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Abstract—In many enterprises the number of deployed appli-
cations is constantly increasing. Those applications – often several
hundreds – form large software landscapes. The comprehension
of such landscapes is frequently impeded due to, for instance,
architectural erosion, personnel turnover, or changing require-
ments. Therefore, an efficient and effective way to comprehend
such software landscapes is required. The current state of the
art often visualizes software landscapes via flat graph-based
representations of nodes, applications, and their communication.

In our ExplorViz visualization, we introduce hierarchical ab-
stractions aiming at solving typical system comprehension tasks
fast and accurately for large software landscapes. To evaluate
our hierarchical approach, we conduct a controlled experiment
comparing our hierarchical landscape visualization to a flat,
state-of-the-art visualization. In addition, we thoroughly analyze
the strategies employed by the participants and provide a package
containing all our experimental data to facilitate the verifiability,
reproducibility, and further extensibility of our results.

We observed a statistically significant increase of 14 % in task
correctness of the hierarchical visualization group compared to
the flat visualization group in our experiment. The time spent
on the system comprehension tasks did not show any significant
differences. The results backup our claim that our hierarchical
concept enhances the current state of the art in landscape
visualization.

I. INTRODUCTION

While program comprehension has been researched exten-

sively, system comprehension has received much less atten-

tion [1]. From a historical point of view, program compre-

hension became important when programs reached more than

a few hundreds lines of code. Today’s IT infrastructures in

enterprises often consist of several hundreds of applications

forming large software landscapes [2]. Therefore, system com-

prehension – in our terminology the comprehension of such

landscapes – is a crucial part of the maintenance process [3].

One way to achieve system comprehension is software

landscape visualization. Current software landscape visualiza-

tions are mostly found in application performance manage-

ment (APM) tools. While surveying them, we observed that

these tools often use a flat graph-based representation of nodes,

applications, and their communication.

In contrast, our ExplorViz approach [4], which provides live

trace visualization for large software landscapes, introduces

three hierarchical abstractions [2]. First, there are systems
which consist of one or more server nodes. Second, espe-

cially designed for cloud environments and their horizontal

scalability, our hierarchical visualization features node groups
which cluster nodes that are running the same application

configuration. Third, the amount of communication between

the applications is represented by the thickness of the com-

munication lines.

While these abstractions seem reasonable, it should still be

evaluated whether they provide any benefits concerning the

comprehension process [5]–[7]. For example, the users might

not understand the abstractions, or the abstractions might not

support or might even hinder the user in solving system

comprehension tasks.

In this paper, we present a controlled experiment to compare

a flat, state-of-the-art landscape visualization to our hierar-

chical visualization in the context of system comprehension.

In contrast to former publications [2], [4], we perform a

quantitative evaluation of our landscape perspective. Beneath

evaluating if a hierarchical visualization provides benefits, we

conducted this experiment to get input for improving our Ex-

plorViz tool1. To the best of our knowledge, we are the first to

conduct such a controlled experiment comparing two software

landscape visualizations. In our experiment, 29 participants

solved five system comprehension tasks. We used a medium-

sized model of the technical IT infrastructure of the Kiel

University containing 140 applications as object landscape.

To facilitate the verifiability and reproducibility of our results,

we provide a package [8] containing all our experimental data

including source code for both visualizations, raw data, and

29 recordings of the participant sessions.

In summary, our main contributions are:

1. the reusable design and execution of a controlled exper-

iment comparing a flat landscape visualization to our

hierarchical landscape visualization in typical system

comprehension tasks, and

2. a thorough analysis of typical sources of error and the

strategies chosen by the participants for each task.

The remainder of this paper is organized as follows. Section II

describes the flat, state-of-the-art visualization of software

landscapes used in our experiment. Then, Section III intro-

duces our hierarchical landscape visualization. Afterwards,

Section IV presents a controlled experiment to evaluate the

impact of using a hierarchical visualization instead of a flat

one for system comprehension. Related work is discussed in

Section V. Finally, we draw the conclusions and illustrate

future work in Section VI.

1http://www.explorviz.net
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Fig. 1. An excerpt (29 of 140 applications) of the model of the technical IT infrastructure of the Kiel University in the flat landscape visualization

II. FLAT LANDSCAPE VISUALIZATION

This section introduces the flat software landscape visual-

ization used in the experiment by the control group to solve

system comprehension tasks.

