
Live Trace Visualization
for System and Program
Comprehension in Large

Software Landscapes

Dissertation

M.Sc. Florian Fittkau

Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

eingereicht im Jahr 2015



Kiel Computer Science Series (KCSS) 2015/7 v1.0

ISSN 2193-6781 (print version)
ISSN 2194-6639 (electronic version)

Electronic version, updates, errata available via https://www.informatik.uni-kiel.de/kcss

The author can be contacted via http://www.explorviz.net

Published by the Department of Computer Science, Kiel University

Software Engineering Group

Please cite as:

B Florian Fittkau. Live Trace Visualization for System and Program Comprehension in Large
Software Landscapes. Number 2015/7 in Kiel Computer Science Series. Department of
Computer Science, 2015. Dissertation, Faculty of Engineering, Kiel University.

@book{Fittkau2015,

author = {Florian Fittkau},

title = {Live Trace Visualization for System and Program Comprehension

in Large Software Landscapes},

publisher = {Department of Computer Science, Kiel University},

year = {2015},

month = dec,

number = {2015/7},

isbn = {978-3-7392-0716-2},

series = {Kiel Computer Science Series},

note = {Dissertation, Faculty of Engineering, Kiel University.}

}

© 2015 by Florian Fittkau

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbib-
liografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

Herstellung und Verlag: BoD – Books on Demand, Norderstedt

ii

https://www.informatik.uni-kiel.de/kcss
http://dnb.dnb.de


About this Series

The Kiel Computer Science Series (KCSS) covers dissertations, habilitation
theses, lecture notes, textbooks, surveys, collections, handbooks, etc. written
at the Department of Computer Science at Kiel University. It was initiated
in 2011 to support authors in the dissemination of their work in electronic
and printed form, without restricting their rights to their work. The series
provides a unified appearance and aims at high-quality typography. The
KCSS is an open access series; all series titles are electronically available free
of charge at the department’s website. In addition, authors are encouraged
to make printed copies available at a reasonable price, typically with a
print-on-demand service.

Please visit http://www.informatik.uni-kiel.de/kcss for more information, for
instructions how to publish in the KCSS, and for access to all existing
publications.

iii

http://www.informatik.uni-kiel.de/kcss


1. Gutachter: Prof. Dr. Wilhelm Hasselbring
Christian-Albrechts-Universität zu Kiel

2. Gutachter: Prof. Dr. Michele Lanza
University of Lugano

Datum der mündlichen Prüfung: 30. November 2015

iv



Zusammenfassung

In vielen Unternehmen nimmt die Anzahl der eingesetzten Anwendungen
stetig zu. Diese Anwendungen – meist mehrere hunderte – bilden große
Softwarelandschaften. Das Verständnis dieser Softwarelandschaften wird
häufig erschwert durch, beispielsweise, Erosion der Architektur, perso-
nelle Wechsel oder sich ändernde Anforderungen. Des Weiteren können
Ereignisse wie Performance-Anomalien häufig nur in Verbindung mit den
Anwendungszuständen verstanden werden. Deshalb wird ein möglichst ef-
fizienter und effektiver Weg zum Verständnis solcher Softwarelandschaften
in Verbindung mit den Details jeder einzelnen Anwendung benötigt.

In dieser Arbeit führen wir einen Ansatz zur live Trace Visualisierung
zur Unterstützung des System- und Programmverständnisses von großen
Softwarelandschaften ein. Dieser verwendet zwei Perspektiven: eine Land-
schaftsperspektive mit UML Elementen und eine Applikationsperspektive,
welche der 3D Softwarestadtmetapher folgt. Unsere Hauptbeiträge sind
1) ein Ansatz, genannt ExplorViz, um live Trace Visualisierung von großen
Softwarelandschaften zu ermöglichen, 2) ein Überwachungs- und Analy-
seansatz, welcher in der Lage ist die große Anzahl an Methodenaufrufen
in einer großen Softwarelandschaft aufzuzeichnen und zu verarbeiten und
3) Anzeige- und Interaktionskonzepte für die Softwarestadtmetapher, wel-
che über klassische 2D Anzeige und 2D Eingabegeräten hinausgehen.

Umfassende Laborexperimente zeigen, dass unser Überwachungs- und
Analyseansatz für große Softwarelandschaften elastisch skaliert und dabei
nur einen geringen Overhead auf den Produktivsystemen erzeugt. Des
Weiteren demonstrieren mehrere kontrollierte Experimente eine gesteigerte
Effizienz und Effektivität beim Lösen von Verständnisaufgaben unter Ver-
wendung unserer Visualisierung. ExplorViz ist als Open Source Anwendung
verfügbar unter www.explorviz.net. Zusätzlich stellen wir umfangreiche Pakete
für unsere Evaluierungen zur Verfügung um die Nachvollziehbarkeit und
Wiederholbarkeit unserer Ergebnisse zu ermöglichen.
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Abstract

In many enterprises, the number of deployed applications is constantly in-
creasing. Those applications – often several hundreds – form large software
landscapes. The comprehension of such landscapes is frequently impeded
due to, for instance, architectural erosion, personnel turnover, or changing
requirements. Furthermore, events such as performance anomalies can
often only be understood in correlation with the states of the applications.
Therefore, an efficient and effective way to comprehend such software
landscapes in combination with the details of each application is required.

In this thesis, we introduce a live trace visualization approach to sup-
port system and program comprehension in large software landscapes. It
features two perspectives: a landscape-level perspective using UML ele-
ments and an application-level perspective following the 3D software city
metaphor. Our main contributions are 1) an approach named ExplorViz
for enabling live trace visualization of large software landscapes, 2) a
monitoring and analysis approach capable of logging and processing the
huge amount of conducted method calls in large software landscapes, and
3) display and interaction concepts for the software city metaphor beyond
classical 2D displays and 2D pointing devices.

Extensive lab experiments show that our monitoring and analysis ap-
proach elastically scales to large software landscapes while imposing only a
low overhead on the productive systems. Furthermore, several controlled ex-
periments demonstrate an increased efficiency and effectiveness for solving
comprehension tasks when using our visualization. ExplorViz is available
as open-source software on www.explorviz.net. Additionally, we provide exten-
sive experimental packages of our evaluations to facilitate the verifiability
and reproducibility of our results.
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Preface
by Prof. Dr. Wilhelm Hasselbring

Software visualization is a non-trivial research field, and with his thesis
Florian Fittkau has made original contributions to it. Florian Fittkau investi-
gates how “live trace visualization” can be leveraged for the analysis and
comprehension of large software landscapes. Specific contributions are the
ExplorViz method with its monitoring and trace processing for landscape
model generation, as well its 3D visualization.

Highly innovative are the new techniques for printing such 3D visu-
alizations into physical models for improved program comprehension in
teams and the new techniques for immersion into these 3D visualizations
via topical virtual reality equipment.

Besides the conceptual work, this work contains a significant experimen-
tal part and a multifaceted evaluation. This engineering dissertation has
been extensively evaluated with advanced student and lab experiments,
based on a high-quality implementation of the ExplorViz tools.

This thesis is a good read and I recommend it to anyone interested in
recent software visualization research.

Wilhelm Hasselbring
Kiel, December 2015
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1

Introduction

This chapter provides an introduction to this thesis. Chapter 1.1 describes
the motivation for our research. Afterwards, Chapter 1.2 presents the
scientific contributions. Preliminary work is discussed in Chapter 1.3.
Finally, Chapter 1.4 lists the structure of this thesis.
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1. Introduction

Previous Publications

Parts of this chapter are already published in the following works:

1. [Fittkau et al. 2013b] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live trace visualization for comprehending large software landscapes:
the ExplorViz approach. In: Proceedings of the 1st IEEE International
Working Conference on Software Visualization (VISSOFT 2013). IEEE, Sept.
2013

2. [Fittkau 2013] F. Fittkau. Live trace visualization for system and program
comprehension in large software landscapes. Technical report 1310.
Department of Computer Science, Kiel University, Germany, Nov. 2013
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1.1. Motivation and Problem Statement

1.1 Motivation and Problem Statement

In many enterprises, the number of software systems is constantly increas-
ing. This can be a result of changing requirements due to, e.g., changing
laws or customers, which the company has to satisfy. Furthermore, the
legacy systems often interact with each other through defined interfaces.
For example, the database may be accessed by different programs. In the
whole, the applications form a large, complex software landscape [Penny
1993] which can include several hundreds or even thousands of applications.

The knowledge of the communication, internals, and utilization of this
software landscape often gets lost over the years [Moonen 2003; Vierhauser
et al. 2013] due to, for instance, missing documentation. For those software
landscapes, tools that support the program and system comprehension of
the software landscape become important. For example, they can provide
essential insights into the landscape in the maintenance phase [Lewerentz
and Noack 2004]. A software engineer might need to create or adapt
features in the landscape. Therefore, she often needs to know the commu-
nication between the existing programs and also the control flow inside
the application is of interest to find the locations where she needs to do
the adaptations [Koschke and Quante 2005]. In this context, the goal of
DFG SPP1593 “Design For Future - Managed Software Evolution” is to
invent approaches for so-called knowledge-carrying software to overcome
the challenges of missing documentation [Goltz et al. 2015].

Another challenge concerning a large software landscape is the question
which applications are actually used and to what extent they are used.
The operation and support of software can cause substantial costs. These
costs would not incur when the unused application gets removed from the
software landscape. However, asking every user whether she uses each
application is often not applicable and if it is, she might indirectly use
applications such as a database, for instance.

Recent approaches in this field of software visualization, e.g., [Panas
et al. 2003; Greevy et al. 2006; Wettel and Lanza 2007; Hamou-Lhadj 2007;
Dugerdil and Alam 2008], focus on the visualization of a single application.
A drawback of visualizing only one application is omitting the communica-
tion and linkage between the applications involved in a transaction.

3



1. Introduction

Another drawback of current approaches is the possible lack of traces
associated to a feature. For example, a software engineer might analyze
a feature called add to cart. The investigation of this feature might lead to
interest in the related feature checkout cart. However, this feature might
not be available as a trace. Often the required trace can be generated
manually for one application but this can become cumbersome in a large
software landscape. In addition, one trace can only reveal information on
its particular execution of operations, for instance, the response time of this
single execution of a operation. If this response time is a statistical outlier,
the user might draw false conclusions about the application.

Due to the huge amount of method calls conducted in a large software
landscape – typically millions of method calls per second –, monitoring
and creating the required traces of the executions for the visualization
can become a further challenge [Vierhauser et al. 2013]. One server is not
capable of processing such a huge amount of data in parallel to the actual
execution of the software landscape.

1.2 Scientific Contributions

This thesis makes the following three major scientific contributions (SC1 –
SC3) including nine subcontributions:

SC1: An approach named ExplorViz for enabling live trace visualization
of large software landscapes

SC1.1: A software landscape visualization featuring hierarchies to
provide visual scalability

SC1.2: An interactive extension of the software city metaphor for
exploring runtime information of the monitored application

SC1.3: A landscape meta-model representing gathered information
about a software landscape

SC1.4: A proof-of-concept implementation used in three controlled
experiments for comparing our visualization approach to the
current state of the art in system and program comprehension
scenarios

4



1.2. Scientific Contributions

SC2: A monitoring and analysis approach capable of logging and pro-
cessing the huge amount of conducted method calls in large soft-
ware landscapes

SC2.1: A scalable, elastic, and live analysis architecture for processing
the gathered monitoring data by using cloud computing

SC2.2: A proof-of-concept implementation used in three lab experi-
ments showing the low overhead of the monitoring approach,
and the scalability and elasticity of our analysis approach by
monitoring up to 160 instances of a web application

SC3: Display and interaction concepts for the software city metaphor
beyond classical 2D displays and 2D pointing devices

SC3.1: A gesture-controlled virtual reality approach for the software
city metaphor

SC3.2: An approach to create physical 3D-printed models following
the software city metaphor

SC3.3: Proof-of-concept implementations and a controlled experi-
ment comparing physical 3D-printed models to using virtual
models on the computer screen in a team-based program
comprehension scenario

For all evaluations, we provide experimental packages to facilitate the
verifiability, reproducibility, and further extensibility of our results. In the
following, each contribution is described.

