIL et al. (1980). In the Westerschelde Estuary, Middelburg et al. (1996) also found 

higher molar C/N ratios ranging from 13.2 to 22.3, while on their sandy station Bath mean 

CIN value of 15.4 ± 1.1, POC (Wt %) 1.5±o.5 and TN (Wt%) 0.11 ± 0.04 existed. On the other 

hand, in the present study the mean total nitrogen TN (wt %) ranged from 0.00 to < 0.01 at 

both the stations. The mean total carbon 1C (wt %) varied from 0.15 ± 0.02 to 0.57 ± 0.32 at 

M, while from 0.08 ± 0.00 to 1.63 ± 0.01 at T, respectively. 

Contrarily, in the mud flats relatively low C/N ratios (6-10) were accounted by CAMMEN & 

wALKER ( 1986) indicating a rapid recycling of the organic matter. The C/N value of 38 

obtained on May 1994 after spring bloom sedimentation at station T indicated an effective 

remineralization of organic nitrogen or might have been due to some refractory material as 

mentioned earlier. Nonetheless, the contribution of macroalgae should not be neglected. It is 

possible that the macroalgae i.e. Fucus vesiculosus, Vivaria sp. contributed to higher C/N 

ratios, specially during winter. GRAF et al. (1983), ABELE (1988) also accounted an increase in 

the OM content in the sediments of the Kiel Bight a result of macroalgae. 

4.2 SPECIES COMPOSITION AND ABUNDANCE OF THE MICROPHYTOBENTHOS 

4.2.1 ABUNDANCE, COMPOSITION AND PHYSIOLOGICAL ADAPTATIONS OF MICROALGAL 

COMMUNITIES 

The microflora mainly consisted of pennate diatoms (both motile and epipsammic species) at 

both the stations, Monkeberg (M) and Tirpitzmole (T) of the Kiel Fjord. Station M (sandy 

coarse sediments, exposed and high energy window) was predominated by small epipsammic 

grain-adhering diatoms, while T (fine sediments, sheltered and low energy window) often 
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consisted of epipelic (often larger sized) motile diatoms. Protected habitats of these two 

locations with finer sand depicted higher cell density (STEVENSON 1984, WASMUND 1984, 

MACINTYRE et al. 1996) than open with coarse sand. However, MACLULICH (1987) found 

higher density and greater variety of microphytobenthos at exposed sites with more waves. 

Temporal and spatial variations in the species composition and abundance are correlated with 

physical and biological factors i.e. light (ADMIRAAL 1977a, COLIJN & VAN BUURT 1975, 

KAWAMURA & HIRANO 1992), temperature (HOPKINS 1964, ADMIRAAL & PELETEIR 1980a, 

SNOEIJS 1989), salinity (MClNTIRE & OVERTON 1971, AMSPOKER & MClNTIRE 1986, 

UNDERWOOD 1994), sediment characteristics (AMSPOKER & MClNTIRE 1978, WHITING & 

MClNTIRE 1985, GATJE 1992, ASMUS & BAUERFEIND 1994), desiccation (MCINTIRE 1978 

UNDERWOOD 1993), hydrodynamics i.e. water currents, waves (BAILLIE & WELSH, 1980, 

AMSPOKER 1977, COLIJN & DIJKEMA 1981, DEJONGE 1994), immigration rates (STEVENSON, 

1984), organic pollution (SULLIVAN 1982, RIAUX 1983), nutrients (ADMIRAAL 1977d, 

SUNDBACK & SNOEIJS 1991, BRUNS 1994, HOLLINDE 1995), allopathic factors (DE JONG & 

ADMIRAAL 1984, SABUROVA 1995) which have a strong impact on the microphytobenthos 

assemblages. 

Station Monkeberg (M) showed as expected lower number of cells according to its exposed 

position, with sandy coarse sediment composition (see Section 3.2.2.1). It is subjected to more 

hydrodynamic processes i.e. abrasion, frequent resuspension of the cells in the water column 

due to the turbulent water currents and intermixing of the sediments. As a result of this, the 

viable cells are transported from the wave washed localities to the deeper sites leaving behind 

only coarser sand. Another reason for the lower cell number at M could be due to sand motion 

(SUNDBACK & JONSSON 1988, DELGADO et al. 1991b) and physical processes i.e. sediment 

intermixing due to harsh swash climate (i.e. water movement) and boat wash (ANDERSON 

1976), which might damage microalgal cells and transport them into the deeper sediment 

layers. COLIJN & DIJKEMA (1981) reported 50% decrease in microphytobenthos biomass in 

the sediment top layer due to a storm event in April 1973. In high energy environments with 

well mixed sandy sediments, a uniform distribution of viable microalgae was accounted to 

tens of centimeters (STEELE & BAIRD 1968, FENCHEL & STRAARUP 1971, FIELDING et al. 

1988, MACINTYRE et al. 1996). Contrarily, at Tirpitzmole (T) low energy station the micro­

algae was mostly found concentrated in the upper few oxygenated sediment layer. 

The abundance of microphytobenthos found at T (sheltered, low energy window) could be 

due to finer sediment composition, low sea level, less turbulence and shear stress produced by 

strong winds and water currents or boat wash. As a result of these favourable environmental 

conditions, the mucilaginous films of muco-polysaccharides secreted by the microalgae on the 

sediment surface, stabilize and smoothen the sediment surface, thereby protecting them 
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against the dynamic estuarine conditions i.e. erosion, stress, resuspension and scouring. These 

stabilizing properties of the microphytobenthos have been well observed in the laboratory 

(HOLLAND et al. 1974, DELGADO et al. 1991a) and in the field studies (FROSTICK & MCCAVE 

1979, GRANT et al. 1986, PATERSON 1989). It may be possible that during unfavourable 

weather conditions the microphytobenthos (epipelic diatoms) might migrate downwards and 

hence protect themselves against the mentioned parameters. HECKMAN (1985) proposed that 

vertical migratory evolved as an adaptation to escape resuspension. Motile benthic diatoms 

are capable of rapid movement (1-25 ~m s-1), which varies from sediment type, location and 

time of the year (PINCKNEY et al. 1994 ). They further postulated that the migration was 

basically limited to the upper 3 mm of the sediment with ea. 33 % of the total biomass in the 

upper 1 mm undergoing migration. In contrast to this, JOINT et al. (1982), WASMUND (1984) 

found the vertical migration as deep as 15 mm. DELGADO et al. (1991 a) suggested that 

vertical migration may provide "inoculations" of diatoms from deeper sediment and thus 

promote the development of new populations in surface sediments. STEVENSON (1984) found 

higher immigration (autogenic and allogenic enhancement) rates of diatoms at the protected 

areas which increased rapidly during the taxocene development compared to an exposed 

station. 

The density of the microalgae varied spatially and temporally in the upper 0-9 mm sediment 

layers, being greatest in spring and autumn while least in summer. Similar peaks have been 

encountered by several authors (mentioned later). Microphytobenthos were homogeneously 

distributed in the upper sediment layers, depicting no signs of stratification at both the 

stations. In addition to this, viable cells were accounted uptil 9 mm. This could be an indirect 

effect of the physiological stress conditions i.e. fluctuating light intensities, water currents, 

desiccation, sediment intermixing resulting into deposition and renewal of attached diatoms to 

sand grains which probably prompted vertical and downward migrations of the microalgae 

more pronounced at Tirpitzmole (T) than at Monkeberg (M). Thus, depicting a homogenous 

distribution in these sediment layers. Wasmund (1984) also found microphytobenthos to be 

homogeneously distributed in the upper 10 mm of sediment at an exposed station. 

Dense population of microphytobenthos was found at 3-6 mm (see Section 3.2.2.2), which 

might be due to more sediment stability within this layer, or an impact of wind induced 

sediment erosion bringing about short term fluctuations. Furthermore, it can also be attributed 

that this sediment layer might be optimal for the microalgal populations as adequate light 

conditions, temperature and nutrient supply from the deeper sediment layers as a result of 

bioturbation prevail. Distinct differences in the species composition at both the stations 

existed which were presumably due to the degree of exposure affecting the granulometric 

composition of sediments or indirectly altering the chemical conditions of the habitat. 

Subsequently, inspite of an indirect impact of eutrophication the species composition has not 
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been affected in the Kiel Fjord i.e. similar species were identified as reported earlier by KARG 

( 1979) and BOOTH ( 1985), but a dramatic increase in the cell number has been observed. 

Microa1gae species stratification along the depth gradient was a common feature (i.e. genus 

dominating in the 0-3 mm was either absent or rarely present in the rest of the sediment layers 

or vice-versa), varied immensely at both the respective sites. The selectivity of taxa for 

specific depths has been observed (ALEEM 1950, ROUND 1961, SIMONSEN 1962, STEVENSON 

& STOERMER 1981 ). Such distributions might have resulted due to different physiochemical 

conditions along the depth gradients. Similar results were also accounted by STEVENSON & 

STOERMER (1981 ). In addition to this, it seemed that microalgae probably exhibits a 

phenomenon to orient themselves in the different sediment layers as per their light 

requirement (quality and quantity), even if the sediment is disturbed as a result of intermixing. 

Hence, light requirement could also be responsible for the differences in species composition 

with depth. 

In the present study nutrients were not estimated, but there may exhibit specific patterns of 

variations that could influence microalgae distribution varying from species to species. 

Shallow water sediments are self-sustaining, where a major role in the nutrient regeneration 

for the marine ecosystem is mediated by the activity of benthic bacteria (MEYER-REIL 1987). 

As a result of microbial activity there is a regular release of the nutrients required by 

microalgae for their metabolism. Despite this, benthic microalgae are also reported to 

compete with the pelagic phytoplankton for the regenerated nutrient pool (SUNDBACK & 

GRANELI 1988). Sheltered beaches exhibit the highest nutrient concentration (MCLACHLAN & 

TURNER 1994). This could perhaps be attributed due to increased abundance of macrofauna 

which probably enhance the regenerated nutrients by bioturbation . This is in accordance with 

ALLER & YINGST (1985). The greater the interstitial water circulation and more rapid the 

flushing rate, the lower is the nutrient concentration. Furthermore, SUNDBACK & SNOEIJS 

(1991) observed in an experimental study that the addition of nutrient inorganic nitrogen (IN) 

and inorganic phosphate (IP) to the water column stimulated the microalgal growth and 

addition of N + P favoured larger cells. Major sources of the nutrient in the Kiel Fjord is the 

heavily polluted river Schwentine and smaller effluents from land, everyday ship traffic and 

rainfall (an important source of nitrogen). On the other hand, KAWAMURA & HIRANO (1992) 

found in Aburatsubo Bay that the seasonal changes in the density of benthic diatoms were not 

influenced by the inorganic nutrients. 

Moreover, thick populations of diatoms were accounted, inspite of very low phosphate 

concentration. Moreover, SOMMER (1996) from his nutrient competition experiments 

conducted with periphytic microalgae from the Kiel Fjord concluded that diatoms were found 

to be dominant competitors at high Si:N ratios (N-limited conditions) and high Si:P ratios 
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(under P-limited conditions). While blue greens (cyanobacteria) were dominant at low N:P 

ratios under low silicate supply. Furthermore, during his studies he also observed that the 

nitrogen source (ammonium or nitrate) did not affect the competition. 

During summer relatively low number of viable cells were accounted, which could be due to 

grazing (VAN DEN HOEK et al. 1979, MCCLATCHIE et al. 1982, LANGE 1983, UNDERWOOD 

1984, BAILLIE 1987). Probably, calm and sunny conditions, with low salinity were optimal for 

the multiplication of the grazers. The possibility for the summer decline could also be 

ascribed to nutrient limitation after the spring blooms. But, since the inner Kiel Fjord is 

greatly influenced by eutrophic river Schwentine, the chances of the nutrient limitation are 

precluded during summer (STIENEN 1986), who reported that during summer ammonium 

made up some 50% of the whole nitrogen load. In contrast, CHENG et al. (1993) recorded 

microphytobenthos peaks during summer. Moreover, ANTOINE & BENSON-EV ANS ( 1985) also 

recorded higher cell counts during summer and lower ones during winter. However, they also 

observed the grazing impact of zoobenthos during the warmer months which reduced the total 

number of viable cells, although other environmental and nutritional conditions further 

favoured the growth and multiplication of the algal communities. On the other hand, the 

sediments inhabited by microphytobenthos depict lower rates of nutrients i.e. ammonium, 

phosphate, nitrate and nitrite release to the water column, thereby become rather sinks for 

nutrients than sources on many occasions (SUNDBACK & GRANELI 1988, NILSSON et al. 1991, 

RIZZO et al. 1992, 1996). Similarly, BRUNS (1994) speculated that nitrogen might have been 

be a limiting factor for the growth of microphytobenthos in late summer. 

Dull light conditions, bad weather with rain, storms, higher sea-level and the resulting 

physical disturbances of the sediment (VARELA & PENAS 1985, DE JONGE & COLIJN 1994) or 

nutrient limitation i.e. silicate, might probably led to low cell counts at both the sites. 

However, this effect was more pronounced at M. May be as a result of abrasion, the 

tenaciously attached episammic diatoms to the sand grains were washed away by storm and 

waves as also reported in the other high energy habitats (MEADOWS & ANDERSON 1968, 

WEISE & RHEINHEIMER 1978, DE JONGE & V AN DER BERGS 1987). Contradictory to this, 

(MACLULICH 1987) accounted greatest density of cells during winter in an intertidal rock 

platform near Sydney (Australia). 

Peaks obtained during spring and autumn (see Section 3.2.2.1) at both the sites were probably 

correlated to the calm weather conditions i.e. low sea level, less waves and currents, wind 

direction i.e. north easterly winds, sediment disturbances and rich in nutrients (ammonia, 

phosphate, silicate) which were probably optimal for the microphytobenthos growth. Under 

calm conditions, the phytoplankton in the water column could sink to the bottom and become 

incorporated into the microphytobenthos (MACINTYRE et al. 1996). At both the stations, the 
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bloom began in March, reaching maximum in May. Similar seasonal pattern was also seen by 

coLIJN & DIJKEMA (1981), ADMIRAAL et al. (1982). Spring peaks were also accounted by 

SNOEIJS & KAUTSKY (1989), GATJE (1992). Gr0ntved (1960), TAASEN & H0IS1ETER (1981), 

Riaux (1983), LANGE (1983), SUNDBACK & JONSSON (1988), ASMUS & BAUERFEIND (1994) 

found microphytobenthos peaks during spring and autumn. 

The abundance of microalgae depends upon location, season and sediment characteristics, 

ranging usually from 105 to 107 cells cm-3 (MAClNTYRE et al. 1996) within the upper 5 to 

10 mm of the sediment surface layers. Benthic microalgae have much higher population 

densities upto (105 to 106 cells cm-2) as compared to phytoplankton (TAASEN & H0ISJETER 

1981, ADMIRAAL 1982, SABUROVA et al. 1995). In our studies, higher proportions of viable 

cells i.e. 45 to 4005 x I 06 cm-3 were present at station T (sheltered, fine sand, less sediment 

flushing), as compared to M (exposed, coarse sand, more sediment flushing) varying from 17 

to 1428 x 106 cm-3. Higher cell densities were accounted as compared to other studies (i.e. 

KARG 1979, LANGE 1983, GATJE 1992). Moreover, studies of these authors reported higher 

cell counts in the finer sediments as compared to coarse sediments. Similarly, (HOPKINS 1963, 

1964a) accounted mean cell counting values of 93 x 106 cm- 3 and 694 x 106 cm-3, 

respectively. This might apparently be related to the shallowness of the area, hydrography and 

may be an indirect influence of eutrophication (STIENEN 1986, GERLACH 1990) in the Kiel 

Fjord and Bight (STIENEN 1986, GERLACH 1990, HANSEN 1996). In an experimental study 

conducted on eutrophication, SUNDBACK & SNOEIJS ( 1991) found that nutrient addition to the 

water column stimulated the diatom growth. Despite of higher nutrient concentration in the 

pore water than the water column, the diatoms are not nutrient saturated. 

The methods for sampling and processing of diatoms (quantitatively and qualitatively) have 

not yet been standardized (ASMUS & BAUERFEIND 1994) till date. On account of different 

methods adopted by various authors for counting i.e. fluorescent microscopy (FENCHEL & 

STRAARUP 1971 ), Utermohl technique (UTERMOHL 1958) and separating the 

microphytobenthos i.e. ludox-method (DE JONGE 1979), ultrasonification (COLOCOLOFF & 

COLOCOLOFF 1973), sieving method (present study), it becomes rather difficult to compare 

the cell counts of the different studies performed. The results either show an under- or 

overestimation. In spite of the methodological discrepancies, the general seasonal cycle (peak 

and fall) can be compared with the other studies. 

Microphytobenthos vegetation changed continuously along the environmental gradients and 

time axis (see Section 3.2.2.3). The changes in the species composition along the depth 

gradient (0-3, 3-6, 6-9 mm) was a significant feature at both the study sites. On comparing the 

entire microphytobenthos species spectrum obtained in this study depicted interesting 

features, the diversity of genera was higher in spring i.e. the species prevailing in spring 

-72-



Discussion 

(.4.theya decora, Cyclotella sp., Diploneis sp., Licmophora sp., etc.) were either absent or 

rarely present in other seasons. Besides this, the same species of microalgae were seen in both 

the seasons. This might have been probably due to the physical and chemical gradients which 

are indispensable for their growth and survival. This type of population dynamics is 

indispensable for succession of the species as well as for speciation and hence plays a 

significant role for the food chain in the shallow water ecosystem. On the contrary, 

~tACLULICH ( 1987) found the highest variation in summer. 

