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Abstract Dissolved organic nitrogen (DON) and phosphorus (DOP) represent themost abundant formof their
respective nutrient pool in the surface layer of the oligotrophic oceans and play an important role in nutrient
cycling and productivity. Since DOP is generally more labile than DON, it provides additional P that may stimulate
growth of nitrogen-fixing diazotrophs that supply fixed nitrogen to balance denitrification in the ocean. In this
study, we introduce semirecalcitrant components of DON and DOP as state variables in an existing global
ocean-atmosphere-sea ice-biogeochemistry model of intermediate complexity to assess their impact on the
spatial distribution of nitrogen fixation and the size of the marine fixed nitrogen inventory. Large-scale
surface data sets of global DON and Atlantic Ocean DOP are used to constrain the model. Our simulations
suggest that both preferential DOP remineralization and phytoplankton DOP uptake are important
“non-Redfield” processes (i.e., deviate from molar N:P = 16) that need to be accounted for to explain the
observed patterns of DOP. Additional non-Redfield DOP sensitivity experiments testing dissolved organic
matter (DOM) production rate uncertainties that best reproduce the observed spatial patterns of DON
and DOP stimulate additional nitrogen fixation that increases the size of the global marine fixed nitrogen
inventory by 4.7± 1.7% compared to the simulation assuming Redfield DOM stoichiometry that underestimates
the observed nitrogen inventory. The extra 8 Tg yr�1 of nitrogen fixation stimulated in the Atlantic Ocean is
mainly responsible for this increase due to its large spatial separation from water column denitrification,
which buffers any potential nitrogen surplus in the Pacific Ocean. Our study suggests that the marine fixed
nitrogen budget is sensitive to non-Redfield DOP dynamics because access to the relatively labile DOP pool
expands the ecological niche for nitrogen-fixing diazotrophs.

1. Introduction

Fixed nitrogen (fixed N) is one of the major limiting nutrients that often limits biological production in the
surface ocean and subsequent export production of carbon into the ocean interior. The predominant
source and sink terms of the preindustrial marine fixed-N budget are nitrogen fixation (N2 fixation) and
denitrification (including anammox), respectively [Gruber, 2008]. Denitrification occurs in suboxic zones
(O2<~5μm) in the water column and sediments when nitrate (NO3) replaces O2 as the electron acceptor
during respiration of organic matter and is reduced to dinitrogen gas (N2) [Codispoti et al., 2001], which is
not available for uptake by ordinary phytoplankton. Fixed N is supplied to the ocean by N2-fixing
diazotrophs, specialized phytoplankton that utilizes N2 for growth [Karl et al., 2002].

Spatial patterns and rates of N2 fixation remain difficult to quantitatively constrain. Some previous methodologies
used to historicallymeasure N2 fixation have been found to underestimate N2 fixation by a factor of ~2 [Mohr et al.,
2010; Großkopf et al., 2012]. Since N2 fixation requires more energy than consumption of fixed N [Großkopf and
Laroche, 2012] and contains a higher structural iron requirement [Kustka et al., 2003], it is generally thought that
diazotrophs’ ecological niche will be the oligotrophic ocean where fixed N is sparse, but phosphorus and iron
are still available [e.g., Mills et al., 2004; Monteiro et al., 2011; Weber and Deutsch, 2014]. Luo et al. [2012] presents
a global compilation of N2-fixation measurements that show high rates in these tropical regions with high
atmospheric iron deposition (e.g., North Atlantic and western Pacific). However, the relative importance of
phosphorus versus iron limitation is difficult to assess with the limited information on dissolved organic
phosphorus, bioavailable iron distributions and elemental stoichiometry of various diazotroph communities.

SOMES AND OSCHLIES NON-REDFIELD DOP CYCLING AND N2 FIXATION 973

PUBLICATIONS
Global Biogeochemical Cycles

RESEARCH ARTICLE
10.1002/2014GB005050

Key Points:
• Large-scale data sets of DON and DOP
constrain the global model

• Preferential DOP remineralization and
uptake stimulate significant N2 fixation

• The marine fixed nitrogen inventory
increases due to non-Redfield
DOP cycling

Correspondence to:
C. J. Somes,
csomes@geomar.de

Citation:
Somes, C. J., and A. Oschlies (2015), On
the influence of “non-Redfield” dissolved
organic nutrient dynamics on the spatial
distribution of N2 fixation and the size of
the marine fixed nitrogen inventory,
Global Biogeochem. Cycles, 29, 973–993,
doi:10.1002/2014GB005050.

Received 2 DEC 2014
Accepted 19 MAY 2015
Accepted article online 25 MAY 2015
Published online 14 JUL 2015

©2015. American Geophysical Union.
All Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9224
http://dx.doi.org/10.1002/2014GB005050
http://dx.doi.org/10.1002/2014GB005050


In the oligotrophic ocean where N2 fixation is abundant, dissolved organic matter (DOM) represents the
largest pools of nitrogen and phosphorus [Karl and Björkman, 2002; Berman and Bronk, 2003; Sohm and
Capone, 2010]. Since dissolved organic phosphorus (DOP) is generally more labile than dissolved organic
nitrogen (DON) [Vidal et al., 1999, 2003; Karl et al., 2001; Church et al., 2002], DOP may relieve P limitation
for phytoplankton. Preferential DOP remineralization by heterotrophic bacteria has been suggested to
create an ecological niche for N2-fixing diazotrophs by releasing additional P [Wu, 2000; Mather et al., 2008;
Monteiro and Follows, 2012]. Some diazotrophs also have the capability to directly consume DOP that
could further increase N2 fixation in the ocean [Cotner and Wetzel, 1992; Dyhrman et al., 2006; Sohm and
Capone, 2006]. These “non-Redfield” DON:DOP dynamics (i.e., deviating from canonical molar ratios N:P=16:1
[Redfield, 1958]) could thus impact N2 fixation, the marine fixed-N inventory, and productivity.

The current generation of global climate-biogeochemical models in the Coupled Model Intercomparison
Project (CMIP, http://cmip-pcmdi.llnl.gov/) used in future projection scenarios by the Intergovernmental
Panel on Climate Change (IPCC, http://www.ipcc.ch/) [e.g., Aumont et al., 2003; Krishnamurthy et al., 2009;
Ilyina et al., 2013] typically include one semirecalcitrant pool of DOC, DON, and DOP that are produced and
remineralized with constant stoichiometry near the canonical Redfield ratio. In the real ocean, DOP is more
labile than DOC and DON, resulting in stoichiometries above the canonical Redfield ratio [e.g., Clark et al.,
1998; Church et al., 2002; Vidal et al., 2003]. Therefore, these previous simple Redfield DOM schemes often
produce DOP concentrations that are above observed concentrations. Since it is not standard practice to
validate DOM cycling in global climate-biogeochemical models, the impacts from this stoichiometric
model bias in projections of future climate scenarios are often overlooked. This may lead to deficiencies in
surface nutrient cycling, and N2 fixation, and marine productivity.