SC1: ExplorViz Approach For Enabling Live Trace Visualization of Large
Software Landscapes

The first scientific contribution (SC1) of this thesis is an approach to en-
able live trace visualization for large software landscapes named ExplorViz
which supports a software engineer during system and program compre-
hension tasks. Our live trace visualization for large software landscapes
combines distributed and application traces. It contains a 2D visualization
on the landscape level. In addition, it features a 3D visualization utilizing

5



1. Introduction

the software city metaphor on the application level. By application level,
we refer to the issues concerning one application and only this applica-
tion. Whereas the landscape level provides knowledge about the different
applications and nodes in the software landscape.

Since a live visualization updates itself after a defined interval, we
feature a time shift mode where the software engineer can view the history
of old states of the software landscape. Furthermore, she is able to jump to
an old state and pause the visualization to analyze a specific situation.

To cope with the high density of information which should be visualized,
the major concept of ExplorViz is based on interactively revealing additional
details, e.g., the communication on a deeper system level, on demand. The
concept is motivated by the fact that the working memory capacity of
humans is limited to a small amount of chunks [Ware 2013]. Miller [1956]
suggests seven, plus or minus two, chunks which is also referred to as
Miller’s Law. The ExplorViz concept also follows Shneiderman’s Visual
Information-Seeking Mantra: “Overview first, zoom and filter, then details
on demand” [Shneiderman 1996].

This contribution contains four subcontributions (SC1.1 – SC1.4) which
are briefly described in the following.

SC1.1: Software Landscape Visualization Featuring Hierarchies to Pro-
vide Visual Scalability Our landscape-level perspective shows the nodes
and applications of a software landscape. In addition, it summarizes nodes
running the same application configuration into node groups. These equal
application configurations typically exist in cloud environments. However,
to understand the overall architecture of the software landscape, the user is
interested in the existing application configuration. Afterwards, the details
about the concrete instances can be interactively accessed.

To provide further visual scalability, the nodes and node groups are
visualized within their belonging systems which act as an organizational
unit. Again, the details about a system can be accessed interactively and
out-of-focus systems can be closed to show only details about relevant
systems.

6



1.2. Scientific Contributions

SC1.2: Interactive Extension of the Software City Metaphor for Exploring
Runtime Information On the application level, we use the 3D software
city metaphor to display the structure and runtime information of a moni-
tored application. Again, the visual scalability is provided by interactivity.
When accessing the perspective, the components are only opened at the top-
level, i.e., details are hidden. In our terms, components are organizational
units provided by the programming language, e.g., packages in Java. By
interactively opening and closing the components, the software engineer is
able to explore the application and the gathered runtime information.

SC1.3: Landscape Meta-Model for Representing Information of a Soft-
ware Landscape Furthermore, we provide a landscape meta-model for
representing the gathered information of the software landscape. This
model can be used as input for other tools. Thus, the gathered data is also
reusable for other scenarios, e.g., automatically updating the configuration
of an enterprise application landscape based on the monitoring data.

SC1.4: Proof-of-Concept Implementation Used in Three Controlled Ex-
periments The full ExplorViz approach is implemented as open-source
software and available from our website.1 To evaluate our live trace visual-
ization approach, we conducted three controlled experiments.

The first controlled experiment compared the usage of ExplorViz to
using the trace visualization tool Extravis [Cornelissen et al. 2007] in a
program comprehension scenario of the quality tool PMD.2 The experiment
showed that ExplorViz was more efficient and effective than Extravis in
supporting the solving of the defined program comprehension tasks. The
second experiment was a replication of this experiment design where we
used a smaller object system named Babsi.3 In this replication, the used
time difference was not significant. However, the correctness of the task
solution was significantly increased in the ExplorViz group. The third
experiment compared our hierarchical landscape-level perspective to a

1http://www.explorviz.net
2https://pmd.github.io
3http://babsi.sf.net
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1. Introduction

mix of flat state-of-the-art landscape visualizations found in Application
Performance Management (APM) tools in a system comprehension scenario.
Again, the time difference was not significantly different but the correctness
of the solutions was significantly increased in the ExplorViz group.

SC2: Monitoring and Analysis Approach for Applications in Large Soft-
ware Landscapes

In large software landscapes, several millions of method calls can be con-
ducted each second. Therefore, the monitoring and the analysis approach
requires to scale with the size of the software landscape. Furthermore, the
approach should be elastic to avoid producing unnecessary costs. A further
requirement for the approach is the low overhead of the monitoring to keep
the impact on the production systems as low as possible. According to
those requirements, we developed our monitoring and analysis approach
which is outlined in the following.

SC2.1: Scalable, Elastic, and Live Analysis Architecture Using Cloud
Computing To provide a scalable, elastic, and live monitored data analysis
approach, we utilize cloud computing and an automatic capacity manager
named CapMan.4 Our approach is similar to the MapReduce pattern [Dean
and Ghemawat 2010] but we feature multiple dynamically inserted prepro-
cessing levels. When the master analysis node impends to get overutilized,
a new preprocessing worker level is automatically inserted between the
master and the monitored applications and thus the CPU utilization of the
master node is decreased. If it impends to get overutilized again, another
level of workers is inserted. In theory, this happens every time the mas-
ter impends to get overutilized. If a worker level is not utilized enough
anymore, it is dynamically removed and thus resources are saved.

SC2.2: Proof-of-Concept Implementation Used in Three Lab Experiments
We implemented our monitoring and analysis approach as proof-of-concept
implementation and provide necessary additional components such as the

4https://github.com/ExplorViz/capacity-manager
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1.2. Scientific Contributions

capacity manager as open-source software on our website. For the eval-
uation of our monitoring and analysis approach, we conducted three lab
experiments.

We evaluated the low overhead in the first lab experiment by comparing
Kieker5 [van Hoorn et al. 2012], which was already shown to impose a low
overhead [Eichelberger and Schmid 2014], to our monitoring component
using the monitoring benchmark MooBench [Waller 2014].6 As a result, we
achieved a speedup of about factor nine and a 89 % overhead reduction.

The second lab experiment extended the first experiment by the live
analysis of the generated monitoring data. This experiment showed that
adding the analysis step only negligibly impacts the throughput and thus
is capable of live analyzing the monitored data. Furthermore, we achieved
a speedup of about 250 in comparison to Kieker.

We used our private cloud for the third lab experiment to evaluate the
scalability and elasticity of our approach by monitoring elastically scaled
JPetStore7 instances. In the peak, 160 JPetStore instances were monitored
by our approach with two dynamically started worker levels resulting in
about 20 million analyzed method calls per second.

SC3: Display and Interaction Concepts for the Software City Metaphor

In addition to providing a live trace visualization, we investigated new
ways to display and interact with the software city metaphor [Knight and
Munro 1999] beyond the display on classical 2D monitors and usage of
classical 2D pointing devices. For a more immersive user experience, we
provide a Virtual Reality (VR) approach featuring an Oculus Rift DK18 as
display and a Microsoft Kinect v29 for gesture recognition. Furthermore, we
construct physical 3D-printed software city models from our application-
level perspective to enhance, for instance, the amount of conducted gestures
in a team-based program comprehension scenario. Both approaches and an
evaluation are described in the following.

5kieker-monitoring.net
6http://kieker-monitoring.net/research/projects/moobench
7http://ibatisjpetstore.sf.net
8http://www.oculus.com
9http://www.microsoft.com/en-us/kinectforwindows
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1. Introduction

SC3.1: Gesture-Controlled Virtual Reality Approach By using an Oculus
Rift DK1 and Microsoft Kinect v2 for our VR approach, we achieve a more
immersive user experience for exploring the software city metaphor. The
Oculus Rift enables to perceive the model in 3D as if the user is flying above
the city. To provide an even more immersive experience, we utilize gestures
for interacting with the model.

SC3.2: Approach to Create Physical 3D-Printed Software City Models
We construct physical 3D-printed models following the software city meta-
phor of our application-level perspective and detail four envisioned scenar-
ios where physical models could provide benefits. These are team-based
program comprehension, effort visualization in customer dialog, saving
digital heritage, and educational visualization.

SC3.3: Proof-of-Concept Implementations and a Controlled Experiment
for Physical 3D-Printed Models For both approaches, we provide proof-
of-concept implementations available in branches of our ExplorViz Git
repository.10 Furthermore, we conducted a controlled experiment inves-
tigating the first envisioned usage scenario for the physical models in a
team-based program comprehension scenario. Teams (pairs of two subjects)
in the experimental group solved program comprehension tasks using only
a 3D-printed model and the control group solved the tasks using a vir-
tual model on the computer screen. Two discussion tasks were influenced
positively by using the 3D-printed model and one task was influenced
negatively. We attribute the positive influence to an observed increased
amount of conducted gestures and the negative influence to less readable
labels in the 3D-printed model.

1.3 Preliminary Work

This thesis builds on preliminary work which was already published in
several research papers. Furthermore, it bases on various student theses

10https://github.com/ExplorViz/ExplorViz
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which were co-supervised by the author. In the following, we first briefly
describe and list our publications according to three categories: Approach,
Evaluations, and Support Projects. Papers fall into the former two categories
if they are closely related and explicitly contribute to those parts of this
thesis. The latter category contains work that is related but only indirectly
contributes to this thesis. Afterwards, the related student theses and their
contributions to this thesis are briefly presented.

Approach

B [Fittkau et al. 2013b] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live trace visualization for comprehending large software landscapes:
the ExplorViz approach. In: Proceedings of the 1st IEEE International Work-
ing Conference on Software Visualization (VISSOFT 2013). IEEE, Sept. 2013

In this publication, we present our overall ExplorViz method and each
of its steps. Furthermore, first sketches of the landscape-level and appli-
cation-level perspective are shown.

B [Fittkau et al. 2013c] F. Fittkau, J. Waller, P. C. Brauer, and W. Hassel-
bring. Scalable and live trace processing with Kieker utilizing cloud
computing. In: Proceedings of the Symposium on Software Performance: Joint
Kieker/Palladio Days 2013 (KPDays 2013). Volume 1083. CEUR Workshop
Proceedings, Nov. 2013

In this work, we describe the idea of multiple worker levels for ana-
lyzing the huge amount of generated monitoring records. Therefore, a
worker and master concept and a scaling architecture are introduced. In
addition, we show the MooBench benchmark results for comparing the
analysis component of Kieker 1.8 and ExplorViz.

B [Fittkau 2013] F. Fittkau. Live trace visualization for system and pro-
gram comprehension in large software landscapes. Technical report 1310.
Department of Computer Science, Kiel University, Germany, Nov. 2013
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This technical report presents a plan of the contributions of this thesis
and details an evaluation scenario for the application-level perspective.

B [Fittkau et al. 2014a] F. Fittkau, P. Stelzer, and W. Hasselbring. Live
visualization of large software landscapes for ensuring architecture con-
formance. In: Proceedings of the 2nd International Workshop on Software
Engineering for Systems-of-Systems (SESoS 2014). ACM, Aug. 2014

Architecture conformance checking is introduced as a further usage
scenario beneath supporting system and program comprehension in this
paper. Furthermore, we present a preliminary study of the scalability
and thus applicability of our analysis approach.

B [Fittkau et al. 2015g] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz:
visual runtime behavior analysis of enterprise application landscapes.
In: Proceedings of the 23rd European Conference on Information Systems
(ECIS 2015). AIS, May 2015

Performance analysis is a further usage scenario of our approach. Be-
neath introducing important aspects of the functionality for the perfor-
mance analysis, we exemplify it on monitoring data gathered from the
Perl-based application EPrints11 in this publication.

B [Fittkau et al. 2015f] F. Fittkau, A. Krause, and W. Hasselbring. Exploring
software cities in virtual reality. In: Proceedings of the 3rd IEEE Working
Conference on Software Visualization (VISSOFT 2015). IEEE, Sept. 2015

In this work, we present our approach to use VR for exploring the
application-level perspective to provide an immersive experience. To
enable VR, we use an Oculus Rift and provide further gesture-based
interaction possibilities using a Microsoft Kinect.