.Members of the family Naviculaceae were most dominant and highly adaptable, during all the 

seasons, at both the study sites as also reported by KARG (1979) in the Kiel Fjord. Navicula 

sp. was reported to be a most tolerant and ubiquitous genus under all the weather conditions, 

as also cited earlier by KARG (1979) and RIAUX (1983). In an experimental channel, 

WENDKER (1992) found Navicula sp. to be unaffected by different current velocities. 

KRAMMER & LANGE-BERTALOT (1986) also reported the same observation and explained it 

on account of gelatinous layers, which protected the algae. On the other hand, SUNDBACK 

(1984) noted Nitzschia sp., SUNDBACK & JONSSON (1988) Navicula sp. and Nitzschia sp. to 

be most dominant. While, GR0NTVED (1960) found Melosira sulcata and Cyclotella caspia to 

be the most dominant. Moreover, COLIJN & DIJKEMA (1981), WHITING & MCINTIRE (1986) 

and ASMUS ( 1992) observed Achnanthes hauckiana Grunow to be most dominant and tolerant 

species, whereas Gyrosigma and Pleurosigma sp. was reported by CAMMEN & WALKER 

( 1986) for the sediment surface of a mudflat. 

4.2.2 CHLOROPHYLL-A DISTRIBUTION 

Microalgal biomass was expressed as concentration of Chl-a in the sediment. Chlorophyll-a is 

a bulk parameter, with a drawback that the cells containing higher or lower chlorophyll-a per 

cell cannot be distinguished. The seasonal variations of Chl-a concentration (10-291 mg m-2) 

during the study are within the same range as observed by COLIJN & DIKJKEMA (1981 ), 

RIAUX ( 1982), DA VIS & MCINTIRE ( 1983), V ARELA & PEN AS ( 1985), HOLLINDE ( 1995), and 

BROTAS et al. (1995), in the different intertidal ecosystems (Tab. 6). Moreover, is also 

comparable with the Chl-a content data accounted in the Kiel Fjord, by KARG (1979), 

MEYER-REIL et al. (1980) Kiel Fjord and Kiel Bight and SUNDBACK (1984) for sandy 

substrates in shallow water ( < 1 m) of the western Baltic Sea. 

The spatial variation in microbenthic biomass (Chl-a content) is related to sediment type 

(MEYER-REIL et al. 1980, LANGE 1983, SHAFFER AND ONUF 1983, SUNDBACK 1984, GA TJE 

1992, BROTAS et al. 1995) tidal height or sea-level (COLIJN & DIJKEMA 1981, DAVIS & 

MCINTIRE 1983, SHAFFER & ONUF 1983, BROTAS et al. 1995) and wave action (LANGE 1983, 

w ASMUND 1984, MCLACHLAN 1996), resulting into variable values of Chl-a as obtained from 
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the respective research areas in the present study. Moreover, there are other factors such as 

temperature, irradiation and resuspension, grazing which might have an indirect impact on the 

microalgal distribution and thereby affect the Chl-a concentration. The spatial distribution of 

Chl-a depicted low concentration on the exposed stations than the sheltered stations (CADEE 

& HAGEMAN 1977, COLIJN & DIJKEMA 1981, MAClNTYRE & CULLEN 1995, SUNDBACK et al. 

1991, MAClNTYRE et al. 1996). The main factors that are responsible for the such 

distributions are sediment type and sea-level. 

Significantly, higher chlorophyll-a concentrations were accounted at station (Tirpitzmole) T, 

which consisted of finer sediments as shown by RIZNYK & PHINNEY ( 1972), COLIJN & 

DIJKEMA (1981), DAVIS & MCINTIRE (1983), SHAFFER & ONUF 1983, FIEDLING et al. 1988 

and in calmer conditions with slack tidal currents. This correlates to the reports of GRANT et 

al. ( 1986) where also calmer weather of spring and summer might have enhanced the 

biological processes in controlling the dynamics of the chlorophyll sediment. Furthermore, at 

station T (sheltered station) the decrease in Chl-a content probably was not due to the 

disturbance by wave action, but rather due to the sediment turnover by animal activity this is 

in accordance with the assumptions of JOINT (1978). However, at Monkeberg (M) which 

showed relatively lower concentrations of Chl-a, may be on account of coarser sediments and 

more degree of physical disturbance (HICKMAN & ROUND 1970, COLIJN & DIJKEMA 1981) or 

reworking of the sediments by wave action due to which the finer sediment particles are 

washed away and transported into the deeper sediments ( GRAF et al. 1982) resulting into 

cleaner sand with coarse sediment. 

The pattern of temporal variations of Chl-a was very much alike and depicted characteristic 

features. This is in accordance with COLIJN & DIJKEMA (1981), DAVIS & MClNTYRE (1983). 

Higher values of Chl-a were accounted during spring. Similar peaks were also obtained by 

JOINT (1978), COLIJN & DIJKEMA (1981), RIAUX (1982), DAVIS & MClNTYRE (1983), 

SHAFFER & ONUF (1983), VARELA & PENAS (1985), and in autumn (COLIJN & DIJKEMA 1981, 

DAVIS & MCINTYRE 1983, BROTAS et al. 1995). Peaks obtained during spring and autumn at 

both the sites are probably correlated with the calmer weather conditions i.e. low sea-level, 

less waves and currents, wind direction (north easterly winds), sediment disturbances and 

enough nutrients (phosphate, silicate, ammonia) which were probably ideal for the 

microphytobenthos grDwth. In accordance to this, UNDERWOOD (1984) found that the Chl-a 

concentration deceased with an increase in the intertidal height. Higher concentration of Chl-a 

was also accounted in spring (CAMMER & WALKER 1986). They further noticed a positive 

correlation between the Chl-a and bacteria cell number i.e. with the increase in the Chl-a the 

bacteria number also augmented vice-versa. Similarly, MEYER-REIL (1988) also observed that 

the benthic bacterial populations were immensely influenced by certain ecological situations 

and events i.e. phytoplankton blooms in autumn and spring. Most of the microphytobenthos 
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populations show a biomass peak either in spring or summer. However, this does not always 

hold good i.e. LUKATELICH & MCCOMB 1986 accounted a peak in winter/spring. They further 

reported that the seasonal fluctuations were largely controlled by nutrient availability coupled 

with the light. In contrast to this, STEELE & BAIRD ( 1968) accounted no seasonal fluctuations 

on a sandy beach. 

During the present studies, lower concentration of Chl-a was recorded during summer 1994-

1995 at both the stations (see Section 3.2.3.1 ). However, during 1995 relatively higher 

concentrations existed than 1994. A weak correlation between the sediment concentration of 

Chl-a and temperature was noticed. In contrast to this, UNDERWOOD & PETERSON (1993) 

found a positive correlation in the Severn Estuary. Increase in Chl-a concentrations during 

summer months also have been reported by COLIJN & DIJKEMA (1981 ), ADMIRAAL et al. 

(1982) MONTAGNA et al. (1983), BROTAS et al. (1995), HOLLINDE (1995) in the estuarine 

sites. Summer declines in the microphytobenthos populations, thereby resulting into Chl-a 

fall, could probably be due to the consumption by grazers i.e. Arenicola sp., Hydrobia sp., 

Mussels (JOINT 1978). This was in correspondence to the earlier reports of DAVIS & LEE 

(1963), DAVIS & MCINTIRE (1983), where apparent depression of Chl-a with intact cores have 

demonstrated a remarkable effect of infauna on the microalgal abundance and production, 

which could account for this decrease in summer. The summer decline in the Chl-a . 

concentration could also be due to nutrient limitation or overcast sky and periods of high wind 

speed resulting into sediment intermixing. This is in accordance with DE JONGE & COLIJN 

( 1994 ). Furthermore, according to FRO STICK & MCCA VE ( 1979) the microalgal biomass in the 

sediment was also affected by the interaction with the macrophytes i.e. Enteromorpha 

r;rolifera and Zostera marina, which at times (June and July) shaded the sediment by 

::ompetition for space, thereby trapping large amounts of sediment locality. Analogously, at 

:imes both the stations were densely covered with dense patches of macrophytes 

:Enteromorpha intestinelis, Fucus vesiculosus and Fucus serratus, Ulvaria sp., Zostera 

narina etc.) which might have also been the cause for the decrease concentration of Chl-a . 

3esides this, at times these macrophyte patches made the rest sediment beneath them anoxic, 

·evealing black spots at random places, with pungent smell of H2S specially at station T. In 

1ddition to this, black spots were mostly found during the warmer months (June, July and 

\ugust) and also at times during late winter (January) being significant feature of station T 

han at M. Similarly, black spots have also been noticed in the Wadden Sea (HOPNER 1996). 

[he estimation of Chl-a in winter at both the sites revealed low concentration, while BROTAS 

:tal. (1995) obtained maximum values in Tagus Estuary. Low values obtained might be due 

o low cell numbers on account of the unfavourable environmental conditions, namely low 

emperature and diminishing irradiance (RIAUX 1983), frequent harsh physical disturbances 
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i.e. strong winds with rain which rupture coherent sediment layers stabilized by a film of 

diatoms (HOLLAND et al. 1974), thereby hampering the growth of microphytobenthos and 

Tab. :6 Variabilities in sediment chlorophyll-a concentration (mg m -2) in the different 
estuarine ecosystem. :j: Estimated from a figure, * Chl-a in Jlg g-1 

Location Sediment Sediment Chlorophyll - a Source 
type slice (mgm-2) 

thickness 
(cm) 

Loch Ewe, Sand 2 < 0.1-19 Jlg g-1:j:* Steele and Baird ( 1968) 
Scotland 
S. W. England Estuarine 0.5 25-80 Jlg g-1* Joint (1978) 

mudflat 

Kiel Fjord, Fine-coarse 0.3 3-223 Karg (1979) 
Germany sand 
K.iel Fjord & Kiel Sand 0.7 0.10-2.94 Jlg g-1 Meyer-Reil et al. (1980) 
Bight, Germany 
Dutch Wadden Sand& 2 10-240 Colijn & Dijkema ( 1981) 
Sea, Netherlands mudflats 

North Brittany, Estuarine- 0.5 25-250 Riaux (1982) 
France mudflats 
Ne tarts Bay, Sand · 1 10-130 Davis & Mclntire (1983) 
Oregon, USA Silt 30-320 
El be Estuary, Mud 1 300 Uinge (1983) 
Wadden Sea Muddy sand 270 

Sand 90 
Mugu Lagoon, Sand& 0.5 5-50 Jlg g-1* Shaffer & Onuf (1983) 
California mudflats 

Falsterbo Pen in- Sand 0.5 23-258 Sundback (1984) 
sula, SW Sweden 

Mikolajskie Lake Shallow 1 1-114 W asmund ( 1984) 
litoral zone 

Ria Arosa, Spain Sand flat 1 25-100 V are la & Penas ( 1985) 

El be Estuary, Sand 0.5 27-185 Gatje (1992) 
Wadden Sea Mud 3-818 
Ems-Dollard Sand& 0.5 < 10-420 :j: de Jonge & Colijn (1994) 
Estuary, mudflats 
Netherlands 
Sylt-R0IT10 Sand ea. 10 5-278 Hollinde ( 1995) 
Wadden Sea, Mixed sand 28-208 
Germany/ Mud 14-486 
Denmark 
San Antonio Bay, Sand 0.2 1-15 Maclntyre & Cullen (1995) 
TXUSA 
Tagus Estuary, Estuarine 1 20-300 Brotas et al. (1995) 
Portugal flats 
Kiel Fjord, Sand 1.2 10-291 Present study 
Germany 
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re uspend or transport of the diatoms into deeper water depths. A pattern of low Chl-a 

concentration has also been reported by LANGE (1983), GATJE (1992). Similarly, these factors 

might have led to the decrease in Chl-a concentration during autumn after the peak. 

It is, however, interesting to note that under the overcast weather with low sea-level higher 

Chl-a concentrations perceived at both the study sites. This could be attributed on account of 

the reduced growth of microphytobenthos as on an overcast sky, due to which the cells tend to 

build up more pigments. Hence, the diatoms show vertical migration (PINCKNEY & 

ZINGMARK 1991) from the bottom to the top, to compensate for the reduced supply of 

incident quanta. These features are in good accordance with the peak of autumn. 

At both the stations, there existed no stratification in the Chl-a of the upper 1.2 mm of the 

sediment. Chl-a was found down to 1.2 cm into the sediment with the Chl-a concentration 

being highest at 3-6 mm depth at both the locations. This is in good agreement to the results 

obtained by LANGE (1983), who also found maximum Chl-a concentration at 5-7 mm 

sediment depth in the sandy sediments while in the finer sediments at 3-5 mm. In addition to 

this, G.ATJE (1992) also accounted a homogenous chlorophyll-a distribution in the uppermost 

0-5 mm of the sandy sediments. Moreover, it also appeared the microalgae tends to 

compensate for their low levels of light reaching the deeper sediment layers by incorporating 

higher pigments. Probably, due this higher amount of Chl-a was also accounted in the deeper 

sediment layers. At the same time, in such systems the microalgal mixing in the upper 

sediment layers is faster as compared to its degradation. Subsequently, considerable amount 

of Chl-a was found at 3-6 mm sediment depth. This may be due to the intermixing of the 

sediment by water currents and waves that generate sediment transport by bed-load (moving 

sand ripples) and suspension transport. According to SUNDBACK & JONSSON (1988), 

DELANGO et al. ( 1991 b) such transport processes and especially that of sand may influence 

the development of the microphytobenthos in various ways. As a result of these processes the 

upper 0-3 mm sediment layer gets disturbed and to avoid such sediment instabilities the 

microphytobenthos simply migrate to the layer where they can probably get adequate light 

conditions and sufficient nutritional supply (N and P) from the deeper sediment layers as a 

result of remineralization processes. 

Besides this, a homogenous distribution of Chl-a was also observed at deeper depths. Similar 

observations were also accounted by PEEKEN ( 1989). Moreover, SKJOLDAL ( 1982) also found 

uniform contents of Chl-a and ATP in the uppermost 2 and 4 cm. As it is well known in the 

shallow water systems, the upper most layers are mostly well mixed due to the wave action. 

In the laboratory experiment, JENNESS & DUINEVEILD ( 1985) showed that a constant velocity 

of 20 cm s-1 at 15 cm above the sediment surface was sufficient for the ripple formation and 

incorporating the algae into the sediment to a depth of 5 cm, when the algae was introduced 
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into the system at this particular velocity. This reworking of the sediment fraction and the 

associated microflora regulation by wave action, results in the microalgae migration into 

deeper depths as a result of which a homogenous distribution of Chlorophyll-a prevails. 

Similar homogenous distributions at sheltered and exposed stations have also been accounted 

(MACINTYRE AND CULLEN unpubl. data in MAClNTYRE & CULLEN 1995). In an experimental 

study, MACINTYRE AND CULLEN (1995) found physical mixing over periods of less than 24 h 

was responsible for the homogenous distribution of chlorophyll. 

The presence of Chl-a at deeper depth 1.2 cm is comparable to the studies of HOPKINS (1963), 

STEELE & BAIRD ( 1968), LEACH ( 1970) where they also found the functional Chl-a far below 

the euphotic zone, which was in sediment 2 to 5 mm depth (TA YLOR & GEBELEIN 1966, 

FENCHEL & STAARUP 1971), or 10 mm (DAEHNICK et al. 1992) upto 7 cm (MEADOWS & 

ANDERSON 1968, V ARELA & PENAS 1985). The presence of Chl-a in the deeper sediment 

layers could be explained due to intermixing of the sediment stimulated by bioturbation, 

(resuspension i.e. wind-and tide driven currents) which could drag the microalgal cells into 

the deeper sediment layers. Moreover, such episodic events resulting into intense sediment 

shuffling might be a regulating factor responsible for the microflora deposition below the 

mixed layer, as a result of which the flora is either transported on the sediment surface or 

could be dragged into the deeper sediment layers. Living cells were found in deeper layers of 

the sediment to be viable for long periods of time (ADMIRAAL 1984) or the capability of 

heterotrophic assimilation microalgae (LEWIN & LE WIN 1960, DARLEY et al. 1979, V ARELA & 

PENAS 1985). The occurrence of such viable buried cells represents a vital source of potential 

photosynthetically active populations (CADEE & HAGEMANN 1974, FIELDING et al. 1988). 

Furthermore, BROTAS & SERODIO (1995) found Chl-a higher burial rates v (0.23-0.31 mm d-

1) and lower decay rates kat the sandy stations. Perhaps, this might hold true for our stations 

too. Nevertheless, the burial rate is greatly dependent upon the systems characteristics i.e. 

currents and the type of fauna present. MAHAUT & GRAF ( 1987) found the burial rates of 

tracers (0.14-0.16 mm d-1) in the Baltic Sea due to bioturbation. 