Current landscape visualizations can mostly be found in

application performance management (APM) tools, for in-

stance, AppDynamics,2 Foglight,3 or Dynatrace.4 Those tools

are often driven by commercial interest and thus are not free

to use or – if they have an evaluation phase – it is explicitly

prohibited to conduct studies with these versions. Therefore,

we had to create our own implementation of the visualization

which follows the concepts of current landscape visualizations

available in APM tools. By implementing the visualization into

our ExplorViz tool, we also assure that interaction capabilities

are the same between both groups in the experiment. This also

leads to a higher reliability of the presented results.

After surveying the available visualizations, we imple-

mented the visualization depicted in Figure 1 which is a

mixture of the concepts we rated as best suitable for system

comprehension. The figure shows an excerpt of the used object

landscape, i.e., a model of the technical IT infrastructure

of the Kiel University. Nodes are visualized as green boxes

(�) with white labels representing the hostname of each

node at the bottom. The applications running on the nodes

2http://www.appdynamics.com
3http://www.foglight.com
4http://www.dynatrace.com

are visualized by purple boxes (�). A white label shows

the application name at the center. Besides the label, the

programming language or – in the special case of a database

– a database symbol is depicted. The communication between

applications is represented by orange lines (�). The conducted

request count is shown next to a line in black letters in the

abbreviated form of, e.g., 10 req.
We employ auto-layout algorithms to ensure that the user

does not need to manually layout the nodes which can be

infeasible in large software landscapes. The employed flow-

based auto-layout, named KLay Layered5 [9], orders the nodes

and applications in accordance to our defined communication

flow direction, i.e., from top to bottom. In our object land-

scape, all communication paths originate at a Network entity

visualized as a globe which is not shown in the picture. The

cropped lines at the top directly lead into this globe entity.
All entities provide more information on demand by means

of a tooltip when hovering over them with the mouse. Further

interaction possibilities include the dragging of the view for

navigation purposes, and zooming for an overview of the

landscape.

III. HIERARCHICAL LANDSCAPE VISUALIZATION

This section briefly presents our hierarchical software land-

scape visualization. The hierarchical visualization [2], [10] is

part of our web-based ExplorViz tool [4] which enables live

trace visualization in large software landscapes.

5http://rtsys.informatik.uni-kiel.de/confluence/x/joAN
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Fig. 2. An excerpt of the model of the technical IT infrastructure of the Kiel University in the hierarchical landscape visualization

Our hierarchical visualization is shown in Figure 2. It

visualizes nodes and applications in the same way as the

flat visualization does. However, it also features hierarchies,

i.e., systems and node groups. In our terms, systems (�)

are made up of one or more nodes which form a seman-

tic union. Systems are visualized as gray boxes with their

name labeled at the top. Nodes running the same application

configuration form a node group (�) represented by a dark

green frame. In a node group, the hostnames are grouped

to a joint label, for example, Cloud Node Server 1 -
Cloud Node Server 8. Furthermore, systems and node

groups are interactively extensible and collapsible to get a

quick overview and details on demand. By default, systems

are opened and node groups are collapsed.

A further difference to the flat visualization is the display of

communication lines (�) in the hierarchical visualization. This

provides a further abstraction from the flat visualization which

represents the request count through labels. In our hierarchical

visualization, the thickness of the communication lines follows

its conducted request count. For instance, the orange line

displayed at � is thicker than the other communication lines,

indicating that more request are conducted between the con-

nected applications. The thickness of the lines is determined

by linearly grouping the request count into four categories. The

actual number of request can also be viewed on demand – like

in the flat visualization – by hovering over the communication

line.

IV. CONTROLLED EXPERIMENT

In this section, we present our controlled experiment which

compares the usage of a flat, state-of-the-art landscape visu-

alization to our hierarchical landscape visualization in typical

system comprehension tasks. As object landscape we use a

model of the technical IT infrastructure of the Kiel University

and measure the time spent and correctness for each task

which are typical metrics in the context of program compre-

hension [11]. Afterwards, we analyze the employed strategies

and possible differences between both groups.

We describe the design of our controlled experiment, its op-

eration, data collection, analysis, results, discussion (including

reasoning about the different performances in each task), and

threats to validity.

A. Experimental Design

In addition to general software engineering experimenta-

tion guidelines [12]–[16], we follow the designs of Wet-

tel et al. [17] and of Cornelissen et al. [18]. Similar to them,

we use a between-subjects design. Thus, each subject solves

tasks either using the flat or the hierarchical visualization.

Following GQM [19], we define the goal of our experiment

as quantifying the impact of using either the flat visualization

or the hierarchical one for system comprehension.

