2014 Tenth European Dependable Computing Conference

Increasing Dependability of
Component-based Software Systems
by Online Failure Prediction

Teerat Pitakrat, André van Hoorn, Lars Grunske
University of Stuttgart, Institute of Software Technology
UniversititsstraBe 38, 70569 Stuttgart, Germany
Phone/Fax: +49 711 685 88-248/-472
{pitakrat,van.hoorn,grunske } @informatik.uni-stuttgart.de

Abstract—Online failure prediction for large-scale software
systems is a challenging task. One reason is the complex struc-
ture of many—partially inter-dependent—hardware and software
components. State-of-the-art approaches use separate prediction
models for parameters of interest or a monolithic prediction
model which includes different parameters of all components.
However, they have problems when dealing with evolving systems.
In this paper, we propose our preliminary research work on
online failure prediction targeting large-scale component-based
software systems. For the prediction, three complementary types
of models are used: (i) an architectural model captures relevant
properties of hardware and software components as well as
dependencies among them; (ii) for each component, a prediction
model captures the current state of a component and predicts
independent component failures in the future; (iii) a system-level
prediction model represents the current state of the system and—
using the component-level prediction models and information on
dependencies—allows to predict failures and analyze impacts of
architectural system changes for proactive failure management.

Keywords—dependability, online failure prediction, component-
based software systems, monitoring, models at runtime

I. INTRODUCTION

High dependability—including quality-of-service (QoS)
characteristics like performance, availability, and reliability—
is one of the ultimate goals for software systems during
operation. The architecture of the system is designed to provide
high reliability with redundancy for cases that some parts of
the system fail. The approach has been shown to perform well
to a certain level. However, there are still situations where
the designed redundancy fails and cannot prevent the whole
system from failing.

One solution to increase system dependability is online
failure prediction [1] which tries to predict possible pending
failures at runtime and preventing them from occurring. The
approach collects observable parameters of the system during
the training phase and creates a prediction model which is
used at runtime to classify the current system state and predict
whether it is going to fail. The existing approaches can be
divided into two groups: (i) predicting one or more QoS
measures based on selected historic observations of system
parameters, e.g., response time prediction employing time
series forecasting [2]; (ii) predicting system events, e.g., failure
prediction using machine learning techniques [3]. However,
in real situations, the systems in production tend to evolve

978-1-4799-3804-9/14 $31.00 © 2014 IEEE
DOI 10.1109/EDCC.2014.28

78

over time. The changes include replacement of hardware com-
ponents, software updates, system reconfiguration, or system
architecture changes. These changes pose a problem to the
prediction models as the models are created with the collected
data as a whole and cannot be incrementally updated to keep
up with the real system.

In this paper, we propose a compositional approach to
improve online failure prediction in component-based soft-
ware systems. Instead of considering all parts of the system
together and building one large prediction model, we create
component-level prediction models which are combined to
form a system-level prediction model. Our approach builds on
model-based QoS prediction using architecture- and analysis-
oriented models [4], [5]. The advantages of our approach are:
(i) different established prediction techniques can be used for
different components, (ii) runtime changes to the system can be
incorporated into the prediction model, and (iii) the prediction
results include not only whether the system will fail, but also
when it will fail, and where the root cause might be.

The remainder of this paper is organized as follows. Sec-
tion II outlines our envisioned approach and a running example
used in this paper. Section III focuses on the construction of the
prediction models. The different usage scenarios are detailed in
Section 1V, including the use and evolution of the prediction
models at runtime. Related work is discussed in Section V.
Section VI draws the conclusions and outlines future work.

II. ENVISIONED APPROACH

One of the challenges when predicting failures in a large
system is that there are a number of components with many pa-
rameters and inter-dependencies to be considered. Including all
of them when building the prediction model results in a model
that is difficult to update because the concepts contained in the
model often do not correspond to the entities in the software
system architecture. Our proposed online failure prediction
approach eases this problem by decomposing the prediction
model into component models using information obtained from
an architectural model of the system. The approach aims to
improve system dependability by providing early warnings
about pending failures with probabilities, expected time, and
the probable root causes. The administrators can then choose
to proactively replace the components which are predicted to
be the cause of a pending system failure and preventing it from
occurring. The following sections II-A and II-B give a brief
description of the architectural model and an overview of our
prediction approach for component-based systems.

cps™

Conference Publishing Services

A. Architectural Model

An architectural model of a component-based software
system describes how the components are deployed and con-
nected together to form a fully functional system. One of the
advantages of the model is that it allows each component to
be substituted with another component as long as the new one
provides at least the same services. In our work, we plan to
use the Palladio Component Model (PCM) [4].