Qualitatively similar seasonal fluctuation trend amongst Chl-a and cell counts representing 

some relationship was accounted at both the stations and a correspondance between both the 

parameters was seen (FENCHEL & STRAARUP 1971, HICKMAN & ROUND 1970, RIZNYK & 

PHINNEY 1972a). Both the stations revealed varying values of Chl-a concentration, 

nevertheless the same trend in their spatial and temporal patterns was observed. M with coarse 

sediment showed relatively lower chlorophyll concentration than T. Which could be attributed 

as at T, the benthic microflora might compensate for lower light levels reaching the sediment 

surface by incorporating higher concentrations of pigments into the light harvesting 

complexes, i.e. higher Chl-a per cell content (BRODY & EMERSON 1959). In aggreement with 
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this interpretation, SHAFFER & ONUF ( 1983) found the concentrations of chlorophyll-a in the 

fine sediments to be double and triple than in the coarse sediments. 

On comparing the seasonal changes accounted in the Chl-a by various authors, it can be 

deduced that in the colder regimes such variations are of shorter duration, while with the 

increase in the latitude such variations are either absent or exist irregularly. As also cited by 

BROTAS et al. (1995), MACINTYRE et al. (1996). More reliable estimates of biomass, or 

preferably biovolume, can be gained by cell counts paired with Chl-a data. However, due to 

the difficulty in calculating the biomass from microphytobenthos, the use of cell-counting in 

most of the investigations is impractical. Despite variability in the relations amongst 

Chlorophyll-a, biomass, and cell abundance. Chlorophyll-a provides a useful index of the 

photosynthetic potential of a population and gives a sufficiently accurate estimate of biomass 

for these studies (UNDERWOOD & PETERSON 1993, BROTAS & SERODIO 1995, MACINTYRE et 

al. 1996) or marker for the diatom biomass (KOWALEWSKA et al. 1996). 

4.2.3 CARBON TO CHLOROPHYLL -A RATIO 

Carbon/Chlorophyll-a or C:Chl-a ratios could be applied to determine the microphytobenthos 

biomass fluctuations expressed as carbon (DEJONGE 1980, DEJONGE & COLIJN 1994). Ratios 

of C:Chl-a (50-80) are commonly used to convert one biomass estimate to another (HARRIS 

1986). According to DEJONGE (1980) the use of yearly C:Chl-a averages to estimate biomass 

could lead to errors of 34-50%. In addition to this, C:Chl-a ratios vary with the nutrient 

concentration, microphytobenthos populations and abiotic factors (DE JONGE 1980). This is a 

good reason for the variable C:Chl-a ratios found in the literature. 

Furthermore, the major source of error in C:Chl-a ratios in this study was that it was 

impossible to determine how much of the organic carbon is living or detrital, due to lack of 

appropriate technique to differentiate amongst the two. Which is probably an obstacle in the 

benthos as well as that in the water column. Hence, the C:Chl-a ratios were calculated as 

mentioned earlier (see Section 2.7.7). C:Chl-a ratios estimated for the microphytobenthos 

ranged from 56-454 at Tirpitzmole (T), whereas at Monkeberg (M) from 36-490, revealing 

seasonal variations, which were more prominent at M than at T (see Section 4.2.3). Higher 

C:Chl-a ratios estimated in this study as compared by DE JONGE (1980) were due to the 

methodological discrepancies. Station T showed higher C:Chl-a ratios indicating a higher 

amount of detrital matter derived from either dead algae or pigment derivatives than at M. 

Mostly the values found were below 120. Results accomplished in the present study are 

comparable to C:Chl-a ratios obtained by other authors i.e. 10-154 (DE JONGE 1980), 18.7-

60.4 ( GOULD & GALLAGHER 1990) etc. Values more than 150 were probably on account of 
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the decrease in the Chl-a content (reduced growth rate) and increase in the cell-carbon. For 

some of the phytoplankton species GOLDMAN ( 1980) concluded that C:Ch1-a ratios 150 or 

more were associated with relative low growth, while ratios of 40 were associated with 

relative high growth rate. Similarly, higher values were also accounted such as 55-500 

(THOMAS & DODSON 1972). 

Higher values found during summer at T could be an indirect impact of either nutrient 

limitation or increase in the Cyanophyceae members i.e. Merismopedia sp. (DE JONGE 1980). 

Furthermore, he stated C:Chl-a of Cyanophyceae (Merismopedia sp.) is relatively higher than 

that of the benthic diatoms. However, as mentioned earlier the possibility of nutrient 

limitation is unpredictable in the Kiel Fjord or in an Estuary. 

Peaks obtained during spring might have been due to the increase in the biomass and 

deceased growth rate. Similarly, during spring bloom incubations GOULD & GALLAGHER 

(1990) found the lowest growth rates (0.06 d-1 and 0.09 d-1) to be consistent with high 

biomass of 1.16 x 10-3 and 1.54 x 10-3 biomass and high C:Chl-a ratios (54.4 and 60.4), 

respectively. 

In the present study, low C:Chl-a ratios< 50 depicted that the samples constituted mainly of 

the living microphytobenthos and were probably devoid of detritus, which is quite common 

feature of the sandy sediments as compared to the muddy sediments which contain high 

concentrations of the organic matter. 

4.2.4 GRAZING 

Marine meiobenthos are supposed to having a close trophic coupling with microbial 

communities GERLACH (1978), MONTAGNA (1984 ). Sediment bacteria and benthic diatoms 

are the most common producers in marine sediments and thus play a pivotal role in trophic 

linkages and secondary production ZOBELL & FELTHAM (1942), MONTAGNA et al. (1983), 

MILLER et al. (1996). Sediment diatoms are most suitable food for the meiofauna because of 

their apt size (SCHWINGHAMER 1981 ). In addition to this in Kiel Bight GRAF et al. (1983), 

MEYER-REIL (1983) found that the supply of organic material to be a dominating factor for 

determining the structure and the activity of benthic communities. The balance between 

consumption of microphytobenthos by macrofaunal grazing and resupply is a scale dependent 

phenomenon (GRANT 1983, 1985). Diatoms are the preferred food for most grazers and form 

the basis of food chains which are 'beneficial' to man (DOERING et al. 1989). 

Grazing is an important factor in reducing diatom biomass V AN DEN HOEK et al. (1979), 

TAASEN & H0ISIETER (1981), MCCLATCHIE et al. (1982), UNDERWOOD (1984), ASMUS & 
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ASMUS (1985), BAILLIE (1987), KUWAMURA & HIRANO (1992), GATJE (1992), ASMUS & 

BAUERFEIND (1994 ), BROT AS et al. (1995). The impact of grazing on microphytobenthos 

depends not only on the abundance and distribution of the biotic components (grazers and 

burrowers) but also on the growth and transport of the microphytobenthos. Changes in the 

relative availability of benthic microalgae in the upper few mm of the sediments may be of 

importance to the foraging strategies of the surface deposit feeders (PINCKNEY et al. 1994). 

The present study indicated that the cell number and chlorophyll-a (biomass), during summer 

was lower at both the locations (see Section 3.2.2.1 and 3.2.3.1). However, the concentration 

of mentioned parameters was relatively higher, at Tirpitzmole (T) than at Monkeberg (M). 

Grazing and bioturbation could be the factor during the studies for these accounted low 

values. This has also been cited by COLIJN & DIJKEMA (1981), UNDERWOOD & PATERSON 

(1993b), ASMUS & BAUERFEIND (1994). 

The density of deposit feeders (Arenicola sp., Hydrobia ulvae), suspension feeders (Macoma 

baltica, Mya arenaria), crustaceans, nematodes, polychaetes i.e. Pygospio sp. (Spionidae) at 

T, and at M (Hydrobia ulvae, Macoma baltica, Mytilus edulis, crustaceans) increased in 

summer. Hence, grazing could probably be a regulating factor responsible for the abrupt fall 

in the biomass peaks at both the stations, subsequently followed by an increase in the 

biomass. Such abrupt fall and increase in the pheopigment content was also observed by 

BROTAS et al. (1995). Station M was predominated by Hydrobia ulvae, while T by Arenicola 

sp. and Hydrobia ulvae. Specially during June and July, polychaetes Pygospio sp. (Spionidae) 

reached their maximum abundance at station T. Increase in the polychaete density during June 

was also experienced by STEPHAN (1980) in the Nordstander Watt. LANGE & LENZ (1980), 

and BROT AS et al. ( 1995) observed that microphytobenthos population was affected by 

Hydrobia ulvae . 

The increase in grazing during summer can also be coupled with the low salinity 

concentration and high temperature as such conditions were optimal for their survival and 

reproduction. Besides this, GRAF ( 1983) reported that oxygen concentration to be also a vital 

factor, as macrobenthos and meiobenthos mortality during summer and autumn is controlled 

by its concentration. Despite of these assumptions, it is doubtful that grazing alone is 

responsible for these fluctuations in the biomass concentrations and cell numbers during 

summer. It is more likely that at times strong reductions in the microphytobenthos population 

(i.e. directly affecting the biomass) in the upper sediment layers might be connected with the 

hydrodynamic processes i.e. wind-induced waves. From the variations in the wind speed 

accounted during this study i.e. 17 June, 12 July 1994 (see Section 3.1.3), it can be concluded 

that the decrease in the microphytobenthos population might have been as a result of 

intermixing caused by wind induced waves. This accords with the findings of LANGE & LENZ 
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(1980), DE JONGE & COLIJN (1994). According to ADMIRAAL et al. (1988) when the 

microphytobenthos suspended into the water column, is subjected to planktonic grazing and 

filter-feeding macrobenthos prefer suspended microphytobenthos over phytoplankton. 

Research sites T and M revealed low biomass during winters. This could be accounted 

because of bad weather with rains and storms, resulting into physical disturbances of the 

sediments and also dull light conditions. Besides this, DELAGADO et al. (1991 b) illustrated 

that the sand motion on its own can damage the microphytobenthos cells, thereby leading into 

a decrease in the biomass. 

The high trophic relevance of microphytobenthos for meiofauna have been stressed by 

BLANC HARD (1991 ). According to MILLER et al. (1996), the decrease in the microphyto­

benthos population may be due to the meiofauna. Meiofauna are mostly considered to have 

metabolic demands at least at par with those of macrofauna in the sandflat community or 

shallow water system (MCINTYRE 1969, FENCHEL 1978). However, in contrast to this 

ADMIRAAL et al. (1983) reported no impact of meiofauna on the microphytobenthos in Ems­

Dollard Estuary. In addition to this, GALLAGHER et al. (1983, 1990) concluded that the 

limiting resource for the competition between juvenile (meiofauna-size) polychaetes (the 

ampharetid Hobsoniaflorida) and oligochaetes were sediment diatoms. 

According to MONTAGNA (1984) grazers are food selective, he also found that the traditional 

meiofauna taxa (nematodes, copepodes, ostrapods) prefered diatoms 8 times more than the 

bacteria. Similarly, some nematode taxa are known to prefer diatoms as food (TIETJEN & LEE 

1973). The specialized herbivorous nematodes increased with the abundance of the diatoms in 

the sediment of the Ems estuary (BOUWMAN et al. 1984), revealing successional adaptation to 

the food spectrum. In laboratory microcosms, it has been shown that the growth rate of the 

microphytobenthos was stimulated by Macoma baltica grazing (JASCHINSKI 1989). Identical 

results were also obtained by ASMUS (1992) in the Wadden Sea, where the dominating role of 

Achnanthes haukiana was accounted to the grazing effect of Hydrobia ulvae. 

Microphytobenthos is also a good source of food for the infauna feeding above the sediment 

surface. It was demonstrated by MUSCHENHEIM (1987a, b) and LEVINTON (1991) that 

facultative feeders often switch from deposit feeding to suspension feeding in response to 

flow and movement of the sediment particles. 

The role of ciliates in benthic trophic-dynamics is well documented by FENCHEL ( 1969), 

FENCHEL & J0RGENSEN (1977) and SICH ( 1985). It is plausible that "selective grazing" 

between April and May might have resulted into succession of species. Due to which the 

relative frequency of Navicula sp. deceased and was subsequently replaced by Cylindrotheca 

sp. and Nitzschia closterium being long and spiny cells to defend themselves against the 
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predators. Similar observations have also been made by ADMIRAAL (1977d) and oATJE 

(1992). 

-l.3 BENTHIC PRIMARY PRODUCTION AND ITS ECOLOGICAL SIGNIFICANCE 

.t.3.1 OXYGEN MICROPROFILE METHOD-ADVANTAGES AND DISADVANTAGES, NEW 

DEVELOPMENTS IN THE FIELD OF MICROSENSORS 

In the present study, gross primary productivity was measured with the aid of the oxygen 

profile technique (REVSBECH et al. 1981, REVSBECH & J0RGENSEN 1983). A completely new 

approach "light-dark shift method" developed by REVSBECH et al. ( 1981) was adopted, to 

estimate benthic photosynthesis from oxygen measurements of the sediment. Due to several 

disadvantages to the oxygen exchange method (POMEROY 1959, PAMATMAT 1968, 

HARGRAVE 1969, HUNDING & HARGRAVE 1973) and bicarbonate tracer method (STEEMANN 

NIELSEN 1952), the oxygen microprofile method was adopted. The main source of error in the 

oxygen exchange method is that the rate of respiration and the chemical oxidation may not be 

identical in the light as in the dark (REVSBECH & J0RGENSEN 1981, EPPING & J0RGENSEN 

1996). Moreover, the oxygen consumption rate may be higher in light than in dark (HUNDING 

1973, COHEN et al. 1977). All these factors may then lead to underestimation of the benthic 

primary production. On the other hand, the bicarbonate tracer method (STEEMANN NIELSEN 

1952) successfully used till date for the estimation of the phytoplankton primary productivity 

by incubating water samples in the light and dark with the aid of bicarbonate traced by 14C. 

This method has been also used for microphytobenthos ( GR0NTVED 1960, 1962, CADEE & 

HEGEMAN 1974, 1977, LANGE 1983, COLIJN & DE JONGE 1984, MACINTYRE & CULLEN 

1995). The major source of error in this method is the inaccuracy in determining the labelled 

and unlabelled HC03- in the most active photosynthetically layer (REVSBECH et al. 1981). 

Ever since the last decade, polarographic Clark-type oxygen microsensors have been 

extensively used in the study of microbenthic photosynthesis and respiration (REVSBECH & 

J0RGENSEN 1986a). Specially, in the marine sediments, REVSBECH et al. ( 1980) employed 

these cathode-type 02 rnicroelectrodes and further developed Clark-type oxygen micro­

electrodes with improved characteristics (REVSBECH & WARD 1983, REVSBECH 1989a). The 

utilisation of more insulated glasses and guard cathode has ameliorated the performance of the 

microsensors (REVSBECH 1989a, 1994). The 02 microelectrodes have excellent measuring 

properties namely, a small tip diameter of< 10 J.Lm, a 90% response time of < 1 s, and small 

stirring sensitivity of < 1 % (REVSBECH 1989a). Thus, all these features make 02 

microelectrodes ideal tools for their application in the aquatic environments (KLIMANT et al. 

1995) as well as in benthic microbiology ( GLUD et al. 1996). 
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Advantages of the microprofile method: (I) It is a fast technique, with simple equipmer:t. 

leaves the sediment virtually undisturbed, and is most suitable for analyzing the diumc.l 

variations in the photosynthetic activity (REVSBECH et al. 1981 ). (2) Unlike 14C methods, this 

method is non-destructive and permits multiple measurements on the same sample over time 

(PINCKNEY & ZINGMARK 1993c). (3) Oxygen production rates and oxygen concentrations can 

be determined with high vertical resolution in 100 ~-tm steps or less. In addition to this. 

repetetive measurements can be conducted in a few minutes due to its rapid response 

(HOFMAN & DE JONG 1993). (4) The most prominent feature of this method over the other 

methods is that all the measurements are performed within the photosynthetically active layer 

(REVSBECH & J0RGENSEN 1981). Furthermore, this method depicts rapid response of 

photosynthesis to the changes in irradiance (REVSBECH & J 0RGENSEN 1983), thereby 

providing a useful means of elucidating the environmental influence on primary production 

(GRANT 1986). (5) It reflects simultaneous information about the thickness of the photic zone, 

02 dynamics within in the aerobic layer and other processes involved in the sediment, 

biofilms or boundary layer. A high spatial resolution of 2-10 ~-tm-wide oxygen 

microelectrodes has enabled direct measurements of distribution and dynamics of the 02 in 

the diffusive boundary layer (DBL), within the viscous sublayer above the sediment surface 

(J0RGENSEN & REVSBECH 1985, GUNDERSEN & J0RGENSEN 1990, GLUD et al. 1994). This 

may obstruct the 02 availability to the benthic microbial communities. (6) A new method for 

measuring the community respiration (REVSBECH et al. 1989b, HOFMAN 1990, 1991) with the 

help of microelectrodes has been recently developed. Apparent sediment diffusion coefficient 

of oxygen in the porewater can be determined from the oxygen gradient measurements. The 

sediment oxygen consumption can be quantified through the mineralization and respiratory 

processes in the light and in the dark. (7) Furthermore, oxygen microsensors are not only an 

optimal tool for estimating the benthic primary production, but were also recently used in 

accounting the vertical distribution of benthic ciliates (BERNINGER & EPSTEIN 1995) in 

response to the oxygen concentration in the sediments of North Sea. 