We name the control group Flat Group and the experimen-

tal group Hierarchical Group. Due to space constraints, we

abbreviate the groups as Flat and Hierarchical in figures and

tables.
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1) Research Questions & Hypotheses: We define three

research questions (RQ) for our defined goal:

• RQ1: What is the ratio between Flat Group and Hierar-

chical Group in the time required for completing
typical system comprehension tasks?

• RQ2: What is the ratio between Flat Group and Hier-

archical Group in the correctness of solutions to typical

system comprehension tasks?

• RQ3: Which typical sources of error exist when solv-

ing system comprehension tasks with either of the two

visualization types?

Accordingly, we formulate two hypotheses:

• H1 Flat Group and Hierarchical Group require different

times for completing typical system comprehension tasks.

• H2 The correctness of solutions to typical system com-

prehension tasks differs between Flat Group and Hierar-

chical Group.

The null hypotheses H10 and H20 follow analogously. For

RQ3, we conduct an in-depth analysis of the results and

analyze the recorded sessions of each participant in detail.

2) Dependent and Independent Variables: The independent

variable is the visualization used for the system comprehension

tasks, i.e., flat or hierarchical visualization. We measured the

accuracy (correctness) and response time (time spent) as de-

pendent variables. These are usually investigated in the context

of program comprehension [11], [17], [18] and thus should

also be applicable in the context of system comprehension.

3) Treatment: The control group used the flat visualiza-

tion to solve the given system comprehension tasks. The

experimental group solved the tasks utilizing the hierarchi-

cal visualization which includes the abstractions of systems,

node groups, and the communication lines representing the

conducted requests by the line’s thickness.

4) Tasks: We selected a medium-sized software landscape

(140 applications). Our model of the technical IT infrastructure

of the Kiel University landscape represents services of our

working group, computing center services, examination ser-

vices, information services, system operating group services,

and management services. We modeled the landscape by

available information from the Internet and prior knowledge,

and thus the model might not reflect the real deployment in

detail. However, this is unimportant for the actual tasks.

In Table I, our defined tasks including their context and

achievable maximum points are displayed. To prevent guess-

ing, all tasks were given as open questions. Our task set starts

with less complex tasks (identifying applications with a high

fan-in) and ends with a more complex risk management task.

This enabled each subject to get familiar with the visualization

in the first tasks and raises the level of complexity in the

following ones. We chose only five tasks since we aimed to

stay in a one hour time slot and prevent exhaustion issues.

5) Population: The subjects were students from the master

course “Software Engineering for Parallel and Distributed

Systems”. For successfully solving one task, they received

bonus points for the final exam of the course. As further

motivation, the students could win one of ten gift cards over

10AC for the sole participation and the best five subjects each

received a gift card over 30AC.

The subjects were assigned to the Flat Group or Hierarchical

Group by random assignment. To validate the equal distribu-

tion of experiences, we asked the participants to perform a

self-assessment on a 5-point Likert Scale [20] ranging from

0 (no experience) to 4 (expert with years of experience) before

the experiment. The average programming experience in the

control group was 2.5 versus 2.6 in the experimental group.

The average dynamic analysis experience was between no ex-

perience and beginner in both group. Since the experience was

self-assessed, we assume that random assignment succeeded.

B. Operation

1) Generating the Input: We generated the input for the

experiment by modeling the object landscape in ExplorViz by

means of a modeling editor using our visualization as DSL.

Afterwards, we exported the model as a script file. This file

contains one entry for each application that should be started.

We have written a small configurable RPC application which

acts as a server and connects to different servers configurable

on the command line. This small application can pass off as the

application names from the modeled landscapes which is also

a part of one entry in the script. Therefore, the script imitates

the real object landscape without having the need to instrument

the productive applications. After executing the script and

receiving the monitored data of the remote procedure calls,

ExplorViz persists its created landscape model into a file which

acts as a replay source during the experiment.

2) Tutorials: We provided automated tutorials for both

groups of the experiment. This enhanced the validity of

our experiments by eliminating human influences. For the

tutorial system, we used a small-sized model of the Kiel Data

Management Infrastructure for ocean science [2] to make the

subjects familiar with the visualization. Both groups had the

same explanation text for the tutorial except information about

the abstractions in the hierarchical visualization which were

only available to the associated group.

