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Abstract We present measurements of pCO2, O2 concentration, biological oxygen saturation (ΔO2/Ar), and
N2 saturation (ΔN2) in Southern Ocean surface waters during austral summer, 2010–2011. Phytoplankton
biomass varied strongly across distinct hydrographic zones, with high chlorophyll a (Chl a) concentrations in
regions of frontal mixing and sea ice melt. pCO2 and ΔO2/Ar exhibited large spatial gradients (range 90 to
450μatm and �10 to 60%, respectively) and covaried strongly with Chl a. However, the ratio of biological O2

accumulation to dissolved inorganic carbon (DIC) drawdown was significantly lower than expected from
photosynthetic stoichiometry, reflecting the differential time scales of O2 and CO2 air-sea equilibration. We
measured significant oceanic CO2 uptake, with a mean air-sea flux (~�10mmolm�2 d�1) that significantly
exceeded regional climatological values. N2 was mostly supersaturated in surface waters (mean ΔN2 of +2.5%),
while physical processes resulted in both supersaturation and undersaturation of mixed layer O2 (mean
ΔO2phys = 2.1%). Box model calculations were able to reproduce much of the spatial variability of ΔN2

and ΔO2phys along the cruise track, demonstrating significant effects of air-sea exchange processes (e.g.,
atmospheric pressure changes and bubble injection) and mixed layer entrainment on surface gas disequilibria.
Net community production (NCP) derived from entrainment-corrected surface ΔO2/Ar data, ranged from ~�40
to > 300mmolO2m

�2 d�1 and showed good coherence with independent NCP estimates based on seasonal
mixed layer DIC deficits. Elevated NCP was observed in hydrographic frontal zones and stratified regions of
sea ice melt, reflecting physical controls on surface water light fields and nutrient availability.

1. Introduction

The Southern Ocean plays a key role in global nutrient and carbon cycles [Sarmiento et al., 2004; Schlitzer,
2002]. This vast region contributes significantly to oceanic CO2 uptake through the vertical export of
particulate organic carbon [Honjo et al., 2008; Schlitzer, 2002; Trull et al., 2001] and the subduction of
CO2-rich polar water masses into the ocean interior [Caldeira and Duffy, 2000; Sarmiento and Toggweiler,
1984]. These biological and physical carbon pumps also transport oxygen and macronutrients into the
low latitudes, where they influence biological productivity over large spatial scales [Marinov et al., 2006;
Sarmiento et al., 2004]. In the offshore pelagic realm, Southern Ocean primary production and biological
CO2 uptake appear to be controlled by a combination of light and iron limitation [Boyd, 2002]. Large-scale
patterns of aeolian iron deposition have been linked to spatial gradients in surface water productivity [Cassar
et al., 2007], while vertical mixing at frontal zones has been shown to drive mesoscale and submesoscale
biological gradients [Sokolov and Rintoul, 2007]. Relative to the open ocean, field data are sparse over much
of the Antarctic continental shelf and marginal ice zone (MIZ), where productivity is influenced by iron input
from sediments [Coale et al., 2005; Planquette et al., 2013] and melting ice [Gerringa et al., 2012; Sedwick and
DiTullio, 1997] and by large seasonal cycles in solar irradiance, mixed layer depth, and sea ice cover [Arrigo
and van Dijken, 2003]. Although these high-latitude regions contribute disproportionately (on an areal basis)
to Southern Ocean nutrient and carbon cycles [Arrigo et al., 2008], their biological and physical dynamics
remain poorly described.

Here we present new results from a 2month survey of surface hydrography and dissolved gas concentrations
across the Atlantic sector of the Southern Ocean and the region west of the Antarctic Peninsula. We use our
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observations to characterize the spatial variability of surface gases in contrasting Southern Ocean regions
(offshore pelagic, continental shelf, and MIZ) and to examine the relative influence of physical versus
biological controls on biogeochemical processes. The interplay of physical and biological forcing is
particularly important in determining surface water pCO2 and O2 distributions. Net community production
(NCP, i.e., gross photosynthesis minus community respiration) leads to CO2 drawdown (i.e., decreased
pCO2) in the mixed layer, coupled with biologically induced O2 supersaturation [Carrillo et al., 2004]. NCP is
sensitive to physical factors (e.g., wind speed, solar irradiance, and ice cover) that control nutrient supply
and mixed layer light intensity. Physical processes also influence surface O2 and CO2 by modulating the
strength of diffusive air-sea exchange, which acts to restore gas concentrations back to atmospheric
equilibrium, and bubble processes, which lead to supersaturation of surface water gases [Keeling, 1993].
Due to chemical buffering of the inorganic C system in seawater, the diffusive air-sea equilibration time
scale is typically approximately tenfold slower for CO2 than for O2 [Sarmiento and Gruber, 2006], and gas
exchange can thus overprint the biological production signal, shifting the pCO2-O2 relationship away from
photosynthetic stoichiometry [Kortzinger et al., 2008].

Changes in surface water temperature and salinity can also influence O2 and CO2 distributions through their
effect on gas solubility. For O2, these thermodynamic effects can be removed by normalization to argon, a
biologically inert gas with solubility properties that are virtually identical to O2. The O2/Ar ratio thus serves as a
specific tracer for biological O2 cycling [Craig and Hayward, 1987], and recent field measurements of O2/Ar
disequilibrium (ΔO2/Ar) have been used to map the large-scale spatial distribution of NCP in Southern Ocean
surface waters [Cassar et al., 2011; Castro-Morales et al., 2013; Reuer et al., 2007; Shadwick et al., 2014; Tortell
and Long, 2009]. NCP estimates derived from ΔO2/Ar measurements are based on a steady state mixed layer
model [Kaiser et al., 2005; Reuer et al., 2007], where vertical and lateral exchange of O2 into the mixed layer is
assumed to be negligible and NCP can thus be equated to the biologically induced sea-air flux of O2

(O2 bioflux). These assumptions are likely invalid over significant portions of the Southern Ocean,
where vertical entrainment of biologically modified subsurface waters leads to significant uncertainty in
derived mixed layer NCP values [Jonsson et al., 2013]. Better constraints on the physical contributions to
mixed layer O2 mass balance are thus needed to improve the use of ΔO2/Ar as a productivity tracer.

Like Ar, N2 is biologically inert in the Southern Ocean, where nitrogen fixation and denitrification are inhibited
by high NO3

� and O2 concentrations, respectively. Given the high atmospheric concentrations of N2 and
its relatively low solubility in seawater, this gas provides a useful tracer for air-sea exchange processes,
including bubble injection [Schudlich and Emerson, 1996]. A number of studies have used surface ocean N2

disequilibrium measurements (ΔN2) to examine air-sea exchange [Emerson et al., 2002; Hamme and
Emerson, 2006; Vagle et al., 2010], and a mechanistic framework has recently been developed to
quantitatively interpret surface N2 data [Liang et al., 2013; Nicholson et al., 2008, 2011; Stanley et al., 2009].
At present, we are aware of only one published ΔN2 data set from Southern Ocean waters [Weeding and
Trull, 2014]. Additional ΔN2 measurements from this region are thus needed to validate the model-based
calculations under conditions of high wind speeds, strong gradients in atmospheric pressure and
significant bubble injection fluxes.