New developments in the field of microsensors: (1) Fiber-optic microprobes are also a new 

tool for studying the optical properties and distribution in the cyanobacterial mats 

(J0RGENSEN& DES MARAIS 1988) and sediments (LASSEN et al. 1992). (2) A new fiber-optic 

oxygen microsensor (microoptrode) based on dynamic fluorescence quenching has been 

developed to measure oxygen gradients in marine sediments and microbial mats (KLIMANT et 

al. 1995). Oxygen profiles obtained from the measurements with microoptrodes depicted a 

good correlation to profiles measured with oxygen microelectrodes. The presence of silicone 

overcoat makes the sensing tips flexible and hence are not readily breakable. Besides this, 

they can become an ideal tool for the coarse sediments superior to 02 glass microsensor, if the 

response times are improved. Due to the relatively slow response time of 5-30 sec (KLIMANT 

et al. 1995) microoptrodes are not that ideal for the use in photosynthesis measurements, 
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where response times < 0.5 sec. are required (REVSBECH & J0RGENSEN 1983). (3) Planer 

optrodes are a new tool for measuring 02 dynamics in two dimensions at a high spatial and 

temporal resolution in the benthic microbial communities (GLUD et al. 1996). (4) To 

investigate the temperature distribution with high spatial resolution a new temperature 

microoptrode has recently been developed (HOLST et al. 1996). Subsequently, the first direct 

temperature compensated oxygen measurements in the aquatic films and sediments has been 

conducted with the aid of a special combination of a Clark-type oxygen microelectrode with a 

built- in- temperature microoptrode by HOLST et al. (1996). 

Disadvantages of the microprofile method ( 1) A continuous supply of microsensors is 

required due to their fragile nature and they are also very expensive (REVSBECH & 

J0RGENSEN 1981 ). (2) Densely populated meio- and macrofauna at times could be an obstacle 

in the measurements due to their bioturbation and irrigation activity and thereby cause 

sediment instabilities of the oxygen microprofiles in the surrounding substratum (REVSBECH 

& J0RGENSEN 1986). (3) In comparison to the bicarbonate method this is an insensitive 

method. But to be sufficiently sensitive the microprofile method requires high photosynthetic 

rates per unit volume, preferably > 2 mmol 02/ 1· h (REVSBECH & J0RGENSEN 1986). In other 

words < 2 mmol 02/ 1· h approximately ea. 0.05 mmol 02/ m2. h cannot be measured 

accurately with this method. (4) The 14C method gives an adequate information about the 

gross primary production, but microalgal respiration taking place is neglected. Furthermore, 

till today no such method in situ is available which could deliver both the data 

simultaneously. (5) Oxygen consumption rates cannot be obtained directly, the oxygen 

gradients measured have to be converted to fluxes using the appropriate sediment diffusion 

coefficient (HOFMAN et al. 1991). (6) Due to unstable environmental conditions namely 

wavering light intensities, drifting clouds in the outdoor experiments, which makes it difficult 

to get stable readings (REVSBECH & J0RGENSEN 1986), and could result into underestimation 

of the benthic primary production. Therefore, the experiments should be preferably conducted 

under simulated in situ laboratory conditions. 

Looking into the discrepancies in the benthic primary production methodology, uncertainties 

and disadvantages with the oxygen exchange method and 14C method, we opted to use 

oxygen microprofile method in this study. Nevertheless, it was not possible to measure the 

gross photosynthesis and oxygen consumption because of the sandy beach stations 

Mi:inkeberg (M) and Tirpitzmole (T) having mean grain size (0.214 to 0.516 mm), with the 

aid of 02 glass microsensor, due to its fragile nature. Thus, we decided to employ oxygen 

needle electrodes, which are suitable for coarse-grained sediments exhibiting a good spatial 

resolution of 0.25 mm (HELDER & BAKKER 1985). Nonetheless, we were successful in 

achieving good and comparable results and oxygen consumption values for the shallow water 

systems of the Kiel Fjord (western Baltic Sea). Similarly, the needle electrodes have also been 
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successfully employed for measuring oxygen profiles in the intertidal sediments (BROTAS et 

al. 1990). 

4.3.2 MICROPHYTOBENTHOS: THEIR ROLE AS PRIMARY PRODUCERS AND ECOLOGICAL 

SIGINIFICANCE 

There is a wide recognition that the primary production of benthic rnicroflora is important in 

the shallow water (SHAFFER & ONUF 1983, CAHOON & COOKE 1992) and periodically 

flooded habitats (SHAFFER & ONUF 1983). The production in shallow waters is mainly 

contributed by microphytobenthos (GAR.GAS 1972, PLANTE-CUNY & BODOY 1987, 

MACINTYRE & CULLEN 1995, SUNDBACK et al. 1996). The rnicrophytobenthos contributes a 

major portion to the primary productivity in a variety of shallow water habitats and add a 

vibrant pool of energy producers. Hence, they play a signifiqmt role in ecological food web 

and have been largely investigated for over the past 35 yrs (MACINTYRE et al. 1996) in 

different localities, as reported by KARG (1979), PEEKEN (1989), GATJE (1992), ASMUS & 

BAUERFEIND (1994), BROTAS & CATARINO (1995). 

The microphytobenthos is indispensable as far as food source for benthic invertebrates is 

concerned e.g. ranging from protozoans, ciliates to the members of the meio-and macrofauna 

(MONTAGNA 1984, SUNDBACK & JONSSON 1988, SULLIVAN & MONCRIEFF 1990, MilLER et 

al. 1996). Regional distribution and the production of rnicroalgae is basically dependent upon 

the seasonal variations and the environmental factors. Seasonal productivity in shallow waters 

elicits a seasonal pattern of activity in benthic community (GRAF 1989a). Moreover, the 

relationship amongst photosynthetic rate and photon flux in this study clearly depicted that 

the benthic microalgae were probably able to maintain maximum production over a wide 

range of fluctuating light intensities . This is in accordance with the results of RASMUSSEN et 

al. (1983). 

Present research observations dealt with the benthic primary production in shallow waters 

revealed that a lower gross primary production of 571 ± 22 g C m-2 y-1 was accounted at M 

(exposed, with coarse sediment, more influenced by the hydrodynamic forces) than at T 

(sheltered, with fine sediments, with relatively less physical disturbances) with 640 ± 37 g C 

m-2 y-1, respectively. Similarly, Karg (1979) found higher primary production values 

measured with the 14C and 02 exchange method at a sheltered station than at an exposed one 

in the Kiel Fjord. This is in accordance with the reports of CADEE & HAGEMANN (1977), 

REVSBECH et al. (1988), PINCKNEY & ZINGMARK (1993a), IANNUZZI et al. (1996), 

MAClNTYRE et al. (1996), SUNDBACK et al. ( 1996), who also reported higher primary 

production values at their sheltered station than at the open ones. In contrast to this STEELE & 
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BAIRD (1968), SHAFFER (1984) measured higher values at exposed stations. Our results are 

omparable to the results of other authors in Tab. 7. 

Tab. 7: Values of microphytobenthos production measured at the various geographical areas 

with different techniques, 14C: Bicarbonate method; 02: Oxygen exchange method; ME: 

Oxygen microprofile method. 

LOCATION DEPTH HOURLY METHOD AUTHOR 
[m] PRODUCTION 

[mg C m-2 h-1] 
Niva Bight, Denmark >0.5 135- 290 I4c Gargas ( 1970) 

Wadden Sea, intertidal 50-100 (winter) I4c Cadee & Hageman 
Netherlands flats, <0.5 100-1100 (summer) (1974) 

Kiel Fjord, Germany 0.2-0.7 3-545 02 Karg (1979) 
12-533 14C 

Natarts Bay, Oregon 1.0-1.5 < 5-88t 02 Davis & Mclntire 
(1983) 

Kiel Bight, Germany 18 0.2-107 I4c Schulz ( 1983) 

Bay of Fundy, Canada intertidal 10-800 02 Hargrave et al. 
flats (1983) 

El be Estuary, <1 1-25 I4c Uinge (1983) 
Germany 

Ems Dollard Estuary, intertidal 1-120 14C Colijn & de Jonge 
Netherlands flats (1984) 
Chesapeake Bay, 0.9 < 2-170t 02 Rizzo & Wetzel 
Virginia (1985) 

Ria de Arosa, Spain intertidal 3-44 14C Varela & Penas 
flats (1985) 
0.5 

Barther Bodden, 0.15-0.2 34 02 Wasmund (1986) 
Germany 
Laholm Bay, Sweden 2-5 max. 24 14C Sundback & Jonsson 

(1988) 
Mittelgrund & 6 to14 2.86- 8.37 02 Peeken ( 1989) 
Schleimiinde, 
Schleimiinde, 6 18 ME 
(Kiel Bight) Germany 
El be Estuary, < 1 0-395 ME Gatje (1992) 
Germany 
Nordsylter- 0.1 88-132 ME Bruns (1994) 
WaddenSea 
Tagus Estuary, 1-4 11-13 02 Brotas (1995) 
Portugal 
Kiel Fjord, Germany < 0.5 38-285 ME This study 

15-454 

t Estimated from a figure 
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The mean integrated photosynthetic rates at Monkeberg (M) were relatively uniform c.:-:: 

ranged from 3.8 to 28.5 mmol 02 m-2 h-1, while at Tirpitzmole (T) 1.5 to 45.4 mmol o
2 

m-: 

h-1. The photosynthetic activity ranged from 0.13- 16.7 Jlmol 02 cm -3 h-1 at M, while OJYS-

18.2 Jlmol 02 cm -3 h -I at T. Our results are comparable with tidal flat sediments inhabite: 

by pennate diatoms (REVSBECH et al. 1988) measured considerably lower photosynthetic 

activity, with the rates being only 6 Jlmol 02 cm-3 h-1 while the integrated activity was; 

mmol 02 m-2 h-1 than the finer sediments with 98 Jlmol 02 cm-3 h-1 and 27 mmol o2 m-2 h-1. 

respectively. In the four cyanobacterial mats of Solar Lake, Sinai J0RGENSEN et al. (1983 J 

found the total photosynthetic rate varying from 1.2-17.6 mmol 02 m-2 h-1, the 

photosynthetic rate within the mat was 0.53-49 Jlmol cm-3 h-1. In the Oosterschelde Estuary 

(Netherlands), HOFMAN et al. 1991, measured a production rate ranging from 10.6-18.0 mmol 

0 2 m-2 h-1 in April. BRUNS ( 1994) found integrated photosynthetic rates ranging from ea.< 1 

mmol 02 m-2 h-1 to 15.50 mmol 02 m-2 h-1 in the different sediments and the photosynthetic 

activity varied from ea.< 2.3-55 Jlmol 02 cm-3 h-1 in the different sediments of the Wadden 

Sea. In the Kiel Bight, PEEKEN (1989) accounted the integrated photosynthetic activity 

ranging from 1.659-1.925 mmol 02 m-2 h-1 on April 1989, in the fine sediments of the 

Schleimtinde at 6 m water depth. The photosynthetic rate within the sediment ranged from 

0.00-88 Jlmol 02l min-I on 30 April1989. On the other hand, YALLOP et al. (1994) obtained 

14-125 Jlmol cm-3 h-1 from all the profiles measured in Texel. 

The maximum production during spring on 17 March 1995 at station Tirpitzmole (T) was 

454.3 mg C m-2 h-1 with the total photosynthetic activity integrated for all the layers being 

75.9 mmol 02 m-2 h-1, in comparison to M with 132 mg C m-2 h-1 and 14.3 mmol 0 2 m-2 h-1 

(see Section 3.2.4.1 & 3.2.4.2), respectively. The maximum oxygen concentration was found 

at 1 mm depth, within the sediment surface with the photosynthetic rate being only 3.9 Jlmol 

02 cm -3 h-I at station T. The sediment temperature at both sites was 4.0 oc (see Section 3 .1.2) 

and the mean light intensity was 58 Wm-2 in situ (see Section 3.1.1). High primary 

productivity found at T might have been due to the observed pale brown patches of thickly 

growing microphytobenthos tufts of Navicula sp., Amphora sp., Fragilaria sp. etc., with 

relatively higher viable cell counts. Similarly, REVSBECH et al. (1988) also cited that the 

benthic microalgae often depicted highest standing stock in early spring, before the grazers 

impact becomes significant. On the other hand, a slight grazing may also enhance the primary 

production by mobilization of nutrients (FENCHEL & KOFOED 1976). 

Furthermore, on this specific day the oxic sediment zone at both the locations was relatively 

thick ea. 11 mm each (see Section 3.2.1.3). From this it can be concluded that the viable 

microphytobenthos were present in the deeper layers at M as well as at T, which holds good 

with the cell counts and Chl-a concentration at both the sites. Active upward migration of the 

benthic diatoms is a key mechanism for restoring the oxygenation of the sediment surface by 

- 88-



7 . t 55 '1 t 7 

Discussion 

photosynthesis (SUNDBACK et al. 1996). At Monkeberg (M), the estimated benthic primary 

production was factor 3 lower than at Tirpitzmole (T), inspite of oxic zone being 

comparatively thick. Low primary production at M could be attributed to the scanty number 

of viable and photosynthetically active microphytobenthos cells in the sediment. The 

sediment intermixing caused by wave activity probably transported most of the diatoms into 

the deeper sediment depths. This was clearly observable from the peak rate of photosynthetic 

activity at 8 mm. Another reason could be the instability of the sediment, which is reported to 

be a major limiting factor for the benthic primary production (ADMIRAAL 1980, in REVSBECH 

et al. 1988). 

In the sandy beach sediments of station T higher rates of integrated gross photosynthesis 

existed, consequently as a result of thicker photic zone and oxygen penetration depth, which 

may be due to the vertical migrations of microphytobenthos at various sediment depths in 

order to avoid the unfavourable weather conditions. In Texel, Y ALLOP et al. (1994) also 

accounted higher integrated gross photosynthesis as a result of greater photic zone and with 

bimodal peak rates of distribution, the maximum peak rates at both the stations were identical. 

Contrarily, the peak rates encountered at M and T were never identical. 

During the present study, both the sites revealed higher gross primary productivity in summer 

1994 as compared to summer 1995 (see Section 3.2.4.2). The higher productivity accounted 

on certain sampling occasions (M: 17 June, 28 July; T: 12 July 1994) at both the stations 

during summer 1994 was on account of thicker photic and oxic sediment zone (see Section 

3.2.1.2. & 3.2.1.3). Whereas, low productivity during summer may be due to thin photic zone 

and oxic sediment zone, or grazing effects (Hydrobia ulvae, Arenicola sp., Pygospio sp. etc.) 

which probably resulted in sudden vanishing of algal blooms. On the other hand, one of the 

most common feature for the primary production limitation during summer is the water 

column turbidity, owing to resuspension (wave induced) of finer particles, microphytobenthos 

or sedimented phytoplankton, which at times can hinder the minimum required light for the 

microphytobenthos production, as only < 3 % of incident light is transmitted through the 

sediment (MACINTYRE & CULLEN 1995). However, the presence of the photosynthetically 

active microalgae well below the photic zone within the sediment has been mentioned earlier 

(PAMATMAT 1968, STEELE & BAIRD 1968, CADEE & HAGEMAN 1974, RIAUX-GOBIN et al. 

1993). 

Observations taken in autumn on 22 September 1994 revealed that at T the sediment surface 

consisted of dense, dark green filamentous mats of cynaobacteria, with thick compaction of 

photosynthetic organisms e.g., Navicula, Nitzschia, Amphora sp. etc. with high oxygen 

concentration of 751 !J.M at 1.0 mm, which was factor 3 times higher than in the water 

column. In the shallow cyanobacterial mats (dominated also by Navicula, Nitzschia, Amphora 
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sp. etc.) of Solar Lake in Sinai similar magnitude oxygen concentration peaks at 0.4 mm we~e 

found J0RGENSEN et al. (1983). On this particular day, low sea-level existed and the seawate~ 

had receded about 10 to 15 m away from the seashore. Despite of cell number, Chl-a 

concentration and oxygen production being high (see Section 3.2.4.1), the gross productivity 

was relatively low ( 45 mg C m-2 h-1 ), under the mean in situ light intensity of 142 Wm -2 with 

cloud coverage. The low productivity was probably not due to the nutrient limitation as can be 

depicted from the thick population of microphytobenthos. As a result of low-level and dim 

light conditions the microphytobenthos migrated upwards (PINCKNEYet al. 1994) and formed 

thick patches, and reduced the oxic sediment zone to 4 mm. Subsequently, making the rest of 

the sediment anoxic. 

Similarly, LASSEN et al. (1992a) observed that under dim light Oscillatoria sp. migrated 

upwards and a dense surface film of cyanobacteria developed. Phototactic migration, with 

different species-specific responses, may result in a surface maximum and microzonation of 

species and size (HOPKINS 1963, ROUND 1979a, b, ADMIRAAL et al. 1984). Low benthic 

production on the cloudy days is in accordance with the results of CAHOON & COOKE (1992 ). 