3) Questionnaire: Both groups answered the questions on

an electronic questionnaire. An electronic version provides

three advantages over using sheets of paper for us. First, time

cheating by the subjects is impossible since the timings are au-

tomatically recorded. Second, we avoid a possible error-prone

manual digitalization by direct electronic capture. Lastly, the

participants are forced to input valid answers for category

fields, e.g., their experience.

4) Pilot Study: To check whether the material and questions

are understandable for the target population, we conducted a

pilot study with two master students as participants before the

actual experiment. After this study, we improved the materials

based on the feedback. In addition, we added hints to the

tasks which were perceived as too difficult or which were

misunderstood. While the hint for Task 3 might hinder the

visual query in the Hierarchical Group, the hint for Task 5

does not favor any group.

39



TABLE I
DESCRIPTION OF THE SYSTEM COMPREHENSION TASKS FOR THE EXPERIMENT

ID Description Score

Context: Identification of Critical Dependencies
T1 Name three applications that have a high fan-in (at least two incoming communication lines). The two incoming communication lines should be

on one node and not distributed over multiple nodes.
3

Context: Potential Bottleneck Detection
T2 Name the Top 3 communications with the highest request count in descending order. Write down the start application and the end application. 4

Context: Scalability Evaluation
T3 Which applications are duplicated on multiple nodes? The answer should contain all 8 duplicated applications which are all named differently.

Hint: The hostname of the nodes, where the applications are running, are numbered, e.g., Server 1, Server 2,...
4

Context: Service Analysis
T4 What is the purpose of the WWWPRINT application in your opinion? How does the process might work to achieve the functionality for the user? 4

Context: Risk Management
T5 What are the consequences of a failure of the LDAP application? Name all affected applications and briefly describe their purposes. Hint: Remember

the received paper about the introduction to the university landscape.
7

5) Procedure: Our experiment took place at the Kiel Uni-

versity. Each participant had a single session of up to 45

minutes. All subjects used the same computer which had a

display resolution of 1920×1200. Before the experiment took

place, we benchmarked the computer to ensure that both types

of visualization run smoothly.
At the beginning of each session, each subject received a

sheet of paper containing a short introduction to the object

landscape and a description of selected applications which

might be unknown. We gave the subjects sufficient time for

reading before they could access the computer. After telling the

participants that they can ask questions at all times, a tutorial

for the respective visualization type was started. Subsequently,

the questionnaire part was started with personal questions

and experiences. Afterwards, the system comprehension tasks

begun. The session ended with the debriefing questions.
The less complex tasks (T1, T2, T3, T4) had a time

allotment of 5 minutes. The more complex task T5 had an

allotment of 10 minutes. The elapsed time was displayed

beneath the task description during each task. The subjects

were instructed to adhere to this timing. However, if they

reached overtime, the timer was only highlighted in red and

they were not forced to end the task.

C. Data Collection
1) Timing and Tracking Information: The timing infor-

mation for each task is automatically determined by our

electronic questionnaire. In addition, the computer screen of

every session is captured using a screen capture tool. With

the screen recordings, we could analyze the behavior of each

participant. Furthermore, it enabled us to look for exceptional

cases, for instance, technical problems encountered by the

participant. The recordings become important in the case of

technical problems since the timing data must manually be

corrected and it must be reconstructed how long the subject

actually worked on the task.
2) Correctness Information: The open question format im-

plies to conduct a blind review for rating the given answers.

The two reviewers first agreed upon sample solutions and

TABLE II
DESCRIPTIVE STATISTICS OF THE RESULTS RELATED TO

TIME SPENT (IN MINUTES) AND CORRECTNESS (IN POINTS)

Time Spent Correctness
Flat Hierarchical Flat Hierarchical

mean 23.49 23.45 17.07 19.5
difference -0.17 % +14.24 %
effect size d 0.0093 0.7827
sd 3.87 5.29 3.27 2.93
min 15.03 15.93 9 11
median 24.64 23.14 17.25 20.5
max 29.68 33.16 22 22

Shapiro-Wilk W 0.9232 0.9605 0.9156 0.7933
Levene F 2.1048 1.2307
Student’s t-test

df 27 27
t 0.0251 -2.4102
p-value 0.9802 0.02303

a maximum score for each task. A script randomized the

order of the solutions so that no association between the

answers and the originating group could be drawn. Then, both

reviewers evaluated all solutions independently. Afterwards,

any discrepancies in the ratings were discussed and resolved.

3) Qualitative Feedback: The participants were asked to

give suggestions to improve the visualization they used for

solving the tasks. Due to space constraints, we only list the

Top 3 for each group.