Using simultaneous measurements of N2, O2, ΔO2/Ar, and CO2, in combination with ancillary data and box
model calculations, we examined the dominant controls on surface gas saturation states in contrasting
Southern Ocean surface waters. Our results provide insight into the factors driving gas dynamics in various
subregions of the Southern Ocean, demonstrating clear regional differences in the relative importance of
physical and biological forcing. Our observations reveal strong biological controls on surface CO2 and O2

distributions, with a significant imprint of air-sea exchange. Using box model calculations, we show that
the formulation of Nicholson et al. [2011] is able to provide reasonable estimates of physically induced
changes in O2 and N2 saturation states, and we derive NCP estimates that are corrected for entrainment of
biologically modified subsurface waters into the mixed layer. Our work builds on the recent studies of
Shadwick et al. [2014] examining CO2, O2, and ΔO2/Ar along a transect south of Australia and Weeding and
Trull [2014], who present a mooring-based O2 and N2 time series for the Sub-Antarctic region south of
Tasmania. To our knowledge, our work represents the first simultaneous measurements of pCO2, ΔO2,
ΔO2/Ar, and ΔN2 for the Southern Ocean, and we show how these combined observations can provide
powerful insights into surface water biogeochemical processes across a range of hydrographic regimes.
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2. Methods
2.1. Study Site and Hydrographic
Measurements

We conducted a 10week survey of
Southern Ocean waters from 29
November 2010 to 3 February 2011 on
board the research vessel Polarstern
(cruise ANT-XXVII/2; [Rohardt et al.,
2011]). Our cruise track from Cape
Town, South Africa, to Punta Arenas,
Chile (Figure 1), encompassed a number
of distinct hydrographic regimes. For the
purposes of our analysis, we separate
the cruise track into three subregions.
We first sampled a N-S transect ~ 40°S
to 70°S, crossing a number of prominent
hydrographic fronts [Orsi et al., 1995],
including the Subtropical Front (STF),
Sub-Antarctic Front (SAF), Polar Front
(PF), Southern Antarctic Circumpolar
Current Front (SACCF), and Southern
Boundary of the Antarctic Circumpolar
Current (SBdy). We then followed an
E-W transect along the outer edge of

the Weddell Sea MIZ and conducted an intensive survey of the West Antarctic Peninsula (WAP) along the
Palmer Long Term Ecological Research (LTER) sampling grid [Waters and Smith, 1992].

Sea surface temperature (SST) and salinity (SSS) were measured continuously along the cruise track using an
onboard thermosalinograph (TSG; Sea-Bird Electronics, model SBE-21) sampling from an uncontaminated
seawater supply with a nominal intake depth of 11m. Daily calibrations of the TSG salinity measurements
were conducted using discrete samples analyzed on a salinometer (Optimare GmbH, Precision Salinometer).
Sea surface Chl a fluorescence, used as a proxy for bulk phytoplankton biomass, was continuously measured
by the ship’s underway fluorometer (WET labs, ECO). The fluorometer data were not calibrated to absolute
Chl a concentrations and are thus used here only as a relative measure of total phytoplankton abundance.
Some daytime nonphotochemical quenching of Chl a fluorescence is expected, independent of changes in
phytoplankton biomass.

Depth profiles of seawater potential temperature, salinity, and Chl a fluorescencewere obtained from conductivity-
temperature-depth (CTD) casts at 188 stations along the cruise track. Temperature and conductivity were
measured with Sea-Bird SBE3plus and SBE4 sensors, respectively, while Chl a fluorescence was measured
with a WET labs ECO fluorometer. Temperature and salinity profiles were used to define the mixed layer
depth for each station based on the curvature of near-surface layer density or temperature profiles as
described by Lorbacher et al. [2006]. Mixed layer temperature and salinity data derived from CTD casts
showed very good agreement with surface TSG data (mean offset of �0.078°C and �0.01, respectively).
The concentration of O2 in depth profiles was measured using a CTD-mounted Sea-Bird SBE43 sensor.
The CTD O2 sensor was calibrated using Winkler titrations of discrete samples, with visual endpoint
determination using a starch indicator (precision of 0.3μmol L�1) and KIO3 standardization of the thiosulfate
titration solutions [Dickson, 1994]. All of the CTD sensors were sent to the manufacturer for calibration prior
to and immediately after the cruise. Full quality-controlled hydrographic data from the cruise are available in
the Pangaea database (www.pangaea.de).

2.2. Surface Water Gas Measurements

Surface pCO2 and O2/Ar ratios were measured every ~ 30 s from the keel intake supply using membrane inlet
mass spectrometry (MIMS), following the protocols described by Tortell et al. [2011]. At typical cruising speeds of
~15�20 km h�1, this sampling frequency translates into one measurement every ~ 200m along the cruise

Figure 1. Map of the sampling area showing the cruise track (solid red
line) and the position of various hydrographic fronts (dotted lines). From
north to south, the fronts are Subtropical Front (STF), Sub-Antarctic Front
(SAF), Polar Front (PF), Southern Antarctic Circumpolar Current Front (SACCF),
and Southern Boundary of the Antarctic Circumpolar Current (SBdy). The
location of mean frontal positions was derived fromOrsi et al. [1995]. N-S, E-W,
andWAP denote different portions of our sampling region, as described in the
text. Grey/black shading around the Antarctic continent represents the mean
sea ice cover during the period of our survey, derived from the Advanced
Microwave Scanning Radiometer–EOS (AMSR-E) satellite product.
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track. The pCO2 measurements were calibrated using temperature-controlled seawater standards [Tortell et al.,
2011], and the resulting pCO2 data were corrected to in situ SST following [Takahashi et al., 2002]. Note that
pCO2 data are not available for much of the N-S transect due to instrument problems. O2/Ar measurements
in the flow-through seawater, (O2/Ar)meas, were normalized to values measured every few hours in air-
equilibrated, temperature-controlled seawater standards, (O2/Ar)sat. [Tortell et al., 2011], to derive a biological
O2 saturation term, ΔO2/Ar, expressed in % deviation from equilibrium.

This term was calculated as [Craig and Hayward, 1987]

ΔO2=Ar ¼ O2=Arð Þmeas= O2=Arð Þsat � 1
� � � 100 (1)

Surface O2 concentration measurements were made using an optode (Aanderaa Data Instruments, model
3830), while total gas pressure (mbar) was measured using a gas tension device (Pro-Oceanus, model
HGTD). The gas tension device was not functional during the latter half of the cruise. Both the optode and
HGTD were submerged in a thermally insulated flow-through box connected to the keel seawater intake
supply and set to acquire data with a 1min resolution (close to the response time of the HGTD). The
optode O2 measurements were calibrated against CTD-O2 data and cross validated against discrete
Winkler titrations. The O2 saturation state (ΔO2; % deviation from equilibrium) was derived from measured
O2 concentrations and an equilibrium O2 concentration computed from surface water temperature,
salinity, and atmospheric pressure with the solubility function of Garcia and Gordon [1992]. Using our
optode and MIMS data, we derived an estimate of the physical contribution to O2 disequilibria in surface
waters, ΔO2phys.

ΔO2phys ¼ ΔO2optode � ΔO2=ArMIMS (2)

The rationale for this approach is that optode-based ΔO2 is sensitive to both physical and biological
influences, whereas MIMS-based ΔO2/Ar reflects only the biological contribution to O2 disequilibria [Craig
and Hayward, 1987], after normalizing for physical effects using the biologically inert analog, argon. As
calculated here (2), ΔO2phys is thus functionally equivalent to the physically induced changes in Argon
saturation, ΔAr.

Following the approach of McNeil et al. [2005, 1995], we derived estimates of N2 partial pressure from GTD
total gas pressure by subtracting the partial pressures of O2 (derived from optode measurements), water
vapor (calculated from SST and SSS), and Ar.

pN2 ≈ pTotal� pO2 � pH2O� pAr (3)

In previous studies, seawater Ar concentrations have been assumed to be at atmospheric equilibrium values.
This assumption contributes only a small uncertainty (<0.1%) to the calculation of N2 concentrations [McNeil
et al., 1995], since Ar is a minor constituent of total partial pressure and varies by only a few percent. Indeed,
we observed a negligible difference between pN2 calculated assuming 100% Ar saturation and calculations
that included a specific ΔAr term (derived from ΔO2phys). Similarly, the inclusion of pCO2 into the
calculation did not have a significant effect on the resulting pN2. The N2 saturation state (ΔN2) was
calculated from GTD-derived N2 concentrations and observed atmospheric pressure using the SST and
salinity-dependent N2 solubility constant of Hamme and Emerson [2004].