Figure 1 provides an architectural view of an example sys-
tem including component assembly, deployment, and behavior.
The system comprises three software components, C', Cs, and
(', being deployed on two hardware components, H; and Ho.
In addition, the component C'; provides two services, S and
So, which can serve users at the system boundary. The model
shows the dependencies between components, e.g., C'; depends
on Cy and Cjs; C'5 depends on Hs. Note that the model can
also describe composite structures of hardware components,
e.g., CPU, memory, or hard drives. However, they are excluded
for simplicity reasons. The implementation of service S; by
component C, referred to as Cj.s1, uses hardware services
provided by H; and software service provided C. In the same
manner, service C.sy uses Hy and C3 (not depicted in the
figure). We assume that the architectural model exists either
by being manually created or being learned from the system
observation at runtime.

H1 H2
YD © (D0 |
) 5
/1 02 \\~\‘\
s o—{s.] ™ &)
S;O— Ch - Cs

Fig. 1: Architectural component model (excerpt)

In addition to the structure and dependencies of the system,
the architectural model also provides an insight regarding how
a failure of one component may cause others to fail, creating
a chain of failures which propagates to the system boundary.
For example, a failure of C5 can render some services of
C'1 unavailable to the users, or a failure of H which hosts
C5 can cause the whole system to fail. This information is
useful when analyzing the root cause of the failure and the
failure propagation. However, online failure prediction needs
to answer further questions, such as, when a component will
fail and whether it will affect the functionality of the whole
system.

B. Prediction Models

The prediction models in our proposed approach are
divided into two parts: component-level prediction models,
which predict failures of components, and a system-level
prediction model, which predicts failures of the whole system.

1) Component-level Prediction Model: A component-level
prediction model aims to represent and predict the states of a
component, such as the state that it is functioning perfectly,
working in a degraded mode, or when it experiences a severe
problem. A prediction model exists for each of the architectural
components. The prediction models of different components do

79

not necessarily have to be created using the same technique.
For instance, time series forecasting can be used as a prediction
model for components that provide time series data, and
machine learning or data mining techniques can be employed
when a set of observed data is available but their relationship to
the component state is not obvious. The prediction results are
returned through a unique interface providing the current state
and the probability distribution for being in a future state. Each
individual model can also be refined by measurement data at
runtime to accurately reflect its current operational profiles.

2) System-level Prediction Model: The system-level pre-
diction model is a combination of the states of the component
models and the component dependencies extracted from the
architectural model. We aim to use a transition model in
which each state represents a set of component failures and the
transitions represent the failure probability distribution of the
next component over time. In this paper, we employ a 2-order
continuous-time Markov chain (CTMC). The model has an
advantage over a standard Markov chain in that the transition
to the next state depends not only on the current state but
also the previously visited states. This property of the model
can represent the dependencies between components and can
also predict whether a failure of one component will cause
other components or the entire system to fail. Figure 3 depicts
the model for the running example which will be detailed in
Section III-B.

III. CONSTRUCTION OF PREDICTION MODELS

The prediction models of each architectural component in
the system can be created independently and later combined
into a system-level prediction model. The construction of the
component and system prediction models are described in the
following Sections III-A and III-B. As previously mentioned,
we make no specific assumption regarding the component-
level prediction models. We simplify by using time series and
machine learning prediction models.

A. Component-level Prediction Model

The component model can be created by analyzing the
observable parameters of the component which can be the
metrics for dependability characteristics, e.g., availability or
performance. For instance, if the component C5 in Figure 1
is a database, the observable parameter can be its memory
consumption. A suitable prediction model for this component
is therefore time series forecasting as the memory consumption
exhibits the characteristic of time series data. The time series
model can provide the current state by checking whether the
value is below or above a certain threshold, and predict the
next state by extrapolating the time series data into the future.
The model and the result are illustrated in Figure 2.

Another example is the case where C5 provides a func-
tional service and logs events into a log file. The log records
can be analyzed to show the relationship between log se-
quences and the component status using machine learning
algorithms, such as, support vector machine or decision tree.
In our previous work [6], machine learning algorithms are used
to classify hard drives as being in a healthy or failing states
and predict when the transition is going to happen.