In the Flat Group, five users noted that some labels rep-

resenting the request count overlapped such that they were

forced to get the count by hovering over the communication

line. Two users suggested to implement a sortable table for

Task T2. Furthermore, two subjects disliked that the font size

is not increasing when zooming out.

In the Hierarchical Group, three subjects suggested to use

animations for opening and closing the systems or node

groups. Two users would like to be able to highlight nodes

or connections. As in the flat visualization group, one subject

disliked that the font size is not increasing when zooming out.
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Fig. 3. Overall time spent and correctness for our experiment

D. Analysis and Results

Descriptive statistics for the results of our experiment are

shown in Table II. Although we had three outliers, we did not

remove any subjects from our analysis since the errors were

comprehensible and did not result from exceptional cases.

We use the two-tailed Student’s t-test for our analysis which

assumes normal distribution and depends on equal or unequal

variances. To test for normal distribution, we use the Shapiro-

Wilk test [21] which is considered more powerful [22] than,

for instance, the Kolmogorov-Smirnov test [23]. We conduct

a Levene test [24] to check for equal or unequal variances.

We used the 64-bit R package in version 3.1.3.6 for the

analysis. As supplementary packages, we utilize gplots and

lawstat for drawing bar plots and for importing Levene’s

test functionality, respectively. Furthermore, we chose α = .05
to check for significance. The raw data, R scripts, and results

are available as part of our experimental data package [8].

RQ1 (Time Spent): We start by checking the null hypothesis

H10 which states that there is no difference between the flat

and the hierarchical visualization in respect to the time spent

on the system comprehension tasks. The box plot for the time

spent is displayed on the left side of Figure 3. Table II shows

the differences between the mean values of Flat Group and

Hierarchical Group.

The Shapiro-Wilk test for normal distribution in each group

succeeds and hence we assume normal distribution of our

data in each group. The Levene test also succeeds and thus

we assume equal variances between the Flat Group and the

6http://www.r-project.org

Fig. 4. Average time spent per task and average correctness per task

Hierarchical Group. The Student’s t-test reveals a probability

value of 0.98 which is above our chosen significance level of

0.05. Therefore, we fail to reject the null hypothesis H10.

RQ2 (Correctness): Next, we check the null hypothesis H20
which states that there is no difference between the two groups

in respect to correctness of the solutions. A box plot for the

overall correctness in each group is shown on the right side

of Figure 3.

The Shapiro-Wilk test for the Flat Group succeeds and

hence we assume normal distribution in this group. The test

fails for the Hierarchical Group. Therefore, we plotted a

histogram and looked at the actual distribution. Most points

are near 100 % and the rest follows a normal distribution to

the left side. Since 100 % imposes a natural cutoff for the task

correctness and the rest of the values are normal distributed,

we also assume normal distribution for this group. The Levene

test succeeds and thus we assume equal variances between

both groups.

The Student’s t-test reveals a probability value of 0.02 which

is below our chosen significance level of 0.05. As a result, we

reject H20 in favor of the alternative hypothesis H2 (t-test

t = -2.4102, df = 27, p = 0.02303).

E. Discussion

The results for the time spent are not statistically significant.

Hence, there is no statistical evidence for a difference in the

time spent meaning it could be equal or even be different.

However, it is likely that the impact of using a flat or

hierarchical visualization is negligible in terms of time spent.

Whether one group took a few seconds less, is typically

out of interest. In terms of task correctness, the Hierarchical
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Group outperformed the Flat Group by 14 %. This difference

is statistically significant in our experiment.

Since the time spent is negligibly different or equal, and the

correctness of the solutions are higher in the hierarchical visu-

alization, we conclude that using the hierarchical visualization

provides more benefits than the flat visualization.

To investigate the reasons for this circumstance, we con-

ducted an in-depth analysis of the recorded user sessions and

looked for the employed strategies and typical sources of error.

In the following, these findings are described.

T1: Both groups used the same strategy to find the three

applications with a high fan-in. At first, the subjects got a

general idea of the software landscape looking at its coarse-

grained structure. Then, they zoomed in such that they can read

the application labels and moved the view until they discovered

the wanted applications. Some of the participants began their

search from one side (left or right) such that they only needed

to go over the landscape once. Others started at a random

position and therefore, had to go over the landscape twice if

they did not find the wanted applications.

A source of error in this task was the distinction between

applications and nodes. We observed this confusion more in

the Flat Group than in the Hierarchical Group which could be

a reason for the 17 % higher task correctness in the hierarchical

visualization group. Since the hierarchical visualization group

uses more hierarchies, the participants in this group might be

more aware of the differences between each abstraction level.