2.3. Ancillary Data

Ancillary meteorological and oceanographic data from a number of sources were used to provide a broader
environmental context for our observations, and input data for model calculations (see below). Instantaneous
measurements of sea level atmospheric pressure, wind speed (corrected to 10m above sea level), and solar
irradiance were obtained fromweather station sensors on board the research vessel. Additional synoptic data
on wind speed, sea level atmospheric pressure, and humidity were obtained from the National Centers for
Environmental Prediction (NCEP) reanalysis (http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml)
at 2.5° and 6 h resolution, while regional SST information was derived from NOAA Optimum Interpolation
Sea Surface Temperature (OISST) (http://www.ncdc.noaa.gov/sst/) at 0.25° and 24 h resolution. The NCEP
wind speed data showed reasonably good agreement with the instantaneous shipboard measurements
(r= 0.78, root-mean-square error = 2.9m s�1). Although there was a slight offset toward lower wind speeds
in the NCEP data, the mean difference (�0.94m s�1 ± 3.11) was not significantly different from zero. Sea
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ice data (% cover) at 3 km and 24 h resolution were derived from AMSR-E satellite imagery using the ARTIST
Sea Ice (ASI) reprocessing algorithm provided by the Institute of Environmental Physics at the University of
Bremen, Germany [Spreen et al., 2008]. Regional sea surface salinity was obtained from the Mercator global
operational system PSY3V3 model at 0.25° and 24 h resolution (http://www.mercator-ocean.fr/eng/
produits-services/Reference-products#tps_differe). Surface Chl a concentrations were obtained from Level
3 AquaModis satellite data (http://oceancolor.gsfc.nasa.gov/cgi/l3). We used 9 km resolution imagery, with
8 day composite data linearly interpolated to daily values.

2.4. CO2 Flux Calculations

Surface gas measurements and wind speed data were used to derive sea-air flux estimates for CO2. The CO2

fluxes were calculated as

FCO2 ¼ kCO2 αCO2 pCO2sw � pCO2atmð Þ 1� Að Þ0:4 (4)

where kCO2 is the gas transfer velocity (md�1), calculated from wind speed data and the temperature-
dependent Schmidt number using the parameterization of Sweeney et al. [2007], αCO2 is the temperature
and salinity-dependent solubility of CO2 [Weiss, 1974], and A is the fraction of sea surface covered by ice.
The exponential term used to scale gas exchange as a function of ice cover is derived from Loose et al.
[2009]. For these flux calculations, we used an atmospheric CO2 mole fraction of 396 ppmv, derived from
the GlobalView pCO2 data (www.esrl.noaa.gov/gmd/ccgg/globalview/; 60°S to 70°S, December 2010 to
February 2011), corrected to 100% humidity at SST and SSS and the atmospheric pressure derived from
ship-based sensors. Wind speeds used for the flux calculations were derived from 1week averages of the
NCEP reanalysis product, matched to the ship’s position along the cruise track.

2.5. Carbonate System Measurements and Calculations

Discrete samples for carbonate system measurements were collected at selected stations along the cruise
track using 12 L Niskin bottles mounted on the CTD rosette. Total alkalinity was measured using
potentiometric gran titration [Brewer et al., 1986], calibrated against certified reference material (batches
100 and 105) supplied by Doctor Andrew Dickson, Scripps Institution of Oceanography [Dickson et al.,
2007]. The precision of the alkalinity measurements was 1.5μmol kg�1. Seawater (500mL) for dissolved
inorganic carbon (DIC) analysis was collected in borosilicate glass bottles and analyzed within 20 h using a
VINDTA 3C instrument (Versatile INstrument for the Determination of Total Alkalinity, Marianda, Kiel). The
DIC concentration was determined by coulometric analysis [Johnson et al., 1987], with calibration against
certified reference materials (CRM, batches 100 and 105) performed at the start and end of each
measurement cycle. The precision of the DIC measurements was 1.0μmol kg�1, based on the average
difference between all CRM in-bottle duplicate analyses (n= 87), and the accuracy was estimated
as 2.0μmol kg�1.

Depth-integrated DIC deficits were calculated from vertical profiles relative to the concentration at the depth
of the potential temperature minimum, representing the Winter Water. The depth of the potential
temperature minimum was determined from the CTD profiles. Vertical integration to the potential
temperature minimum was used to derive the chemical deficits in the summer surface layer. DIC data
were normalized to average Winter Water salinity (34.2, n=105) to account for dilution through addition
of sea ice meltwater. The chemical deficits, calculated in this way, represent the time-integrated change of
the surface ocean since the end of the winter. This technique assumes that DIC concentrations at the
potential temperature minimum represent the winter reference with no significant lateral or vertical
exchange. This assumption has been used in prior studies [Hoppema et al., 2007; Jennings et al., 1984;
Rubin et al., 1998] and appears to be reasonably robust for the Weddell Sea [Hoppema et al., 2000b].

In order to obtain high spatial resolution surface carbonate system data along the cruise track, we derived an
empirical linear relationship between salinity and alkalinity along the E-W and WAP transects (n= 2098,
r2> 0.85, root-mean-square error = 6.1μmol kg�1) and used this relationship to compute alkalinity from
thermosalinograph salinity measurements. Total dissolved inorganic carbon (DIC) along the cruise track
was then computed from measured pCO2 and the derived alkalinity using CO2SYS [Pierrot et al., 2006],
with the equilibrium constants of Mehrbach et al. [1973] refit by Dickson and Millero [1987]. For the WAP
and Weddell regions, the root-mean-square error of the DIC estimates derived from this analysis was 7.1
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and 3.8μmol kg�1, respectively. This error term was based on a comparison of DIC values obtained using
measured versus empirically derived alkalinity.

2.6. Box Model Calculations

Following the work of Emerson et al. [2008] and Nicholson et al. [2011], we used a simple box model to assess
the physical contributions to N2 and O2 disequilibria in the mixed layer. The 1-Dmodel includes an air-sea gas
exchange term, Fas, and a subsurface water entrainment term, Fentr, associated with mixed layer deepening
events. Lateral and vertical advection and vertical diffusive mixing were assumed to be negligible, and no
biological production/consumption term was included in order to isolate physical forcing. For a given gas,
x, the change in mixed layer concentrations, dcx, was computed as

mld dcx=dt ¼ Fas;x þ Fentr;x (5)

where mld is mixed layer depth. The air-sea flux term, Fas, was separated into several components; diffusive
gas exchange, Fdif, injection of small bubbles, Finj, and air-water interface exchange across larger bubble
surfaces, Fex. These gas exchange terms were all scaled to the fraction of open water, A, following Loose
et al. [2009], as described in section 2.4. The total air-sea flux term (Fas) for gas x was thus computed as

Fas;x ¼ Fdif;x þ F inj;x þ Fex;x
� �

1� Að Þ0:4 (6)

Fdif;x ¼ �kx cx � αxpxð Þ (7)

F inj;x ¼ Ainj px u10 � 2:27ð Þ3 (8)

Fex;x ¼ Aex px Dx=1 m2s�1
� �0:5

αx=1 mol m�3atm�1
� �

u10 � 2:27ð Þ3 (9)

where kx is the gas transfer velocity (m s�1) calculated following Sweeney et al. [2007], αx the solubility
(molm�3 atm�1), px the partial pressure calculated from the mole fraction in dry air and the dry
atmospheric pressure (px= χx patm,dry), and Dx the diffusion coefficient (m2 s�1). The injection and
exchange rates Ainj and Aex (mol s2m�5 atm�1) given in Nicholson et al. [2011] were derived for average
wind speeds. For our calculations based on short-term wind speeds, we use a flux enhancement factor,
R, of 1.5 as discussed in Nicholson et al. [2011]. The bubble fluxes Finj and Fex scale with whitecap
coverage (0 for u10< 2.27).

The entrainment term is governed by the change in mixed layer depth (only deepening of the mixed layer
impacts the surface water budget) and by difference between mixed layer concentration cx and the
concentration in the subsurface layer cx,sub:

Fentr ¼ cx;sub � cx
� �

d mldð Þ=dt (10)

The changes in mixed layer depth used to quantify the physical entrainment term were obtained from
temperature and salinity profiles of the Mercator global operational system PSY3V3. These model-
derived mixed layer depths, which assimilate all available measurements in a given study region,
showed reasonable agreement with values obtained from our actual CTD observations (r = 0.61) and
were able to reproduce the spatial patterns in mixing depths across our cruise track (Figure S1 in the
supporting information). Moreover, comparison of the time-dependent model MLD history, with
observations derived from Argo float data showed that the model output was able to reproduce the
significant changes in MLD (including a number of pronounced deepening events) observed across our
study region (Figure S2).