Global ocean-biogeochemical models that have accounted for non-Redfield DOP dynamics generally show
enhanced N2 fixation in the oligotrophic ocean gyres, but estimating the amount of extra N2 fixation
remains uncertain. For example, Deutsch et al. [2007] estimate only an ~5% increase in global N2 fixation
due to DOP* dynamics and still suggest a tight coupling between N2 fixation and denitrification in the
Pacific, although relying on DON and DOP observations mainly in the eastern subtropical North Pacific
[Abell et al., 2000]. Whereas Monteiro and Follows [2012] suggest preferential DOP remineralization may
result in up to a factor of 3 increase to N2 fixation in the North Atlantic. More recently, a data assimilation
study analyzing a new global compilation of DOM stoichiometry suggests that diazotroph DOP uptake may
stimulate an additional >~20% global N2 fixation, occurring primarily in the North Atlantic and western
Pacific [Letscher et al., 2015].

The global model of Landolfi et al. [2013], which includes a dynamic N2-fixation-denitrification feedback,
suggests that a large spatial separation of N2 fixation and denitrification is required to maintain observed
marine fixed-N inventory. Since denitrification consumes ~7mol inorganic N for each mole of respired
organic N [Richards, 1965; Paulmier et al., 2009], newly fixed organic N that respires via denitrification will
cause net loss to the fixed-N inventory. According to their model simulations, DOP uptake by diazotrophs
in the tropical/subtropical gyres is an important factor to stimulate N2 fixation far away from denitrification
zones to balance the marine fixed-N inventory.

In this this study, we implement a slightly more complex DOM scheme than most previous studies by
including DON and DOP as separate state variables to quantify the importance of non-Redfield DOM
cycling in our global ocean-biogeochemical model. Large-scale data sets of DON and DOP are used
to constrain sensitivity experiments that test the impact of preferential DOP remineralization and
phytoplankton (including diazotrophs) DOP uptake on surface nutrient cycling, the spatial distribution of
N2 fixation, and the size of the marine fixed-N inventory.

2. Model Description

The model used here is a global coupled ocean-atmosphere-sea ice-biogeochemical model of intermediate
complexity based on the University of Victoria Earth System Climate Model [Weaver et al., 2001] using the
physical configuration and improvements to the marine ecosystem component outlined in Keller et al.
[2012]. Additionally, we include an equatorial isopycnal mixing scheme [Getzlaff and Dietze, 2013] and a
benthic denitrification model [Bohlen et al., 2012]. Each model simulation is forced for over 6000 years with
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constant preindustrial boundary conditions (insolation, atmospheric CO2, ice sheets, andmonthly climatological
winds [see Eby et al., 2009]) until a seasonally cycling steady state is achieved. A technical description of the
model is located in Appendix A, and a brief overview is provided below.

2.1. Physical Model

The physical ocean-atmosphere-sea ice model includes a three-dimensional (1.8 × 3.6°, 19 vertical levels)
general circulation model of the ocean (Modular Ocean Model 2) with parameterizations such as diffusive
mixing along and across isopycnals, eddy-induced tracer advection [Gent and McWilliams, 1990], computation
of tidally induced diapycnal mixing over rough topography [Simmons et al., 2004], and an anisotropic viscosity
scheme [Large et al., 2001] to better resolve zonal equatorial currents. This new model version also includes an
anisotropic equatorial isopycnal mixing scheme to account for deep zonal equatorial jets that are not resolved
by the model [Getzlaff and Dietze, 2013]. A two-dimensional, single-level energy-moisture balance atmosphere
and a dynamic-thermodynamic sea ice model are used, forced with prescribed monthly climatological winds
[Kalnay et al., 1996] and ice sheets [Peltier, 2004].

2.2. Marine Ecosystem-Biogeochemical Model

The marine ecosystem-biogeochemical component is based on Keller et al. [2012]. The state variables include
two phytoplankton classes, N2-fixing diazotrophs (PD) and ordinary phytoplankton (PO), zooplankton (Z),
particulate detritus (D), nitrate (NO3), phosphate (PO4), dissolved oxygen (O2), dissolved organic nitrogen
(DON), and dissolved organic phosphorus (DOP) (Figure 1). Additional tracers include dissolved inorganic
carbon (DIC) and 14C to constrain the carbon cycle and large-scale circulation (Figure A1). The model is run
under a constant preindustrial atmospheric CO2 concentration so there is no feedback between ocean
carbonate chemistry on atmospheric CO2 and climate in this study. Since DIC is not considered as a limiting
nutrient in our model, its distribution will not affect phytoplankton growth in our preindustrial steady state
simulations so we pragmatically assume a fixed C:N ratio of 6.625 for both particulate and dissolved organic

Figure 1. Schematic of the different compartments of the marine ecosystem-biogeochemical model and their interactions.
See text section 2.2 for further description.
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matter consistent with previous model versions. Given that oceanic DOC:DON ratios are typically higher, the
modeled DOC concentrations will generally be underestimates. However, this does not have impacts on any
other model variables in our simulations that are forced with fixed preindustrial atmospheric CO2. Iron
limitation of both phytoplankton classes is calculated as in Keller et al. [2012] using prescribed monthly mean
dissolved iron concentrations estimated from the BLING model [Galbraith et al., 2010] (Figure A2).
2.2.1. N2 Fixation
Diazotrophs grow according to the same principles as the ordinary phytoplankton class in the model, but we
account for their different characteristics as follows. N2 fixation is energetically more costly than assimilating
NO3 because the strong triple-N bond must be broken down and extra respiration is required to keep the
N2-fixing compartment anoxic since O2 inhibits the expression of the N2-fixing nifH gene [Großkopf and
Laroche, 2012]. Therefore, the growth rate of diazotrophs is reduced compared to ordinary phytoplankton
by a handicap factor ( hPD ¼ 0:08; Table A1) to achieve measured growth rates consistent with culture
experiments [Breitbarth et al., 2007]. While the previous model version [Keller et al., 2012] set diazotroph
growth rates to zero below 15°C, we now allow them to grow at low rates in colder waters, following culture
experiments [Pandey et al., 2004; Le Quéré et al., 2005].

Diazotrophs have noN limitation but are limited by Pand Fe in themodel. Thus, they can outcompete ordinary
phytoplankton in surfacewaters that aredepleted inNO3but still contain sufficient PandFe (i.e.,waterwith low
NO3:PO4 from denitrification and high iron from atmospheric deposition). They will consume NO3 when it is
not limiting growth in the model, consistent with culture experiments [Mulholland et al., 2001; Holl and
Montoya, 2005]. Zooplankton grazing preference of diazotrophs is also reduced relative to the ordinary
phytoplankton class to account for lower grazing on diazotrophs versus other phytoplankton (Table A1)
[O’Neil, 1999]. Since diazotrophs are observed to have higher N:P ratios than the Redfield ratio [Letelier and
Karl, 1998; Sanudo-Wilhelmy et al., 2001], diazotroph N:P is increased to 28:1, and the excess N upon grazing
and mortality of diazotrophs is routed to NO3, while the zooplankton and detritus N:P remain at 16:1 (Table A1).
Given the large range of uncertainty in some parameters, we conducted parameter sensitivity experiments
(e.g., mortality rate, Fe uptake half saturation and grazing preference) and chose values that best reproduce
patterns of N2-fixation measurements [Luo et al., 2012] and biogeochemical indicators of N2 fixation (e.g.,
N* =NO3� 16PO4, δ