11http://www.eprints.org
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B [Fittkau et al. 2015i] F. Fittkau, E. Koppenhagen, and W. Hasselbring.
Research perspective on supporting software engineering via physical
3D models. In: Proceedings of the 3rd IEEE Working Conference on Software
Visualization (VISSOFT 2015). IEEE, Sept. 2015

The approach of constructing physical 3D models of our application-level
perspective is presented in this work. Additionally, four potential usage
scenarios for these physical models are described.

Evaluations

B [Fittkau et al. 2014b] F. Fittkau, A. van Hoorn, and W. Hasselbring.
Towards a dependability control center for large software landscapes.
In: Proceedings of the 10th European Dependable Computing Conference
(EDCC 2014). IEEE, May 2014

IT administrators often lack trust in automatic adaption approaches
for their software landscapes. Therefore, we developed a semi-automatic
control center concept which is presented in this publication. This con-
trol center concept is used as a target specification in our extensibility
evaluation for the ExplorViz implementation.

B [Waller et al. 2014a] J. Waller, F. Fittkau, and W. Hasselbring. Appli-
cation performance monitoring: trade-off between overhead reduction
and maintainability. In: Proceedings of the Symposium on Software Perfor-
mance 2014 (SOSP 2014). University of Stuttgart, Nov. 2014

In this publication, we present a structured benchmark-driven perfor-
mance tuning approach exemplified on the basis of Kieker. The last per-
formance tuning step is equal to our developed monitoring component
of ExplorViz. Therefore, the paper contains a performance comparison
between Kieker and the monitoring component of ExplorViz.

13



1. Introduction

B [Fittkau et al. 2015a] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller.
Comparing trace visualizations for program comprehension through
controlled experiments. In: Proceedings of the 23rd IEEE International
Conference on Program Comprehension (ICPC 2015). IEEE, May 2015

Providing efficient and effective tools to gain program comprehension
is essential. Therefore, we compare the application-level perspective
of ExplorViz to the trace visualization tool Extravis in two controlled
experiments to investigate which visualization is more efficient and ef-
fective in supporting the program comprehension process.

B [Fittkau et al. 2015j] F. Fittkau, E. Koppenhagen, and W. Hasselbring.
Research perspective on supporting software engineering via physical
3D models. Technical report 1507. Department of Computer Science,
Kiel University, Germany, June 2015

Basing on the application-level visualization, we construct physical,
solid 3D-printed models of the application. This publication presents
the results of a controlled experiment comparing the usage of physical
models to using virtual, on-screen models in a team-based program
comprehension process.

B [Fittkau and Hasselbring 2015b] F. Fittkau and W. Hasselbring. Elastic
application-level monitoring for large software landscapes in the cloud.
In: Proceedings of the 4th European Conference on Service-Oriented and Cloud
Computing (ESOCC 2015). Springer, Sept. 2015

In this publication, we present our scalable and elastic approach for
processing the monitoring data. Furthermore, we describe an evaluation
where we monitor 160 JPetStore instances and use dynamically inserted
analysis worker levels.
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B [Fittkau et al. 2015h] F. Fittkau, A. Krause, and W. Hasselbring. Hier-
archical software landscape visualization for system comprehension: a
controlled experiment. In: Proceedings of the 3rd IEEE Working Conference
on Software Visualization (VISSOFT 2015). IEEE, Sept. 2015

This work describes a controlled experiment where we compare our
landscape-level perspective with a landscape visualization derived from
current APM tools. As demo landscape, we modeled the technical IT
infrastructure of the Kiel University.

Support Projects

B [Fittkau et al. 2012a] F. Fittkau, S. Frey, and W. Hasselbring. CDOSim:
simulating cloud deployment options for software migration support.
In: Proceedings of the 6th IEEE International Workshop on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA 2012).
IEEE, Sept. 2012

We developed a simulator to rate one Cloud Deployment Option (CDO)
named CDOSim. After simulating one CDO, the simulator provides an
overall rating of the option which is constructed from three metrics, i.e.,
response times, costs, and Service Level Agreement (SLA) violations.

B [Fittkau et al. 2012b] F. Fittkau, S. Frey, and W. Hasselbring. Cloud
user-centric enhancements of the simulator CloudSim to improve cloud
deployment option analysis. In: Proceedings of the 1st European Conference
on Service-Oriented and Cloud Computing (ESOCC 2012). Springer, Sept.
2012

As basis for CDOSim, the cloud simulator CloudSim was used. Since
CloudSim assumes that the user intends to simulate how her infrastruc-
ture performs as a cloud platform, we had to integrate the user-centric
perspective of a cloud environment user. These enhancements are de-
tailed in this work.
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B [Frey et al. 2013] S. Frey, F. Fittkau, and W. Hasselbring. Search-based
genetic optimization for deployment and reconfiguration of software in
the cloud. In: Proceedings of the 35th International Conference on Software
Engineering (ICSE 2013). IEEE, May 2013

CDOSim rates one CDO. However, a software engineer conducting
a migration to a cloud environment intends to find the most suitable
deployment for her context. Therefore, the tool CDOXplorer generates
CDOs and rates them by calling CDOSim. Since often a huge amount of
options exists, CDOXplorer uses genetic algorithms to generate promis-
ing CDOs.

B [Waller et al. 2013] J. Waller, C. Wulf, F. Fittkau, P. Döhring, and W.
Hasselbring. SynchroVis: 3D visualization of monitoring traces in the
city metaphor for analyzing concurrency. In: Proceedings of the 1st IEEE
International Working Conference on Software Visualization (VISSOFT 2013).
IEEE, Sept. 2013

SynchroVis uses the 3D city metaphor to display concurrency of one
application. It requires to do a static analysis before the program traces
can be loaded. Concurrency, e.g., acquiring and releasing a lock object,
is displayed through a special lock building. The different threads are
visualized through different colors.

B S. Frey, F. Fittkau, and W. Hasselbring. CDOXplorer: Simulation-Based
Genetic Optimization of Software Deployment and Reconfiguration in
the Cloud. IEEE TSE, (submitted), (2014).

This submitted article is an extended version of [Frey et al. 2013] and
provides details of the structure, functioning, and quality characteristics
of CDOXplorer.
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B [Brauer et al. 2014] P. C. Brauer, F. Fittkau, and W. Hasselbring. The
aspect-oriented architecture of the CAPS framework for capturing, ana-
lyzing and archiving provenance data. In: Proceedings of the 5th Interna-
tional Provenance and Annotation Workshop (IPAW 2014). Springer, June
2014

CAPS aims to simplify the instrumentation process of the monitored
applications. For instrumentation, an application needs to be uploaded
on a web interface and CAPS integrates the required probes to capture
provenance data during the execution of the monitored applications.

B [Frey et al. 2015] S. Frey, F. Fittkau, and W. Hasselbring. Optimizing
the deployment of software in the cloud. In: Proceedings of the Conference
on Software Engineering & Management 2015. Köllen Druck+Verlag, Mar.
2015

This is an abstract summarizing the results of [Frey et al. 2013].

B [Zirkelbach et al. 2015] C. Zirkelbach, W. Hasselbring, F. Fittkau, and
L. Carr. Performance analysis of legacy Perl software via batch and
interactive trace visualization. Technical report 1509. Department of
Computer Science, Kiel University, Germany, Aug. 2015

This work includes the presentation of a monitoring component for
Perl-based systems using Kieker12 [van Hoorn et al. 2012]. Furthermore,
a performance analysis using different visualizations is conducted for
EPrints.

Co-Supervised Bachelor and Master Theses

B [Beye 2013] J. Beye. Technology evaluation for the communication be-
tween the monitoring and analysis component in Kieker. Bachelor’s
thesis. Kiel University, Sept. 2013

12http://kieker-monitoring.net
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In his bachelor’s thesis, Beye evaluated three communication technolo-
gies with respect to their performance in the context of transferring
monitoring data. The evaluation resulted in identifying TCP as the
fastest transportation technology for monitoring data. Therefore, we
implemented our communication between monitoring and analysis com-
ponent with a TCP connection.

B [Koppenhagen 2013] E. Koppenhagen. Evaluation von Elastizitätsstra-
tegien in der Cloud im Hinblick auf optimale Ressourcennutzung. (in
German). Bachelor’s thesis. Kiel University, Sept. 2013

Koppenhagen investigated several cloud scaling approaches. For his
evaluation, he implemented the three most promising scaling approaches
and evaluated them with regard to performance and cost efficiency by
means of a cloud simulator. These approaches can further enhance our
elastic trace processing approach but the implementation remains as
future work.

B [Kosche 2013] M. Kosche. Tracking user actions for the web-based front
end of ExplorViz. Bachelor’s thesis. Kiel University, Sept. 2013

The bachelor’s thesis of Kosche evaluated several concepts of user action
tracking for our web-based visualization aiming to record user actions
during an experiment run. Since the aspect-oriented frameworks were
not compatible with current Google Web Toolkit (GWT) versions, she
integrated a manual approach. The recorded data of the experiment runs
is part of each experimental package of our controlled experiments.

B [Matthiessen 2014] N. Matthiessen. Monitoring remote procedure calls –
concepts and evaluation. Bachelor’s thesis. Kiel University, Mar. 2014
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Matthiessen developed a general Remote Procedure Call (RPC) monitor-
ing approach in cooperation with the master’s project at that time. This
backpacking approach is still used in the current monitoring component.
As proof-of-concept, he implemented and evaluated the concept for
monitoring HTTP Servlet connections.

B [Stelzer 2014] P. Stelzer. Scalable and live trace processing in the cloud.
Bachelor’s thesis. Kiel University, Mar. 2014

In his bachelor’s thesis, Stelzer conducted a preliminary version of
our elasticity evaluation for the live processing of monitoring data us-
ing cloud computing and thus tested our approach with multiple static
worker levels in his study. In his experiment, there were up to nine
monitored JPetStore instances.

B [Weißenfels 2014] B. Weißenfels. Evaluation of trace reduction techniques
for online trace visualization. Master’s thesis. Kiel University, May 2014

Weißenfels investigated several trace reduction techniques for their effi-
ciency and effectiveness. The best trace reduction technique was trace
summarization which is therefore also used by our analysis component.

B [Barbie 2014] A. Barbie. Stable 3D city layout in ExplorViz. Bachelor’s
thesis. Kiel University, Sept. 2014

The bachelor’s thesis of Barbie investigated a different layout algorithm
for the 3D city metaphor and thus our application-level perspective.
Targeting a stable and compact layout, he developed a layout algorithm
using quad trees [Finkel and Bentley 1974]. His evaluations show that
under certain circumstances the layout is stable. However, it uses a large
amount of calculation time when the 3D city model grows and is not
compact in most scenarios.

19



1. Introduction

B [Barzel 2014] M. Barzel. Evaluation von Clustering-Verfahren von Klassen
für hierarchische Visualisierung in ExplorViz. (in German). Bachelor’s
thesis. Kiel University, Sept. 2014

When no or inappropriate organizational units for classes are used by the
monitored software, e.g., all classes are contained in one Java package,
our interactive approach would not work as intended. Therefore, Barzel
integrated a hierarchical clustering feature into ExplorViz basing on the
relations between the classes and their names.

B [Finke 2014] S. Finke. Automatische Anleitung einer Versuchsperson
während eines kontrollierten Experiments in ExplorViz. (in German).
Master’s thesis. Kiel University, Sept. 2014

Finke implemented the automatic tutorial mode into ExplorViz. Further-
more, she developed a configurable experimentation mode which shows
generic linked question dialogs. Both modes were successfully used in
our controlled experiments.

B [Gill 2015] J. Gill. Integration von Kapazitätsmanagement in ein Kontroll-
zentrum für Softwarelandschaften. (in German). Bachelor’s thesis. Kiel
University, Mar. 2015

In the context of the bachelor’s project “Control Center Integration”,
Gill integrated the capacity management phase into ExplorViz. As foun-
dation, we provided our capacity manager CapMan which is also used
for scaling our trace analysis nodes in the cloud. Furthermore, he imple-
mented the migration of applications from one node to a target node.

B [Mannstedt 2015] K. C. Mannstedt. Integration von Anomalienerkenn-
ung in einem Kontrollzentrum für Softwarelandschaften. (in German).
Bachelor’s thesis. Kiel University, Mar. 2015
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Mannstedt integrated the anomaly detection phase into ExplorViz in the
context of the bachelor’s project “Control Center Integration”. As basis
for the anomaly detection, he used OPAD developed by Bielefeld [2012].
As evaluation, he compared different anomaly detection algorithms.