% Mem A
Probabilty

— Measurement
--- Prediction

Threshold

Now t

(a) Prediction model (b) Prediction result

Fig. 2: Component-level prediction model for C5 and the
probability of memory consumption exceeding the threshold

B. System-level Prediction Model

The system-level model is constructed by combining failure
states of all component models to form a 2-order CTMC. The
process can be divided into two steps; creating the states and
specifying the transitions between them.

1) States: The states of the Markov chain represent the
failure status of the components from the system perspective.
If one component of the system fails, the system transitions
to the state that this component is failing. As a consequence,
this failure may cause other components to fail due to the
component dependency. The chain of component failures can
propagate until it causes a service failure at the system
boundary which can be perceived by the users.

To model the failure dependency, we use a 2-order CTMC
which takes into account the current and the previous compo-
nent failures in that particular sequence. For example, if the
component C3 in Figure 1 fails, which consequently causes
component C5 to fail, the Markov chain will transition from a
healthy state, in which no component fails, to the state where
(4 fails, and then to the state where C; and Cy fail. The
number of component failures in one state is bounded by
the number of order of the chain. A higher order chain can
represent longer sequences of component failures, however,
the number of states also increases exponentially, i.e., n-
permutation of the number of component failures.

In order to reduce the storage complexity of the 2-order
CTMC, we incorporate the information obtained from the
architectural model and create only the reachable states, that
is, the failure sequences that cannot occur will not appear in
the chain. Table I presents the component dependency table ex-
tracted from the architectural model explained in Section II-A.
The number of dependencies between components are greatly
reduced compared to when the system architecture is unknown.
From the dependency table, a 2-order Markov chain can be
created which is illustrated as an equivalent 1-order Markov
chain in Figure 3. The entry point of the chain is the healthy
state—from which it can transition to the states with one
component failure, e.g., H1 or C'3, and then to the states with
two failures, e.g., H1Cy or C5C5. The maximum number of
component failures in each state in this case is limited to
two which is the number of the order of the chain. Note that
there are two additional states in the chain, S; and S5, which
represent the failures of services 1 and 2 perceived by the users
at the system boundary.

80

TABLE I: Dependencies between architectural components,
e.g., C'5 depends on Hy

\ [Si[S2[Cusy [Crsy, [Co [Cs [Hy [Ho |
Sq °
So °

Fig. 3: System-level prediction model where each state repre-
sents a sequence of the last two component failures

2) Transitions: Each component-level prediction model
provides prediction results, including time and probability of
the component failure, which can be used to specify the
transition between states. For example, the transition proba-
bility from state Hs to H5Cj is indicated by the result of
the component prediction model of C3, given that H, has
already failed. The probability of the failure of H> leading
to a failure of service S; can then be calculated by combining
the prediction results of C3, C, and C' g, into one transition
probability distribution.

IV. USAGE SCENARIOS

The prediction model in our approach allows different us-
age scenarios which are described in the following subsections.

A. Predicting Failures at Runtime

At runtime when the prediction model is deployed, the
model begins with the system in healthy state representing
no component failure. When one of the component models
predicts that it is going to fail, the system model assumes that
the prediction could be correct and temporarily transitions to
the state of that component failure. From that state, the model
computes the probability of other component failures from
the component-level prediction models and searches for the
paths that can lead to system failures, using a standard CTMC
solver [7]. If the probability of the system transitioning into a
failure state is above a pre-defined threshold, a failure warning
is issued. The prediction result includes which service of the
system is going to fail, what is the expected time to failure,

and the possible paths in the component failure chain. This
information can be passed to the system administrators or a
failure management module which can prevent the problem
by diagnosing the failure chain and fixing or replacing the
problematic components. The transition model used in this
paper can be extended to support concurrent states, for exam-
ple, using Petri net concepts. Using the same mechanism we
can analyze the impact of system changes—e.g., component
replacement for proactive failure management—on QoS.

B. Updating and Refining Prediction Model

One of the benefits of the Markov chain in our approach
is that the states can be added or removed at runtime. If
a new component is added to the system, the failure states
of that component can be added to the chain according to
the information obtained from the architectural model. If a
component is removed, the states that contain this component
are removed from the chain. Furthermore, the prediction results
of the component models can become unrealistic due to an
incorrect estimation during the learning phase, or component
reconfiguration at runtime. The models that make frequently
incorrect predictions can be individually retrained based on
the data observed at runtime by monitoring tools, such as
Kieker [8].