15N [see Somes et al., 2010a, 2013]).
2.2.2. Denitrification
Water column denitrification (wc-denitrification) occurs when organic matter is respired in suboxic zones.
We use a threshold of 3 μm O2 that sets where respiration of organic matter occurs equally between
wc-denitrification and aerobic respiration. Further below (above) this threshold, a greater fraction of
wc-denitrification (aerobic respiration) occurs. Note that complete aerobic respiration occurs above 7μm O2

(equation (A11)). The threshold value of 3μm O2 is slightly lower than previous model versions that used
5μm O2 because historical measurement techniques overestimated O2 concentrations in suboxic zones
[Codispoti and Christensen, 1985; Bianchi et al., 2012]. This lower threshold decreases the simulated global
wc-denitrification rate by ~20%. NO3 never becomes fully depleted in suboxic zones in this model version
due in part to this lower O2 threshold, but mainly as a result of improved equatorial circulation dynamics
from the anisotropic zonal isopycnal mixing parameterization [Getzlaff and Dietze, 2013], which results in
simulated global volume of the suboxic zones within the observational uncertainty (Table 3). Therefore, we are
able to use a lower wc-denitrification reduction NO3 threshold of 3μm compared to Somes et al. [2013] that
used values a high as 32μm. Note that NO3 is never consumed to 3μm in suboxic zones of the model
simulationspresentedhereand thus theNO3 thresholdhasno impacton thewc-denitrification rates in this study.

Anammox is also removing dissolved inorganic N in these areas of low-oxygen and high-organic matter
recycling [Thamdrup and Dalsgaard, 2002]. Although the exact partitioning between wc-denitrification and
anammox is not well known, anammox likely depends on nitrate reduction (NO3→NO2), the first step of
wc-denitrification, to supply sufficient nitrite that typically exists in low concentrations [Lam et al., 2009]. It
has been found that the ultimate driver for N loss in suboxic zones is organic matter respiration [Kalvelage
et al., 2013] and whether the N-loss process occurs as anammox or denitrification has little consequence
on the net biogeochemical system [Koeve and Kähler, 2010]. Since our model does not differentiate
between different species of dissolved inorganic nitrogen, this wc-denitrification parameterization is
designed to capture total fixed-N loss from wc-denitrification and anammox.
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Benthic denitrification (ben-denitrification) is included using a empirical function deduced from benthic flux
measurements [Bohlen et al., 2012]. This function estimates benthic denitrification from organic carbon rain rate
into the sediments and bottom water O2 and NO3 concentrations (equation (A12)). It provides an efficient
alternative to coupling a full sediment model that would significantly increase computational costs. Note that
all organic matter instantaneously remineralizes in the bottom water when it reaches the seafloor. NO3 is then
removed from the bottom water according to this ben-denitrification function. We also include a subgrid-scale
bathymetry mask within this ben-denitrification scheme to account for shallow continental shelves and other
topographical features that are not fully resolved in the model’s coarse-resolution grid [see Somes et al., 2010b].

2.3. Dissolved Organic Matter Model Configuration

We implement semirecalcitrant dissolved organic matter pools of phosphorus (SR-DOP) and nitrogen
(SR-DON) into the model. This SR-DOM scheme adds two new state variables to the model, DOP and DON
(Figure 1), and indirectly accounts for DOC by assuming it is produced and remineralized at the C:N ratio
of 6.625 relative to DON. While bulk DOM is commonly observed to contain higher C:N ratios [e.g., Church
et al., 2002; Sannigrahi et al., 2005], the semirecalcitrant DOC:DON pool is estimated to be 7.5 in the
euphotic zone [Letscher et al., 2015]. Here we force the model with constant preindustrial atmospheric CO2

that makes climate-carbon-biogeochemical feedback inactive. Since DIC is not a limiting nutrient in the
model, its distribution will not affect biological production in the preindustrial steady state simulations so
we pragmatically chose a DOC:DON ratio consistent with the other organic matter variables, but note that
a more realistic ratio should be used in climate change simulations.

SR-DOM is produced from a constant fraction (σ1DOM) of the ordinary phytoplankton mortality rate and
the microbial fast-recycling loop (σ2DOM) in the model (Table 1), with the elemental stoichiometry of
phytoplankton (molar RN:P = 16; Table A1). We assume that other processes that contribute to the labile
DOM pool (e.g., excretion) are recycled on shorter time scales. Since this labile DON and DOP pools can be
consumed by phytoplankton [Dyhrman et al., 2006; Bronk et al., 2007], we route this labile DOM directly
into inorganic nutrients to save computation costs of explicitly including additional DOM state variables
following Schmittner et al. [2005].

Recalcitrant DON and DOP that remain in the deep ocean longer than the time scale of the large-scale ocean
circulation (>~1000 years) are not accounted for in the model because of its uncertain removal mechanisms
and its low concentrations in the deep Pacific where this pool accounts for the majority of the total DOM. For
example, Clark et al. [1998] report DON and DOP concentrations of 0.45μm and 0.015μm, respectively, at
4000m in the tropical South Pacific. Letscher et al. [2015] compile a global DOM database and report
average recalcitrant DON and DOP concentrations of 1.8μm and 0.03μm, respectively. They estimate that
only ~1% of total DOM produced is recalcitrant, and it remineralizes according to Redfield stoichiometry in
the surface ocean due to photooxidation, which suggest that it will not play a significant role in non-
Redfield nutrient cycling in the surface ocean. Since it is currently unclear which fraction of different
recycling processes contribute to the labile, semirecalcitrant, recalcitrant, and ultrarecalcitrant DOM pools
[see Hansell, 2013], we chose to implement a relatively simple SR-DOM scheme and test different
production and remineralization rates of the SR-DOP and SR-DON pools.

Large variability of DOMobservations throughout the oceansmakes setting the initial DOP andDON conditions
uncertain. Observations of DOP range from 0.1 to 0.4 and 0.015 to 0.15μm in the surface ocean and deep

Table 1. DOM Model Experiment Parametersa

Experiment Number Experiment Name σ1DOM σ2DOM λ0DOP (yr
�1) λ0DON (yr�1) hDOP

1 RedDOM 0.1 0 0.00342 0.00342 0
2 pref_DOP_remin 0.1 0 0.00684 0.00342 0
3 nonRedDOP 0.1 0 0.00684 0.00342 0.4
4 low_nonRedDOP 0.075 0 0.00684 0.00342 0.4
5 high_nonRedDOP 0.125 0 0.00684 0.00342 0.4
6 fast_nonRedDOP 0.1 0.16 0.0684 0.0342 0.4

aFraction of phytoplankton mortality routed to DOM (σ1DOM), fraction of microbial fast-recycling routed to DOM
(σ2DOM), SR-DOM remineralization rate at 0°C (λ0), and DOP uptake growth rate handicap factor (hDOP).