B [Michaelis 2015] J. Michaelis. Integration von Ursachenerkennung in
ein Kontrollzentrum für Softwarelandschaften. (in German). Bachelor’s
thesis. Kiel University, Mar. 2015

Also in the context of the bachelor’s project “Control Center Integration”,
Michaelis integrated the root cause detection phase into ExplorViz. He
implemented four algorithms for root cause detection and evaluated
them by a comparison.

B [Zirkelbach 2015] C. Zirkelbach. Performance monitoring of database
operations. Master’s thesis. Kiel University, July 2015

In his master’s thesis, Zirkelbach developed an AspectJ13 aspect for
monitoring Java Database Connectivity (JDBC) calls and visualizes these
information in a tool named Kieker Trace Diagnosis.14 The gathered infor-
mation include the execution time of the query, its return values, and
the Structured Query Language (SQL) statement. Furthermore, he can
process prepared statements and relate each execution of the it to the
actual SQL statement. Utilizing the developed AspectJ aspect, we are
able to provide database monitoring of JDBC calls.

B [Krause 2015] A. Krause. Erkundung von Softwarestädten mithilfe der
virtuellen Realität. (in German, in progress). Bachelor’s thesis. Kiel
University, Sept. 2015

13https://eclipse.org/aspectj
14http://kieker-monitoring.net
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Krause presents the implementation of our approach to utilize VR for
exploring software visualizations which follow the city metaphor. The
approach uses an Oculus Rift DK1 for virtually displaying the city model
and utilizes a Microsoft Kinect v2 for gesture recognition. In this the-
sis, Krause implemented the gesture recognition as a C# program and
developed the gestures in joint work with us. In his evaluation, he
conducted eleven structured interviews to investigate the usability of the
VR approach. In general, the participants liked the approach and see
potential for using VR in program comprehension tasks.

B [Simolka 2015] T. Simolka. Live architecture conformance checking in
ExplorViz. (in German, in progress). Bachelor’s thesis. Kiel University,
Sept. 2015

In the context of his bachelor’s thesis, Simolka implemented our live
conformance checking approach presented in [Fittkau et al. 2014a]. The
target architecture is modeled in a separate perspective and than the
generated landscape model is checked against this target model. If dif-
ferences between the two models are found, these are visualized by a
color-coding.

1.4 Document Structure

This thesis consists of the following five parts:

B Part I describes the foundations for this thesis.

B Chapter 2 details the concepts behind application monitoring required
for the thesis.

B Chapter 3 introduces the field of software visualization and the un-
derlying concepts and existing visualizations with a focus on related
topics to our thesis.
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B Part II presents our approach for providing a live trace visualization of
large software landscapes.

B Chapter 4 defines the research questions and our research methods.

B Chapter 5 describes our method, named ExplorViz, for enabling live
trace visualization of large software landscapes.

B Chapter 6 details how we monitor applications and RPCs. Further-
more, our analysis and trace processing approach is presented.

B Chapter 7 provides a description of our software landscape meta-
model and how we generate a landscape model from the analyzed
traces.

B Chapter 8 introduces our live trace visualization approach and the
developed two perspectives, i.e., the landscape-level perspective and
the application-level perspective.

B Part III shows the conducted evaluations for our approach.

B Chapter 9 describes the implementation of our approach.

B Chapter 10 provides three evaluations related to our monitoring and
analysis approach.

B Chapter 11 presents four controlled experiments for evaluating the
developed visualization approach.

B Chapter 12 contains an evaluation where we evaluated the internal
quality of our implementation by letting external developers extend
the implementation by a prescribed control center concept.

B Chapter 13 discusses related work.

B Part IV concludes the thesis.

B Chapter 14 summarizes the thesis and its results.

B Chapter 15 presents future work.
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B Part V contains the appendix.

B Chapter A presents the debriefing questionnaire used in the extensi-
bility evaluation.

Finally, the back matter contains a list of figures, a list of tables, a list of
listings, a list of used acronyms, and the bibliography.
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Part I

Foundations





2

Application Monitoring

This chapter presents the terms and concepts of application monitoring
which build the foundation for our monitoring and analysis approach
(SC2). Section 2.1 describes the instrumentation of applications. Afterwards,
the trace concept for our monitoring approach is presented in Section 2.2.
Finally, the differences between a live and offline analysis are shown in
Section 2.3.

29



2. Application Monitoring

Listing 2.1. Manual Instrumentation Example in Java

1 public class ExampleClass {

2 public void exampleMethod() {

3 System.out.println("exampleMethod() start");

4
5 // do internal logic

6
7 System.out.println("exampleMethod() end");

8 }

9 }

2.1 Instrumentation

To monitor an application, we need to instrument it. Therefore, probes are
inserted into the application to gather the data required for our visualization.
The IEEE defines instrumentation as “devices or instructions installed or
inserted into hardware or software to monitor the operation of a system or
component.” [ISO/IEC/IEEE 24765 2010]

The instrumentation can be conducted manually and automatically. Both
approaches are described in the following.

2.1.1 Manual Instrumentation

Manual instrumentation [Bulej 2007] consists of inserting probes for gath-
ering the data in source code locations of interest by hand. A prerequisite
for manual instrumentation is the availability of the source code. Other-
wise, the software engineer would need to change the machine or byte
code which would be cumbersome. Furthermore, manually instrument-
ing large applications requires a large amount of work such that manual
instrumentation should only be applied when few methods need to be
instrumented [Parsons 2007].

Listing 2.1 shows an example for manually instrumenting a Java source
code. We instrument the method by adding the statements in Line 3 and
Line 7. Every time the instrumented method is executed, it outputs the
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message “exampleMethod() start” before conducting its internal logic. The
message “exampleMethod() end” is written to the output when successfully
finishing its internal logic. While this instrumentation only reveals whether
the method was called and finished without an exception, the logged
information can be enriched by, for example, the execution duration. We
refer to the collection of the gathered data of one probe as a monitoring
record or shortly as a record.

2.1.2 Automatic Instrumentation

In the manual instrumentation approach, potentially every method has to
be changed by hand since monitoring is concerned about potentially every
method in the application. Kiczales et al. [1997] introduced the paradigm
of Aspect-Oriented Programming (AOP) to facilitate the development work
of such cross-cutting concerns. Therefore, AOP can be used to provide
automatic instrumentation of the application.

An implementation of AOP for Java is AspectJ.1 It introduced four
universal terms [Kiczales et al. 2001] which got adopted later by other AOP
frameworks. These terms are:

Join Point: A join point is one point in the execution of the application.
For example, when a method is executed, the join point is passed to the
advice and provides information about the method execution such as the
name of the executed method and its parameters.

Pointcut: For selecting the methods that should be woven, pointcuts
are used which are defined by a predicate. For instance, execution(* *(..))
matches all methods that are executed.

Advice: The actual additional code that should be woven is specified in
an advice. Furthermore, it defines at which location its code is inserted, i.e.,
before, after, or around the affected join points.

Aspect: An aspect encapsulates the cross-cutting concern. The corre-
sponding join points, pointcuts, and advices are defined in it.

1https://eclipse.org/aspectj
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Listing 2.2. Around Aspect for Instrumenting Java Source Code in AspectJ

1 @Aspect

2 public class MonitoringAspect {

3 @Pointcut("execution(* *(..))")

4 public void monitoredOperation() {}

5
6 @Around("monitoredOperation()")

7 public final Object instrument(final ProceedingJoinPoint p)

8 throws Throwable {

9 System.out.println(p.getSignature() + " start");

10
11 final Object retVal;

12 try {

13 retVal = p.proceed();

14 } catch (final Throwable th) {

15 System.out.println(p.getSignature() + " exception");

16 throw th;

17 }

18
19 System.out.println(p.getSignature() + " end");

20 return retVal;

21 }

22 }

The aspects need to be integrated into the execution of the program.
Therefore, the so-called weaving of the aspects with the Java bytecode can be
conducted at compile time or at the loading of a class definition into the Java
Virtual Machine (JVM). For load-time weaving, the monitored program has
to be started with an additional parameter to specify the AspectJ Weaver as
the Java Agent. Thus, the AspectJ Weaver can run before the actual program
logic is executed and weave the class definitions that get loaded.

An example aspect for monitoring all method executions in a Java
application is shown in Listing 2.2. The aspect, pointcut, and around advise
definition are done with annotations. The pointcut predicate execution(* *(..))
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in Line 3 means that all methods of the monitored application should be
woven with the around advise defined in Line 6 to 21. An around advise
combines before and after advices but can also react on exceptions and
can directly save internal variables between the code segments. Therefore,
the actual method’s logic code needs to be called manually by calling
proceed() (Line 13) on the join point. Furthermore, when outputting the
start, exception, and end events, we access the signature of the method that
is executed. The differences to the manual instrumentation in Listing 2.1 are
minimal but this aspect suffices to instrument a whole application instead
of one single method.

2.2 Trace Concept

Each inserted probe generates monitoring records when a monitored
method is executed. These records contain a trace identifier in our used
trace concept. With this trace identifier, they can be associated to one execu-
tion trace which is a special form of a general trace [Jain et al. 1991]. For
reasons of simplicity, when we talk about traces in this thesis, we refer to
execution traces.

In Figure 2.1, an example execution trace for the trace concept used by
us is shown. Method A calls Method B, Method B calls Method C, et cetera.
The events that form the monitoring records are annotated behind the name
of each method. A Before Event is generated at the entry of the execution
of a method and an After Event is passed to the analysis when exiting the
method. In general, two types of After Events exist, i.e., normal exits and
when an exception is thrown (cf. Listing 2.2). This trace concept is also
used in, for example, Kieker [van Hoorn et al. 2009b; Waller 2014].

Another trace concept is generating records only at the exit of an exe-
cuted method. However, generating two events for each method execution
provides the benefit that the analysis can determine when an event is
missing and a trace has ended.
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Figure 2.1. Example execution trace and generated monitoring records

2.3 Live versus Offline Analysis

There are two classes of dynamic analyses [Dwyer et al. 2007], i.e., offline
and online analyses. When monitoring records are gathered and the pro-
gram terminates before these records are analyzed, the analysis is called
offline analysis. In contrast, an online analysis conducts the analysis of the
gathered monitoring records during the runtime of the monitored program.

This categorization implies that offline analyses require a storage for
monitoring records and therefore they are limited by the available storage
space. If traces with millions of events – as happened in [Yang et al. 2006] –
need to be processed, an online analysis can spare the software engineer
from searching for an adequate storage. The online analysis just consumes
and processes the monitoring records on-the-fly.

A disadvantage of online analysis is that the gathered data can not be
replayed – only the analysis results are available after the run. Therefore, if
the configuration of an analysis needs to be changed – which is possible in
an offline analysis –, the program needs to be executed again.
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For our approach, we choose an online analysis approach due to the
huge amount of monitoring records produced in a large software landscape.
Since online trace visualization could also be interpreted as the visualization
of online traces, we use the terminology of live trace visualization for our
approach and this thesis.
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3

Software Visualization

Software visualization is “the use of the crafts of typography, graphic design,
animation, and cinematography with modern human-computer interaction and
computer graphics technology to facilitate both the human understanding and
effective use of computer software.” [Price et al. 1993]

In this chapter, we describe related concepts and previous work of other
researchers that build the foundation for our approach and visualization.
The visualization pipeline, which provides the basis for our approach (SC1),
is presented in Section 3.1. Section 3.2 describes the software city metaphor
and approaches which implement or extend this metaphor providing the
foundation for our application-level perspective, and the search for other
display and interaction concepts (SC3). Then, closely related trace visual-
ization approaches are presented in Section 3.3. Finally, RPCs visualization
approaches are shown in Section 3.4 which build the foundation for our
landscape-level perspective.
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Previous Publications

Parts of this chapter are already published in the following work:

1. [Fittkau et al. 2015a] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller.
Comparing trace visualizations for program comprehension through
controlled experiments. In: Proceedings of the 23rd IEEE International
Conference on Program Comprehension (ICPC 2015). IEEE, May 2015
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3.1 Visualization Pipeline

In general, visualization is an – often adjustable – mapping of raw data to
a visual form perceivable for humans [Card et al. 1999]. The steps in this
mapping are visualized in the visualization pipeline of Card et al. [1999]
(see Figure 3.1). It starts with the Raw Data which is transformed to Data
Tables. Data Tables are often more structured than Raw Data and easier to
map to Visual Structures. For example, Raw Data is often aggregated and
extended with metadata to create structured Data Tables.