V. RELATED WORK

Related work comes from the areas of online failure
prediction [1] and architecture-based QoS evaluation [5]. Our
proposed approach combines both areas and provides more
information not only when the failure will occur but also the
whereabouts.

The techniques of online failure prediction can be grouped
into two categories. The first category aims at selecting crucial
parameters of the system and building a prediction model
for each of them. An example of this method is predicting
when the response time of a service will exceed an accept-
able threshold using time series forecasting techniques. The
techniques in this group particularly model the parameter of
interest by considering the factors which have direct influences
on it (see, e.g., [2], [9]). On the other hand, the techniques
in the second category aggregate various available parameters
and system events whether or not they have direct effect on
the system dependability. Machine learning or data mining
techniques are then applied to the collected information during
the training phase to discover the relationship between system
events and QoS problems. The discovered relationship is
regarded as a prediction model and is employed to classify
the system at runtime as healthy or failing (see, e.g., [3],
[6]). These well-established techniques can be utilized in our
approach serving as component-level prediction models.

Architecture-based QoS evaluation approaches use design-
oriented system models which are completed by QoS-relevant
information [5]. Analytical or simulative model solvers are ap-
plied to obtain QoS measures of interest. They focus on differ-
ent QoS characteristics, e.g., performance [4], reliability [10],
resource efficiency [11]. Originally, these approaches aimed
at design-time predictions. However, during the past years
approaches emerged which use model-based QoS evaluation
at runtime. Following the aforementioned general approach of
architecture-based QoS models, our focus is on incorporating
analysis models for online failure prediction.

VI. CONCLUSION

Online failure prediction is one of the solutions to improve
system dependability by predicting possible QoS problems
and issuing a warning before they occur. However, creating
a prediction model is a challenging task especially when the
system is large and contains a number of components with
inter-dependencies. We proposed an approach to construct the
prediction model by breaking it down into component models.
Each model is a technique-independent predictor responsible
for predicting failures of one component. The system-level
prediction model is built by combining the states of component
models into a transition model using knowledge obtained from
the architectural model. The prediction result of our proposed
model provides information of the failure including the time,
the probability, and the components that might be the root
cause of the failure. Our approach also allows the structure of
the system-level prediction model to be updated at runtime if
components are added or removed.

In our future work, we aim to extend our online prediction
approach to a reusable framework. A preliminary description
of the framework, built on Kieker [8] and Palladio [4], can
already be found in our previous work [12]. We will investigate
the selection of a suitable model for the system-level prediction
model and the automation process of the model construction—
both component- and system-level prediction models. We plan
to evaluate our approach by a combination of real-world data,
simulation, and lab experiments.

REFERENCES

[11 F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,” ACM Computing Surveys, vol. 42, no. 3, pp. 10:1—
10:42, 2010.

[2] A. Amin, A. Colman, and L. Grunske, “An approach to forecasting QoS
attributes of web services based on ARIMA and GARCH models,” in
Proc. ICWS ’12. IEEE, 2012, pp. 74-81.

[3] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. K. Sahoo,
“Bluegene/l failure analysis and prediction models,” in Proc. DSN ’06,
2006, pp. 425-434.

[4] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, pp. 3-22, 2009.

[5] V. Cortellessa, A. Di Marco, and P. Inverardi, Model-based software
performance analysis. Springer, 2011.
[6] T. Pitakrat, A. van Hoorn, and L. Grunske, “A comparison of machine

learning algorithms for proactive hard disk drive failure detection,” in
Proc. ISARCS ’13. ACM, 2013, pp. 1-10.

[7]1 A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “Prism: A tool
for automatic verification of probabilistic systems,” in Proc. TACAS "06.
Springer, 2006, pp. 441-444.

[8] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
Proc. ICPE ’12. ACM, 2012, pp. 247-248.

[91 M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of
software aging in a web server,” IEEE Transactions on Reliability,
vol. 55, no. 3, pp. 411420, 2006.

[10] F. Brosch, “Integrated software architecture-based reliability prediction
for IT systems,” Ph.D. dissertation, Karlsruher Institute of Technology,
Karlsruhe, Germany, 2012.

[11] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards self-aware
performance and resource management in modern service-oriented
systems,” in Proc. SCC ’10. IEEE, 2010, pp. 621-624.

[12] T. Pitakrat, “Hora: Online failure prediction framework for component-
based software systems based on Kieker and Palladio,” in Proc. KP-
Days ’13. CEUR-WS.org, 2013, pp. 39-48.