Global Biogeochemical Cycles 10.1002/2014GB005050

SOMES AND OSCHLIES NON-REDFIELD DOP CYCLING AND N2 FIXATION 977



ocean, respectively [Clark et al., 1998; Benner, 2002]. We account only for SR-DOM in the model so the model
was initialized using low-end DOP values of 0.1, 0.025, and 0.005μm in the surface (0–130m), intermediate
(130–1000m), and deep ocean (1000–6000m), respectively. While total phosphorus is conserved in the
model, the model’s dynamic fixed-N cycle with N2 fixation and denitrification will reach its own equilibrium
state based on the parameters and phosphorus inventory. The SR-DON pool is initialized with values of 4.8,
1.2, and 0.24μm in the surface, intermediate, and deep ocean, respectively. Provided that for a given
phosphorus inventory and set of model parameters and equations only a single steady state solution exists,
for which we could not find any contradictory evidence, the initial SR-DON conditions only determine how
long it takes for the model to reach steady state but does not affect the steady state solution.
2.3.1. Redfield DOM
In the baseline experiment #1 (RedDOM), both production and remineralization of DOM occur at the
Redfield N:P = 16 ratio. Remineralization rate (λ) of DOM is temperature (T) dependent, λ= λ0 × exp(T/Tb),
with the same e-folding temperature as in the remineralization rate for sinking detrital matter
(Tb= 15.56°C). We chose a remineralization rate following Letscher et al. [2013], who compiled available
DON observations and suggest that the majority of the surface DON is recalcitrant and must subduct
before it can be remineralized to inorganic nitrogen. In our coupled ocean circulation-biogeochemical
model that applies a temperature-dependent DOM remineralization at all locations, this is achieved with a
rate λ0=0.00684 yr�1 at 0°C (146 year lifetime) (Table 1) that increases to λ= 0.045 yr�1 (22 year lifetime)
at 30°C. This is longer than the 15 year surface semilabile DON lifetime estimated by Letscher et al.
[2015], which suggests that our simulated SR-DON contains a slightly more refractory component of
total DON compared to that study. This temperature-dependent SR-DOM remineralization rate allows
most of the surface SR-DON to subduct below the euphotic zone but completely remineralizes before
it reaches the deep North Pacific that is composed mainly of recalcitrant DOM (Figure 2). The DOM
production factor was chosen to produce DON concentrations that remain lower than total observed
concentration (Figure 3) because our model only simulates the semirecalcitrant fraction of the total
DOM pool.
2.3.2. Non-Redfield DOP
Experiment #2 (pref_DOP_remin) was designed to test the importance of preferential DOP remineralization
[Vidal et al., 1999, 2003;Wu, 2000] on N2 fixation by increasing the remineralization rate of SR-DOP (λ0DOP) by
a factor of 2 relative to SR-DON (Table 1). Experiment #3 (nonRedDOP) introduces the ability for both ordinary
phytoplankton and diazotrophs to consume DOP, consistent with observations [Cotner and Wetzel, 1992;
Dyhrman et al., 2006; Martiny et al., 2006; Sohm and Capone, 2006], together with preferential DOP
remineralization (Table 1). Since converting DOP to biomass requires more energy than PO4 [Moore et al.,
2005], we apply an additional handicap for DOP uptake by lowering their growth rates by a factor of 0.4 in
the simulation nonRedDOP (Table 1). Both phytoplankton classes will consume the form of P that allows
them to grow most efficiently (equations (A1) and (A2)). The effect of phytoplankton DOP uptake alone
can be evaluated by comparing experiment #3 (nonRedDOP) with experiment #2 (pref_DOP_remin).
2.3.3. Non-Redfield DOP Production/Remineralization Sensitivity
Additional non-Redfield DOP experiments (#4–6) were designed to test the sensitivity to DOM production
and remineralization rates (Table 1). Experiments #4 and #5 change the DOM production factor by �25%
(low_nonRedDOP) and +25% (high_nonRedDOP), respectively. In our final fast-recycling experiment #6,
the remineralization rate of DOM is increased by an order of magnitude to test the impacts of simulating a
more labile pool of DOM (fast_nonRedDOP). Since this DOM remineralizes much faster, we include higher
production rates by directing organic matter from the fast-recycling microbial loop parameterization to
achieve similar surface concentrations in the tropical ocean as in experiment #3 nonRedDOP (Table 2).

3. Results and Discussion
3.1. DOM Evaluation
3.1.1. Observational Data Sets
Because we include non-Redfield DOM dynamics, we evaluate DOP and DON with separate data sets. We use
a database of DON that covers the global surface ocean [Letscher et al., 2013] to constrain DON cycling in the
model. The data were collected on numerous cruises throughout all seasons as part of the U.S. Global Ocean
Carbon and Repeat Hydrography program (http://ushydro.ucsd.edu/). However, few locations contain data
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Figure 2. Annual zonally averaged semirecalcitrant (SR) DON and SR-DON* = SR-DON – 16SR-DOP from (a–d) Redfield DOM (RedDOM), (e–h) preferential DOP
recycling (pref_DOP_remin), (i–l) preferential DOP recycling and phytoplankton DOP uptake (nonRedDOP), (m–p) non-Redfield DOP with low DOM production
(low_nonRedDOP), (q–t) non-Redfield DOP with high DOM production (high_nonRedDOP), and (u–x) fast recycling non-Redfield DOP (fast_nonRedDOP) with
available surface observations (0–50m; Figures 2a–2c) by removing the assumed recalcitrant pool of DON (1.25 μm) and DOP (25 nm) from total observations, which
are median values from the observational uncertainty range (see section 3.1.1). Sigma-theta potential density contour lines of 26.8, 27.6, and 27.9 kgm�3 are shown
as a function of latitude and depth.
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Figure 3. Comparison of surface (0–50 m) (a) map and (b) zonally averaged DON observations [Letscher et al., 2013]
with annual semirecalcitrant DON from the model experiments (c) Redfield DOM (RedDOM), (d) preferential DOP
remineralization (pref_DOP_remin), (e) preferential DOP recycling and phytoplankton DOP uptake (nonRedDOP),
(f ) non-Redfield DOP with low DOM production (low_nonRedDOP), (g) non-Redfield DOP with high DOM production
(high_nonRedDOP), and (h) fast recycling non-Redfield DOP (fast_nonRedDOP). Note that the zonally averaged model
results in Figure 3b are taken only from locations where observations exist.
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from all seasons. In the subtropical North Pacific, Church et al. [2002] show negligible seasonal cycles of DOC,
DON, and DOP over an entire decade (1989–1999), which suggests that there is not a significant seasonal
cycle of DOM in tropical/subtropical open ocean locations where N2 fixation is most abundant, which is
the focus of this study. Interannual variability accounted for the main variability in DOM, which may be the
largest source of uncertainty with the model-data comparison. There is a sampling bias with most cruises
in the high-latitude Southern Ocean transects taking place in austral summer. The observed patterns of
DON show higher values in the tropical/subtropical open ocean with a notable maximum in the North
Indian Ocean and moderate to low values toward the middle to high latitudes (Table 2 and Figure 3a).

To validate the DOP patterns in the model, we use a data set from the Atlantic Ocean [Mather et al., 2008] that
consists of five cruises during spring (April–June) and two cruises during autumn (October–November) as
part of the Atlantic Meridional Consortium Program (http://www.bodc.ac.uk/projects/uk/amt/). We show the
annual average here (i.e., each month of data has equal weight) but acknowledge that this is not true annual
average and some seasonal bias may exist. Since the DOP data were collected in opposite seasons, it may
not be far from the true annual average. The main pattern shows highest DOP in the Southern Tropical
Atlantic with an interhemispheric asymmetry of lower DOP concentrations in the tropical/subtropical North
Atlantic (Table 2 and Figure 4a).