After this transformation, the Data Tables are mapped to Visual Struc-
tures. Visual Structures are, for example, box plots, color-codings, or charts.
Visual Structures have a spatial substrate with marks and graphical prop-
erties that should target an expressive encoding of the data. The mapping
is expressive when the data and only the data is expressed by the Visual
Structure. For example, the Visual Structure should not imply a relationship
between data points when this relationship is incorrect. Furthermore, Data
Tables can often be mapped in several ways to Visual Structures. Therefore,
the representation should also be as effective as possible. A color-coding of
the sine wave is less effective than a line chart representing the values, for
instance.

The Visual Structures are transformed to actual Views for the human
perceiver. There are three common view transformations: location probes,
viewpoint controls, and distortions. Location probes use locations in Vi-
sual Structures to provide additional related data, e.g., a tooltip showing
additional on demand information. Viewpoint controls utilize affine trans-
formations such as panning and zooming to change the viewpoint. The
visual transformation of distortion combines overview and detail in a single
Visual Structure. For instance, a fisheye view provides detailed information
about the focused center while the outer area still contains an overview of
the data.

Since the perceiver of the visualization has specific tasks in mind, she
needs to interact with the steps in the visualization pipeline to achieve
a supporting visualization of the task at hand. Therefore, she is able to
change the Data Transformations applied when transforming Raw Data
to Data Tables by, e.g., changing the metrics used to produce the Data
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Figure 3.1. Visualization pipeline based on [Card et al. 1999]

40



3.2. Software City Metaphor

Tables. Furthermore, she can influence the Visual Mappings used when
mapping the Data Tables to Visual Structures. For example, showing the
data in a line chart instead of a box plot. The last interaction possibility is
conducting View Transformations such as panning or rotating the shown
Visual Structures to change the viewpoint.

3.2 Software City Metaphor

In this section, we describe visualizations following or extending the soft-
ware city metaphor [Knight and Munro 1999] in chronological order. These
visualizations build the foundation for our application-level perspective
and our search for new display and interaction possibilities for the software
city metaphor.

3.2.1 Software World

In the year 1999, Knight and Munro [1999, 2000] represented a software
system based on the model of a real city (see Figure 3.2). The whole
software system maps to one world. A country represents the directory
structure of the system. In the context of Software World, these districts map
to Java packages. A city is one file from the software system and each class
contained in the file is represented by a district. The districts are made up of
buildings which correspond to the methods of the class. Districts can also
contained special urban items such as gardens, parks, or monuments which
are used to represent special attributes of classes.

Buildings can have several details attached depending on the attributes
of the represented method. The height of a building maps to the lines of
code of the method. The number of doors of the building maps to the
parameter count and the number of windows maps to the declared variable
count. Whether the method is public or private influences the color of the
building. Furthermore, a small sign – like a house number sign in the real
world – is placed on the building to represent the method name.
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Figure 3.2. Software World (taken from [Anslow et al. 2006])

3.2.2 3D City

With the presentation of the city metaphor, Knight and Munro [1999] wanted
to show that moving away from abstract software visualizations is possible.
Panas et al. [2003] further followed this direction by creating 3D City with
the aim to create a realistic city representation of a software system. One city
is displayed in Figure 3.3. A city represents one Java package. The whole
3D City can include multiple cities which are connected by streets, if the
packages depend on each other, or by water if one package only depends on
the other. Clouds can hide cities that are out of the current focus. Buildings
in a city represent components (mainly Java classes). To increase the realism,
the authors add trees, streets, and street lamps to the scene. The quality
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Figure 3.3. 3D City (taken from [Panas et al. 2003])

of the implementation is visualized by the appearance of a building. For
example, old and collapsed buildings show that the source code should be
refactored.

In addition to those static information, 3D City can also visualize dy-
namic information. Cars move according to one execution trace. They leave
traces in different colors for easier identification of the origin and destina-
tion component. If there is dense traffic, a large amount of communication
is conducted between the components. The speed and type of a car maps to
the performance and priority of a method call. Occurring exceptions in the
software system are visualized by colliding cars resulting in an explosion.

In addition, 3D City visualizes business information on top of this
representation. For example, execution hot spots are indicated by a fire
surrounding the corresponding building.

3.2.3 CodeCity

Wettel and Lanza [2007] argue that the previous two approaches do not
sufficiently support the program comprehension process of large software
systems. According to the authors, the visual mapping in Software World is
not well chosen since it leads to cities with thousands of districts for large
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Figure 3.4. ArgoUML visualized in CodeCity with annotated building archetypes
(taken from [Wettel 2010])

software systems. Furthermore, they reason that Software World should
exploit the package information for the layout of the districts which leads
to more locality in the visualization. Moreover, Wettel and Lanza argue that
the presented ideas of 3D City lack a sufficient interaction concept.

To overcome the aforementioned shortcomings, Wettel and Lanza [2007]
developed CodeCity.1 Figure 3.4 presents the CodeCity visualization of
ArgoUML.2 In CodeCity, districts represent the packages and classes are
displayed by buildings. The hierarchy of the packages is visualized by
stacking the districts. The number of attributes (NOA) of a class maps to
the height of the corresponding building and the number of methods maps
to its width. This mapping forms different archetypes of buildings. Classes

1http://codecity.inf.usi.ch
2http://argouml.tigris.org
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with many methods but a small number of attributes result in tall and thin
skyscrapers. On the opposite, classes with few methods and a high number
of attributes result in flat, large platforms named “parking lots”. Beneath
those two extremes, there are also “office buildings” representing classes
with high functionality and a normal amount of attributes, and “houses”
with a low amount of functionality and a low amount of attributes. Due to
these archetypes, the distribution of system intelligence is perceived at the
first glance on the visualization. Additionally, colors are used to represent
special further metrics such as the probability of a god class, for instance.

The efficiency and effectiveness of CodeCity has been evaluated in a
controlled experiment in [Wettel et al. 2011]. Wettel et al. compared the
usage of CodeCity to using the state of the practice, i.e., Eclipse and Excel,
for solving program comprehension tasks. The experiment resulted in a
statistically significant increase in task correctness (+24 %) and decreased
time spent (-12 %) when using CodeCity for solving the tasks.

3.2.4 Vizz3D

In Vizz3D [Panas et al. 2007], the user is able to switch between layout
algorithms and used metaphors at runtime. One metaphor available in
Vizz3D is the city metaphor (see Figure 3.5). In their visualization, buildings
represent methods. The textures on the buildings are determined by different
metrics. For instance, the represented method of a blue colored building has
more than 200 lines of code. Cities shown as blue plates represent source
files. Green landscapes map to directories of the software system. The water
and sky only provide more realism and have no specific semantics. The
connection between the buildings can represent method calls, inheritance
relations, or contains relations.

3.2.5 EvoSpaces

EvoSpaces [Dugerdil and Alam 2008] provides two views, i.e., a day and a
night view. The day view represents the static information about a software
system. Classes and files map to buildings and packages map to districts.
As in CodeCity, the districts are nested. The height and texture of the
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Figure 3.5. Vizz3D visualizing a C++ program (taken from [Panas et al. 2007])

buildings is varied according to metrics. The authors use three types of
buildings represented by the texture and each type has three different height
categories. Relationships between classes are visualized by pipes.

The night view of EvoSpaces is shown in Figure 3.6. The semantics of
buildings and districts is the same as in the day view. However, the solid
pipes represent the execution trace. Furthermore, the occurrence of the
classes in the trace get color-coded and mapped onto the buildings.

3.2.6 DyVis

Wulf [2010] developed DyVis which is a combination of CodeCity and
TraceCrawler [Wysseier 2005; Greevy et al. 2006]. Figure 3.7 presents an

46



3.2. Software City Metaphor

Figure 3.6. Night view of EvoSpaces (taken from [Dugerdil and Alam 2008])

execution trace of JPetStore in DyVis. An upfront static analysis provides
information about the packages and classes to DyVis. Districts represent the
Java packages and classes are visualized by buildings similar to CodeCity.
However, the buildings have different floors similar to TraceCrawler. Each
floor represents one instance of the class. Since Java also supports static
classes, the first floor is the static class instance. Streets run from one floor
of a building to another floor of a building (or itself). These represent one
method call from one object to another object. Furthermore, the caller and
callee are highlighted in green and the street is colored according to the
portion of the method’s runtime to the overall runtime of the trace.

DyVis also features a tree-based view of the method calls which hap-
pened in the trace (displayed in the right part of Figure 3.7). Furthermore,
information about the current visualized method call is displayed in the
bottom. At the top, buttons for an automatic playback of the trace are
present.
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Figure 3.7. An execution trace of the web application JPetStore visualized in DyVis
(taken from [Wulf 2010])

3.2.7 Evo-Streets Layout

Evo-Streets3 [Steinbrückner and Lewerentz 2010] is a stable layout for visual-
izing evolving software systems using the city metaphor. It is implemented
in the visualization tool CrocoCosmos [Lewerentz and Noack 2004]. In
Figure 3.8, the JDK6 is visualized using the Evo-Streets layout. Each street
represents one subsystem and branching streets show contained subsystems.
The global system level is visualized by a main street where the subsystems
branch off. The attached colored blocks represent modules, i.e., classes

3http://software-cities.org
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Figure 3.8. Visualization of the Java Development Kit 6 using the Evo-Streets layout
(taken from [Steinbrückner and Lewerentz 2010])

in the context of Java. The height of the buildings map to the coupling
between the represented class and the rest of the system.

To enable a stable layout, rules for inserting new elements and modifying
old elements have to be defined. New elements are attached to the end of a
street of the corresponding package by extending the street, for example.
In addition to the height of the buildings, the third dimension is used to
present an elevation of the streets and buildings. The creation time of the
element is mapped to this elevation. Therefore, older elements get a higher
elevation in the visualization.

3.2.8 Software Map

Bohnet and Döllner [2011] present an approach – they call software maps – to
visualize up-to-date information of the internal quality of a software system
by using the city metaphor. A software map represents source code files in
hierarchical modules similar to CodeCity. Figure 3.9 shows a software map
visualizing the 3D creation suite Blender.4 In contrast to CodeCity, software
maps intend to provide managers with information about the internal

4https://www.blender.org
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Figure 3.9. Software map for Blender (taken from [Bohnet and Döllner 2011])

quality of the software and about where and which developer modifies
source code. Therefore, the metrics visualized by the height, ground area,
and color are customizable. In comparison to a sole table representation
of metrics, the authors argue that whether a value is good or bad depends
on the relatively to the other values which is better visualized by software
maps. Limberger et al. [2013] implemented the approach of software maps
for web browsers.
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Figure 3.10. Visualization of an execution of jEdit using 3D-HEB (taken from
[Caserta et al. 2011])

3.2.9 3D Hierarchical Edge Bundles Extension

Caserta et al. [2011] uses the hierarchical edge bundling technique [Holten
2006] to represent relations in the 3D city metaphor. They call the presented
technique 3D Hierarchical Edge Bundles (3D-HEB). Figure 3.10 shows the
resulting visualization of jEdit.5 The direction of the communication of
the bundles is color-coded, i.e., green represents the source and red the
destination.

3.2.10 SynchroVis

SynchroVis [Waller et al. 2013] developed by Döhring [2012] extends DyVis
by visualizing the concurrent behavior of an application. Figure 3.11 depicts
a deadlock of the dining philosophers problem visualized by SynchroVis.
For visualizing the concurrent behavior, it provides special buildings. The
building with the lock symbol represents the free (uncolored) and locked
(colored in the color of the trace holding the lock) semaphors/monitors in

5http://www.jedit.org
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Figure 3.11. Deadlock of the dining philosophers problem visualized by SynchroVis
(taken from [Waller et al. 2013])

the system. The beneath thread building shows the active threads. Streets in
SynchroVis also represent the method calls but the color stands for which
trace executes the method call.

