CORRECTION

Correction: Population structure and connectivity in Indo-Pacific deep-sea mussels of the *Bathymodiolus septemdierum* complex

Corinna Breusing¹ · Shannon B. Johnson² · Verena Tunnicliffe³ · Robert C. Vrijenhoek²

© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Correction to: Conserv Genet (2015) 16:1415–1430 https://doi.org/10.1007/s10592-015-0750-0

The labels for the two Indian Ocean populations Kairei (KA) and Edmond (ED) are switched in the article because of an erroneous database entry that incorrectly linked the dive numbers with the two populations. This error does not affect the analyses, findings or conclusions of the manuscript, but will need to be corrected for an accurate representation of the data.

In Table 1 of this article, the data in the row 'Kairei' headed 'Dive No.^b & Samples' were mistakenly listed under the row 'Edmond' and vice versa. The Table 1 should have appeared as shown below.

The original article can be found online at https://doi.org/10.1007/s10592-015-0750-0.

Corinna Breusing cbreusing@geomar.de

- ¹ Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
- ² Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
- ³ University of Victoria, PO Box 1700, Victoria, BC V8W 3Y3, Canada

Table 1Bathymodiolusseptemdierum complexsampling localities

Locality ^a	Abbr	Latitude	Longitude	Depth (m)	Dive No. ^b	Samples	Preserved
Central Indian Ridge ¹	CIR						
Kairei	KA	25° 19.2′ S	70° 02.4' E	2415-2460	J1:296	29	Frozen
Edmond	ED	23° 52.7′ S	69° 35.8' E	3290-3320	J1:301	30	Frozen
Mariana Basin/Arc ^{2,3}	MA						
NW Eifuku	EF	21° 29.4' N	144° 2.4′ E	1535	R:792–793 J2:197	7	Ethanol
Mariana Trough	MT	18° 12.8′ N	144° 42.4' E	3589	S:140–188	6	Frozen
Vanuatu	VA						
Nifonea	NF	18° 8.0' S	169° 31.0' E	1900	So:229	30	Ethanol
North Fiji Basin ^{2,4}	NFB						
White Lady	WL	16° 59.5′ S	173° 54.9′ E	1989–1992	J2:149	30	Frozen
Lau Basin ^{2,4}	LB						
Kilo Moana	KM	20° 3.2′ S	176° 8.0' W	2612-2622	J2:140-141	29	Frozen
Tow Cam	TC	20° 19.1' S	176° 8.3' W	2714	J2:142	28	Frozen
Tui Malila	TM	21° 59.4' S	176° 34.1' W	1845-1900	J2:144	29	Frozen
Hine Hina	HH	22° 32.3′ S	176° 43.0' W	1807–1819	J2:145	23	Frozen

^aMorphotype occurrences according to ChEssBase/GBIF, Won et al. (2008), Desbruyères et al. (2006) and Van Dover et al. (2001): (1) *marisindicus*, (2) *brevior*, (3) *septemdierum*, (4) *elongatus* ^bSubmersibles/ship: J1=Jason I, J2=Jason II, S=Shinkai 6500, R=Ropos, So=RV Sonne

The column labels for Kairei (KA) and Edmond (ED) should be switched in Fig. 4, Tables 4 and 5, and Supplementary Tables S6, S7 and S8.

Fig. 4 STRUCTURE analysis. *Bar* plots showing the clustering of individuals based on K = 2 and **a** all polymorphic markers (*Cat, Col-1, EF1a, H3, Mpi, Gpi*, concatenated mtDNA) and **b** only neutral polymorphic markers (*Cat, EF1a, Mpi, Gpi*). Each *vertical line* represents one mussel

sampled at the respective location, where numbers on the *left* indicate the genetic content an individual inherits from each cluster. *KA* Kairei, *ED* Edmond, *KM* Kilo Moana, *TC* Tow Cam, *TM* Tui Malila, *HH* Hine Hina, *WL* White Lady, *MT* Mariana Trough, *NF* Nifonea

Table 4 Pairwise Φ_{ST} for mtDNA (above diagonal) and nDNA (below diagonal)

	ED	KA	KM	TC	ТМ	НН	WL	MT	NF
ED	*	0.01502	0.65473	0.66734	0.66641	0.64439	0.65503	0.59349	0.63770
KA	- 0.02380	*	0.57333	0.58706	0.58383	0.54831	0.57297	0.48429	0.55500
KM	0.25756	0.21985	*	0.00091	0.08238	- 0.02430	- 0.00013	0.04091	- 0.00388
TC	0.31339	0.28062	- 0.02909	*	0.03609	-0.05480	- 0.01956	0.07785	0.00586
TM	0.30667	0.24914	0.00048	- 0.04595	*	0.02564	0.02748	0.21500	0.10767
HH	0.04646	- 0.10351	0.04270	- 0.08689	0.10600	*	0.00089	0.10494	0.01792
WL	0.24698	0.20816	- 0.01156	0.01611	- 0.00217	- 0.01906	*	0.06220	0.01787
MT	0.30366	0.30933	0.00785	0.03818	0.02990	- 0.10352	0.03231	*	0.01465
NF	0.17413	0.13559	0.03839	0.05039	0.04078	- 0.03982	0.02506	0.04588	*

Bold values indicate significant differences after BY FDR correction

KA Kairei, ED Edmond, KM Kilo Moana, TC Tow Cam, TM Tui Malila, HH Hine Hina, WL White Lady, MT Mariana Trough, NF Nifonea

Table 5 Pairwise $F_{ST}s$ for the two most polymorphic allozyme loci Mpi and Gpi

	ED	KA	KM	TC	TM	HH	WL	MT
ED	*							
KA	0.03161	*						
KM	0.01263	- 0.00092	*					
TC	- 0.00928	0.00887	0.00633	*				
ТМ	- 0.01326	0.04416	0.01900	- 0.00693	*			
HH	0.04469	0.15475	0.12619	0.07243	0.05062	*		
WL	- 0.00209	0.06301	0.04272	0.01261	0.00415	0.00286	*	
MT	0.00812	0.12836	0.07762	0.03842	0.00742	- 0.03710	- 0.01861	*

Bold values indicate significant differences after BY FDR correction

KA Kairei, ED Edmond, KM Kilo Moana, TC Tow Cam, TM Tui Malila, HH Hine Hina, WL White Lady, MT Mariana Trough, NF Nifonea

In the results section, the term 'KM-HH' should have read 'KA-HH' and the sentence should have been 'Pairwise FSTs based on the allozyme loci Mpi and Gpi were not significant with the exception of the KA-HH (FST = 0.1548), KM-HH (FST = 0.1262) and TC-HH (FST = 0.0724) comparisons (Table 5)'.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10592-024-01633-7.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.