Consistent with this, MACINTYRE et al. 1996 stated that the total primary production enhanced 

with the irradiance. In addition to this, under the low light conditions the benthic microalgae 

have the ability to compensate for the lower levels of light reaching the sediment surface by 

incorporating higher pigment concentrations, i.e. higher chlorophyll a per cell content 

(BRODY & EMERSON 1959, SHAFFER & ONUF 1983). Station M depicted slightly higher gross 

production (62 mg C m-2 h-1) which can be due to thicker oxic zone (7 mm) as a result of 

coarser sediment, uneven distributions of diatoms in the sediment layers due to the wave 

activity as compared to station T. In addition to this, microphytobenthos, response to incident 

radiation may be different with the locations ( SHAFFER & ONUF 1983) as light is less likely to 

be limiting in coarse grained than at the locations with fine grained sediments. 

On the other hand, station M indicated highest production during late winter (see section 

3.2.4.2). The maximum gross productivity of 285 mg C m-2 h-1 in late winter (23 January 

1995) seems to be unusual, but the careful examinations of the oxygen microprofiles as 

shown in Section 3.2.4.1 suggested that the production in January at M was not exceptionally 

high, as only 1.1 fold less oxygen concentration in the sediment existed as compared to the 

water column, indicating no production peak. In addition to this, a zig-zag pattern of profile 

was measured revealing that the photosynthetic rate within the most active layer being as high 

as 4.3 ~-tmol 02 cm-3 h-1 at 15 mm sediment depth. Moreover, thicker photic zone of 16.5 mm 

and oxygen penetration depth of 17 mm also existed. Higher rates of integrated gross 

photosynthesis of 26.3 mmol 02 m-2 h-1 prevailed which may be due to greater photic zone 

(YALLOP et al. 1994) and thicker sediment oxic zone. Besides, a weak correlation between the 

02 penetration depth and the sediment temperature was accounted i.e. with the decrease in the 
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oxygen penetration depth an increase in the sediment temperature was evident (see Section 

3.2.1.4). Similar correlation revealed by GATJE (1992) in the Elbe Estuary. 

From all the mentioned parameters, it can be attributed that hydrodynamic forces 

(~1CLACHLAN & TURNER 1994, IANNUZZI et al. 1996) namely strong south westerly gales 

with mean wind velocity of ea. 7 m/sec (see Section 3.1.3) kept the exposed sandy beach 

sediments oxygenated and hence causing sediment instability (V ARELA & PENAS 1985). Such 

harsh weather conditions were probably responsible at both the stations (M & T) in 

transporting the viable microalgal cells from the photic zone into the deeper (aphotic) 

sediment layers hence reducing the cell number. Similar observations were also made by 

CADEE & HAGEMANN (1974), BAILLIE & WELSH (1980). Moreover, they can survive the long 

dark periods without damaging their photosynthetic capacity (ADMIRAAL 1984d, SUNDBACK 

& GRANELI 1988). Such continuous sediment intermixing might have resulted in the 

distribution of the microalgae (in and out, up and down) as well as of oxygen in the deeper 

sediment layers (PINCKNEY & ZINGMARK 1991, PINCKNEY et al. 1994). Furthermore, 

sediment transport plays a vital role in the microdistribution of the diatoms and may limit to 

the primary production (GRANT et al. 1986). Thus all these factors were responsible for the 

higher gross production at both the sites during winter. The high winter production rates 

especially demonstrated that light and temperature were not the limiting factors at both the 

sites. This is in accordance with BRUNS (1994). 

4.3.3 IMPLICATIONS OF THE BENTHIC PRIMARY PRODUCTION 

Furthermore, the microlagal productivity in winter may especially be of importance to other 

trophic levels as the decomposition processes are highly temperature dependent. Thus, the 

possibility of organic matter availability from detritus may be limited (RIZZO et al. 1996) in 

winter. The high gross primary productivity in January is not correlated with the low in situ 

irradiance (42 W m-2). The importance of light relative to temperature in benthic primary 

production is less clear (GRANT 1986). Light conditions, such as intensity of light and 

photoperiod are important influencing environmental factors for the photosynthetic rate and 

growth rate of marine benthic diatoms (COLIJN & VAN BUURT 1975, ADMIRAAL 1977g, 

ADMIRAAL & PELETIER 1980a ). Inconsistent with this, MACINTYRE et al. ( 1996) stated that 

the net primary production will only be significant, where there is adequate light reaching the 

sediment surface and above the compensation irradiance, primary production is expected to 

increase with the increasing irradiance. Interestingly, in this study no significant relationship 

between the primary production and total solar radiation was found. Similar results were 

obtained by V ARELA & PEN AS (1985). The photosynthetic rate of benthic microalgae living 

on the sediment surface is not affected by the light energy as also indicated by RASMUSSEN et 

al. ( 1983). The minimum sky irradiance in the field mostly exceeds the minimum light 
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required by the microphytobenthos for their saturation (RASMUSSEN et al. 1983). Moreover. 

in laboratory experiments it has been demonstrated (COLIJN & VAN BUURT 1975) that there 

existed no correlation amongst irradiance and photosynthetic rate, especially, when the 

minimum saturation requirements exceeded a saturation level of 11-25 Wm-2 (COLIJ~ & o:: 

JONGE 1984 ). In agreement with this (ADMIRAAL 1984d, RIVKIN & PUTT 1987b) found that 

benthic diatoms are able to compensate for low irradiance values by utilising organic 

substances. Besides this, the P-I parameters indicated that benthic microalgae are well adapted 

to their variable and stressful environmental conditions (BLANCHARD & CARIOU-LE GALL 

1994). 

4.3.4 RELATION OF MICROPHYTOBENTHIC PRIMARY PRODUCTIVITY TO THE 

ENVIRONMENTAL PARAMETERS 

The physical removal of the sediment has also been recognized as an important limiting factor 

for microalgal production (RIZNYK et al. 1978). At Monkeberg (M) the sediment disturbances 

caused during the summer due to the human activity, while at Tirpitzmole (T) clams and 

cockles should also not be ignored. Similar type of sediment disturbances have also been cited 

by VARELA & PENAS (1985). In addition to all these parameters at both the study the newly 

deposited fine material on the surface of the sediment as a consequence of sediment 

intermixing and wave action, could shadow the microflora beneath it. Thus, shadowing 

impact (VARELA & PENAS 1985) could relatively reduce production values, as the non-motile 

episammic diatom flora are not able to move upwards through the newly deposited material. 

Besides this, low gross productivity at M & T during the summer months may also be due to 

enhanced respiration rates. HICKMAN & ROUND ( 1970), RIZNYK et al. ( 1978) and SHAFFER 

(1984) also found lower net photosynthetic as a result of higher rates of respiration. 

Observations in the literature suggest the roles of light, temperature, and nutrient limitations 

for benthic algal primary production ( CAHOON & COOKE 1992). In addition to this, changes in 

the environmental variables within a season are as important as seasonal shift in determining 

the shape and magnitude of peaks in biological rates (GRANT 1986). A seasonal shift in the 

photosynthesis response to temperature by benthic microalgae has also been noted previously 

(PAMATMAT 1968). Higher values of productivity at both the regimes were encountered 

during winter and spring, when the temperature was low (see Section 3.1.2). In contrast to the 

studies of CAHOON & COOKE ( 1992) who reported that with lower temperatures ( < 20 °C) 

production values were also lower as compared to the maximum production values. 

During our study, in some of the incidences the productivity increased with an increase in the 

light intensity and the temperature. As observed in summer from June to August 1994, with 

an increase in temperature and light intensity (see Section 3.1.1) the productivity accelerated 
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~evealing at certain sampling days a correlation amongst temperature, light and the 

productivity. As temperature increased, an increase in the productivity was also noted. These 

reports are in correspondence with the reports of COLIJN & VAN BUURT (1975), RASMUSSEN 

et al. ( 1983 ), who also observed in their study that rise in temperature caused increase in the 

photosynthetic rate. In the present study, temperature coefficients (Q 10 value) between the 

photosynthetic rate and temperature ranged from 1.45 at M to 1.74 at T. Whereas, DAVIS & 

.\1ClNTIRE ( 1983) reported a Q10 of 2.05 for an intertidal assemblage in Oregon. GRANT 

(1986) found a Q 10 of 2.0 and 3.3, respectively . 

. U.S PHOTIC ZONE 

Coastal sandy and intertidal sediments, both freshwater and marine, are often inhabited by 

phototrophic microorganisms (STAL et al. 1985, GARCIA-PICHEL & BEBOUT 1996). Photo­

synthesis in these environments takes place only within few millimeters from the surface, as 

beyond that the light is greatly attenuated (LASSEN et al. 1992a, KOHL & J0RGENSEN 1994 ). 

Only about 1 % of the incident light reaches a depth of 3 mm in the sandy sediments 

(FENCHEL& STRAARUP 1971). 

Measurements conducted with the aid of light microsensor have depicted that the light may 

penetrate down to ea. 4 mm, or more on account of scattering (KUHL et al. 1994). 

Furthermore, KUHL et al. (1994) examined that the light attenuation coefficients decreased 

with an increase in the particle size, and infrared light penetrated deeper in all sediments in 

comparison to the visible light. Intense scattering results in a maximum integral light intensity 

varying from 180% of incident irradiance in the coarsest sediments (250-500 J..Lm) up to 280 

% in the finest sediment ( < 63 J..Lm grain size) as measured with fiber-optic microprobes. This 

observation may hold meaning for sandy beach sediments Monkeberg (M) & Tirpitzmole (T) 

of the Kiel Fjord. 

The penetration of visible light (photic zone) in the Kiel Fjord is highly variable depending 

upon the season and time of the year. Thus the microphytobenthos production would be 

significant only where there is adequate light reaching the sediment surface. According to 

JUNGHANS (unpublished data) Secchi depth ranged in spring ea. 3-5 m, 2-4 m in summer, 2-7 

in autumn, and 4-7 m in winter. Similarly, MOIGES (1983) found Secchi depth varying from 

2.1 to 7 m, while STIENEN (1986) ea. 5 m in the Kiel Fjord. On the other hand, during 

summer in Laholm Bay SUNDBACK (1986) accounted the penetration of light up to 15 m. She 

further stated that 20 J..LE m-2 s-1 (ca.1.4 W m-2) was the lower limit for measurable 

microphytobenthos growth when the inorganic nutrients were not initially limited. 
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The thickness of the photic zone varies from sediment type (PINCKNEY & ZINGMARK 1993c , 

photon flux and intense absorption/scattering of the light (Tab. 8). In addition to this e 

photic zone can also be reduced as a consequence of fine sediment deposition (SUNDBACK e 

al. 1996). A thicker photic zone ranging from 4 to 16.5 mm was accounted at tatio 

Monkeberg (M) with coarse sandy sediments than at Tirpitzmole (T) with finer sedimen 

from 2.5 to 21.5 mm (see Section 3.2.1.2). The photic zone at both the stations remained 

mostly< 10 mm. This is in accordance with the reports of J0RGENSEN et al. ( 1983) that the 

photic zone> 10 mm in the benthic ecosystem is quite unusual . In January and Februai)' 

when it was with 21.5 & 16.5 mm, respectively exceptionally deep. At both the stations (M & 

T) relatively thicker photic zone existed during winter and early spring than in summer. Thi 

was probably due to strong hydrodynamic forces as a result of which microphytobentho 

populations were unevenly distributed within the sediment as compared to summer with 

relatively calmer conditions. Besides this, the photic zone in the silty (REVSBECH et al. 1988) 

and muddy sediments (FENCHEL & STRAAUP 1971, J0RGENSEN & DES MARAIS 1986) is< 1 

mm. In addition to this, COLIJN (1982) measured the light penetration in the d ifferent 

sediments i.e. mud 0.14-0.5 mm, sand 0.8-1.1mm, coarse sand 1.2-3.0 mm in the Ems Dollard 

Estuary. Nonetheless, on comparing the photic zone data with the other authors it can be 

deduced that our results are overestimated. This probably resulted on account of employment 

of a needle microelectrode instead of the glass microsensor in this study. The reasons for the 

use of a needle microelectrode have been discussed earlier. 

4.3.6 OXIC SEDIMENT ZONE 

Diffusion may be a principal contributor of oxygen into the sediments from the overlying 

water or atmosphere in the case of intertidal areas while biological mechanisms are known to 

activate the molecular diffusion processes (BAILLIE 1986). Furthermore, the studies 

performed in the intertidal (RIEDL & MACHAN 1972, BAILLIE 1986) to deep coastal sediments 

(SIL VERB ERG et al. 1987) reached at the inference that other mechanisms than molecular 

diffusion are responsible for the transport of oxygen across the sediment-water interface. 

Contrary to this, BOOIJ et al. (1994) found that molecular diffusion is the predominant 

mechanism of transport of oxygen in a muddy sediment. Moreover, according to ZIEBES et al. 

(1996) advective oxygen transport may play a key role in the ecology of coastal sediments by 

expanding the oxic sediment volume far beyond the zone supplied by diffusion. 

The availability of oxygen in the interstitial system is important in estimating the redox status 

of nutrients, the redox conditions and the microbial activity (\1CLACHLAN & TURNER 1994) 

generally decreases with the depth of sediment. 
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Tab. 8: Comparison of photic zone (mm) of the various shallow coastal sediments 

determined by GE: Glass electrode, NE: Needle electrode. 

Location Sediment type Technique Photic zone Source 

(mm) 

Aalborg Bay, Sand GE ea. 2.8 Revsbech &J0rgensen (1983) 

Denmark 

Solar Lake, Sinai Cyanobacterial GE 0.8- 10 Jesrgensen et al. (1983) 

mats 

Limfjorden, Denmark Microbial mats GE 0.7-2.7 Lassen et al. ( 1992a)* 

on sandy 

sediments 

ElbeEstuary, Mixed& GE 0.15- 1.4 Gatje (1992) 

Germany 

muddy coarse ea. 2.4 

sand 

Wadden Sea Sand& GE 1 Bruns (1994) 

Muddy sand 

Portishead, Severn Cohesive GE 0.15-0.35 Yallop et al. (1994) 

-Estuary, U.K. 

Texel, Netherlands Non-cohesive 0.6-1.8 

Kiel Fjord, Coarse sand NE 4-16.5 This study 

Germany Fine sand 2.5-21.5 

* Estimated from a figure 
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Discussion 

The studies conducted in coastal environments have depicted that oxygen usually do :-. -_: 

penetrate deeper than 2 to 5 mm from the overlying water into the sediment by diffu s: r_ :-. 

(REVSBECH et al. 1980, ANDERSON & HELDER 1987). It can be absent a few cm below t~.:: 

surface in low energy, fine sand beaches (FENCHEL & RIEDL 1970) or near saturation le·.::: 

more than 1 m below the surface in well drained, coarse-grained beaches (MCLACHLA~ et 2.!. 

1979 in MCLACHLAN & TURNER 1994). 

In the present study, the sediment oxic zone measured with the aid of needle microsensor in 

the sandy beach sediments of the Kiel Fjord varied from 4.5 to 17 mm at Monkeberg (.\1 '· 

while at Tirpitzmole (T) from 2.5 to 23 mm (see Section 3.2.1.3). On the average thicker 

sediment oxic zone prevailed at M than at T. Similar ranges were found by BROTAS et al. 

( 1990), who also measured oxygen profiles with the help of the needle microsensor and found 

in organically poor sand oxygen penetration depth varying from 3 mm in inundated cores to > 

7 mm in exposed cores. On the other hand, in the muddy sediments the oxygen penetrated 

only uptil 1.5 mm. In addition to this, REVSBECH et al. ( 1981) in their measurements observed 

that the oxygen penetration depth varied with sediment type, season and oxygen consumption 

/production rate. 

Since the 02 profiles during the study were measured with the aid of needle microsensor, the 

oxygen penetration depth and photic zone were overestimated. Interestingly, the general trend 

(minimum and maximum peaks) in the oxygen penetration depth at station T coincided well 

with oxic sediment zone, measured with the glass microsensor by RASMUSSEN &J0RGENSE~ 

(1992) in the coastal sediments of the Aarhus Bay at 15 m water depth. However, both the 

systems are not directly comparable, but in order to discern the impact of seasonal variations 

on the sediment oxic zone this was undertaken. The seasonal variations in the 02 penetration 

depth depicted maximum oxygen penetration in winter and minimum during early fall. 

Nonetheless, during summer the oxygen penetration was relatively low and depicted a new 

minimum of 4 mm in September 1994. Similar observations were made by RASMUSSEN & 

J0RGENSEN ( 1992), where they accounted a minimum peak of 1.3 mm during September 

1988. This sediment oxic zone value of 1.3 mm is comparable with the 4 mm at 0.5 m depth. 

As the measurements were conducted with the needle sensor, on recalculating this by the 

overestimation factor of 1.5 between needle and glass sensor (see Section 3.2.4.4, Tab. 5). 

The value fell at 2.7 mm approximately within the similar range. Similarly, MACKIN & 

SWIDER ( 1989) also found in Long Island Sound sediments substantially greater 02 

penetration depth during winter than in the summer. 

A weak inverse relationship between the sediment temperature and sediment oxic zone was 

found (see Section 3.2.1.4). Similarly, GATJE (1992) in the Elbe Estuary sediments also found 

an inverse relationship amongst both the parameters with the sediment oxic zone ranging 
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irom 1.1-5.5 mm in thickness. The 02 penetration in the sediment varied seasonally in close 

accordance with the 02 concentration in the overlying seawater i.e. decrease in the 02 

concentration in the overlying seawater reflected a narrower oxic zone. Consistent 

observations made by REVSBECH & J0RGENSEN (1986) and RASMUSSEN & J0RGENSEN 

(1992) also found reduction in the oxygen penetration depth from 1.7 to 1.2 mm as a 

consequence of the decrease in the oxygen concentration at the sediment surface. 

