

Exploring Software Cities in Virtual Reality

Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring

2015-09-28

- Often difficult for users to navigate in 3D spaces [TC09]
- Virtual Reality (VR) can employ the natural perception of spatial locality of users [EPP15, DSK14]

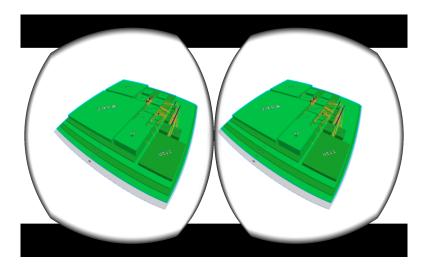
Albrachte-Universität zu Ki

- Often difficult for users to navigate in 3D spaces [TC09]
- Virtual Reality (VR) can employ the natural perception of spatial locality of users [EPP15, DSK14]
- $\rightarrow\,$ Immersive VR approach for exploring software cities with a head-mounted display and gesture-based interaction

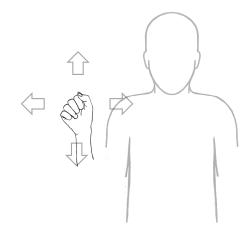
ExplorViz in a Nutshell

Introduction

Christian-Albrechts-Universität zu Kie


Christian-Albrechts-Universität zu Kiel

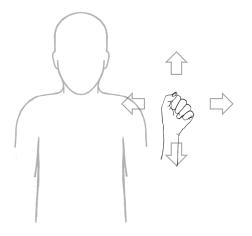
Christian-Albrechts-Universität zu Kiel



Gestures – Translation

Virtual Reality Approach

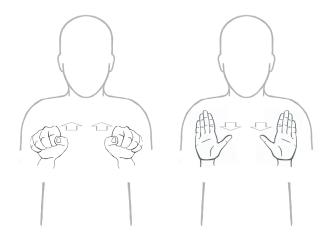
Christian-Albrechts-Universität zu Kiel

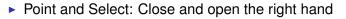


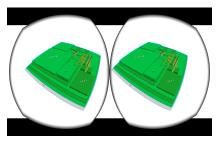
Gestures – Rotation

Virtual Reality Approach

Christian-Albrechts-Universität zu Kiel




Gestures – Zoom


Virtual Reality Approach

Christian-Albrechts-Universität zu Kiel

Reset: Jump

CAU

Technische Fakultät

Albrechts-Universität zu Kie

Usability Evaluation

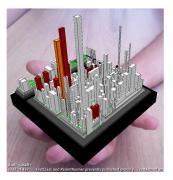

Christian-Albrechts-Universität zu Kiel

Table 1: Debriefing Questionnaire Results for our Interview (higher is better)

	Score	
VR for program comprehension	64 %	
Alternative to classic monitors	50 %	
Favor of Gestures		
Translation	68 %	
Rotation	66 %	
Zoom	36 %	
Selection	66 %	

- Imsovision [MLM01] represents object-oriented software in a VR environment
- SykscrapAR [SSMM12] using augmented reality with a platform

- VR approach to explore the 3D city metaphor
- Open source¹ and replication package² provided

ExplorViz

Future Work:

- Other head-mounted displays and input sensors
- Brain user interfaces
- Other visualizations
- Controlled experiments

²http://dx.doi.org/10.5281/zenodo.23168

¹http://www.explorviz.net

Denis Delimarschi, George Swartzendruber, and Huzefa Kagdi. Enabling integrated development environments with natural user interface interactions. In Proceedings of the 22nd International Conference on Program Comprehension (ICPC 2014), pages 126–129. ACM, 2014.

Anthony Elliott, Brian Peiris, and Chris Parnin. Virtual reality in software engineering: Affordances, applications, and challenges. In Proc. of 37th Int Conf. on Software Engineering (ICSE 2015). IEEE, May 2015.

Jonathan I Maletic, Jason Leigh, and Andrian Marcus. Visualizing software in an immersive virtual reality environment. In Proc. of 23rd Int Conf. on Software Engineering (ICSE 2001). IEEE, 2001.

Rodrigo Souza, Bruno Silva, Thiago Mendes, and Manoel Mendonca. SkyscrapAR: An augmented reality visualization for software evolution. In Proc. of 2nd Brazilian Workshop on Software Visualization (WBVS 2012), 2012.

A.R. Teyseyre and M.R. Campo. An overview of 3D software visualization. IEEE Transactions on Visualization and Computer Graphics, 15(1):87–105, January 2009.