

Supplementary Figure 1: Sr concentration versus ⁸⁷Sr/⁸⁶Sr isotope ratio for Parana and Etendeka flood basalts, showing that melts with low Sr concentrations are the most susceptible to continental lithosphere contamination.

Supplementary Figure 2: Isotope correlation diagrams for (a) 206 Pb/ 204 Pb versus 87 Sr/ 86 Sr and (b) 206 Pb/ 204 Pb versus 143 Nd/ 144 Nd showing that the Tristan domain is generally shifted towards N-MORB relative to the Gough domain. Average radiogenic ingrowth correction and 1 σ variation as defined in the figure 2 caption.

Supplementary Figure 2 continued: Isotope correlation diagrams for (c) 206 Pb/ 204 Pb versus 176 Hf/ 177 Hf and (d) 143 Nd/ 144 Nd versus 176 Hf/ 177 Hf, showing that the Tristan domain is generally shifted towards N-MORB relative to the Gough domain. Average radiogenic ingrowth correction and 1 σ variation as defined in the figure 2 caption.

Supplementary Figure 3: Age versus La/Sm diagram for the Tristan-Gough hotspot track evolution.