Since theDOMmodel configuration includesonly thesemirecalcitrant fractionof theDOMpool, theobservations
provide an upper limit on the simulated SR-DOMconcentrations. Uncertainties of themagnitude of the different
recalcitrantDOMpoolsmake it difficult todeterminehowmuch lower themodel SR-DOMconcentrations should
be relative to the total DOM observations. Assuming that all DON in the deep Pacific Ocean (~0.5–2.0μm [Clark
et al., 1998; Karl et al., 2001; Letscher et al., 2015]) is recalcitrant, which is not included in the model, the simulated
SR-DON should then be lower than observations of total DON by about this range. DOP observations in the
deep Pacific Ocean are typically in the range of ~15–40nm [Clark et al., 1998; Karl et al., 2001; Karl and
Björkman, 2002], which represents a large source of uncertainty in the model-data comparison.
3.1.2. Redfield DOM
The RedDOM simulation produces SR-DON:DOP stoichiometry according to the Redfield ratio, which
yields SR-DON* = SR-DON� 16SR-DOP values of 0, which underestimate observations in the Atlantic
(Figures 2b and 2d). While the spatial trends of DON observations are generally reproduced (Figure 3),
discrepancies of simulating DOP are apparent (Figure 4). For example, RedDOM overestimates the magnitude
of DOP concentrations throughout the entire Atlantic. According to these observational data sets, DOP exists
at concentrations lower than the canonical Redfield ratio relative to DON so this model bias likely occurs in
all DOM models that assume constant elemental Redfield stoichiometry of DOP relative to DOC or DON.
3.1.3. Non-Redfield DOP
More efficient DOP remineralization in experiment pref_DOP_remin reduces surface SR-DOP concentrations
(Figure 4d), which become more consistent with observations. This results in higher SR-DON:DOP
stoichiometries throughout all tropical/subtropical ocean basins (Figures 2f and 2h). However, model

Table 2. Global Dissolved Organic Matter Resultsa

Experiment
Number

Experiment
Name PO4 (μm)

Global SR
DOP (nm)

Data-Masked North
Atlantic Surface

DOP (nm)

Data-Masked South
Atlantic Surface

DOP (nm)
Global SR
DON (μm)

Data-Masked
Tropical Surface

DON (μm)

Data-Masked
Extratropical Surface

DON (μm)

- Observational
Estimate

2.17b ~15–50c 90.4d 156d ~0.5–2.5e 4.79f 4.29f

1 RedDOM 2.14 52.0 204 219 0.829 3.90 3.27
2 pref_DOP_remin 2.16 23.9 129 148 0.850 3.99 3.37
3 nonRedDOP 2.17 19.6 55.8 130 0.867 4.04 3.45
4 low_nonRedDOP 2.17 15.0 45.9 101 0.649 3.05 2.60
5 high_nonRedDOP 2.16 24.2 64.9 158 1.08 5.01 4.30
6 fast_nonRedDOP 2.18 5.96 58.7 106 0.211 4.27 2.37

aAnnual model average after 6000 years of simulation time. “Data-masked” model results only include locations where observations exist.
bFrom World Ocean Atlas 2009 [Garcia et al., 2010a].
cRange of values at intermediate depth reported in Karl and Björkman [2002].
dFrom Mather et al. [2008].
eRange of values at intermediate depth reported in Berman and Bronk [2003].
fFrom Letscher et al. [2013].
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Figure 4. Comparison of surface (0–50m) (a) map and (b) zonally averaged DOP observations [Mather et al., 2008] with
annual semirecalcitrant DOP from the model experiments (c) Redfield DOM (RedDOM), (d) preferential DOP remineralization
(pref_DOP_remin), (e) preferential DOP remineralization and phytoplankton DOP uptake (nonRedDOP), (f) non-Redfield
DOP with low DOM production (low_nonRedDOP), (g) non-Redfield DOP with high DOM production (high_nonRedDOP), and
(h) fast recycling non-Redfield DOP (fast_nonRedDOP). Note that the zonally averaged model results in Figure 4b are taken
only from locations where observations exist.
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experiment pref_DOP_remin alone fails to reproduce the full extent of the observed meridional asymmetry
of SR-DOP and SR-DON* across the Atlantic suggesting that additional non-Redfield DOM cycling processes
are needed.

Only the model experiments including phytoplankton DOP uptake (nonRedDOP) reproduce the full extent
of observed asymmetry of lower DOP (Figures 4e–4g), as well as higher SR-DON:DOP stoichiometries
(Figures 2i–2t), in the North versus South Atlantic. Phytoplankton are able to consume more DOP in the
North Atlantic because Fe limitation is lower due to atmospheric Fe deposition originating from the Saharan
desert [Mahowald et al., 2009], whereas the South Atlantic is more Fe limited [Moore et al., 2009] (Figure A2).
This non-Redfield DOP configuration is generally consistent with Mather et al. [2008], who suggest higher
utilization of DOP by diazotrophs in the North Atlantic. Our model simulations suggest that preferential DOP
remineralization and phytoplankton DOP uptake are both important processes that control the observed
surface DOP distribution in the Atlantic. This is in contrast to Letscher et al. [2015], who estimate that SR-DOP
has a longer lifetime than SR-DON in the euphotic zone in the absence of phytoplankton DOP uptake that
accounts for reduced DOP concentrations in their model.
3.1.4. Non-Redfield DOP Production Sensitivity
The DOMproduction factor determines howmuch DOM is produced and circulates around the surface ocean.
The low_nonRedDOP (high_nonRedDOP) simulation produces less (more) SR-DOP that can be consumed by
ordinary phytoplankton and diazotrophs, resulting in lower (higher) SR-DON:DOP stoichiometries (Figure 2).
Low_nonRedDOP produces SR-DON concentrations that are lower than total DON observations by ~2μm
(Table 2 and Figures 3b and 3f). It would be the most consistent with DON observations assuming a high-
end fraction for recalcitrant DOM, which determines how much lower the simulated SR-DON concentrations
should be relative to total DON observations. On the other hand, high_nonRedDOP predicts surface SR-DON
concentrations near the total observed magnitude throughout the tropical/subtropical ocean (Table 2 and
Figures 3b and 3g), which can be considered an upper estimate for SR-DON.
3.1.5. Fast Recycling Non-Redfield DOP
The fast recycling DOM experiment (fast_nonRedDOP) uses remineralization rates of DON and DOP that are
generally more similar to other global climate-biogeochemical models [e.g., Ilyina et al., 2013; Landolfi et al.,
2013] compared to our previous experiments. They produce higher DOM concentrations in the tropical
regions due to higher production rates assumed for the more labile fast recycling DOM pool and
lower concentrations in the subtropical ocean and higher latitudes due to faster remineralization rates.
The lower SR-DOP concentrations in the oligotrophic ocean gyres (Figure 4h) reduce SR-DOP uptake by
phytoplankton, resulting in lower SR-DON:DOP stoichiometries as well (Figures 2v and 2x). The large
gradient of DON in the fast_nonRedDOP between the tropics and extratropics is in contrast to the
observations, which show elevated concentrations throughout the subtropical ocean (Table 2 and Figure 3b).
This suggests that including only a faster recycling semilabile DON pool is insufficient to reproduce observed
surface DON patterns and highlights the importance of using large-scale data sets to constrain the model
parameters and simulated trends.