Oxic sediment zone varies considerably also with the microalgal distribution in the sediments. 

The denser the microphytobenthos populations, the narrower is the oxic sediment zone as 

observed on 22 September 1994 (see Section 3 .2.1.3 & 3 .2.2.1 ). Low oxygen penetration 

depth, i.e. 2.5 mm and 4 mm at station Tirpitzmole (T) on 30 May and 22 September 1994 

was indicative of intense mineralization on account of dense microphytobenthos populations. 

Following sedimentation of fresh organic material ( GRAF 1987 a, MEYER REIL 1987) 

accounted a strong stimulation of the bacterial activity resulting into higher oxygen 

consumption and a shift of the redox layer to the sediment surface ( GRAF 1989, KOSTER 

1993). This results in an immense decrease in the oxygen penetration depth (ENOKSSON 1987 

in HOLLINDE 1995). Consistent reduction in the oxygen penetration depth to 7 mm was found 

(BRUNS 1994) in the sandy sediments, as a consequence of phytoplankton sedimentation. 

LOHSE et al. (1996) reported anoxic sediment zone of 2.8 ± 0.5 mm on account of intensive 

respiration in the continental shelf sediments. While, in Aarhus Bay due to low oxygen 

uptake, the oxic zone up to 9.1 mm was observed (RASMUSSEN & J0RGENSEN 1992). The 

coarser the sediments, the greater is the oxygen penetration depth. Station M, being an 

exposed sandy beach, with coarser and organically poorer sediments, less microphytobenthos 

populations, is subjected to stronger hydrodynamic forces that keep its sediments relatively 

well oxygenated or flush the interstices with oxygen rich water (RIEDL et al. 1972, MALAN & 

MCLACHLAN 1991 ). On the other hand, BROTAS et al. (1990) found the major cause for the 

high oxygen penetration was the exposure of sand to the atmosphere, while comparing 

exposed and inundated conditions in the sediments of Ria Formosa. Besides, relatively less 

wave activity at station T (sheltered one) than at M (exposed one), pumping rhythm of the 

worms (J0RGENSEN & REVSBECH 1985) and bioturbation were probably responsible in 

transporting oxygen into the deeper sediment layers as oxygen is able to diffuse through the 

burrows walls of the burrowing macrofauna (FORSTER & GRAF 1992) into the ambient 

sediment. 

- 97-



p· '11 7 7 rt; 2 S::?T w t:te T'ti :r·rttT'ttt· CW tftf'S' sa l t t 

Discussion 

4.4 OXYGEN CONSUMPTION 

Oxygen is energetically the most favourable and vitally important, electron acceptor availc.b::: 

in nature and is the first to be exhausted below the sediment surface (GLUD et al. 1994a;. 

Hence, plays a major role in biological (REVSBECH & J0RGENSON 1986, ZIEBIS et al. 1996.~ 

and geochemical processes (ZIEBIS et al. 1996). Modification and decomposition processes of 

material in sediments are dominated by microorganisms (MEYER-REIL 1994). The o2 uptake 

of sediments has been widely used as a measure of the total rate of mineralization and 

community metabolism (BOOIJ et al. 1994, GLUD et al. 1994a, RAMUSSEN & J0RGE~SE~ 

1992, FORSTER & G RAF 1995). Several studies have recently been applied the o2 

microelectrode for estimation of the diffusive 02 flux (REVSBECH et al. 1980b ). In sediments, 

the oxygen flux is influenced by the apparent sediment diffusion coefficient, which might be 

several times higher than the molecular diffusion coefficient (HOFMAN & DE JONG, 1993 ). 

The 02 fluxes are dependent upon the Corg content, bacterial activity and the temperature 

(WILTSHIRE, 1993). The 02 transport through the thin oxic zone of impermeable sediments is 

regulated by diffusion, while due to the concurrent 02 consumption (CRANK 1983) the o2 
concentration deceases with the depth. 

Oxygen gradients were steeper in the sediment as compared to the overlying water at T than 

at (M). The steep 02 gradients found may be associated to the intense 02 consumption by the 

meiofauna in the surrounding environment. The stronger the curvature of the oxygen gradient, 

the higher is the respiration rate (J0RGENSEN 1994). The total sediment oxygen consumption 

rates (TSOC) ranged from 29.6 to 401.5 f..Lmol m-2 h- 1 at Tirpitzmole (T), while at Monkeberg 

(M) from 19.2 to 340.6 f..Lmol m-2 h- 1 (see Section 3.2.1.5). Station T showed 1.60 fold higher 

oxygen consumption rates than at M. This may be due to high organic content and fine sand at 

the sheltered station T than at M. The finer the sand, the larger is the surface area and greater 

is the microbial population (DALE 1974). Thus fine sands tend to develop higher oxygen 

demands than the coarser ones (DA VIS & MCINTIRE, 1983, SHAFFER & ONUF 1983, 

MCLACHLAN & TURNER 1994, MAClNTYRE et al. 1996). Similarly, HOFMAN et al. (1991) also 

found higher consumption rates at sheltered stations in their studies. 

The enhanced 02 consumption rates in summer existed probably due to high flux of reduced 

products (i.e. NH4+, Fe 2+ or H2S ) diffusing up from the deeper layers to the oxygen 

respiring bacteria present at oxic-anoxic interface (RASMUSSEN & J0RGENSEN 1992, 

J0RGENSEN 1994). Besides this, at times high 02 consumption rates were also observed, 

being more obvious at station T, on account of freshly settled detritus in early autumn, late 

spring, and early summer (see Section 3.2.1.5). This is also reported by REVSBECH et al. 

(1986). However, comparing the data with those of other authors (Tab. 9) from relatively low 

value of TSOC ranging from 0.46-8.18 m mol 02 m-2 d-1 at M, while at T 0.71-9.64 mmol 02 
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m-2 d-1 were obtained during the studies. It may be speculated that the gradient flux measured 

was purely a diffusive one. In addition to this, both the stations are influenced by waves. It is 

possible that probably on account of wave activity most of the organic material was 

transported to the deeper sediment layers or water depths of the Kiel Fjord. Specially at T, as 

a result of such wave activities the microphytobenthos might have migrated (predominated by 

motile diatoms) into the deeper sediment layers and consequently no drastic changes in the 

oxygen consumption rates of the upper 1 cm sediment layer were found. Besides this, 

bioturbation and bioirrigation should also not be neglected. The higher bioirrigation flux due 

to meiofauna (Kbio = 1.3 ALLER & ALLER 1992), which might have been the key factor 

responsible for increasing the oxygen consumption rate, being densely populated in the upper 

mm of the sediment layers. 

Furthermore, bioirrigation, if important may enhance oxygen exchange rates between the 

sediment and the water compared to molecular diffusion (HULTH et al. 1994). Meiofauna and 

microorganisms also tend to increase the solute exchange rates through their movement in the 

interstices, though without visible effects on the colour of the sediment ( OSTLUND et al. 1990, 

ALLER & ALLER 1992). Similarly, FORSTER & GRAF (1995) observed an increased flux due to 

surface microtopography and mixing by meiofauna by the order of 30%. Nonetheless, 

bioturbation could also result in lower consumption rates, but as the bioturbators i.e. 

polychaete worms and bivalves etc. are mostly found deeper in the sediments, hence the 

changes of them to increase the rate are sparse. It can be concluded that in the present study 

all the above mentioned factors lead to underestimation of the oxygen consumption rates of 

the microphytobenthos community. The fluxes of 02 in the sediments were found to be 

highest during summer and lowest in winter at both the sites. This clearly depicted that the 

decomposition of organic matter as reflected in the oxygen consumption rate has minimum 

during winter and maximum after the spring blooms and during late summer. Interestingly, 

similar trends were accounted by POLLEHNE (1981) at 18 m water depth and BALZER (1984) 

at 20 m water depth of the Kiel Bight. 

The seasonal oxygen consumption fluctuations in the boreal seas were found to be associated 

with the annual temperature cycle and revealed excellent correlation (WASSMANN 1984). 

Metabolic processes are temperature dependent, which is especially true for the respiratory 

enzymes at low temperatures (SOMERO et al. 1983). Lowest values of oxygen consumption 

(M: 19.2 ~mol m-2 h-1 on 21 December 1994, T: 29.6 J.Lmol m-2 h-1 on 3 Febuary 1995) may 

probably be related to the meagre amount of viable microphytobenthos and low benthic 

activity during these periods as a consequence of low temperature. Similarly, GRAF (1986) 

also accounted low benthic activity in February in the Kiel Bight. On the other hand, GRAF 

(1992) reported an increase in the benthic activity by a mean factor of 7 ( GRAF et al. 1982, 

1983) due to subsequent food input during sedimentation of the spring bloom to temperature 
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increase of 1 to 2 °C at temperatures of 0-3 oc. This is comparable to the effect of tempe­

rature increase of 20 oc. Hence in this si tuation , food supply clearly dominated temperature 

effects on metabolism. On the other hand, KANNEWORFF & CHRISTENS EN ( 1986) accounted 

no immediate effect of sedimentation of spring bloom on respiration rates in 0resund 

sediment. 

Tab. 9: Oxygen consumption rates (m mol m-2 d-1) in the different shallow-water sedirnents 

Location Sediment type & m mol m-2 d-1 Author 

Carbon content 

Chesapeake Bay, USA Sand flat, 4.8- 204* Rizzo & Wetzel 

c = < 0.5% (1985) 

Long Island Sound, USA Mud, C = 14% 84-449 Baillie (1986) 

Oosterschelde, Netherlands Intertidal, n.d. 14- 89 Hofman et al . ( 1991) 

Boshrticken I Elbe, Mixed, C = 1.5% 22-93 Wiltshire (1992) 

Germany 

Aarhus Bay, Denmark Fine grained, 6- 30* Rasmussen & 

OM = 7.7-10.1% J0rgensen (1992) 

Kiel Fjord, Germany Sandy, C ~ 1 0.5- 10 Present study 

OM= organic matter, n.d =not determined, *=estimated from a figure 

The calculated temperature coefficients (QIO) values 1.91 at M to 2.14 at Tirpitzmole (T) for 

oxygen consumption agree with the literature values of 3-4 for the Kiel Bight sedirnents 

(BENGTSSON 1982, GRAF 1986). Similarly, QIO values (HOFMAN et al. 1991) calculated for 

Oosterschelde intertidal sediments ranged from 1.4 to 3.2. On the other hand, Q10 value 

between 2-3 have also been accounted by (J0RGENSEN 1977, KANNEWORFF & CHRISTENSEN 

et al. (1986), HALL et al. (1989). However, GRANT (1986) found an QIQ of value of 6.5 

indicating no acclimation within the season. 

It is, however, interesting to note that the total sediment oxygen consumption rates (TSOC) of 

0.46 to 9.64 mmol m-2 d-1 found in the present study are comparable with that of the Arctic 

sediments (Svalbard) at water depths of 170-2580 m ranging from 1.85 to 11.2 rnrnol m-2 d-1 
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as measured by HUL TH et al (1994) and continental shelf sediment oxygen fluxes of 4-19 

mrnol m-2 d- 1 (ARCHER & DEVOL 1992). However, this 1.04-2.68 folds higher than that found 

in deep-sea sediments 0.48-3.6 mmol m-2 d-1 (REIMERS & SMITH 1986, SILVERBERG et al. 

1987). 

The total annual 02 consumption of the sediment at M was 0.49 ± 8 mol 02 m-2 y-1, while at 

T 0.83 ± 18 mol 02 m-2 y- 1 when integrated over the whole year. In contrast to this, 

RASMUSSEN & J0RGENSEN (1992) accounted relatively higher values of 10 mol~ m-2 y-1. 

While on the other hand, MIDDELBERG et al. ( 1996) found the annual rates of organic matter 

mineralization varied from 8-339 mol C m-2 in the Westerschelde Estuary. Thus, it can be 

concluded from the present study that only a very small proportion 0.86% of total benthic 

microalgal production 571 g C m-2 y-1 (corresponds to 57 mol 02 m-2 yrl assuming a 

photosynthetic quotient of 1.2) at M, while 1.30% of the 640 g C m-2 y-1 at T (corresponds to 

64 mol 02 m-2 yr-1,with photosynthetic quotient of 1.2) was remineralized. This suggests that 

probably a significant fraction of the organic C production got carried away by currents into 

deeper basin of the Kiel Fjord. 

4.5 CARBON BUDGET OF THE SHALLOW WATER ECOSYSTEM (KIEL FJORD) 

The rnicrophytobenthos biomass (standing stock) expressed as organic carbon was estimated 

by multiplying the Chl-a values by the C:Chl-a ratio of 50 (DE JONGE 1980). However, DE 

JONGE & COLIJN (1994) demonstrated that the use of an incorrect C:Chl-a ratio (varied 

between 40 and 61) during the study can increase this deviation by a further 50%. Hence, the 

values obtained by taking into C:Chl-a 50 are also underestimated. The standing stock ranged 

from 2.93 to 23.64 at Monkeberg (M), while at Tirpitzmole (T) they varied from 5.32 to 52.72 

g C m-2, calculated for the upper 1.2 cm of the sediment layer (Tab. 10). Average values over 

the total period of investigation (May 1994-July 1995) varied from 13.5 at M to 24.80 g C m-2 

at T, respectively. The standing stock values estimated during the present study are 

comparable with the those of other authors, i.e. L~NGE ( 1983) reported 0.1 to 25 g C m-2 

using the C:Chl-a 50 in the Elbe Estuary. In BARETTA & RUARDIJ (1988) the total biomass in 

the 30 cm sediment column ranged from 2 to 25 g C m-2, while in the upper 0.5 cm layer 

from 1 to 10 g C m-2. On the other hand, DE JONGE & COLIJN (1994) found the micro­

phytobenthos biomass ranging from 3.1 g C m-2 to 16.7 g C m-2 with the C:Chl-a 50 in the 

Ems Estuary. 

In addition to this, from the results shown in Tab.lO, it can be concluded that at both the 

stations (M & T), the microphytobenthos was most active during spring and the order of their 

activity deceased in the following pattern spring > winter > summer > autumn. Thus, during 

spring, the microphytobenthos would require less number of days for doubling the same 
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amount of available biomass (g C m-2), under the identical abiotic and biotic environmen 

variables. Furthermore from the Tab. 10, it can also be deduced that small-sized diatom cells 

at M were found to be more active than the larger ones at station T. Exceptionally, on account 

of minimum primary productivity of 0.18 g C m-2 d-1 and a high amount of the biomass 

( 41.27 g C m-2) measured during late spring 30 May 1994, a value as high as 224.5 days was 

estimated at T. On the other hand, rapid growth of the benthic microflora ranging from 0.14-

3.2 doubling per day has been noticed by WILLIAMS (1964), ADMIRAAL (1977d), ADMIRAAL 

AND PELEITER (1980a). 

Tab. 10: Seasonal impact on the microphytobenthos doublings (biomass/production ratio) in 

the sediments of the Kiel Fjord. A conversion factor C:Chl-a ratio of 50 (DE JONGE 1980) was 

used to convert the measured chlorophyll-a mg m-2 into (g C m-2) as shown below: 

Doubling days (d) = 
Chlorophyll - a ( mg m - 2

) *50 

Primary prod. ( mg Cm - 2 d-1) 

Station Spring Summer Autumn Winter 

M (Doubling days) 1.4- 7.30 2.7-37.1 10.2 -51.8 4.1-24.4 

T (Doubling days) 3.8-21.87 6.8-49.0 27.0- 98.3 1.2- 27.0 

Annual benthic microalgal productivity measured in the sediments of station M was 571 ± 22 

g C m-2, while at Tit was 640 ± 37 g C m-2. Moreover, productivity values as high as 892 g C 

m-2 y-1 have been registered by GR0NTVED (1962) with 14C method and 800 mg C m-2 h-1 

HARGRAVE et al. (1983) with 02 exchange method. Furthermore, DAVIS & MCINTIRE (1983), 

SHAFFER & ONUF (1985), FIELDING et al. (1988), SUNDBACK & JONSSON (1988), RIZZO et al. 

( 1992) obtained the benthic microalgal primary productivity values from ea. l 00 to 300 g C 

m-2 y-1. However, mean discrepancy of ea. 33% in the data between our results and authors 

cited may be on account of the microprofile method adopted in the present study. Besides 

this, the benthic primary production measured in the present study is also underestimated by a 

factor of 0.35 on comparing with GLUD et al. ( 1992) as mentioned earlier (see Section 3.2.4.3 

Tab. 5). 

Benthic trophic state index (BTSI) has been proposed to make general assessment of the 

degree to which sediments support ecological processes related to photoautotrophy (RIZZO et 

al. 1996). In the present study the production/respiration ratio was > 1.0 indicating photo-
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utotrophical communities dominated at both the respective sites (M & T). Interestingly, the 

~0mmunity respiration at M amounted to be only 0.86 % of the total benthic productivity, 

·hile at Tit was as high as 1.3 %as mentioned earlier (see Section 4.4). 