For N2, the choice of the submixed layer concentration cN2 ;sub has a minor influence on the calculation given

the weak vertical gradients of this gas in the absence of a subsurface biological production or consumption
term. We thus chose a uniform value of 100% surface saturation for cN2 ;sub. In the case of O2, however, strong

vertical gradients and variable saturation levels have a significant influence on the entrainment term, and the
choice of cO2 ;sub values can thus exert a significant influence on the model calculations under conditions of

mixed layer deepening. Given our interest in comparing physical and biological processes affecting the
surface water O2 balance, we computed two different O2 entrainment terms. The first term, ΔO2pe, reflects
the entrainment of subsurface waters in the absence of a biological signature. For this calculations the
subsurface O2 end-member (cO2 ;sub ) was set to 100%, as in the N2 calculations. We also computed a total
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O2 entrainment term, ΔO2te, which reflects the bulk transport of O2 into the mixed layer, based on the
observed difference in O2 concentrations between surface and subsurface waters. For these calculations,
we used the average O2 concentration 20–25m below the mixed layer depth to define the end-member
concentration (cO2 ;sub ) for entrained waters. This depth was chosen based on examination of mixed layer

depth history from the PSY3V3 output during a number of modeled entrainment events. The mean cO2 ;sub

end-member values were calculated from CTD data for each sampling station and interpolated to the full
resolution of our cruise track for use in the entrainment calculations.

The model mixed layer concentrations of O2 and N2 were initialized at 100% saturation starting 30 days prior
to the underway measurements. The ancillary data (e.g., wind speed, atmospheric pressure, and mixed layer
depth) were interpolated to the cruise track position and time and used to force the model calculations for
30 days with time steps of 6 h.

2.7. Net Community Production Estimates

We used the approach of Reuer et al. [2007] to estimate net community production (NCP, i.e., gross
photosynthesis minus community respiration) from our mixed layer ΔO2/Ar measurements. The
calculations presented by Reuer et al. [2007] are based on a steady state model, where lateral advection
and vertical entrainment are assumed to be negligible, and the mixed layer O2 mass balance is influenced
solely by NCP and gas exchange. Under these conditions, steady state NCP is equivalent to the air-sea flux
of biogenic O2 (obtained from ΔO2/Ar and the air equilibrium O2 concentration, αO2 × patm). The gas
exchange term, k, is derived using a weighting function to account for variability in wind speed history
over the residence time of O2 in the mixed layer (see Reuer et al. [2007] for details).

NCP ¼ ΔO2=Ar � αO2 � patm � k (11)

For consistency with our box model calculations, we used the gas exchange parameterization (k) of Sweeney
et al. [2007], and the ice-dependent scaling factor of Loose et al. [2009] to derived NCP estimates.

We recognize that the assumptions required for the ΔO2/Ar-based NCP calculations are unrealistic for at least
some portions of our cruise track where entrainment of subsurface waters into the mixed layer is likely
nonnegligible. To examine the influence of mixed layer entrainment on NCP, we used the output from our
box model calculations (see above) to estimate the O2 flux associated with changes in mixed layer depth.
Based on our calculation of ΔO2pe and ΔO2te, we derived a specific biological entrainment term, ΔO2be, for
use in the correction of ΔO2/Ar for NCP calculations.

ΔO2be ¼ ΔO2te � ΔO2pe (12)

This term reflects the entrainment of biologically modified O2 signatures from subsurface waters. The
purely physical entrainment term, ΔO2pe, affects O2 and Ar in a nearly identical manner and thus has
a negligible influence on the measured ΔO2/Ar ratio. In contrast, ΔO2be specifically affects O2 and
thus modifies ΔO2/Ar. Our approach, based on the separation of biogenic and nonbiogenic
entrainment fluxes, thus allows us to correct the observed ΔO2/Ar values for entrainment of
biologically modified subsurface waters, after removing the nonbiological entrainment signature. We
used the corrected ΔO2/Ar data as input to equation (11). Given the physical complexity of our study
region, and its high degree of temporal variability, we treat our NCP calculations as a first-order
estimate of biological O2 production rates in the mixed layer, recognizing the quantitative limitations
of this approach.

Additional NCP estimates were derived from an analysis of seasonal mixed layer DIC deficits as described in
section 2.5. In order to estimate a mean daily NCP rate from these seasonal deficits, it is necessary to choose
an integration time scale (i.e., the length of time over which the DIC deficit has accrued). We obtained an
estimate of the integration time scale using an analysis of 8 day AquaModis Chl a imagery provided
by Oregon State University, with a cloud-filling algorithm (http://www.science.oregonstate.edu/ocean.
productivity/). We computed mean Chl a concentrations in three geographic regions centered around the
N-S, E-W, and WAP sections of our cruise track and used these values to reconstruct the history of surface
Chl a concentrations in each subregion (Figure S3). The approximate initiation date of positive NCP was
then derived as the first significant increase in Chl a concentrations over wintertime values, and the NCP
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integration times for DIC deficits were obtained from the difference between the mean sampling date and
the calculated bloom initiation date in each of the three regions. We obtained integration times of 69, 50,
and 98 days for the N-S, E-W, and WAP regions, respectively. We used a photosynthetic quotient of 1.4mol
O2:mol DIC [Laws, 1991] to convert DIC-based NCP to O2 units for comparison with our ΔO2/Ar-based NCP
estimates.

3. Results and Discussion
3.1. Surface Water Hydrography and Chl a

Sea surface temperature (SST) exhibited a strong latitudinal gradient along the northern portion of the N-S
transect, across the transition from subtropical to Antarctic waters (Figures 2a and 3d). In contrast, the ice-
covered waters south of the SBdy frontal zone were characterized by near homogeneous SST (±0.3°C)
close to the freezing point of seawater. Along the E-W and WAP transects, SST ranged from �1.8 to 3°C
and exhibited significant spatial heterogeneity (Figures 2a and 3d). The relatively warm SST of the WAP
region reflects the influence of surface warming in shallow near-shore waters, and/or the signature
of modified circumpolar deep water flowing onto the continental shelf [Martinson and McKee, 2012].
Salinity also showed significant spatial variability across the E-W and WAP regions. Relatively fresh waters
(salinity ~ 33.2), indicative of local sea ice melt, were observed along the Weddell Sea MIZ at ~ 42°W and
along the WAP in the near-shore waters adjacent to Marguerite Bay (Figure 2b). Mixed layer depths,
computed from CTD profile data, ranged from < 10m to ~ 100m, with an overall mean of 26m
(±20m standard deviation.). The shallowest mixed layer depths were observed in low-salinity regions
along the western portion of the Weddell Sea MIZ and in near-shore waters of the WAP.

Strong gradients in surface hydrography were associated with significant variability in phytoplankton Chl a
fluorescence. Pelagic waters of the N-S transect were generally characterized by relatively low Chl a
fluorescence, although elevated values were observed along frontal zones of the SAF, PF, SACCF, and SBdy
(Figures 2d and 3c). Increased Chl a concentrations along frontal zones are a well-known feature of the

Figure 2. Spatial distribution of (a) sea surface temperature, SST, (b) salinity, (c) N2 saturation, ΔN2, (d) Chl a fluorescence,
(e) pCO2, and (f) biological O2 saturation, ΔO2/Ar along the cruise track. Inset figures show a detailed view of the property
distributions along the WAP transect. Note that pCO2 and ΔN2 data are not available for the full cruise track due to
instrument problems.
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Southern Ocean that has been attributed to the supply of nutrients through enhanced vertical mixing
[Laubscher et al., 1993; Sokolov and Rintoul, 2007; Sokolov, 2008]. The intensity of this mixing is particularly
strong in the polar frontal region, where we observed the greatest enhancement of surface Chl a
fluorescence. Relative to the N-S transect, waters of the Weddell Sea MIZ and near-shore regions of the
WAP showed extreme variability in Chl a fluorescence. Values ranged by more than 2 orders of magnitude
and exhibited sharp gradients over small spatial scales, often in regions of local sea ice melt (Figure 3c).
Previous studies have demonstrated a strong influence of sea ice processes on phytoplankton growth
in surface waters [Arrigo and van Dijken, 2004; Smith and Nelson, 1985]. Melting ice can stimulate
phytoplankton growth through the release of Fe [Gerringa et al., 2012; Sedwick and DiTullio, 1997] and/or
decreasing surface salinity, which acts to stabilize the mixed layer. Indeed, we observed a negative
relationship between Chl a fluorescence and salinity in the WAP (r =�0.42) and, to a lesser extent, along
the E-W transit (r =�0.17). The relationship between biological productivity and mixed layer depth is
addressed in section 3.6.