A further possible reason for the higher task correctness

might be that the hierarchical landscape visualization is more

compact since node groups are closed and thus take less space.

T2: Since the presentation of request labels are different in

each experiment group, each group used a different strategy.

Subjects in the Flat Group again started from one side of

the landscape visualization searching for the label with the

highest request count. Sometimes the labels overlapped and

the participants hovered over the communication line to get

the number as popup.

The Hierarchical Group zoomed out to get an overview

where the thickest communication lines are located. They

hovered over these lines to get the actual request count and

to form the descending order. Interestingly, the subjects often

only distinguished between small and larger lines (4 steps of

line thickness were visualized). Therefore, they also looked at

medium sized lines instead of only looking at the largest lines.

In respect to time spent and task correctness, the Hierar-

chical Group outperformed the Flat Group in both metrics.

One reason for this circumstance might be that in the flat

visualization the manual search for the highest request count

can be error-prone in respect to finding and in respect to the

descending order.

T3: In this task, both groups used the same strategy to

find duplicated applications at the beginning. Participants from

both groups formed the visual query for applications that

are named equally and run on different nodes. The Flat

Group succeeded with this query since the visualization only

contains nodes and applications and no closed node group

entities. In contrast, the Hierarchical Group did not find such

applications since the node groups are closed by default. Often

they realized this circumstance after going through the whole

landscape without finding any duplicate applications and then

they looked for the node groups. Only a few subjects in the

hierarchical visualization looked for the node group entity

right from the start.

From our expectations, the Hierarchical Group should have

outperformed the Flat Group. However, the opposite happened.

While the task correctness is roughly equal, the time spent

was larger due to the wrong visual query in the beginning.

Therefore, the introduced node groups abstraction confused

the subjects in this task. We attribute this to a first time use

and properly this behavior changes in long-term usage.

A further reason for the good performance of the Flat Group

originates from our layout which visually grouped nodes

running duplicated applications instead of distributing the

nodes over the whole landscape. Otherwise, the comparison

of applications would have been much harder in this group.

T4: Both groups followed the same strategy for describing

the purpose of the WWWPrint application. First, the subjects

had to search the application. After finding it, they looked at

the communication lines and the connected applications. Then,

they reasoned about the purpose on the basis of the application

names and their connections. Additionally, the introduction

sheet provided hints about the meaning of, e.g., LDAP.

In average, the Hierarchical Group required 30 seconds

more time for this task. Since the visualization of the

WWWPrint node is similar – except communication lines –,

we expected an equal timing for this task. Therefore, we also

looked at the median which actually reveals an roughly equal

time spent. The average is influenced by two outliers (User 5

and User 25 – both taking around six minutes).

One source of error in this task was overlooking the

connection to LDAP and thus not detected that WWWPrint
requires authentication. We observed this behavior more often

in the Flat Group than in the Hierarchical Group which might

be a reason for the higher task correctness.

T5: Again, both groups had the same strategy. First, they

searched for the LDAP application. Afterwards, they followed

the communication lines backward to find the services which

would fail when LDAP fails.

Similar to Task T4, we expected an equal or lower time

spent in this task since the layout is more compact in the

Hierarchical Group. However, the time spent is 25 seconds

higher in average. In the median, it is actually 25 seconds

lower than the time spent by the Flat Group, again influenced

by User 25 who took about 16 minutes.

A typical source of error in this task was not describing the

purpose of the potentially failing services. We did not observe

any difference in the occurrence of this behavior between the

two groups which possibly led to the similar task correctness.

Summary: In summary, we observed three issues leading

to a higher time spent or lower task correctness in the Flat

Group. The subjects mistook nodes for applications. This

happened also in the Hierarchical Group but less frequently.
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TABLE III
DEBRIEFING QUESTIONNAIRE RESULTS FOR OUR EXPERIMENT

1 IS BETTER – 5 IS WORSE

Flat Hierarchical
mean stdev. mean stdev.