3.2.11 SkyscrapAR

SykscrapAR [Souza et al. 2012] is an augmented reality approach employing
the city metaphor to visualize software evolution. The user can interact with
a physical marker platform (see Figure 3.12) in an intuitive way while the
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Figure 3.12. JUnit framework in SykscrapAR (taken from [Souza et al. 2012])

actual visualization can be seen on the monitor. In general, the semantics
follow the semantics of CodeCity. However, since SykscrapAR visualizes
the evolution of a software system, Souza et al. added green lots for each
class. These lots are only completely filled by the building when it reaches
the maximum size in the visualized revision of the software.

3.2.12 Manhattan

Lanza et al. [2013] developed Manhattan to support the team activity
comprehension. It bases on the city metaphor building up on a reim-
plemented CodeCity and provides a real-time visualization integrated in
the Eclipse IDE. The visualization depicts team activity information and
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Figure 3.13. Apache Commons Math in Manhattan (taken from [Lanza et al. 2013])

provides developers with information about potential conflicting code. Fig-
ure 3.13 shows an example visualization of the Apache Commons Math
library.6 Potential conflicts are represented by a sphere above a class (point 4
in Figure 3.13). Classes modified by a developer are visualized by becoming
yellow (point 1). Removed classes do not disappear instantly but are colored
orange (point 2). More information, such as which developer frequently
changes the focused class, can be fetched on demand through a tooltip
(point 3).

3.2.13 CodeMetropolis

CodeMetropolis [Balogh and Beszédes 2013] utilizes Minecraft7 to visualize
a software system and enables online user collaboration. Its main idea
is to use high quality graphics provided by current game engines for

6http://commons.apache.org/proper/commons-math
7https://minecraft.net
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Figure 3.14. Semantics of CodeMetropolis (taken from [Balogh and Beszédes 2013])

data visualization. Therefore, the visualization uses graphical primitives
provided by Minecraft and for collaboration the already present multi-player
server is used.

The semantics of the visualization are depicted in Figure 3.14. Names-
paces/packages are represented by stackable stone plates. A class is visual-
ized by green grass blocks. On top of the grass, several floors represent the
contained methods of the class. The size of a floor is defined by normalized
code metrics. McCabe Cyclomatic Complexity (McCC) is used for the width
and length. Logical Lines of Code (lLOC) is mapped to the height of the
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Figure 3.15. SArF map of Weka 3.0 (taken from [Kobayashi et al. 2013])

floor. The player can climb to each floor and walk into it. Similar to Software
World, the number of windows and doors visualizes the parameter count.
In addition, torches on the wall indicate if a method is tested.

3.2.14 SArF Map

Software Architecture Finder (SArF Map) [Kobayashi et al. 2013] visualizes
software clustering results and architectural layers from feature and layer
viewpoints using the city metaphor. The features are extracted by their
clustering approach [Kobayashi et al. 2012]. Figure 3.15 shows an example
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visualization of the features of the data mining tool Weka.8 The buildings
represent classes and blocks group these classes when the classes implement
one feature. The height of the buildings maps to the lines of code of the
corresponding class. The keywords in the feature are used to label the
buildings. The relevance between features is represented by connecting
streets. In addition to streets, there are colored curves that visualize the
dependencies between classes. The belonging package of a class is encoded
by the color of a building.

3.3 Trace Visualization

This section describes existing trace visualization approaches in chrono-
logical order. Since many approaches exist, we focus on the visualization
approaches that are closely related to our visualization. For an overview
of trace visualization approaches, we refer to the surveys of Bennett et al.
[2008], and Hamou-Lhadj and Lethbridge [2004]. We start by presenting
2D-based approaches and show 3D-based approaches afterwards.

3.3.1 2D-Based

In the following, we describe closely related 2D-based trace visualizations.

Jinsight

Jinsight [De Pauw et al. 2001; 2002] visualizes method executions, class
fields, and parameters at runtime of a program. The execution view of
Jinsight is shown in Figure 3.16. The bars represent method executions
and the execution time window runs from top to bottom. Since gathering
field and parameters value can result in a large data amount, the user is
able to activate and deactivate the gathering of those information using the
visualization during the runtime of the program under study.

8http://www.cs.waikato.ac.nz/ml/weka
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Figure 3.16. Execution view of Jinsight (taken from [De Pauw et al. 2001])
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Figure 3.17. JIVE (taken from [Reiss and Tarvo 2012])

JIVE and JOVE

JIVE [Reiss 2003] and JOVE [Reiss and Renieris 2005] visualize Java pro-
grams during runtime. The visualization of JIVE is divided into two panes
(see Figure 3.17). The left part depicts class and package usage information.
Five values of the running software are encoded in this visualization. The
height of the rectangle indicates the number of conducted method calls. The
width of the rectangle shows the amount of object allocations conducted
by the methods of the class. The hue represents the allocated instances of
the class. The rectangle saturation indicates whether the class was used
or not. Finally, its brightness shows the number of synchronization events.
On the right part of Figure 3.17, thread data is shown. The hue in the bar
represents the thread state at each time interval.

Figure 3.18 shows the visualization of JOVE. Vertical regions, repre-
senting files of the system under study, make up the main part of the
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Figure 3.18. JOVE (taken from [Reiss and Tarvo 2012])

visualization. Each vertical region is divided in two parts. The top of the
region shows thread information and the bottom shows block information.
In their terms, a block is a segment of straight-line code with no internal
branches. At the top of each region, a pie-chart shows the time spent of
each thread in the class. The width of vertical regions maps to the ratio of
executed instructions in the program run.

Extravis

Extravis was developed by Cornelissen et al. [2007]. In a controlled experi-
ment, Cornelissen et al. [2009] showed that the availability of Extravis in
addition to Eclipse positively influences the effectiveness and efficiency in
program comprehension tasks. Extravis focuses on the visualization of one
large execution trace. For this purpose, it utilizes two interactive, linked
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Figure 3.19. A recorded execution trace of PMD visualized in Extravis

views: the circular bundle view and the massive sequence view. Those two
views are described in the following.

Circular Bundle View The centered visualization of Extravis is the circu-
lar bundle view (Ê in Figure 3.19). The classes are arranged at the inner
circle. Due to the high number of classes in the analyzed software system
PMD9 (279 visualized classes), the names of the classes are only visible
through tooltips on the respective entity. The outer circles represent the
packages of PMD. In the inner field of the circle, the method calls between
classes is represented by lines. The names of the method calls are visible by
hovering over these lines. Extravis utilizes color coding for the direction
of the visualized communication. In its default setting, green represents
outgoing calls and red expresses incoming calls. The width of each line
corresponds to the call frequency of the method.

9http://pmd.sourceforge.net
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Extravis follows a hierarchical, bottom-up strategy [Shneiderman 1980],
i.e., all packages show their internal details at the beginning. It is possible to
close packages and thus hide the contained classes to gain further insights
into the global structure of the visualized software system. Furthermore,
edge bundling provides hints about strong relationships between packages.
The communication between two classes can be filtered by marking both
classes. This selection highlights the method calls in the massive sequence
view. In addition to displaying the communication direction, Extravis

enables switching to a chronological trace analysis (Ë) by changing the
semantics of the line colors. In this mode, color is globally used for repre-
senting the occurrence in time of the method call in the trace. In its default
setting, dark blue represents the oldest method call and yellow corresponds
to the newest method call.

Massive Sequence View The massive sequence view (Ì) visualizes the
method calls over time similar to a compressed UML sequence diagram.
On top, the classes and packages are displayed and their method calls are
listed beneath. The direction of the communication is color coded as in
the circular bundle view. The massive sequence view enables to filter the
method calls according to a time window from point A in a trace to point B
in a trace. This filtering restricts the massive sequence view and the circular
bundle view to only contain method calls within the selected time window.
A further feature of Extravis is a history of the previously selected time
windows (Í).

ViewFusion

ViewFusion [Trümper et al. 2012] combines (“fuses”) the structure and activ-
ity information in one view. They use treemaps10 for showing the structure
and icicle plots [Kruskal and Landwehr 1983] for the trace visualization.
Figure 3.20 shows Chromium11 visualized by their ViewFusion tool. The
icicle plots are displayed at the top and provide details on demand when
hovering near and over the icicles with the mouse. The colors represent the

10http://www.cs.umd.edu/hcil/treemap
11https://www.chromium.org
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Figure 3.20. Chromium visualized in ViewFusion (taken from [Trümper et al. 2012])

maximum occurring stack depth of each method. Therefore, the method
displayed at Ê also contributes to low-level functionality of Chromium.
In the structure view, the colored rectangle are part of the current visual-
ized execution trace. Most of them are in the chrome package. Hence, the
executed features mainly use functionality of this package.

UML Sequence Diagrams

A large part of trace visualization approaches are similar to UML sequence
diagrams [Briand et al. 2004]. Since we use a metaphor-based approach, we
only briefly describe five approaches using UML in the following.

SCED [Systä 2000] can be used to model the run-time of Java applica-
tions and provides its own state diagram which is similar to UML. JAVAVIS
developed by Oechsle and Schmitt [2002] uses object and sequence dia-
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grams to visualize the execution of a Java program. Malnati et al. [2008]
developed JThreadSpy which visualizes concurrent behavior on the ba-
sis of additions to UML sequence diagrams. Voets [2008] developed the
tool JRET. It visualizes traces generated by Java applications using UML
sequence diagrams and can also visualize loops in the execution. Kieker
Analysis [Ehlers 2011] represents the method calls and dependencies in a
Java application similar to UML diagrams.

3.3.2 3D-Based

In the following, closely related 3D-based trace visualization approaches
are described. The approaches 3D City, EvoSpaces, DyVis, and SynchroVis
are also part of this category but were already described in Section 3.2.

Call Graph Analyzer

Bohnet and Döllner [2006] present an approach where they combine four
feature-related views in the tool Call Graph Analyzer. Figure 3.21 shows
the Graph Exploration View visualizing the web browser Mozilla Firefox.12

The focused function is displayed as a disc (left upper part of the figure)
and the neighborhood represented by arrow tops (predecessor functions)
and arrow bottoms (successor functions). The method call is shown by an
asymmetrical arc where the peak point of the arc is shifted to the target of
the call. In addition to this view, the authors provide a Source Code View
in a linked window, a Function Search View visualizing all functions in a
list, and a Bookmark View where a user can bookmark functions of interest.

TraceCrawler

TraceCrawler developed by Wysseier [2005] and Greevy et al. [2006] is an
extension to CodeCrawler [Lanza 2003]. It visualizes the object allocations
and the chronological sequence of the method executions through a play-
back mode. The semantics of the visualization are shown Figure 3.22. For
each class, a tower divided into floors exists. Each floor represents one

12https://www.mozilla.org/en-US/firefox
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Figure 3.21. Call Graph Analyzer (taken from [Bohnet and Döllner 2006])

instance of the class. The ground floor is a special entity since it represents
the class by itself. Lines between the ground floors show the inheritance
relations and lines between boxes represent the method calls. During a
playback, active instances and active method calls are highlighted. The
width, length, and color of the boxes are used to represent metrics about
each instance. The applied metrics are configurable. Source code of each
class can be viewed on demand.

TraceCrawler features two views. The first view is the Dynamic Feature-
Trace View. Within this view, the user is able to step through the execution
trace in linkage with the visualization. Therefore, she can view the details
about the execution. Figure 3.23 shows the TraceCrawler visualization of
a trace of SmallWiki [Ducasse et al. 2005] in the second view, i.e., Instance
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Figure 3.22. Schematic view of the visualization used in TraceCrawler (taken from
[Greevy et al. 2006])

Collaboration View. This view provides an overview of the whole trace.
Three feature hotspots can be identified, i.e., the Response, Login, and
PageView feature.

3.4 Remote-Procedure-Call Visualization

In this section, we present related RPCs visualization approaches.