Moreover, macrophytobenthos and meiofauna standing stock are also a contributor to the 

carbon budget in the Kiel Fjord. However, the absence of any real information leads to 

fruitless speculations. On the other hand, depending on the water depth, macrophyte 

production varies from 37 to 387 g dry weight m-2 yr1 (M. MEYER per. comm. in GRAF 

1987b) in the shallow parts (~ 13 m) in the Kiel Bight. Similarly, the meiofauna standing 

tock varied from 50-625 )lg C cm-3 at a 10 m station (sand) in the Kiel Bight, being cal-

culated assuming a C:ATP ratio of 250 (GRAF 1989b), from ATP-biomass values of GRAF et al. 

(1984). The heat loss of the shallow station at 10 m station was as high as 105 g C m-2 yr-1. 

On the other hand, phytoplankton production amounts about 200 g C m-2 y-1 (STIENEN 1986) 

Thus, it can be attributed that the microphytobenthos productivity is 2-2.3 folds higher than 

that of the phytoplankton. Hence, it can be concluded that microphytobenthos may be 

quantitatively a major source of fixed carbon for shallow water ecosystem of the western 

Baltic Sea. This is in accordance with the citations of GRAF et al. (1984). Similarly, PINCKNEY 

& ZINGMARK ( 1993b) have also stated the importance of the benthic microalgae in the carbon 

cycle and that it contributes disproportionately more organic matter to higher trophic levels 

(MONCREIFF et al. 1992). Besides this, the intertidal diatoms may contribute up to one-third of 

an estuary's annual carbon budget (REISE 1985). Thus, the benthic microalgae are not only a 

food source in the shallow aquatic environment but can help to improve the water quality by 

stabilizing sediments and altering sediment-water nutrient fluxes (RIZZO et al. 1996). 

Furthermore, oxygen released as a by-product of photosynthetic activity serves an important 

function in estuarine areas influencing most of the processes at the sediment surface ( GLUD et 

al. 1992). Moreover, as eutrophication is infact a severe problem in the western Baltic Sea 

(WEIGELT 1990, GERLACH 1990, BABENERD 1991, SCHULZ et al. 1992, HANSEN 1996). It can 

thus be speculated that high microalgal productivity in the shallow water system may help to 

override hypoxic and anoxia conditions and may exhibit a suitable oxic environment for the 

estuarine fauna in the western Baltic Sea. 

However, the carbon pool produced by the microphytobenthos is not sufficient to nourish the 

whole ecosystem of the Kiel Fjord and Bight. As the distribution of benthic microalgae is 

only limited up to a certain depth in the western Baltic Sea, depending upon the transparency 

of water. Beyond which its role becomes unimportant due to light deficiency. Moreover, the 

high primary production measured in this study will hold meaningful for a small shallow belt 

along the beach. Furthermore, with the enhanced production of organic matter in the pelagic 

system followed by its sedimentation and decomposition, and subsequent transportation from 

- 103-



CWYWI: !7 7 -g w -' s mn : rnr , rst me m: ran ,. 1 :! - 7' . 7 

Discussion 

the shallow water areas into the deeper basins. Which may deteriorate the oxygen conditio;1s 

in the deep basins and would result into mortality of the benthic fauna. In addition to this, it 

may perhaps imbalance the food chain of this ecosystem. Looking into these problems further 

studies should not only be conducted in the shallow waters but also in the deeper basins of 

this system to see the impact on meio-and macrofauna under such adverse conditions i.e. 

oxygen deficiency. On the other hand, the role of nutrient distribution on the vertical 

migrations of the benthic microalgae remains unclear. Hence, it is advisable to perform future 

research work on this field, as microphytobenthos have been considered as the best indicator 

for recording the changes in the shallow water system. 
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The main objective of this study was to investigate the physical, chemical and biological 

factors with regard to benthic primary production from two different sites, namely M: 

~ii:inkeberg (coarse, high energy window) and T: Tirpitzmole (fine, low energy window) of 

the Kiel Fjord (western Baltic Sea). Sediment samples were collected either once or twice a 

month on the same day from both the stations from 30 May 1994 to 31 July 1995. The 

benthic primary production was measured with the help of the microprofile method, by 

employing needle oxygen electrode instead of a glass microelectrode. This has been done for 

the first time as far as known from the literature. 

1) The interstitial environment of the exposed locality is more influenced by hydrodynamic 

forces as compared to the sheltered one. Higher water content was noticed in the fine sandy 

sediments than the coarse sediments. Higher percentage of suspended matter in the sandy 

beach sediments is predominantly influenced by wind induced wave resuspension. 

2) Both sediment types indicated a low Corg content ( < 1% ), with fine sediments showing 

higher Corg content of< 0.4% than the coarser sandy sediments ( < 0.1% ). Besides this, high 

organic content in the sediments was mostly connected with an increase in the porosity. 

3) In general the C:N ratio at both the sandy beach sediments was found to be < 12. 

Moreover, values > 12 occurred on account of significant contribution of the refractory 

organic matter i.e. detritus derived from macroalgae, wood residues, vascular plant material 

etc. 

4) The microflora mainly consisted of pennate diatoms (both motile and epipsammic species). 

The microphytobenthos community changed from larger to smaller species and vice-versa, 

depending upon the seasonal and environmental fluctuations at both the stations. Peaks were 

obtained during spring and autumn while a decline in the cell number was accounted in 

summer due to grazing. A common feature as a result of different physicochemical conditions 

was the species stratification along the depth gradient. The microphytobenthos activity 

decreased in the following order spring > winter > summer > autumn. Smaller microalgal 

cells are metabolically more active than the larger ones. 

5) Coarse sandy sediments (exposed and high energy window) were predominated by small 

epipsammic grain-adhering diatoms ranging from 17 to 1428 x 106 c m-3, while fine 

sediments (sheltered and low energy window) often consisted of epipelic (often larger sized) 

motile diatoms varying from 45 to 4005 x 106 cm-3. The density of the microalgae varied 

spatially and temporally in the upper 0-9 mm sediment layers, depicting no stratification. Out 
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Summary 

of the three sediment layers investigated, sediment layer 3-6 mm showed the richec: 

microalgal assemblage. Members of the family Naviculaceae were most dominant, adaptab1:: 

and played an integral role in the coastal sediments of the Kiel Fjord. The most tolerant. 

frequent and ubiquitous genus under all the weather conditions was Navicula sp. 

6) Chlorophyll-a concentrations were higher in finer sediments ranging from 2.05 to 29.07 

11-g Chl-a cm-3 in comparison to coarser sandy sediments (0.95 to 13.17 11-g Chl-a cm-3). 

Nonetheless, the maximum Chl-a concentration was found in the depth range of 3-6 mm at 

both stations. The Chl-a concentration was directly proportional to the total cell number. 

Benthic microalgae tend to build up more photosynthetic pigments under dull light conditions 

as compared to in bright sunlight, to compensate for the reduction in available light energy, 

7) On an average, thicker oxygen penetration depth (oxic sediment zone) into the sediment 

ranging from 4.5 to 17 mm at station M, while at T from 2.5 to 23 mm was estimated. It was 

found to be dependent upon the weather conditions, sediment type and microphytobenthos 

distribution within the sediment. A weak correlation existed between the oxygen penetration 

depth and the sediment temperature. 

8) The photic zone at both the stations was mostly < 10 mm, varing with sediment type, 

photon influx and intense absorption/scattering of light. On an average, a deeper photic zone 

ranging from 4 to 16.5 mm was determined in the coarse sediments as compared to fine 

sediments where it varied from 2.5 to 21.5 mm. 

9) Fine sands tend to develop higher total sediment oxygen consumption rate (TSOC) within 

the sediments ranging from 29.6 to 401.5 /J-mol 02 m-2 h-1 as opposed to the coarse ones 

(19 .2 to 340.6 /J-mol 02 m-2 h -1 ). The 02 fluxes being highest during summer and lowest in 

winter. The higher bioirrigation flux due to meiofauna (Kbio) than the 02 diffusive flux, 

being probably the key factor responsible for increasing 02 consumption rates. 

10) The photosynthetic activity measured with the needle electrode was a factor of 2 higher 

than with a glass electrode, irrespective of the existing duration of the dark period i.e. 3 to 10 

seconds. The longer the dark period, the lesser is the benthic primary production. Thus, the 

gross primary production when measured with steel is underestimated by factor 0.35 ± 0.14 

(n=7) when given I 0 s of dark phase as compared to the glass electrode with 2 s. The 

sheltered locality (fine sediments, low energy window) showed a higher photosynthetic 

activity varying from 0.06 to 18.2 /J-mol 02 cm -3 h-1 and benthic primary production from 

15.3 to 454.3 mg C m-2 h-1 than the exposed station (coarse sediments, high energy window) 

with 0.13 to 16.7 /J-mol 02 cm -3 h-1 and from 38.6 to 284.8 mg C m-2 h-1, respectively. The 
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b~nthic microalgal productivity was found to be 3.2-fold higher than the phytoplankton 

rroductivity. 

Thus, from this study it can be concluded that the microphytobenthos are an important 

contributor to primary production, living at the sediment water interface. They play not only a 

central role in the shallow water ecosystem of the Kiel Fjord but may also help to override the 

existing severe problem of eutrophication in this area. 
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Appendix 

ppendix. Table I: Characteristics of the (daily) averaged meteorological parameters wind 

peed (m s·1), wind direction, sea-level (m) from 00:00AM to 12:00 PM & irradiance (Wm-2) 

from dawn to dusk for the respective sampling days. (Meteorological Department, Institut fur 

Meereskunde, Kiel). Note data with symbols * and ** i.e. values averaged from 06:00 AM to 

12:00 PM*; 08:00AM to !2:00PM** 

Date Wind speed [m/sec] Wind direction Sea-level [m] Irradiance [W m·1] 

30.05.94 4.20 288 0.00 403 
17.06.94 3.88 282 0.16 349 
28.06.94* 1.28 58 0.20 450 
12.07 .94 4.10 138 0.05 485 

28.07.94 2.35 103 0.02 393 

10.08.94** 1.34 249 0.08 354 

30.08.94 2.92 222 -0.13 247 

22.09.94 3.22 326 0.18 142 

12.10.94 2.68 265 -0.18 188 

27. 10.94 5.62 217 -0.09 65 

17.1 1.94 5.18 231 -0.01 85 

18.1 1.94 3.58 295 -0.05 147 

28.1 1.94 3.54 277 0.06 108 

21.12.94 2.83 219 0.12 53 

23 .01.95 7.16 241 -0.16 42 

03.02.95 4.64 205 0.23 127 

17.03.95 8.44 187 -0.23 58 

30.03.95 3.22 280 0.37 400 

18.04.95 6.01 180 0.18 91 

27.04.95 3.92 56 0.31 418 

16.05.95 3.51 250 -0.05 385 

20.06.95 2.86 218 0.06 244 

30.06.95 3.69 280 -0.03 483 

19.07.95 3.91 275 0.03 359 

31.07.95 4.32 62 0.10 446 

- 131 -



Appendix 

Appendix. Table 2: Temperature (0 C), salinity (PSU), porosity values recorded during the 

study at M & T from May 1994 to July 1995 

Date M·c T·c M: PSU T:PSU M [Porosity) M:S.D T [Porosity) T:S .D 
30.05.94 12.60 15.70 10 12 0.38 0.01 0.37 O.ot 
17.06.94 14.90 15.40 10 12 0.38 0.01 0.48 0.03 
28.06.94 16.00 15.20 16 15 0.39 0.01 0.39 0.01 
12.07.94 19.60 20.40 12 12 0.37 0.03 0.46 0.04 
28.07.94 23 .50 23.50 13 12 0.38 0.01 0.44 0.01 
10.08.94 21.20 21.40 11 12 0.38 0.00 0.42 0.01 
30.08.94 16.20 16.00 16 17 0.37 0.02 0.40 0.02 
22.09.94 14.60 14.20 16 16 0.38 0.01 0.48 0.02 
12.10.94 12.1 0 12.70 16 18 0.34 0.04 0.44 0.00 
27.10.94 10.20 10.20 19 20 0.37 0.02 0.45 0.00 
17.11.94 7.60 8.50 18 17 0.38 0.00 0.44 0.01 
28 .11.94 8.00 8.00 15 18 0.39 0.01 0.44 0.01 
21.12.94 6.30 5.60 18 19 0.39 0.00 0.42 0.01 
23 .01.95 3.30 3.00 16 19 0.39 0.02 0.43 0.01 
03.02.95 2.80 3.10 15 14 0.39 0.01 0.42 0.01 
17.03.95 4.20 4.00 18 12 0.38 0.01 0.47 0.03 
30.03.95 3.00 4.20 11 16 0.40 0.01 0.40 0.01 
18.04.95 6.40 6.70 17 12 0.41 0.00 0.45 0.03 
27.04.95 10.20 10.70 15 9 0.43 0.02 0.55 0.04 
16.05.95 12.70 11.70 10 12 0.43 0.04 0.54 0.01 
20.06.95 14.70 14.50 12 13 0.46 0.03 0.54 0.00 
30.06.95 19.00 19.00 10 12 0.47 0.02 0.59 0.03 
19.07.95 18.70 17.60 12 13 0.46 0.02 0.56 0.00 
31.07.95 22.10 22.40 12 10 0.42 0.01 0.47 0.02 

Appendix. Table 3: Mean values of Corg% and C:N measured at M and T from May 1994 to 

July 1995. Note S.D =Standard deviation 

Date M: Corg [%] M: S.D T: Corg [%] T: S.D M: C:N T: C:N 
30.05.94 0.050 0.001 0.941 0.059 7 38 
17.06.94 0.058 0.002 0.131 0.014 4 9 
28.06.94 0.067 0.001 0.060 0.026 9 -
12.07.94 0.043 0.000 0.227 0.029 7 12 
28 .07.94 0.047 0.002 0.230 0.036 - 18 
10.08.94 0.046 0.001 0.225 0.022 9 l3 
30.08.94 0.075 0.000 0.243 0.025 10 16 
22.09.94 0.087 0.006 0.300 0.085 4 25 
12.10.94 0.090 0.003 0.132 0.030 6 -
27.10.94 0.050 0.001 0.135 0.027 4 9 
17.11.94 0.066 0.001 0.197 0.134 10 23 
28.11.94 0.083 0.001 0.118 0.017 4 12 
21.12.94 0.093 0.000 0.164 0.010 - 17 
23.01.95 0.050 0.000 0.143 0.046 - 11 
03 .02.95 0.060 0.000 0.173 0.061 - -
17.03.95 0.073 0.001 0.143 0.023 - 20 
30.03.95 0.050 0.000 0.241 0.046 - 23 
18.04.95 0.103 0.008 0.166 0.028 - 11 
27.04.95 0.050 0.000 0.197 0.027 - lO 
16.05.95 0.110 0.008 0.275 0.047 - 11 
20.06.95 0.093 0.020 0.175 0.014 6 9 
30.06.95 0.076 0.003 0.362 0.078 6 11 
19.07.95 0.062 0.000 0.254 0.028 7 12 
31.07.95 0.094 0.005 0.126 0.054 15 9 
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Date 

30.05 .94 

17 .06.94 
28.06.94 

12.07.94 

28.07.94 

10.08.94 

30.08.94 

22.09.94 

12.10.94 

27.10.94 
18.11.94 
28.11.94 

21.12.94 

23 .01.95 
03 .02.95 

17.03.95 
30.03 .95 
18.04.95 
27.04.95 

16.05.95 

20.06.95 

30.06.95 
19.07 .95 

31.07.95 

Oxygen concentration [IJ.Ml 
water column 

M T 
355 323 
330 312 
329 335 

333 199 

345 268 
328 312 

216 167 

295 247 
312 268 

291 281 
298 269 
322 315 
336 330 
347 339 
378 379 
361 342 
401 406 
352 352 
358 344 

331 324 

341 334 

340 34 1 
284 234 
41 3 265 

Maximum oxygen concentration [J.lMJ and Us depth 
within the sediment [mm] 

M[I.IM] T [IJ.M] M[mm] T[mm] 
480 336 0.5 0 
471 319 2.5 0.5 
330 345 0 0 
332 428 0.5 I 
632 275 2 0.5 
384 769 2 I 
244 199 1.5 1.5 
413 751 1 I 
293 269 2 0 
303 472 0.5 I 
314 278 2 1.5 
379 290 1.5 0 
424 375 1 0.5 
309 325 0 0 
576 425 3.5 4 
419 392 2 I 
407 379 0 0 
416 353 2 0.5 
344 440 0 2 
391 307 0 0 
341 311 0 0 

355 340 0 0 
419 219 4 0.5 
413 270 0 0 

Sediment oxfc zone r- Pholfc ·zone -
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M I T M I 
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Appendix 

Appendix. Table 5: Chlorophyll-a concentration (mean ± s.d) in the different sediment depths 