Time pressure (1-5) 2.14 0.77 2.20 0.94
Tool speed (1-5) 2.07 1.00 1.60 0.83
Tutorial helpfulness (1-5) 2.21 0.58 1.6 0.51
Tutorial length (1-5) 3.21 0.70 3.00 0.65
Achieved comprehension (1-5) 2.50 0.85 2.20 0.68

Perceived task difficulty (1-5)
T1 2.36 0.84 2.20 0.77
T2 2.64 0.93 2.00 0.53
T3 2.64 0.63 3.00 0.76
T4 3.00 0.78 2.93 0.70
T5 2.93 0.73 3.00 0.53

Furthermore, when space became narrow, the request labels

overlapped. This led to manually hovering over the connection

to get the actual request count. The third issue is related to

the layout that was inherently larger due to the absence of ab-

stractions, i.e., especially a node group abstraction. Therefore,

the Flat Group often required more time to find entities.

Subjects in the Hierarchical Group often did not utilize

the node group abstraction efficiently right from the start.

Therefore, this abstraction imposes a non-zero learning curve.

One general issue which affected both groups was that

some participants mixed up the direction of the communication

which goes from top to bottom in our layout. They sometimes

thought it would go from bottom to top. This issue could

probably be solved by an always visible legend.

F. Threats to Validity

In this section, we discuss the threats to internal and external

validity [25]–[27] that might have influenced our results.

1) Internal Validity: We split the internal validity into three

parts for our experiment: threats concerning the subjects, the

tasks, and miscellaneous threats.

a) Subjects: The subjects might not have been suf-

ficiently competent. Most participants rated themselves as

having regular programming experience which should be suf-

ficient for our task set.

A further threat is that the experience of the subjects might

not have been fairly distributed across the Flat Group and

the Hierarchical Group. This threat is mitigated by randomly

assigning the participants to each group. We checked that the

random assignment resulted in a fairly distributed self-assessed

experience. The concrete numbers were already described in

Section IV-A5.

The subjects might not have been properly motivated which

imposes another threat to validity of our experiment. The stu-

dents were not forced to take part in the experimenter since in

addition to the lottery, the students received only bonus points

which are not required to pass the exam. Furthermore, while

watching the recorded user sessions, we did not encounter any

unmotivated user behavior.

b) Tasks: One task-related threat is that the solutions

were incorrectly rated or a reviewer might have been biased

towards one experiment group. We mitigated this threat by

employing a blind review process. Before the actual reviewing

process took place, the solutions were mixed by a script such

that no trace to the originating group was possible for the

reviewers. Then, two reviewers independently reviewed each

solution. Afterwards, the seldom discrepancies in the ratings

were discussed. These discrepancies were at most one point

suggesting a high inter-rater reliability.

The tasks might have been too difficult which imposes

another threat to validity. However, subjects from both groups

achieved the maximum score in each task. The average per-

ceived task difficulty is shown in Table III. Since the average

rating of each task is never difficult (4) or too difficult (5), we

conclude that the difficulty of each task was appropriate.

Another threat is that the tasks might have been biased

towards one type of visualization. Since the average perceived

task difficulty only differs significantly in T2 and T3 between

both groups, at least the other tasks are not biased towards

one type of visualization. Task T2 was perceived easier in the

Hierarchical Group and Task T3 was perceived harder in this

group. Therefore, we conclude that this potential bias is fairly

distributed between the two experiment groups.

c) Miscellaneous: The possible different quality of the

tutorials impose another threat to validity. In both groups, the

teams had the possibility to continue to use the tutorial until

they felt confident in their understanding of the semantics. In

addition, both groups had the same tutorial text except the

hierarchical abstractions in the Hierarchical Group.

The too loose or strict time constraints might have influ-

enced the results of our experiment. However, the average

perceived time pressure was slightly above little (2) for both

groups. Therefore, we assume that the time pressure was well

fitted for the tasks.

2) External Validity: Our experiment only involved one sin-

gle object landscape. Since this is typically not representative

for all available software landscapes, further experiments with

different object landscapes should be conducted.

Another threat concerns the system comprehension tasks,

which might not reflect real tasks. Unfortunately, we did not

find any task frameworks for composing system comprehen-

sion tasks for software landscapes. We also took a look at

program comprehension task frameworks, e.g., the framework

by Pacione et al. [28]. However, we could not adapt the tasks in

a reasonable way. Therefore, we used our present knowledge

about software landscapes to made up tasks in interesting

contexts from real usage scenarios.

Only students participated in our experiment. Professionals

might act differently which could result in a different outcome

of our experiment. To investigate the impact of this threat,

further controlled experiments should be conducted. To lower

the setup effort for such experiments, our experimental design

can be reused.
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V. RELATED WORK

In this section, we describe related work concerning land-

scape visualizations and experiments in the context of software

visualizations.