3.2. ΔO2/Ar and pCO2 Distributions

Along the N-S transect, ΔO2/Ar was generally within a few percent of atmospheric equilibrium, with slightly
positive values north of 55°S (<2000 km along the cruise track) and negative values in ice-covered waters of
the Weddell Sea MIZ (Figures 2f and 3b). Negative ΔO2/Ar values are indicative of net heterotrophic conditions

Figure 3. Distribution of (a) pCO2, (b) biological O2 saturation, ΔO2/Ar, (c) Chl a fluorescence, and (d) sea surface temperature
along the cruise track. Black vertical lines show the demarcation between the different portions of the cruise track, vertical
grey shaded bars show regions with more than 50% ice cover, and blue shaded areas with dotted lines show the position of
different frontal regions.
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under the sea ice and/or the presence of
deep mixed layers bearing a remnant
heterotrophic signature. Although relatively
few pCO2 data are available for the N-S
transect, we observed a sharp pCO2 gradi-
ent (from 450 to 330μatm) on the southern
edge of the MIZ (Figures 2e and 3a). Surface
water pCO2 and ΔO2/Ar showed high varia-
bility in the Weddell Sea MIZ (E-W transect)
and WAP region. In these areas, pCO2

reached minimum values of ~ 100μatm,
while ΔO2/Ar in excess of 50% was
observed (Figures 3a and 3b). The lowest
pCO2 and highest ΔO2/Ar occurred in
near-shore waters of Marguerite Bay (WAP;
Figures 2e and 2f) at ~11,000 km along our
cruise track.

The pCO2 and ΔO2/Ar disequilibria we
observed are substantially higher than
values previously reported for the offshore
pelagic Southern Ocean [Cassar et al., 2011;
Reuer et al., 2007; Shadwick et al., 2014], but
they are consistent with recent observa-
tions from the highly productive waters of
the Ross Sea and Amundsen Sea polynyas
[Smith and Gordon, 1997; Tortell et al.,
2011, 2012]. In sections 3.5 and 3.6, we dis-
cuss the relative contributions of physical

and biological processes to O2 supersaturation. Here we note only that ΔO2/Ar was positively correlated with
Chl a (r=0.66 and 0.43 along the E-W and WAP transects, respectively) and showed enhancements in frontal
zones along the N-S transect. Unlike ΔO2/Ar, pCO2 is sensitive to temperature-dependent solubility changes.
During the 30 days prior to our sampling, the NOAA OISST data show an average surface water warming of
~ 1°C along our cruise track. This warming would lead to a 4% (~15μatm) increase in pCO2 [Takahashi
et al., 2002], which is small compared to the observed pCO2 variability along the cruise track. This result indi-
cates that biological uptake exhibited a first-order control on pCO2 distributions.

As expected, pCO2 exhibited a strong negative correlation with ΔO2/Ar along our cruise track (Pearson’s
correlation coefficient, r=�0.85 and �0.91 for the E-W and WAP regions, respectively). Figure 4 shows the
corresponding relationship between O2 and total dissolved inorganic carbon (DIC) concentrations derived
from pCO2 and ΔO2/Ar data. For both the WAP and E-W regions, the slope of the O2:DIC relationship
was significantly lower than the expected photosynthetic stoichiometry (photosynthetic quotient, PQ,
1.0–1.4mol O2:mol DIC [Laws, 1991]). This discrepancy can be explained by the differential rate of sea-air
O2 and CO2 exchange. Faster air-sea equilibration of O2 results in a shorter residence time of this gas in
the mixed layer, and a more rapid ventilation of photosynthetically derived O2. During our cruise, the
average residence time of O2 in the mixed layer was < 1week, given the mean wind speed (9.2m s�1) and
MLD (26m) observed across the survey region. In contrast, disequilibria in pCO2, which is buffered by the
seawater carbonate system, can persist for many weeks and even months in the surface mixed layer
[Takahashi et al., 2009]. The degree of uncoupling between CO2 and O2 in the mixed layer should thus
provide insight into temporal evolution of biological productivity in surface waters. Regions where the
biological production signal is “older” should exhibit a higher degree of CO2-O2 uncoupling. In our data
set, the lower O2-DIC slope in the WAP region (0.33 versus 0.45 for the E-W transect; Figure 4) suggests
that the production signal was integrated over a longer time interval. Indeed, remote sensing data show
the presence of phytoplankton blooms in theWAP for over 2months prior to our sampling (see Figure 8b and

Figure 4. Relationship between dissolved inorganic carbon (DIC)
concentrations and biogenic O2. DIC values were obtained from
MIMS pCO2 data, using empirically derived alkalinity values (based on
surface salinity). Biogenic O2 (i.e., the amount of excess O2 in themixed
layer derived from biological production) was computed from ΔO2/Ar
data using a temperature- and salinity-dependent O2 solubility
function. Solid lines show the DIC-O2 relationship for the E-W and
WAP portions of the ship track derived from a Type II regression
analysis, while dashed lines show the expected DIC-O2 relationship for
a photosynthetic quotient (PQ) of 1 or 1.4mol O2 produced per mol
DIC consumed. The slope of the O2-DIC relationship is 0.45 and 0.33 for
the E-W and WAP regions, respectively.
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section 3.6). In contrast, much of the biological production along the E-W region occurred following recent ice
retreat, with shorter time interval for gas exchange to uncouple O2 and DIC. Similar observations on the time-
dependent coupling of CO2 and O2 coupling have been recently reported by Shadwick et al. [2014] although
these authors did not present derived O2 and DIC concentrations.

3.3. Sea-Air CO2 Fluxes

During the time of the survey, our sampling region served as a strong CO2 sink. Along the E-W transit, CO2

fluxes showed a bimodal distribution (Figure 5), with an overall mean of �13.0 ± 6.70 (standard deviation)
mmolm�2 d�1, and a range of �41.4 to �2.76mmolm�2 d�1 (negative fluxes signify oceanic uptake). For
the WAP region, the mean CO2 flux was �9.26 ± 5.51mmolm�2 d�1 (range �32.3 to +7.43). In both the
WAP and E-W regions, the frequency distribution of CO2 fluxes (Figure 5) exhibited a long tail at low values
(oceanic uptake). The strongest oceanic CO2 uptake along the entire cruise track (>40mmolm�2 d�1) was
observed near Marguerite Bay along the WAP, while a small net CO2 efflux from surface waters was
observed north of the WAP in pelagic waters of the Drake Passage.

Current estimates of regional air-sea CO2 fluxes in the Southern Ocean are based on the climatology of
Takahashi et al. [2009], compiled from a global compilation of field measurements. This climatology
indicates a weak to moderate Southern Ocean CO2 sink between ~ 40 and 50°S (between the STF and PF)
and suggests that waters south of the PF are either neutral or slight sources of CO2 to the atmosphere.
However, actual data coverage is sparse over much of the high-latitude Southern Ocean, particularly in the
MIZ and the continental shelf regions. Examination of the underlying pCO2 data set used to construct the
2009 climatology shows very few summer time (December and January) pCO2 observations in the Weddell
Sea MIZ, with many grid cells lacking primary data, and fluxes derived from interpolation of the nearest
available observations. Moreover, the resolution of the climatology grid cells (4° × 5°) is coarse relative to
the observed length scales of variability. For these reasons, it is likely that significant features are not well
represented in the climatological maps of Southern Ocean CO2 fluxes.