3.4.1 Web Services Navigator

Web Services Navigator [De Pauw et al. 2006] provides 2D graph visualiza-
tions of the communication of web services. It provides three views for
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Figure 3.23. Instance Collaboration View of the login feature in SmallWiki visualized
in TraceCrawler (taken from [Greevy et al. 2006])
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Figure 3.24. Web Services Navigator: trace selection window, Transaction Flows
view, and Service Topology view (taken from [De Pauw et al. 2006])
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showing the communication and their underlying patterns. In Figure 3.24,
the Transaction Flows and Service Topology views are presented. The Trans-
action Flows view shows each web service call in a UML sequence diagram
fashion. Since this view does not scale well, the Service Topology view
visualizes each web service as one box and represents the direction flow
by a flow-based left-to-right layout. However, the view fails to present the
chronological order of the calls. Therefore, De Pauw et al. [2006] provide a
third view, i.e., the Flow Patterns view. This view shows the access pattern
of the web services successively in one window.

3.4.2 Streamsight

Streamsight [De Pauw et al. 2008] visualizes cooperating distributed com-
ponents of streaming applications. Therefore, it shows the data flow and
not the control flow. Since a very similar visualization could visualize
the control flow, we also describe Streamsight in this section. Figure 3.25
depicts an example visualization. The boxes map to processing elements
of a streaming application. There are three types of processing elements:
sources, analytics, and sinks. The Generators in the figure are sources, i.e.,
no input ports. The Annotators, for instance, are analytics processing ele-
ments having in- and output ports. Finally, there are sinks that inhibit no
output port such as ConsumerF. The coloring of each processing element
represents the host it is running on. Input ports are visualized on the left
side of a processing element and output ports are shown on the right side
of a processing element. Therefore, the direction of the communication is
also encoded by the layout. Ports can have two states – open and closed –
whether or not they produce/consume data. Tooltips provide details about
the host name and the processed data.

3.4.3 RanCorr

RanCorr [Marwede et al. 2009] visualizes the dependencies between appli-
cations in a root cause analysis scenario. Figure 3.26 shows an example
visualization in a JPetStore case study. Each block represents one virtual
machine and the “transparent” block shows also the internal components of
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Figure 3.25. Streamsight (taken from [De Pauw et al. 2008])
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Figure 3.26. Root cause rating view of RanCorr (taken from [Marwede et al. 2009])

JPetStore running on a virtual machine. The dependency lines are labeled
with the total count of conducted RPCs. The root cause probability of each
virtual machine is visualized by a color range starting at green (unlikely for
being the root cause) to red (very likely for being the root cause).

3.4.4 APM Tools

Several commercial APM tools for monitoring and visualizing a software
landscape exist: AppDynamics,13 ExtraHop,14 or New Relic15, for instance.
Most tools show servers and the running applications on them by using
boxes. The applications are often connected by lines with arrows that have
the response times or a “health status” beneath them.
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Figure 3.27. VisuSniff (taken from [Oechsle et al. 2002])

3.4.5 UML Sequence Diagrams

There are multiple approaches that use UML sequence diagrams to visu-
alize RPCs. VisuSniff [Oechsle et al. 2002] – shown in Figure 3.27 – uses
UML sequence diagrams to represent the low level data packages sent and
received by an application for educational purposes. Briand et al. [2006]
utilize UML sequence diagrams to visualize RPCs by adding a hostname to
the object representation [Briand et al. 2004; Briand et al. 2005].

13https://www.appdynamics.com
14https://www.extrahop.com
15http://newrelic.com
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4

Research Design

In this chapter, we detail our research design. We start by describing the
employed research methods in Section 4.1. Then, our research questions
and research plan are presented in Section 4.2.
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Previous Publications

Parts of this chapter are already published in the following work:

1. [Fittkau 2013] F. Fittkau. Live trace visualization for system and program
comprehension in large software landscapes. Technical report 1310.
Department of Computer Science, Kiel University, Germany, Nov. 2013
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4.1 Research Methods

This section presents our employed research methods within this thesis. A
survey of general research methods in software engineering is described in
[Wohlin et al. 2012] and [Juristo and Moreno 2010]. In addition, we follow
further guidelines for empirical software engineering [Kitchenham et al.
2002; Jedlitschka and Pfahl 2005; Di Lucca and Di Penta 2006; Di Penta et al.
2007; Sensalire et al. 2009].

The following research methods are employed within this thesis:

B Literature Review: A literature review is a systematic method to review
approaches and concepts, which have already been developed by other
researchers.

B Proof-of-Concept Implementation: A proof-of-concept implementation eval-
uates the technical feasibility of an approach. Furthermore, it is often
a prerequisite for other research methods such as lab experiments or
controlled experiments.

B Lab Experiment: In our terms, a lab experiment investigates technical
aspects of a solution in a controlled environment.

B Controlled Experiment: In a controlled experiment [Basili et al. 1999;
Basili 2007], the test subjects are typically split into two groups, i.e., the
experimental and the control group. While the control group does not
receive the treatment, the experimental group does. Therefore, it is likely
that a potential different outcome results from this treatment.

B Case Study: A case study investigates an effect in a given context and in
a specific time span. Therefore, it does not sample over the variables as
it is done in an experiment but analyzes a specific variable configuration
which makes it difficult to generalize the results.

B Structured Interview: In a structured interview, the interviewee is asked a
predefined list of questions. Therefore, the questions and their order are
fixed when conducting multiple interviews.
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Furthermore, we employ the Goal, Question, Metric (GQM) approach
[Van Solingen and Berghout 1999; Van Solingen et al. 2002]. It provides
a structured approach to define a set of goals and related questions. In
addition, for each question, metrics are selected to provide a measurable
fulfillment condition for the goals.

In this thesis, we employ the following research process: After reviewing
the literature and thus the body of knowledge, we first define a GQM plan
(see Section 4.2). Then, we create approaches aiming to achieve the defined
goals. For each approach, we provide a proof-of-concept implementation
which is used to evaluate the approach. The employed methods in the
evaluations are experiments, case studies, and structured interviews.

The main method, we employed, are experiments, i.e., the two subtypes
lab experiments and controlled experiments. Lab experiments are used to
evaluate technical aspects, such as providing a low overhead, scalability, or
elasticity, of an approach if no human interaction is involved. When target-
ing human perception or cognitive processes, we use controlled experiments
to investigate if the designed approach provides advantages compared to
already existing state-of-the-art approaches.

Notably, when performing experiments, replications [Shull et al. 2002]
become important to improve the external validity. Therefore, we conduct
one replication for an evaluation of our application-level perspective.

4.2 Research Questions and Research Plan

We envision live trace visualization as a solution to support program and
system comprehension in a large software landscape. Therefore, our main
goal (G1) is providing a live trace visualization for large software landscapes.
Furthermore, a monitoring and analysis approach capable of logging and
processing the huge amount of conducted method calls in large software
landscapes is the second goal (G2). The last goal (G3) is investigating
alternative display and interaction concepts for the software city metaphor
beyond classical 2D displays and pointing devices. These three goals are
described according to the GQM approach in the following and map to our
scientific contributions (SC1 – SC3) described in Section 1.2.
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G1: Visualize the Execution Traces in a Large Software Land-
scape for Program and System Comprehension during its
Runtime

In a large software landscape, millions of method calls can occur in one
second. Therefore, several thousands of traces have to be visualized in a
quickly perceivable way to support the program and system comprehension
process. Thus, the first research question (Q1) concerning G1 is: How to
visualize the large amount of traces to support system and program comprehension?
Different visual representation concepts (M1) need to be considered and
chosen from. Furthermore, useful features (M2) and interaction concepts
(M3) supporting in the comprehension process needs to be identified. The
resulting live trace visualization approach is described in Chapter 8.

To enable a visualization, typically the gathered data is represented by a
structured model. Therefore, a landscape meta-model representing the data
of the monitored software landscape is desirable. We formulate the second
research question (Q2) as: Which information must be provided by a meta-model
for enabling live trace visualization?

Keeping all information about every monitored method call is cumber-
some since the monitoring might produce several gigabytes per second.
Therefore, information of interest needs to be identified (M4). Furthermore,
to provide visual scalability, we require different hierarchy levels (M5). Our
landscape meta-model is presented in Chapter 7.

To be an advancement, the designed trace visualization should provide
advantages over current related approaches. Therefore, we formulate the
third research question (Q3): Does our live trace visualization provide advantages
for supporting the program and system comprehension process compared to other
approaches? The metrics for this question are an increased efficiency (M6)
and/or an increased effectiveness (M7) when solving comprehension tasks.
To evaluate this research question, we conduct three controlled experiments
presented in Chapter 11.
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In summary, the GQM plan for our first goal is:

G1: Visualize the execution traces in a large software landscape for program
and system comprehension during its runtime.

B Q1: How to visualize the large amount of traces to support system
and program comprehension?

B M1: different visual representation concepts
B M2: useful features
B M3: interaction concepts

B Q2: Which information must be provided by a meta-model for
enabling live trace visualization?

B M4: completeness of the information of interest
B M5: number of hierarchy levels

B Q3: Does our live trace visualization provide advantages for sup-
porting the program and system comprehension process compared
to other approaches?

B M6: increased efficiency
B M7: increased effectiveness

G2: Monitor Applications and Analyze the Resulting Execu-
tion Traces in Large Software Landscapes

In a large software landscape, several applications have to be monitored.
Since the monitoring impacts the productive systems, the monitoring ap-
proach should impose only a low overhead. Therefore, the fourth research
question (Q4) is: How to monitor the existing applications? Metrics for the
monitoring component are the implied monitoring overhead (M8) and the
maximal throughput of monitored method calls per second (M9). Therefore,
we developed a low overhead monitoring approach which is described in
Chapter 6.

82



4.2. Research Questions and Research Plan

An additional challenge in large software landscapes is the large amount
of conducted method calls and thus also the resulting monitored data is
large. For this purpose, we formulate the fifth research question (Q5): How
to analyze the huge amount of generated monitoring data? Important metrics for
the analysis approach are the scalability (M10) and elasticity (M11) with
respect to the number of monitored applications. Furthermore, it should
be able to process the data in a live fashion (M12). Chapter 6 presents
our developed analysis approach where we feature dynamically inserted
worker levels to preprocess the large amount of incoming monitored data.

Chapter 10 describes three lab experiments investigating the overhead
of our monitoring component, and the scalability and elasticity of our live
analysis approach.

In summary, the GQM plan for G2 is:

G2: Monitor applications and analyze the resulting execution traces in large
software landscapes.

B Q4: How to monitor the existing applications?
B M8: implied monitoring overhead
B M9: throughput of monitored method calls per second

B Q5: How to analyze the huge amount of generated monitoring data?
B M10: scalability with respect to monitored applications
B M11: elasticity with respect to monitored applications
B M12: live processing capability

G3: Find Alternative Display and Interaction Concepts for
the Software City Metaphor

A further goal of the thesis is to find alternative display and interaction
concepts for the software city metaphor. Therefore, we formulate the
sixth research question (Q6) as: Which alternative forms of displaying a model
following the software city metaphor exist?
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The metric for this research question are the concrete alternative pre-
sentation forms (M13). We investigated two display forms, i.e., VR using a
Head-Mounted Display (HMD) described in Section 8.5 and 3D-printing a
physical form of a model following the software city metaphor presented
in Section 8.6.

Since new display forms often benefit from new interaction concepts, we
formulate the seventh research question (Q7) as: Which alternative interaction
concepts for a model following the software city metaphor exist?

The metric for this question are the concrete alternative interaction
concepts. Our VR approach uses gesture-based interaction and the physical
model uses natural interaction capabilities such as touching and taking the
model into the hands. The interaction concepts are described in Section 8.5
and in Section 8.6.

For the evaluation of the approaches, the research question (Q8) sounds:
Does an alternative display and interaction concept provide advantages for sup-
porting the program comprehension process compared to classical 2D displays and
pointing devices?

As in Q3, the metrics for this question are an increased efficiency (M6)
and/or increased effectiveness (M7). We conducted a controlled experiment
for investigating this circumstance for the physical models (see Section 11.3).
The VR approach was evaluated by Krause [2015] in structured interviews.

In summary, the GQM plan for the third goal is:

G3: Find alternative display and interaction concepts for the software city
metaphor.

B Q6: Which alternative forms of displaying a model following the
software city metaphor exist?

B M13: alternative presentation forms

B Q7: Which alternative interaction concepts for a model following
the software city metaphor exist?

B M14: alternative interaction concepts
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B Q8: Does an alternative display and interaction concept provide
advantages for supporting the program comprehension process
compared to classical 2D displays and pointing devices?