A. Landscape Visualizations

Software landscape visualizations are mostly found in ap-

plication performance management (APM) tools, for instance,

AppDynamics, Foglight, or Dynatrace. Most of the APM tools

provide their own visualization. However, they often resemble

the familiar look of UML deployment diagrams.

In relation to our hierarchical visualization, we did not find

any APM tool providing the same hierarchy concepts as we

use in our visualization.

B. Experiments Comparing to the State of the Art

Marcus et al. [29] conducted an experiment comparing their

sv3D tool to an IDE and a text file containing metrics values.

The experiment resulted in sv3D not decreasing the task cor-

rectness. In respect to time, the sv3D group performed worse

than the control group which – according to the authors –

originates from using a new technology.

Quante [30] performed a controlled experiment for the eval-

uation of dynamic object process graphs. They failed to reject

the null hypothesis that the availability of dynamic object

process graphs support program comprehension in general.

Cornelissen [18] investigated the impact of using solely

Eclipse to using Eclipse with additional access to the trace

visualization EXTRAVIS for solving program comprehension

tasks. The group with additional access to EXTRAVIS had a

decrease in time spent and an increase in task correctness.

Wettel et al. [17] compare the usage of CodeCity to us-

ing Eclipse and Excel on two object systems (Azureus and

Findbugs) in a controlled experiment. The CodeCity group

achieved a statistically significant decrease in time completion

and an increase in task correctness.

In contrast to the above mentioned experiments, our exper-

iment operates on the software landscape level and not on the

application level.

C. Experiments Comparing Software Visualizations

Storey et al. [6] compared three software visualizations in

an experiment. They present a detailed discussion of the tools’

usage but provide no quantitative results.

Lange and Chaudron [31] investigated the benefits of their

enriched UML views by comparing them to traditional UML

diagrams. Contrary, we compare two landscape visualizations.

In [32], we present a controlled experiment comparing

the execution trace visualizations EXTRAVIS using circular

bundling and ExplorViz using a 3D city metaphor in typical

program comprehension tasks. In contrast, we investigate

the impact of using either a flat or a hierarchical software

landscape visualization for system comprehension.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we presented two different types of software

landscape visualizations, i.e., a flat and our hierarchical one.

The flat visualization was derived from concepts currently

found in different, commercial APM tools. Our hierarchical

landscape visualization extends this state-of-the-art visualiza-

tion by abstractions, i.e., systems, node groups, and thickness

of communication lines representing the request count. We

conducted a controlled experiment to investigate which visu-

alization type supports solving typical system comprehension

tasks more effectively or efficiently.

Our experiment resulted in a statistically significant increase

of 14 % task correctness in the hierarchical visualization

group for system comprehension tasks. The time used by the

participants on the tasks did not differ significantly. Since the

time spent is approximately equal and the task correctness is

improved by our hierarchical visualization, it provides a valu-

able enhancement to the current state of the art in landscape

visualizations in the context of system comprehension.

During our analysis, we identified some challenges encoun-

tered by the participants in both visualizations types. Some

subjects mistook nodes for applications. This happened more

frequently in the Flat Group than in the Hierarchical Group.

Furthermore, some participants from the Hierarchical Group

did not utilize the node group abstraction efficiently right from

the start. A further challenge was imposed by the flow-based

layout. Some participants from both groups sometimes mixed

up the direction of the communication.

To facilitate the verifiability and reproducibility for repli-

cations and further experiments [33], we provide a package

containing all our experimental data. Included are the em-

ployed version of ExplorViz v1.0-exp (including source code

and manual), input files, tutorial materials, questionnaires,

R scripts, dataset of the raw data and results, and 29 screen

recordings of the participant sessions. The package is available

online [8] with source code under the Apache 2.0 License and

the data under a Creative Commons License (CC BY 3.0).

As future work, our experiment could be replicated for

higher external validity. Especially, it should be conducted

with professionals as test subjects. Since our experiments

investigated first time use, the results might be different in long

term usage. This should be addressed in further experiments.

For our visualization of a software landscape in general,

future work could investigate the usage of existing visual

metaphors, e.g., the city metaphor [4], or even new visual

metaphors to further enhance the visualization. Afterwards,

the resulting visualizations should be compared to each other

and to our hierarchical software landscape visualization in

controlled experiments where our design can be reused to

ensure lower setup costs of such experiments.

The experiment gave us precious insights how users ac-

tually perceive and interact with the visualization. Based on

the results, we decided to enhance our visualization by an

always visible legend and to enhance our tutorial with more

introductions to the abstractions to flatten the learning curve.
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