Figure 5. (a) Frequency distribution of air-sea CO2 fluxes along the E-W and WAP regions of the cruise track. (b and c) The
ship track plotted over the monthly climatological CO2 flux derived from the global climatology of Takahashi et al. [2009].
Negative fluxes imply oceanic uptake of CO2.
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In Figure 5, we have plotted our cruise track over the gridded CO2 fluxes of Takahashi et al. [2009]. Our
sampling region encompassed ~ 25 grid cells (seven of which lacked primary data), and we derived mean
CO2 fluxes and air-sea CO2 gradients (ΔCO2) for these areas. The results, shown in Table 1, highlight a
significant difference between the CO2 fluxes derived from our MIMS data, and those from the
climatology. In December, the climatology shows our sampling region to be near neutral with respect to
air-sea CO2 fluxes (1.4 ± 0.90mmolm�2 d�1), whereas our measurements show mean oceanic uptake of
10 (±5.8)mmolm�2 d�1. In January, the climatological CO2 flux is �2.4 ± 0.92mmolm�2 d�1, compared to
�9.9 ± 4.2mmolm�2 d�1 derived from our measurements. The climatology represents a mean value
derived from many years of observations, and some interannual variability is expected. During our survey,
we measured significantly higher air-sea CO2 disequilibria than are present in the climatology; for
December and January, respectively, we observed an average ΔCO2 of �91 and �108μatm, compared to
the climatological values of ~ +17 and �39μatm. These differences are likely too large to represent simple
interannual variability and likely reflect real differences in the underlying distribution of data. Our results
thus suggest significantly higher oceanic CO2 uptake in high-latitude Antarctic waters than is represented
by the global climatology. Similar observations have been reported in previous studies [Arrigo et al., 2008;
Bellerby et al., 2004; Hoppema et al., 2000a]. Note that the apparent difference in sea-air CO2 fluxes
between our observations and the climatology is approximately twofold larger if we compute the fluxes
using ship-based winds as opposed to the weekly averaged NCEP reanalysis product.

High-latitude Antarctic waters, and the MIZ in particular, should be effective at sequestering CO2 from the
atmosphere due to the coupling of biological productivity with sea ice dynamics. As observed in our study
and that of previous authors [Bakker et al., 2008; Jones et al., 2010], ice retreat leads to enhanced
phytoplankton biomass and strong CO2 uptake. Previous studies have shown that much of the CO2 taken
up by spring phytoplankton growth can effectively be sequestered into subsurface layers during late
summer cooling and the return of ice cover at the end of the growing season [Sweeney, 2003]. Late season
sea ice cover acts to limit outgassing of high CO2 during the net heterotrophic period of the annual
growing season, enhancing the CO2 sequestration efficiency of surface waters. For this reason, Antarctic
continental shelf waters are likely to contribute disproportionately to Southern Ocean CO2 uptake [Arrigo
et al., 2008]. Inclusion of more data from these regions into updated climatologies (with finer-scale grid
cell resolution, and greater seasonal data coverage) could lead to revised estimates of Southern Ocean
CO2 uptake, with significant implications for the global C budget.

3.4. ΔN2 Distribution

Across much of our sampling region, N2 was supersaturated with respect to atmospheric equilibrium (i.e.,
ΔN2> 0; Figures 2c and 6a). The one exception occurred in an ice-covered region of the Weddell Sea
(~6500 km), where we measured a ΔN2 of ~�1%. This feature may reflect the low atmospheric pressure
~ 7 days prior to our arrival on station, or the recent release of cold and fresh meltwater that is
undersaturated in N2 (due to gas exclusion from the forming ice matrix). The average ΔN2 along the full
cruise track was ~ +2.5%, with maximum values of ~ +6% observed in regions of high wind speed
(>20m s�1) and/or decreasing atmospheric pressure along the northern portion of the N-S transect (in the
SACCF region), the Weddell Sea continental margin and the northern WAP (Figure 6). In some cases (e.g.,
~11,000 km cruise track distance), strong N2 supersaturation was associated with recent warming of the
mixed layer and decreased gas solubility. The maximum ΔN2 values we observed are significantly higher
than those reported previously for midlatitude oceanic regions [Emerson et al., 2008; McNeil et al., 2005;

Table 1. Comparison of Sea-Air CO2 Fluxes ± Standard Deviation From the MIMS Data (E-W and WAP Transects) and the
Monthly Climatology of Takahashi et al. [2009]a

MIMS Data Climatology

CO2 Flux (mmolm�2 d�1) ΔpCO2 (μatm) CO2 Flux (mmolm�2 d�1) ΔpCO2 (μatm)

December �10.0 ± 5.8 �91 ± 59 1.4 ± 0.9 17 ± 11
January �9.9 ± 4.2 �108 ± 24 �2.4 ± 0.9 �39 ± 14

aAverage fluxes from MIMS data were derived from values binned into 4° × 5° boxes to match the resolution of the
climatology. Averages reported for the climatology were obtained from grid cells containing MIMS data.
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Vagle et al., 2010], including recent observations from the Sub-Antarctic zone of the Southern Ocean
[Weeding and Trull, 2014], where ΔN2 did not exceed ~+3% during an observation period of 7months. Our
observations may be indicative of a persistently high ΔN2 signal across large areas of the Southern Ocean,
driven by high regional wind speeds and strong changes in atmospheric pressure.

Box model calculations of ΔN2, based on gas exchange processes and mixed layer entrainment [Nicholson
et al., 2011], were used to examine the various processes contributing to the high ΔN2 across our survey
region. In general, the calculated ΔN2 values were in good agreement with our observations, and the
model was able to reproduce both the absolute magnitude of ΔN2 and its spatial variability along much of
our cruise track (Figure 6a). In a number of instances, however, modeled ΔN2 was significantly lower than
the observed values, particularly at the beginning and end of the HGTD data record. While it is possible
that offsets between observations and model output at the end of the data reflect problems with the
HGTD before its failure, several sources of uncertainty are also present in our calculations. The 1-D model
we used for our calculations does not account for advection of water masses with possibly different
preformed gas concentrations. The dynamic system of frontal zones between Cape Town and the Polar
Front may thus explain part of the discrepancy between observations and model output during the
northern portion of the N-S transect. The remainder of our survey region is less prone to advection, owing
to a (zonally) more homogeneous water mass structure. In the MIZ, uncertainty in the model calculations
may result from sea ice-dependent processes. The sea ice history used in the model was derived from
reprocessed satellite data with a relatively coarse spatial resolution. Sea ice cover exerts a significant
influence on the strength of air-sea exchange, and errors in the representation of sea ice cover or in the
parameterization of ice effects on gas exchange coefficients [Loose et al., 2009] would lead to uncertainty
in the ΔN2 calculation. Notwithstanding these sources of uncertainty, we conclude that our observations
provide a reasonable validation of the Nicholson et al. [2011] model in various Southern Ocean regions
with high wind speeds and strong temporal changes in atmospheric pressure. Additional GTD data and

Figure 6. (a) Nitrogen saturation, ΔN2, (b) atmospheric pressure history, and (c) wind speed history along the cruise track. The
black line in Figure 6a shows the ΔN2 value derived from Gas Tension Device (GTD) measurements, while the red line shows
the results of box model calculations (see text for a full description). Grey vertical patches in Figure 6a show regions with greater
than 50% ice cover. Atmospheric pressure and wind speed data shown in Figures 6b and 6c were derived from NCEP reanalysis.
The y axis in Figures 6b and 6c represents the number of days prior to the ship’s arrival at a location along the cruise track.
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higher-resolution physical models will be needed to further examine the distribution of ΔN2 across various
Southern Ocean regions. Inclusion of GTD sensors on new biogeochemical ocean floats and gliders
[Emerson et al., 2002; Nicholson et al., 2008] will be particularly useful in this respect.