3.2. Influence on the Distribution of N2 Fixation and the Marine Fixed-N Inventory
3.2.1. Redfield DOM
The RedDOM simulation predicts a reduced size of the marine fixed-N inventory by 3.4% relative to initial
conditions set by World Ocean Atlas Observations (Table 3 and Figure 5) because N2 fixation is initially too
low to balance denitrification. It does not predict N2 fixation to the full extent north of 10° in the tropical
North Atlantic according to N2-fixation rate measurements [Luo et al., 2012] (Figure 6c). The reduced size
of the marine fixed-N inventory in RedDOM is caused by the persisting deficit of the fixed-N budget in the
Atlantic Ocean (Figure 5b). Here much of the fixed-N deficiency from denitrification, some of which
occurring in high-latitude sediments, is not immediately balanced by N2 fixation and subducts with North
Atlantic deepwater formation. These fixed-N deficient waters eventually circulate into the Pacific and
Indian Oceans, stimulating additional N2 fixation to generate a surplus in those basins (Figures 5c and 5d).
3.2.2. Non-Redfield DOP
Preferential DOP remineralization and DOP uptake by phytoplankton relieves P limitation that benefits
diazotrophs in N-limiting conditions. When including only preferential DOP remineralization (pref_DOP_remin),
the ecological niche for diazotrophs expands in all ocean basins, which stimulates an additional
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19 Tg N yr�1 of N2 fixation that increases the size of the marine fixed-N inventory by 2.4% relative to RedDOM
(Figures 5a and 6e). The nonRedDOP experiment gives phytoplankton (including diazotrophs) the ability to
consume SR-DOP together with preferential DOP remineralization, which further increases N2 fixation by an
additional 11 TgNyr�1 relative to pref_DOP_remin. While the ordinary phytoplankton class accounts for 87%
of DOP consumption in the model, diazotrophs are responsible for the remaining DOP uptake. If diazotrophs
are able to consume a larger fraction of total DOP uptake in the real ocean, our model would be
underestimating its potential to stimulate extra N2 fixation.

Since DOP uptake occurs where PO4 is the major limiting nutrient for diazotrophs, its effect is determined by
the Fe and P limitation parameters that have large uncertainties. In ourmodel configuration, theNorth Atlantic
and western North Pacific are the main regions where PO4 limitation is stronger than Fe limitation (Figure A2)
due to high rates of atmospheric Fe deposition from the Saharan and Gobi deserts [Mahowald et al., 2009],
respectively. This is where most of the additional N2 fixation is stimulated with respect to pref_DOP_remin
(Figure 6e) and may explain why previous models without phytoplankton DOP uptake [e.g.,Moore and Doney,
2007; Keller et al., 2012; RedDOM from this study] were unable to simulate N2 fixation to the full spatial extent
north of 10° in the tropical North Atlantic according to N2-fixation measurements [Luo et al., 2012].

The increase in global N2 fixation (30%) is much higher than the size of the marine fixed-N inventory (4.7%) in
nonRedDOP relative to RedDOM due to the dynamic N2-fixation-denitrification feedback in the model.
Higher N2-fixation rates in nonRedDOP increases productivity near denitrification zones due to extra fixed
N in surface waters. This additional productivity in turn, further increases denitrification and reduces the
net surplus to the marine fixed-N inventory (Figures 5 and 6).

The strength of this feedback depends on the spatial separation of N2 fixation to denitrification. If all of the
newly fixed N from N2 fixation is directly respired in the suboxic zones via wc-denitrification, there will be
a net loss to the marine fixed-N inventory because denitrification consumes ~7mol N for each mole of
respired organic N [Landolfi et al., 2013]. In the Pacific Ocean where the major suboxic zones exist in the
model, additional productivity due to more N2 fixation stimulates even higher wc-denitrification rates
relative to N2 fixation. Although the largest increase to N2 fixation occurs in the Pacific, this N-cycle
feedback prevents the fixed-N budget of the Pacific from becoming a net source and switches it to a
net sink of fixed N in nonRedDOP (Figure 5). Our simulations suggest the importance of including a
dynamic N2-fixation-denitrification feedback [Landolfi et al., 2013], which are often not accounted for in some
ocean biogeochemical models (e.g., not diagnosing direct impacts of denitrification [Dutkiewicz et al., 2014]
or imposing fixed wc-denitrification rates from a separate inverse model [Weber and Deutsch, 2014]).

The additional 8 TgN yr�1 N2 fixation stimulated in the Atlantic Ocean in nonRedDOP is responsible for the
increase in the size of the marine fixed-N inventory due to its large spatial separation from suboxic zones
occurring primarily in the Pacific. Therefore, the stabilizing feedback of increasing wc-denitrification in
response to additional N2 fixation to balance the fixed-N budget is relatively weak in the Atlantic
compared to the Pacific. This allows the additional fixed N from N2 fixation in the Atlantic to remain in the

Table 3. Global Fixed Nitrogen Inventory Resultsa

Experiment Number Experiment Name NO3 (μm)
NPP

(Gt C yr�1)
Suboxic Volume

(×1014m3)
N2 Fixation
(Tg N yr�1)

WC Denitrification
(Tg N yr�1)

Benthic Denitrification
(Tg N yr�1)

- Observational Estimate 31.0b 36–57c 7.5–30d 130–225e 50–75e 90–210e

1 RedDOM 29.95 52.4 6.70 101 33.7 67.1
2 pref_DOP_remin 30.66 54.8 11.5 120 49.9 69.7
3 nonRedDOP 31.35 56.3 15.5 131 59.4 71.7
4 low_nonRedDOP 30.84 56.7 14.5 132 59.3 72.3
5 high_nonRedDOP 31.85 56.0 17.0 131 59.8 71.2
6 fast_nonRedDOP 31.21 55.4 10.6 118 48.0 69.9

aAnnual model average after 6000 years of simulation time.
bFrom World Ocean Atlas 2009 [Garcia et al., 2010a].
cFrom Antoine et al. [1996], Falkowski et al. [2003], and Gregg [2003].
dFrom World Ocean Atlas 2009 [Garcia et al., 2010b; Bianchi et al., 2012].
eRange from Bianchi et al. [2012], Eugster and Gruber [2012], DeVries et al. [2013], and Somes et al. [2013].
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ocean for longer time scales and contribute to a
surplus in the size of the marine fixed-N inventory
before it eventually circulates back into suboxic
zones.
3.2.3. Non-Redfield DOP Production Sensitivity
The low and high DOM production sensitivity
experiments produce different spatial patterns
of N2 fixation that cause changes to the global
NO3 inventories relative to nonRedDOP. In
low_nonRedDOP (high_nonRedDOP), reduced
(enhanced) production of SR-DOP available for
uptake by diazotrophs results less (more) N2

fixation (Figure 6g (Figure 6i)), as well as lower
(higher) SR-DON:DOP stoichiometries. Since these
changes to N2 fixation mainly occur in the North
Atlantic and western North Pacific, far away from
the denitrifying eastern tropical Pacific suboxic
zones, they are not immediately compensated
by changes in denitrification and generate a
smaller (larger) marine fixed-N inventory (Figure 5a).
However, some of the reduced (enhanced)
N2 fixation in parts of the North Pacific in
low_nonRedDOP (high_nonRedDOP) drive less
(more) productivity and resulting denitrification
in the eastern Pacific suboxic zones (Figure 6h
(Figure 6j)). This N2-fixation-denitrification feed-
back partially buffers the potential impact of
N2-fixation changes alone on the marine fixed-N
inventory.