(0-3, 3-6, 6-9, 9-12 mm) at M and T from May 1994 to July 1995 

Chl-a J,.lgcm·3 0-3 mm J..6mm 6-9mm 9-12mm 

Date M M: s.d M M:s.d M M: s.d M M:s.d 
30.05.94 7.92 0.33 6.77 1.32 8.54 2.20 7.59 I.TI 
17.06.94 6.38 1.08 8.05 2.49 7.51 2.11 8.46 1.29 
28.06.94 7.55 1.61 9.22 0.30 8.24 2.20 9.08 0.11 
12.07.94 5.92 1.33 7.85 0.95 7.70 2.52 6.05 0.33 
28.07.94 7.40 1.07 7.02 0.28 7.81 0.60 7.84 1.05 
10.08.94 5.43 0.07 5.88 0.44 5.75 0.64 5.81 1.44 
30.08.94 8.58 2.63 10.18 0.77 9.28 0.28 8.49 1.27 
22.09.94 7.38 5.97 9.19 0.99 8.43 1.81 7.96 0.57 
12.10.94 8.95 3.17 12.50 4.25 13.17 2.28 12.66 4.88 
27.10.94 4.03 1.11 4.86 0.36 5.10 1.30 4.79 0.78 
17.11.94 11.44 0.35 11.08 0.38 11.83 2.27 12.42 1.81 
28.11.94 8.11 3.08 9.86 1.51 9.22 1.60 10.21 1.42 
21.12.94 7.57 1.33 6.53 0.82 5.46 0.72 6.28 0.25 
23.01.95 5.43 0.82 6.55 0.71 6.48 0.78 6.55 1.74 
03.02.95 5.71 1.24 6.30 0.87 6.49 0.90 5.93 1.07 
17.03.95 2.76 0.55 3.89 0.34 4.16 0.14 3.75 0.63 
30.03.95 1.16 0.36 1.78 0.17 1.38 0.19 1.53 0.19 
18.04.95 0.95 0.22 1.64 0.17 1.62 0.16 1.87 0.29 
27.04.95 3.61 0.42 3.28 0.50 2.99 0.38 2.72 0.70 
16.05.95 5.93 4.80 6.66 3.09 5.37 2.95 4.25 1.33 
20.06.95 9.03 1.17 7.93 9.53 7.00 1.02 6.94 1.09 
30.06.95 6.43 0.48 9.91 0.88 11.62 1.20 11.12 1.32 
19.07.95 6.19 1.51 7.72 0.63 6.98 2.03 7.99 0.34 
31.07.95 6.89 1.51 10.26 1.85 9.71 1.07 10.42 2.14 

Chl-a JJ.g cm·3 0-3 mm 3-6mm 6-9mm 9-12mm 

Date T T:s.d T T:s.d T T:s.d T T:s.d 
30.05.94 12.83 2.58 23.74 5.34 23.94 0.97 22.04 8.66 
17.06.94 8.53 3.08 11.86 2.25 14.17 4.01 20.28 7 .16 

28.06.94 3.33 1.34 3.33 0.19 3.08 1.21 2.80 0.75 

12.07.94 10.38 2.43 13.27 1.53 12.17 2.21 9.17 3.36 

28.07.94 7.54 2.05 12.72 2.80 12.19 0.70 9.91 3.25 

10.08.94 5.74 1.95 9.18 1.62 8.46 1.28 11.64 4.68 

30.08.94 - - - - - - - -
22.09.94 29.07 4.90 26.34 2.16 27.26 6.18 22.77 5.17 

12.10.94 10.30 3.13 14.91 5.52 13.90 3.80 10.82 1.77 

27.10.94 17.40 0.51 16.15 3.70 14.40 2.65 14.04 5.16 

17.11.94 8.32 2.78 13.15 1.17 12.42 2.06 12.31 1.52 

28.11.94 8.01 1.40 9.71 0.96 10.34 0.52 9.57 1.38 

21.12.94 8.71 2.67 13.13 0.88 13.28 1.70 10.77 2.65 

23.01.95 8.03 1.43 9.92 0.17 10.40 2.02 11.03 1.14 

03.02.95 2.06 0.20 2.79 0.45 3.13 1.02 2.67 1.11 

17 .03.95 9.68 3.44 11.53 3.32 9.70 1.70 10.34 1.71 

30.03.95 4.76 1.72 4.17 1.17 3.67 0.99 3.18 1.43 

18.04.95 11.27 1.26 12.77 1.73 10.75 3.33 9.66 3.26 

27.04.95 23.88 3.32 28.72 4.46 22.39 2.92 23.54 2.26 

16.05.95 8.29 5.97 15.04 5.90 11.83 1.41 12.19 5.9 1 

20.06.95 16.77 4.03 17.76 4.22 14.56 1.82 13.94 1.77 

30.06.95 14.22 4.26 17.95 2.38 13.21 3.79 11.39 3.63 

19.07.95 10.08 2.44 13.52 4.32 13 .82 2.76 13.50 3.77 

31.07.95 9.58 1.69 13.58 2.02 15.16 2.94 14.95 3.14 
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Appendix 

· _pendix. Table 6: Average values of microphytobenthos abundance (x 1Q6 cm-3) in the 

erent sediment depths (0-3, 3-6, 6-9 mm) at M and T from May 1994-95 

M [cell counts 10" 61 cm "3] I T [cell counts 10" 61 cm "3] 

Samplina date [0-3mm] [3-6mm] [6-9mml Samplin2date [0-3mm] [3-6mm] [6-9mml 
30.05.94 226 426 509 30.05.94 454 645 421 
17.06.94 68 89 106 17.06.94 100 78 82 
28.06.94 210 292 217 28.06.94 210 292 217 
12 .07.94 42 30 17 12.07.94 96 83 78 

28.07.94 66 72 50 28.07.94 124 69 45 

10 .08.94 53 73 56 10.08.94 84 53 56 
30 .08.94 747 843 783 30.08.94 207 123 147 

22.09.94 285 417 376 22.09.94 2770 2198 2428 

12 .10 .94 240 232 207 12.10.94 994 892 1054 

27 . 10.94 324 474 206 27.10.94 1023 109 1 1757 

28 .1 1.94 85 103 157 28.11.94 297 286 302 

2l.l2 .94 97 . . 21.12.94 276 . . 
23 .01.95 78 . . 23 .01.95 562 . . 
03.02.95 74 . . 03.02.95 127 - . 

17 .03.95 181 305 301 17.03.95 968 854 883 

27 .04.95 226 312 251 27.04.95 3577 4005 2503 

16 .05 .95 1428 1415 1249 16.05.95 2670 3669 3469 
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Appendix 

Appendix. Table 7: List of the microphytobenthos species assemblages in the sediments of 

station M & T from May 1994 to May 1995 

List of the microphytobenthos observed at station M and T 

Achnanthes sp. 

Actinoptychus sp. 

Amphiprora alata 

Amphora sp. (small) 

Amphora sp. (big) 

Atheya decora 

Bacillaria sp. 

Blue greens (Anabeana) 

Biddulphia sp. 

Chaetoceros sp. 

Ciliates 

Cocconeis sp. 

Cylindrotheca sp. 

Cyclottela sp. 

Cymbella sp. 

Diatoma sp. 

Diploneis sp. 

Epithemia sorex 

Eunotia sp. 

Flagellates (i.e. Heterosigma sp. etc) 

Fragilaria sp. 

Gyrosigma sp. 

Licmophora sp. 

Mastogloia sp. 

Melosira sp. 

Merismopedia 

Navicula sp. 

Navicula humerosa 

Nitzschia closterium 

Opephora martyi 

Pinnularia sp. 

Pleurosigma angulatum 

Pleurosigma carinata 

Rhabdonema sp. 

Synedra tabulata 

Tabularia tabulata 

Tetraselmis 
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Appendix 

ndix. Table 8: Microphytobenthos species composition m the (0-3, 3-6, 6-9 mm) 

............... ,ent layers at M from May 1994 to May 1995. (vc: very common, c: common, r: rare) 

n- SI.M: DooaiauolsD. ~Jrrua 3-limm 6-9mm Date Se. M: DomiDanl ~ ~Jmm 3-limm 6-9""" 
Jll.05.94 Chxrooeros r 12.10.94 ChaciOCeros c r 

Coa:oacis c c Coscinodiscus r r 
Cvclocdla r r r Navicula VC VC VC 

Melosin r r ~hon r r r 
Navitul.a c r r Unidentified sp (<I~ YC c r 
D!>e<lbcn r r 27.10.94 Amphora r r r 
Rhabdoocma c c r Fragilaria c c c 
Svncdn c c c Navicula VC YC VC 

17.06..94 Achnanlbes r Opephora c c c 
Biddulphi.a VC r r Ph_}'IQ_fl!geD.aces r c r 
Coc:coneis VC VC c Rhabdonc:ma c c c 
Navitul.a c r r 28.11.94 Amphora biK) VC VC c 
1'\curosiama an~U~atwo c VC c Chactoceros r 
P!eurosiiDl& cariJWa c VC c Navicula YC YC YC 

Tabularia tabulau. r r Niwchia c 
2&.06.94 Amphipnn alala r c r T etrasclmis c r r 

Amobon r r 21.12.94 Ach!WIIbes c 
Navicula VC VC VC Anlp_hora r 
Rhabdonema VC c c Navicula VC 

Plcurositrna antulanlm c VC VC Ph)'IOOageD.ates Q!ecerosigma) r 
12.07.94 Ampbon c VC VC 23.01.95 Fragilaria r 

c ' (Anabaena) c r r Navicula VC 

Licmoobon r r r Opephon r 
Navicula VC VC VC Pll}1<>_fla~D.ates ~reros_i_&lll_a) c 
Rhabdonema VC c 03.02.95 Fragilaria c 
PbY100ateD.ates (Hecerositma) VC r r Navicula VC 

2S.07..94 Aml)bon VC c r ~ c -
Navicula VC c VC Ph)'IOflageD.ates (Hererosigma) c 

IOoeobora r 17.03.95 ChaeiOCerOS VC VC VC 

PbY10Dazellates (Hclerosigma) r r r Eunotia c r r 
Rhabdooema r c r Navicula c c c 

10.08..94 Amobon c c r PhycoflageD.ates{Hererosigma) r r c 
Bocillaria r c c Unidentified ill< IO...l!!!!) r r 
Merismopcdia r 27.04.95 Chaetoceros c c c 
Navicula c c c Licmophora r r r 

Pnxoccnuuru minium VC VC c Navicula YC YC VC 

Slauroneis c c c Opephora r r r 

30.08..94 Amohora r Ph)'IOflageUres _(tlererosi_g_ma) r r r 

Navicula VC VC VC Svnedra r r r 

Prorocenuwn miniwn c r r Tabularia tabu.lata r r r 

Rhabdonema VC c r 16.05.95 Amphiprora alala r c r 

22.09.94 Amohon (small) r r - Am..Jl!lora_jsmall) c c c 

Actinop<ychus senarius c r Chaecoceros r c c 

Navicula VC VC c Navicula VC c VC 

Rhabdonema VC c c Pinnularia r 

Tabularia tabulala r r 
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Appendix 

Appendix. Table 9: Microphytobenthos species composition in the (0-3, 3-6, 6-9 mm) 

sediment layers at T from May 1994 to May 1995. (vc: very common, c: common, r: rare) 

Oak SL T : Domlaant so. ~3 .... ~mm 6-9m• Oak i SL T : Domlnan~. ~3 .... u- '"'-30.05.94 Acluwltbco c c c ll.I0.94 All1(lbcn c VC VC 

All1(lbcn VC c c Melosin r r 
Amplupron alua c c Navicula VC VC VC 
Biddulpbi.l VC VC r Oocohon c r 
Cha<toccros c r Phvtollagcllala i.e.Hctcrosigma sp.) r 
CoccooeiJ r r r StaurooeiJ r r 
Cylindrotbcca so. VC VC VC Tabularia c 
Melosin . r TetrUCimis c 
NaVICula r c r l7.10.94 I All1(lbcn <small> c c c 
NitzJCbia ciOII<:rium VC c c Anabacoa r r 
Tabulw tabulata c r Aagellttes (Permc:ma sp.) c r r 

17.06.94 Achnantbeo r c r Fragilaria c c c 
All1(lbcn r VC r Mascogo~ r r r 
Cbaetoceros c Navicula VC VC VC 

Cil~tes VC c r Oocobon c c c 
Cocconcis r r c Pinnularia r 
Cymbella r r r Unidentified sp.(S·IO jUD) c r r 
Navicula c r r 11.11.94 All1(lbcn c c c 
Pleurosigma angulatum VC c VC Gyrosigma r r 
Plcurosigma carinua VC c VC Navicula VC VC VC 

Phvtoflarellala VC c r NitzJCbia r r r 
Rbabdooc:ma r r c Opcpbora VC c 
Syncdra c r r R.habdoocma c c c 

11.06.94 All1(lbcn VC VC VC StaurooeiJ c 
Biddulpbi.l r r r Unidentified sp.(S-10 jUD) c c c 

IOocpbora c c r 11.11.94 Amphora (small) c 
Navicula VC VC VC Ciliatcs r 
Rbabdooc:ma r Fragilaria c 
Tabularia tabulata c c Mascogloia r 

11.07.94 All1(lbcn VC VC VC Navicula VC 

Navicula VC c VC Phvtoflarellates c 
Coccoocis . r r 13.01.~ Amobon r 
Cy~ndrotbcca so. c c c Phvtollagcllttes i.e . Hctcrosigma sp. c 
Gyrosigma r Navicula VC 

Navicula VC c VC Opcphora c 
Oocohon c c VC 03.01.~ Phvtoflaaellala i.e. Hetcrosiama sp. r 
Phvtollaaellala VC VC VC Fralrilw VC 

Tabularia r r r NavicuJa VC 

11.07.94 Amphipbrora c Qpcphora c 
Amphora VC VC r Phytoflagellata c 
Cyanophyceae VC VC r 17.03.95 1 Amphora (small) c c c 
Mclosin r r r I Amphora (Big) r r r 
Navicula VC VC VC Pbytoflagellates i.e. Hetcrosi•ma sp. VC VC VC 

Qpc:phora c c 1 Fraeilaria c c c 
Phytoflaaellatcs VC VC r l Savicula VC VC VC 

Pinnulilria sp. VC c VC ~ TJbularia r r r 
Stauroncis c c r 27.04.95 1 Amohiorora alata c c c 
Tabularia c r c Atheya decora c r r 

10.08.94 Ampbiprora sp c VC VC Amphora so (big) r r r 
Amj)hora {big & small) VC r r Diatoma c r c 
Cocconeis r r Diplonies c c c 
Melosin. r r r Eunotia r c r 
Navicula bumcrosa r r r Epithcmia sorcx c c 
Navicula VC VC VC Gvrosigma r r 
Opc:phora r r r Licmoohora r r 
Pleurosigma r r r Ptnnularia 
Slauroneis c r Pbytoflagcllatcs i.e. Hetcrosigma sp. VC VC VC 

30.08.94 Amohillfora VC VC r . savlcula c c r 
Amphora VC VC VC 1 ~ilZschia closterium VC VC c 
Cocconeis r Tabularia r r c 
Cyanophyceoe (Anabaena) VC c 16.05.~ Amphora (small VC VC VC 

Cylindrotbcca sp. c r r .~bora so (biR: r r r 
Fragilaria VC Biddulpbia r c r 
Mclosira r Eoithcmia sorcx c c 
Mcrismopcdia r r r Cvlindrotbcca so. VC c c 
Navicula c c c Gvrosigma r r r 
Navicula humerosa r r Pinnularia r r r 
Nitzschia VC r c I Pbytoflagelltcs r r r 
Opcphora VC c r !Navicula r c c 
Phytoflagellatcs c r I :>itzscbia clostcrium VC c VC 

Telr.lSCimis VC c 1 Cyanophyceae r r r 
Tabularia tubulata r r Cycloucla r r r 

21.09.94 Achnanthcs r Cvmbclla r r c 
Amphora c VC c 
Cvanoohvceae (Aoabacna) VC c c 
Ma.stoaloia c r 
Mcrismooedia c r r 
Navicula VC VC VC 

Nitzsch.ia r r 
Qpc:phora r r 
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Appendix. Table 10: Mean values of primary production (mg C m-2 h-1), Oxygen uptake 

(~t.mol m-2 h-1) and C:Chl-a ratio measured at M & T from May 1994 to July 1995 

mg Cm "1 h ., )lmol m ·l h 4 C/Chl-a 

Date M T M T M T 
30.05.94 45 15 83.8 91.7 40 287 

17.06.94 157 91 52.4 123.4 54 64 

28.06.94 58 77 66.0 78.5 45 101 

12.07.94 66 215 78.5 182.9 36 103 

28.07.94 205 88 91.1 181.2 43 122 

10.08.94 80 93 91.8 140.3 48 454 

30.08.94 41 32 36.3 45.9 51 -
22.09.94 62 45 57.8 152.9 69 60 

12.10.94 38 42 73.3 104.8 52 60 

27.10.94 77 51 77.1 86.3 74 54 

17.11.94 89 71 34.3 58.9 36 83 

28.11.94 64 96 39.3 75.1 57 98 

21.12.94 224 72 19.2 76.6 87 85 

23.01.95 285 117 32.0 49.3 51 86 

03.02.95 248 369 40.3 29.6 63 430 

17.03.95 132 454 34.6 53.5 127 79 

30.03.95 176 165 24.1 35.3 226 371 

18.04.95 58 169 65.9 83.8 490 83 

27.04.95 214 188 114.7 120.0 88 36 

16.05.95 127 151 62.6 153.8 113 117 

20.06.95 55 55 106.0 239.4 69 57 

30.06.95 57 57 340.6 401.5 47 Ill 

19.07.95 119 43 75.9 159.0 51 98 

31.07.95 75 69 112.7 176.4 67 56 
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The GEOMAR seal portrays: 
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