3.5. Physical Versus Biological Controls on O2 Saturation States

Unlike N2, oxygen saturation states are strongly influenced by both physical and biological processes. We
quantified the physical effects on O2 saturation state (ΔO2phys), using simultaneous MIMS and optode
measurements (see section 2). Measured values of ΔO2phys (i.e., optode ΔO2-MIMS ΔO2/Ar) showed
significant variability along our cruise track (Figure 7a), with values ranging from ~�5% (undersaturation)
to >+10% (supersaturation). This range of values is significantly larger than that reported recently by
Shadwick et al. [2014], who measured ± 3% ΔO2phys along a transect from Australia to the Antarctic MIZ. In
our study, maximum O2 supersaturation was observed in the WAP region (~11,000 km cruise track),
whereas undersaturation was largely confined to several regions of local sea ice cover (Figure 7a). Box
model calculations of ΔO2pe (i.e., the entrainment of nonbiologically modified subsurface waters) showed
reasonably good agreement with observations and were able to reproduce the spatial pattern of ΔO2phys

along much of the cruise track (Figure 7a). There were, however, notable offsets between the modeled

Figure 7. Effects of physical and biological processes on mixed layer O2 saturation state. (a) The black line shows observed
values of ΔO2phys, derived fromMIMSΔO2/Ar and optodeΔO2, while the red line shows the results of boxmodel calculations,
including physical terms in the O2 budget (i.e., air-sea processes and entrainment of nonbiologically modified subsurface
waters, ΔO2pe). (b) Biological effects on the surface O2 budget resulting from in situ NCP (as reflected by surface ΔO2/Ar
measurements) and modeled entrainment of biologically modified subsurface waters (ΔO2be). (c) O2 depth profiles along the
cruise track derived from CTD observations. The thin black line and crosses represent the computed mixed layer depth, while
the thicker line represents a five-point running mean.

Global Biogeochemical Cycles 10.1002/2014GB004975

TORTELL ET AL. CO2, O2, AND N2 IN S. OCEAN SURFACE WATERS 14



and observed values in some areas, with themodel tending to underpredict the observations, as seen for ΔN2

(Figure 6). The largest discrepancies between the model and observations occurred along the N-S transect,
and in the WAP region. As discussed above for ΔN2, the discrepancy between modeled and observed ΔO2

along the N-S transect may have resulted from the lateral advection of heterogeneous water masses. By
comparison, the high apparent values of ΔO2phys measured in the WAP (in excess of +10%) are more
difficult to reconcile with known physical processes driving O2 supersaturation in the mixed layer. Given
the extremely high O2 concentrations in this region (>60% O2 supersaturation), the optode was measuring
at the outer limit of its calibration range, and we cannot exclude measurement errors leading to an
overestimation of ΔO2phys. Moreover, the shallow mixed layers and bottom depths in the coastal WAP
make this region susceptible to physically induced O2 supersaturation resulting from bubble injection
under high wind speeds. Under these conditions, our calculations, which assume 100% O2 saturation in
subsurface waters, would underestimate ΔO2pe.

In addition to our calculations of ΔO2pe, we used the box model to derive an O2 entrainment term associated
with the transport of biologically modified waters into the mixed layer. This entrainment term, ΔO2be, can be
used to correct ΔO2/Ar-derived NCP estimates, neglecting the contribution of purely physical entrainment
processes (ΔO2pe) that have no significant effect on ΔO2/Ar. The distribution of modeled ΔO2be along the
cruise track is shown in Figure 7b, along with our ΔO2/Ar observations. For much of our survey region, the
magnitude of the biologically modified entrainment flux was small compared to the mixed layer ΔO2/Ar
signal. There were, however, a number of areas (particularly along the N-S transect), where the two O2

fluxes were similar in magnitude. The variability in modeled ΔO2be results from differences in O2 depth
profiles and mixed layer depth history along the cruise track. Under conditions where subsurface O2 is
lower than mixed layer values, due to net heterotrophy in the subeuphotic zone, entrainment of
biologically modified subsurface waters acts to decrease the O2 saturation in the mixed layer (i.e.,
ΔO2be< 0). This phenomenon was clearly observed in the ice-covered waters of the N-S and E-W transects
(Figure 7b), where ΔO2be showed a clear negative signature. In contrast, we observed a number of regions,
mostly in the WAP, where ΔO2be was positive, reflecting the entrainment of a remnant productivity signal
prior to mixed layer shoaling. Jonsson et al. [2013] have also noted the importance of entrainment as a
potential source of O2 into the mixed layer. Quantification of this O2 source depends on an understanding
of mixed layer depth history and the choice of an appropriate subsurface O2 end-member (cO2 ;sub ). Based

on an analysis of the mixed layer time series produced by the PSY3V3 model output, we chose a
subsurface O2 end-member (cO2 ;sub ) 20–25m below the mixed layer. We note, however, that these end-

member O2 values and the corresponding mixed layer histories are subject to potentially significant
uncertainty. Nonetheless, as discussed below, we found that the derived ΔO2be term was able to produce
entrainment-corrected ΔO2/Ar-NCP values that showed good agreement with independent estimates based
on DIC deficit calculations. It is also important to note that the entrainment term was generally small
compared to the biological O2 production signal (i.e., ΔO2/Ar) in the mixed layer for much of our survey region.

3.6. Net Community Production

In recent years, a number of studies have examined Southern Ocean NCP using mixed layer ΔO2/Ar
measurements, both from discrete samples and continuous underway analysis. This work has been largely
based on the approach developed by Kaiser et al. [2005] and Reuer et al. [2007], where the mixed layer O2

budget is assumed to be in a steady state, with negligible vertical or lateral fluxes. Under these conditions,
the biologically induced flux of O2 to the atmosphere (O2 bioflux, as defined by equation (11)) provides a
measure of NCP. The assumptions used in these calculations are problematic in weakly stratified and
highly dynamic waters encountered over large portions of the Southern Ocean. Jonsson et al. [2013] have
shown that O2 bioflux provides good regional estimates of Southern Ocean NCP (±~25%), but significant
offsets can exist at smaller scales due to a temporal decoupling between O2 production and air-sea exchange
and to vertical O2 fluxes across the base of the mixed layer. Using our box model results (section 3.5), we
were able to estimate the contribution of entrainment fluxes to the surface biological O2 budget, and
we used this information to correct NCP estimates derived from surface ΔO2/Ar data. However, our
calculations do not include other physical processes such as upwelling and diapycnal mixing that can
also influence NCP derived from ΔO2/Ar measurements [Jonsson et al., 2013].
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Figure 8 presents NCP estimates along our cruise track derived from ΔO2/Ar, with and without a correction for
biologically modified entrainment fluxes (ΔO2be). The figure also shows satellite-derived Chl a observations,
which provide information on the temporal evolution of phytoplankton biomass prior to our sampling.
Across the full survey region, O2/Ar-derived NCP ranged from ~�40 to > 300mmolO2m

�2 d�1. The
lowest NCP values were found along the N-S transect (maximum ~20mmol O2m

�2 d�1). Despite the low
overall productivity observed along much of this transect, there were localized regions of elevated NCP
associated with regional frontal features—most notably in the vicinity of the Polar Front zone where
vertical mixing can supply Fe to iron-limited surface waters [Debaar et al., 1995]. Without a correction for
entrainment, waters of the Weddell Sea MIZ (both along the N-S and E-W transects) appeared to be net
heterotrophic (i.e., NCP< 0). However, this apparent net heterotrophic signature was eliminated after
accounting for the entrainment fluxes (ΔO2be). In contrast, the entrainment-corrected NCP remained
below zero in the STF zone, and in several other localized regions along the cruise track. Net heterotrophy
in the STF zone seems unlikely, given the enhanced Chl a concentrations in this region (Figure 3c). Rather,
we suggest that an overestimation of the O2 entrainment term (ΔO2be), resulting from errors in the
selection of a sub-MLD end-member or in the derived mixed layer depth history, is a more likely
explanation for this feature. Regions of net heterotrophy observed along other portions of our cruise track
(e.g., between 8000 and 9000 km) were largely confined to waters with very low (<0.3μg L�1) Chl a
concentrations. In contrast, the most productive waters, with NCP in excess of 300mmolO2m

�2 d�1 were
observed in the central WAP region, where high phytoplankton biomass was detected for over 2months
prior to our sampling. In these high NCP waters, the entrainment correction term was generally small
compared to the biological production term.