Denitrification is also affected by changes to SR-
DON production, but it has a smaller impact on
the global marine fixed-N inventory compared
to N2 fixation changes caused via diazotroph
SR-DOP uptake. Lower (higher) SR-DON produc-
tion relieves (increases) N limitation and thereby
causes slightly more (less) productivity and deni-
trification near the continental shelves (Figure 6h
(Figure 6j)). This denitrification change is com-
pensated by N2 fixation and causes slightly
enhanced (reduced) N2 fixation in some locations
in low_nonRedDOP (high_nonRedDOP), most
notably in the western equatorial Atlantic
Ocean (Figure 6g (Figure 6i)).

3.2.4. Fast Recycling Non-Redfield DOP
The fast recycling non-Redfield DOP simulation predicts less N2 fixation compared to the regular non-Redfield
DOP experiment that results in a reduction the size of the marine fixed-N inventory (Figure 5). With faster
DOM remineralization rates, SR-DOP recycles more efficiently back PO4, which reduces SR-DOP uptake by
diazotrophs and results in less N2 fixation (Figure 6k). Higher DOM production rates in fast_nonRedDOP
increase SR-DON concentrations near the suboxic zones in the eastern North Pacific and Indian Oceans, which
in turn increases N limitation and reduces productivity and wc-denitrification (Figures 3h and 6l). Elevated
DOM concentrations transport nutrients away from the productive tropical regions that reduces “nutrient
trapping” and production there [Najjar et al., 1992; Dietze and Loeptien, 2013]. However, these experiments
produce SR-DON concentrations that overestimate the observations near the suboxic zones (Figure 3h).

Figure 5. (a) The global NO3 inventory change relative to initial
condition estimate from theWorld Ocean Atlas 2009 and rate of
N2 fixation (left red bar) and total denitrification (right blue bar)
in the (b) Atlantic Ocean, (c) Indian Ocean, and (d) Pacific Ocean
from the model experiments: (1) Redfield DOM (RedDOM), (2)
preferential DOP remineralization (pref_DOP_remin), (3) pre-
ferential DOP remineralization and phytoplankton DOP uptake
(nonRedDOP), (4) non-Redfield DOPwith lowDOMproduction
(low_nonRedDOP), (5) non-Redfield DOP with high DOM
production (high_nonRedDOP), and (6) fast recycling non-
Redfield DOP (fast_nonRedDOP). In each model experiment,
~0.2 Tg N yr�1 of N2 fixation and ~1.9 Tg N yr�1 of benthic
denitrification occur in the Arctic Ocean.
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Figure 6. Annual vertically integrated N2 fixation and denitrification rates from (a and b) preferential DOP remineralization and phytoplankton DOP uptake
(nonRedDOP) and the difference from nonRedDOP (i.e., model experiment minus nonRedDOP) in the (c and d) Redfield DOM (RedDOM), (e and f) preferential
DOP remineralization (pref_DOP_remin), (g and h) non-Redfield DOP with low DOM production (low_nonRedDOP), (i and j) non-Redfield DOP with high DOM
production (high_nonRedDOP), and (k and l) fast recycling non-Redfield DOP (fast_nonRedDOP).
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Therefore, this reduction of export production andwc-denitrification (Table 3 and Figure 5c) is due to unrealistic
DOM cycling, emphasizing the importance of having an observational constraint for simulating DON.

4. Conclusions

The large sensitivity of N2 fixation and the size of the marine fixed-N inventory to variations in the
stoichiometry of DOM dynamics in our model simulations raise questions about whether DOM schemes in
the current generation of global climate-biogeochemical models are adequate to evaluate environmental
controls on N2 fixation, the marine fixed-N inventory, and marine productivity. Observed DON:DOP
typically exceeds the canonical Redfield ratio (Figure 4b and Table 2), and thus, DOP will be overestimated
in simple DOM schemes that assume a strict stoichiometric Redfield ratio. Such models will cause an
overestimation of PO4 limitation that reduces the ecological niche for typical model diazotrophs and may
cause models with Redfield DOP dynamics to underestimate N2 fixation. According to our model
simulations, changes in the assumptions about non-Redfield DON:DOP dynamics alone can alter the global
marine fixed-N budget and inventory by 4.7%, which suggests that models without non-Redfield DON:
DOP dynamics may incorrectly predict future changes to N2 fixation, the marine fixed-N inventory,
and productivity.

Our model-data analysis suggests that surface DON is more recalcitrant than previously assumed in global
climate-biogeochemical models that include only semilabile DOM which assume that the majority of DON
remineralizes in the surface ocean. Our estimate is generally consistent with recent data assimilation
studies that estimate that SR-DON has a lifetime of ~1–2 decades in the euphotic zone [Letscher et al.,
2013, 2015]. Only our simulations that assume that DON recycles back to NO3 with these slower
semirecalcitrant remineralization rates are capable of reproducing observed lateral surface DON gradients.
This suggests that models that only include faster recycling semilabile DOM (i.e., lifetime less than a
decade) [e.g., Landolfi et al., 2013] will underestimate DON, N limitation, and N2 fixation in the subtropical
oligotrophic ocean.

Our best non-Redfield DOP model simulation (nonRedDOP) required both preferential DOP remineralization
and phytoplankton DOP uptake to reproduce the observed patterns of DOP in the global surface ocean.
Due to the increased P availability from the relatively labile DOP pool in the non-Redfield DOP
model configuration, the ecological niche for diazotrophs expanded into the otherwise oligotrophic
tropical/subtropical ocean gyres. This non-Redfield DOP simulation predicts an additional 30 TgN yr�1 N2

fixation that increased the size of the marine fixed-N inventory by 4.7% in the nonRedDOP simulation
compared to the simulation with often-assumed Redfield DOM cycling that underestimates the observed
fixed-N inventory (Table 3 and Figure 5).

The additional 8 TgNyr�1 of N2 fixation stimulated in the Atlantic Ocean is primarily responsible the increase
in the size of the marine fixed-N inventory due to its large spatial separation from suboxic zones. Whereas
in the Pacific, additional N2 fixation near suboxic zones stimulated additional productivity and even more
wc-denitrification, which prevented a surplus to the marine fixed-N budget there. This highlights the
importance of considering a dynamic N2-fixation-denitrification feedbacks and further illustrates the
hypothesized importance of spatial separation between N2 fixation and wc-denitrification to maintain
the observed marine fixed-N inventory [Landolfi et al., 2013]. Our results indicate a strong influence of non-
Redfield DOP dynamics on surface nutrient cycling, the distribution of N2 fixation, and the size of the marine
fixed-N inventory and highlight the need for better global data sets of DON and DOP that can constrain
more sophisticated DOM models to better quantify their importance on ocean biogeochemistry.