The variability of our ΔO2/Ar-derived NCP values is somewhat higher than previous observations for the
Southern Ocean, but the mean values for each of survey regions are within the range of recently published
estimates. Excluding the negative NCP values in the STF zone, the average NCP for the N-S, E-W, and WAP
transects was 9.3, 31, and 14mmolO2m

�2 d�1, respectively. The low mean NCP value for the WAP region
seems initially surprising, given the extremely elevated NCP observed at ~ 11,000 km along the cruise track.
Outside of this one productivity hot spot, however, much of the WAP region had relatively low (and in
some cases even negative) NCP. Excluding the negative values, the mean NCP value in the WAP is
48mmolO2m

�2 d�1. By comparison, exclusion of negative NCP values from the E-W transect only increased

Figure 8. (a) Distribution of net community production (NCP) along the cruise track and (b) the time history of Chl a
concentrations derived from the AquaModis remote sensing product. Black and grey lines in Figure 8a represent NCP
estimates derived from ΔO2/Ar data, with andwithout a correction for biologically modified O2 entrainment fluxes (ΔO2be).
The red crosses in Figure 8a represent NCP estimated from seasonal DIC deficits in the mixed layer. Vertical blue patches in
Figure 8a show frontal regions. The black line in Figure 8b shows the location of the research vessel, while white patches
denote sea ice cover. Note the logarithmic scaling of the Chl a axis.
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the mean NCP by ~ 10%. These results
suggest that localized net heterotrophy
was more significant to regional NCP
budgets in the WAP region.

Based on discrete sampling of surface
ΔO2/Ar, Reuer et al. [2007] reported
mean NCP estimates ranging from
20 to 36mmolO2m

�2 d�1 for the
Sub-Antarctic Zone, Polar Frontal Zone,
and Antarctic Zone. More recently,
Shadwick et al. [2014] have reported a
range of NCP estimates from 15 to
75mmolO2m

�2 d�1 (assuming a photo-
synthetic quotient of 1.4) along a trans-
ect from Australia to the Antarctic
continent, while Cassar et al. [2011]
report NCP of approximately up to
150mmolO2m

�2 d�1 for sub-Antarctic
waters south of Australia. The maxi-
mum NCP values measured along our
cruise track (>300mmol O2m

�2 d�1)
are among the highest reported for

the Southern Ocean, yet these values are not without precedent. Recent time series work at the Palmer
Station LTER site along the WAP [Tortell et al., 2014] show maximum NCP values similar to the highest values
we observed along the WAP region of our cruise track.

Independent NCP estimates, based on calculated seasonal DIC deficits at discrete sampling stations, showed
good general coherence with our ΔO2/Ar-derived values. Both the spatial distribution and range of NCP
values were similar for the two methods. The agreement between the two estimates was particularly good
in the WAP region (unfortunately, DIC samples were not collected in the vicinity of Marguerite Bay, where
the highest NCP values were observed), and also south of the SBdy frontal zone along the N-S transect.
In contrast, there were apparent offsets between the two NCP estimates in the vicinity of the PF and in
the highest productivity regions of the E-W transit. In addition to the uncertainties discussed above for
ΔO2/Ar-derived NCP, NCP estimates from DIC deficits are also subject to potential errors. The most
significant source of uncertainty in these calculations relates to the time period over which DIC uptake is
normalized. In our analysis, we assumed that DIC deficits began to accumulate following the initiation of
the spring phytoplankton blooms (as judged by satellite-based chlorophyll measurements; Figure S3). This
approach does not account for potential productivity under sea ice [Arrigo et al., 2012], which is not visible
by remote sensing. Although our approach is, by necessity, somewhat simplistic, we are encouraged by
the good correspondence of DIC and ΔO2/Ar-derived estimates of surface water productivity. Our results
suggest that mixed layer ΔO2/Ar measurements have the capacity to provide meaningful NCP estimates
with high spatial resolution.

Beyond the absolute value of our derived NCP estimates, the spatial distribution of biological productivity
across our survey region is of interest. Since macronutrients were plentiful across our entire survey region
(minimum NO3

�> 8μM), light and/or iron availability are the most likely bottom-up controls on
phytoplankton productivity. Although no iron data are available for our cruise, we assume, based on
previous studies, that Fe availability was highest in regions of sea ice melt along the continental shelf
[Gerringa et al., 2012; Klunder et al., 2011], where high NCP was observed. To examine the influence of light
availability on surface water productivity, we derived NCP estimates for the regions surrounding each of our
hydrographic stations (within 5 km) and correlated these values to the mixed layer depths obtained from
CTD data. As shown in Figure 9, we observed a weak negative trend between NCP and MLD, particularly for
stations with mixed layer depths less than 40m. Taking only stations with MLD< 40m, the correlation
between MLD and NCP was statistically significant (for 1m binned data, r=�0.86, p< 0.001). This

Figure 9. Relationship betweenΔO2/Ar-derivedNCP (corrected for biological
entrainment fluxes) and mixed layer depth along the cruise track. Full
data represent all of the individual NCP estimates derived at CTD
stations, while binned data represent average NCP values for each 1m
MLD bin (MLD> 5m). The solid line represents the best fit regression
between binned NCP and MLD (r =�0.86).
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relationship provides some evidence for light-dependent productivity, as suggested previously Cassar et al.
[2011], Huang et al. [2012], and Shadwick et al. [2014]. We note, however, that instantaneous MLD estimates
do not necessarily provide a good indication of light availability over time scales relevant to our NCP
calculations. A more refined analysis could be used, taking into account the time-dependent history of MLD,
surface irradiance, and water column light extinction (based on Chl a concentrations). Even without this
added complexity, our derived NCP estimates likely reflect the dominant influence of light, nutrient supply,
and sea ice cover on biological productivity across strongly distinct regions of the Southern Ocean.

4. Conclusions and Future Directions

Our results provide new information on the distribution of pCO2, O2, and N2 in contrasting Southern Ocean
regions, and insight into the underlying factors driving these distributions. Across our survey region, strong
hydrographic variability led to large gradients in phytoplankton biomass, which, in turn, exerted a significant
influence on surface water pCO2 and ΔO2/Ar distributions. This biological signature was modified by physical
processes including sea-air exchange and mixed layer entrainment. Using our observations and box model
calculations, we were able to quantify the physical contributions to surface water O2 and N2 disequilibria,
and we used this information to refine our estimates of NCP from surface ΔO2/Ar observations. The NCP
rates derived in this manner were consistent with independent measurements based on surface DIC
deficits, providing a high spatial resolution description of biological productivity across the cruise track.
Our surface water pCO2 observations suggest that the high-latitude Southern Ocean may be a stronger
sink for atmospheric CO2 than is currently represented in the global climatology [Takahashi et al., 2009]. To
the extent that our results are applicable on a broad regional scale, there may thus be a need to critically
reevaluate current estimates of Southern Ocean CO2 uptake.

The increasing availability of autonomous shipboard instruments for surface gas measurements (e.g., optodes,
GTDs, and seagoing mass spectrometers) has significantly expanded the spatial and temporal coverage of
oceanic dissolved gas observations. In the future, continued deployments of these autonomous instruments,
along with instrumented floats, gliders, and moorings [Emerson et al., 2008; Nicholson et al., 2008], will allow
us to assemble a more robust database of Southern Ocean ΔN2, ΔO2, ΔO2/Ar to help constrain NCP and air-
sea exchange processes. Moreover, additional pCO2 measurements in poorly sampled regions will help to
refine mean climatological CO2 fluxes for the Southern Ocean. In conjunction with increased data coverage,
more sophisticated modeling approaches could be used to interpret surface gas distributions, taking into
account smaller-scale physical processes that act to perturb the mixed layer mass balance. Improved data
sets and models will facilitate more robust NCP and CO2 flux estimates and increase our understanding of
the Southern Ocean’s role in global biogeochemical cycles.
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