Appendix A: Marine Ecosystem-Biogeochemical Model Equations

The marine ecosystem-biogeochemical model used here is a modified version of Somes et al. [2013]
that includes improvements to the marine ecosystem model outlined in Keller et al. [2012] and the
implementation of dissolved organic matter (see section 2.2). Here we provide a description of the model
equations and parameters (Table A1) used in this study and refer to the previous studies referenced above
for a complete model description and evaluation. Figure A1 shows the basin scale comparison with
phosphate, dissolved oxygen, dissolved inorganic carbon, and carbon 14 observations.
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The growth rate for ordinary phytoplankton (JO) and diazotrophs (JD) are
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where the maximum growth rate JPO
max = a0(Fe/(kFe + Fe))exp(T/Tb), I is the shortwave solar insolation, kFe is

the iron uptake half saturation, and monthly dissolved iron is calculated by the BLING biogeochemical model
[Galbraith et al., 2010] , which determines iron limitation in the our model (Figure A2). The grazing rate on
each type of prey is

G�
PO ¼ g*max

Z Z
ψPO

ϕ
PO (A3)

G�
PD ¼ g*max

Z Z
ψPD

ϕ
PD (A4)

G�
D ¼ g*max

Z Z
ψD

φ
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G�
Z ¼ g*max

Z Z
ψZ

ϕ
Z2; (A6)

Table A1. Marine Ecosystem-Biogeochemical Parameters

Parameter Symbol Value Units

Phytoplankton (PO, PD) Coefficients
Initial slope of P-I curve α 0.1 (Wm�2)�1 d�1

Photosynthetically active radiation PAR 0.43 -
Light attenuation in water kw 0.04 m�1

Light attenuation through phytoplankton kc 0.03 m�1(mmolm�3)�1

Light attenuation through sea ice ki 5 m�1

NO3 uptake half saturation kNO3 0.7 mmolm�3

PO4 uptake half saturation kPO4 0.04375 mmolm�3

Fe uptake half saturation kFe 0.12 nmolm�3

Maximum growth rate (at 0°C) a0 0.6 d�1

Phytoplankton fast-recycling rate (at 0°C) μPO0 0.015 d�1

Phytoplankton specific mortality rate mPO 0.03 d�1

Diazotrophs’ growth handicap hPD 0.08 -
Diazotroph fast-recycling rate (at 0°C) μPD0

0.001 d�1

Zooplankton (Z) Coefficients
Assimilation efficiency γ 0.7
Maximum grazing rate (at 0°C) gZ 0.4 d�1

Growth efficiency ϖ 0.57
Mortality mz 0.06 d�1

Grazing preference PO ψPO 0.3
Grazing preference PD ψPD 0.1
Grazing preference Z ψZ 0.3
Grazing preference D ψD 0.3
Grazing half saturation kgraz 0.15 mmol Nm�3

Detritus (D) Coefficients
Remineralization rate μD0 0.07 d�1

Sinking speed at surface wD0 16 md�1

Increase of sinking speed with depth mw 0.06 d�1

e-folding temperature of biological rates Tb 15.65 °C

Elemental Ratios
Molar oxygen:nitrogen RO:N 10.0
Molar carbon:nitrogen RC:N 6.625
Phytoplankton nitrogen:phosphorus RN:PPO 16
Diazotroph nitrogen:phosphorus RN:PPD 28
Diazotroph nitrogen:phosphorus RN:PPD 16
Zooplankton nitrogen:phosphorus RN:PZ 16
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where

g*max
Z ¼ gZmax 0; 0:5 tanh O2 � 8ð Þ þ 1ð Þ½ �bcmin 20;Tð Þ

n o
(A7)

and Φ= PO+ PD+D+Z+KG with temperature T in degrees Celsius.

Figure A1. Annual basin-scale model-data comparison of (a) phosphate, (b) dissolved oxygen, (c) dissolved inorganic carbon, and (d) carbon-14 from the
nonRedDOP experiment with Global Data Analysis Project [Key et al., 2004] and World Ocean Atlas 2009 [Garcia et al., 2010a, 2010b] observations.

Figure A2. Annual iron limitation mask applied to phytoplankton maximum growth rate based on monthly surface
dissolved iron concentrations from the BLING model [Galbraith et al., 2010]. See Appendix A for further description.
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Detritus is generated from sloppy zooplankton feeding and mortality among the three classes of plankton
and is the only component of the ecosystem model to sink. It does so at a speed of

wD ¼ wD0 þmwz; z ≤ 1000m

wD0 þmw1000m; z ≤ 1000 m

� �
; (A8)

increasing linearly with depth z fromwD0 =16md�1 at the surface to 76md�1 at 1 km depth and constant below
that, generally consistent with observations [Berelson, 2001]. The remineralization rate of detritus is temperature
dependent and decreases by a factor of 5 in oxygen deficient waters, as O2 decreases from 10μm to 0μm:

μD ¼ μD0 exp T=Tbð Þ 0:75þ 0:25 tanh O2 � 6ð Þ½ �: (A9)

Remineralization transforms the N and P content of detritus to NO3 and PO4. Photosynthesis produces oxygen,
while respiration consumes oxygen, at rates equal to the consumption and remineralization rates of PO4,
respectively, multiplied by the constant ratio RO:P. Dissolved oxygen exchanges with the atmosphere in the
surface layer (Fsfc) according to the Ocean Carbon-Cycle Model Intercomparison Project protocol [Orr et al., 2001].

Oxygen consumption in oxygen deficient waters (O2<~7μm) is inhibited, according to

rO2
sox ¼ 0:5 tanh O2 � 3ð Þ þ 1½ � (A10)

but is replaced by the oxygen-equivalent oxidation of nitrate,

r
NO�

3
sox ¼ 0:5 1� tanh O2 � 3ð Þ½ �: (A11)

Denitrification consumes nitrate at a rate of 80% of the oxygen equivalent rate, as NO3 is a more efficient
oxidant on a mol per mol basis (i.e., 1mol of NO3 can accept 5 e�, while 1mol of O2 can accept only 4 e�).

We include the ben-denitrification scheme that parameterizes ben-denitrification based on the rain ratio of carbon
flux (RRPOC; mmolCm�2d�1) into the sediments and bottom water oxygen and nitrate (μm) [Bohlen et al., 2012]:

BenDen ¼ 0:09872þ 0:22944� 0:9811bwO2�bwNO3
� �

(A12)

BenDen is the rate (mmol Nm�2 d�1) at which nitrate is removed from the bottomwater. We assume that the
rain rate of carbon into the sediments occurs at a ratio of RC:N = 6.625 of the nitrogen in the sinking organic
detritus. Since the continental shelves are not well resolved in the model, we use an additional subgrid-scale
parameterization according to high-resolution bathymetry [see Somes et al., 2010b].

The full set of prognostic marine ecosystem-biogeochemical equations are as follows:

∂PO3�
4

∂t ¼ λDOPDOP þ½μ�
DDþ γ 1�ϖð Þ G�
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Z þ G�
D

� �

þ 1� σ2DOMð Þμ�
POPO � 1� uDOPPO

� 	
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� 1� uDOPPD

� 	
J�DPD

↺

RP:NPD

(A13)

∂NO3
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 !
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 !
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�
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#
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NO�
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(A14)

∂DOP
∂t

¼ σ1DOMυPOPO þ σ2DOMμ�
POPO� μDOPPO

J�OPO
� 	

RP:NPO
� uDOPPD J

�
DPDRP:NPD

� λ�DOPDOP (A15)

∂DON
∂t

¼ σ1DOMυPO þ σ2DOMμ�
POPO � λ�DONDON (A16)

∂PO
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POPO � υPOPO � G�

POZ (A17)

∂PD
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PDPD � G�
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∂Z
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D

� 	
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