B M6: increased efficiency
B M7: increased effectiveness
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5

The ExplorViz Method

In this chapter, we present our ExplorViz method to tackle the challenge of
live trace visualization of software landscapes. Furthermore, the approach
describes how we aim to achieve the goals presented in the last chapter.
Our approach includes five activities which start by monitoring the existing
applications and ends with the visualization of the software landscape.

We start by describing the fundamental approach. Afterwards, the
assumptions and limitations of our approach and how they can be overcome
are presented.
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Previous Publications

Parts of this chapter are already published in the following works:

1. [Fittkau et al. 2013b] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live trace visualization for comprehending large software landscapes:
the ExplorViz approach. In: Proceedings of the 1st IEEE International
Working Conference on Software Visualization (VISSOFT 2013). IEEE, Sept.
2013

2. [Fittkau 2013] F. Fittkau. Live trace visualization for system and program
comprehension in large software landscapes. Technical report 1310.
Department of Computer Science, Kiel University, Germany, Nov. 2013

3. [Fittkau and Hasselbring 2015b] F. Fittkau and W. Hasselbring. Elastic
application-level monitoring for large software landscapes in the cloud.
In: Proceedings of the 4th European Conference on Service-Oriented and Cloud
Computing (ESOCC 2015). Springer, Sept. 2015

4. [Fittkau et al. 2015g] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz:
visual runtime behavior analysis of enterprise application landscapes.
In: Proceedings of the 23rd European Conference on Information Systems
(ECIS 2015). AIS, May 2015
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5.1 Fundamental Approach

Figure 5.1 illustrates an overview of the activities in our ExplorViz approach.
In the following, the activities A1 to A5 are briefly described. Chapter 6 to
Chapter 8 present each activity in detail.

A1 – Monitoring

The existing applications in the software landscape are monitored. Besides
monitoring method calls in each application, RPCs are also monitored. This
provides information on the communication between applications. Due to
the possibly large amount of generated monitoring data, the monitoring
data might have to be written to different analysis nodes.

Another approach for ensuring that the amount of generated moni-
toring data can be processed is deactivating the currently not required
probes [Ehlers et al. 2011]. However, this approach is infeasible for Ex-
plorViz due to the time shift feature used to provide a history over the
landscape visualization which requires that all probes are active.

The result of this activity is a stream of monitoring records for the executed
method.

A2 – Preprocessing

Most servers cannot process the huge amount of incoming monitoring
records which is typical for large software landscapes. Therefore, we use
worker nodes to preprocess the monitoring records utilizing, for example,
cloud computing. Since this still might lead to an overutilization of the
master server, a dynamic deployment of worker nodes and worker levels is
used. To preprocess the monitoring data, the records are first consolidated
into traces. Afterwards, we employ a trace reduction technique [Cornelissen
et al. 2008], i.e., trace summarization, on each worker node.

If the workload imposed by the monitored data can be processed on
a single analysis node, this activity is omitted due to a lower number of
running instances and thus lower occurring costs.

The result of this activity are preprocessed traces.
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Figure 5.1. Overview of the fundamental activities in our ExplorViz approach
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A3 – Aggregation

To enable a global view of the software landscape, the distributed, pre-
processed traces are collected and aggregated on a single node by again
using the trace consolidation and reduction technique of Activity A2. In
addition, a landscape model representing the software landscape is cre-
ated or updated. This model keeps track of the entities, e. g., applications
and communication paths, that were discovered during runtime. Without
the landscape model, these entities would not be visible in the following
landscape visualizations.

As a result, this activity provides the created or updated landscape model.

A4 – Transformation

This activity consists of a transformation from the landscape model into
a visualization model. The resulting visualization model also includes
information required for visualizing each entity, for example, its color, size,
or position.

The result of this activity is the visualization model used for the actual
visualization.

A5 – Navigation

Our live trace visualization includes two perspectives – one for the land-
scape level and one for the application level. The user can always navigate
from one perspective to the other. We decided to provide two different
perspectives because we targeted that the user can clearly differentiate
between landscape and application level.

5.2 Assumptions

After giving an overview of our approach, we now discuss the assumptions
and limitation of it and point out what could be done to avoid them.
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For our approach, we assume that each application is instrumented with
our monitoring solution. In practice, often the applications already generate
monitoring data of some kind, e.g., structured or unstructured log files, or
data formats generated by other monitoring solutions. Therefore, mining
these log files and adapting these other data formats should be conducted
first before monitoring with another tool. For reading other monitoring
data formats, we provide an adapter which can be extended to read those
files and send them our data format to the analysis nodes. Mining log
files or even adapting monitoring data in a universal fashion remains as
future work. However, for our goal of providing a live trace visualization
of the software landscape this imposes only a minor limitation since we
prototypically show and provide one way to monitor the software landscape
and generate the visualization.

Furthermore, we assume that the possibility of instrumenting the ex-
isting applications exists. However, the existing applications must not be
modified in some contexts. For instance, modifying the code after a con-
ducted safety certification is often prohibited. Since our approach does not
work without monitoring data, it will not function in this context. However,
special hardware architectures exist where monitoring events are written in
parallel to the execution. These events could be converted to our monitor-
ing data format to enable the live trace visualization in this context which
remains as future work.

A further implication of the former assumption is that some applications
might not be instrumented and thus are not visible in the software landscape
visualization. Therefore, a manual addition of those applications for the
visualization should be provided but this also remains as future work.

A further assumption is imposed by the possibility to instrument and
thus monitor the RPCs. Not every RPC technology might be instrumentable.
For instance, it can be challenging to identify the RPC in a pure TCP
communication protocol. Furthermore, to have a reliable sequence of
the calls, an identifier should be inserted into the call. This might break
the protocol if no extension mechanism is available. In such cases, other
possibilities to monitor or model the RPC should be exploited.

To be able to reduce the traces on one worker node, similar execution
traces have to be generated by the applications in a processing interval (e.g.,
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five seconds). From our observations, web applications often impose similar
traces if the behavior is not user-specific. However, if every trace is different
from another, the scalable worker concept will not work.

Since we use cloud computing for scaling the trace analysis infrastruc-
ture, we assume that instances can be started or terminated on demand. If
no cloud computing infrastructure is available, the analysis infrastructure
should be deployed with the maximum expected peek capacity. Therefore,
our approach still works but will probably be not as cost-efficient as if cloud
computing would be available.
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Monitoring and Trace Processing

This chapter introduces our monitoring and trace processing approaches
which form the first three activities of our ExplorViz approach. Both
approaches aim to provide a high throughput of monitoring records and to
enable a live processing of the huge amounts of monitoring data that are
typical for large software landscapes. Furthermore, the trace processing
approach aims to scale with the amount of monitored applications and to
be elastic to provide a cost-efficient solution.

First, the application-level monitoring is described in Section 6.1. Then,
we present our RPC monitoring approach in Section 6.2. Finally, Section 6.3
illustrates our scalable and elastic trace processing approach.
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Previous Publications

Parts of this chapter are already published in the following works:

1. [Fittkau et al. 2013c] F. Fittkau, J. Waller, P. C. Brauer, and W. Hassel-
bring. Scalable and live trace processing with Kieker utilizing cloud
computing. In: Proceedings of the Symposium on Software Performance: Joint
Kieker/Palladio Days 2013 (KPDays 2013). Volume 1083. CEUR Workshop
Proceedings, Nov. 2013

2. [Fittkau and Hasselbring 2015b] F. Fittkau and W. Hasselbring. Elastic
application-level monitoring for large software landscapes in the cloud.
In: Proceedings of the 4th European Conference on Service-Oriented and Cloud
Computing (ESOCC 2015). Springer, Sept. 2015
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Figure 6.1. Filters involved in our application-level monitoring

6.1 Application-Level Monitoring

In this section, we describe our application-level monitoring approach.
Afterwards, we detail the filters of our monitoring data adapter approach
which enables to read data formats of other monitoring tools.

6.1.1 Monitoring Approach

Figure 6.1 shows the filters and application boundaries involved in our
monitoring approach. The major concept is the spatial separation of the
generation of the monitoring records and its processing. Hence, we aim for
the collection of the minimal data set and directly transfer those data sets
in an as small as possible format onto an analysis server.

At first, the monitoring probes get woven around the methods in the exist-
ing application. At runtime, these probes generate the required information
for our later visualization. For instance, the object identifiers for the instance
count, the names of the called method, and the order in which they were
called. Since these probes run in the same thread as the application code
does, they must be synchronized when passing the monitoring data to the
writer. Then, the monitoring data is written to another analysis server.
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Figure 6.2. Filters in our monitoring data adapter approach

Another technique enabling a high throughput is that no redundant
information are sent. For instance, only before events contain the method
name. More precisely, they contain an ID for the method name since this
often reduces the transferred data by replacing Strings with an integer
representation before sending. Notably, this assumes that Strings are used
multiple times which is the case when methods are called more than once.

6.1.2 Monitoring Data Adapter Approach

Often existing applications already generate some monitoring data. For
this setting, our approach provides a monitoring data adapter. Via this
adapter, we still support other inputs such as monitoring records generated
by Kieker [van Hoorn et al. 2012]. Due to supporting Kieker, we also
provide the ability of monitoring other programming languages than Java,
for example, C and C++ [Mahmens 2014], Perl [Wechselberg 2013], or
COBOL [Knoche et al. 2012].

Figure 6.2 shows the filters involved in the monitoring data adapter. It
starts with reading the other input format. This reader can either read from a
defined, finite source, e.g., logs from the filesystem, or can run continuously
enabling our live trace visualization for other monitoring tools. After
reading, the monitoring records typically need to be converted. For instance,

98



6.2. Remote-Procedure-Call Monitoring

the signature of the called method must conform to our specification. After
converting the data, the monitoring records are mapped to our ExplorViz
input format. The mapped, ExplorViz-conform records are then written to
an analysis component as if they resulted from our monitoring approach.

6.2 Remote-Procedure-Call Monitoring

To enable the visualization of the communication between applications, the
RPCs have to be monitored. Different concepts for this RPC monitoring are
described by Matthiessen [2014] which originate from a bachelor’s project.
Basically, two major concepts exist. The first one is using global trace
identifiers and the second one is using local trace identifiers. In general,
global trace identifiers impose a larger performance impact on each RPC
since they must be synchronized. Since we aim for minimal impact on
the monitored application and on high throughput, we utilize the second
concept of sending additional information with the RPC (i.e., using local
trace identifiers).

For example, when sending a SOAP message, we extend the SOAP
header with information about the trace identifier and the callstack index.
These are the local values of the sender. In addition, it sends a monitor-
ing record containing those two values to our analysis component. The
monitoring at the callee site receives the enriched SOAP message. Then, it
generates a monitoring record containing the two values from the remote
site (remote trace identifier and remote callstack index) and its own trace
identifier and own callstack index. Then, this monitoring record is send to
our analysis component. During the creation of the landscape model, these
two monitoring records are matched and result in one RPC in our model.
For a discussion of the other concepts – which we do not use –, we refer to
[Matthiessen 2014].

Notably, this technique of backpacking a trace identifier and callstack
index to the message comes with two disadvantages. At first, the addition
of information to a RPC is often technology dependent. Therefore, every
technology needs a special monitoring probe. The second disadvantage
is that the technology might not be designed for addition of information
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Figure 6.3. Different RPC monitoring concepts (taken from [Matthiessen 2014])
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into one RPC. To monitor such technology, often source code changes to
the technology are required making the solution also technology version
dependent. However, a synchronization for global trace identifiers of
every message is slow and thus not applicable for live trace visualization.
Therefore, we use the backpacking approach despite the two disadvantages.

6.3 Trace Processing

In this section, we describe our scalable, elastic trace processing approach
to circumvent the overutilization of a single analysis node by dynamically
adding or removing preproccesing levels.

We start by providing a short motivation for our approach and then
outline our basic idea. Then, our general scalable architecture is described.
Afterwards, the filters of one analysis node, which enable the connection
of multiple analysis workers in series, are explained. Then, we illustrate
the scaling process for multiple worker levels. Assumptions and limitations
of our trace processing approach were already discussed with the overall
approach in Section 5.2.

6.3.1 Motivation

Employing only a single analysis node for live processing the monitoring
data can easily become a bottleneck. For example, in our evaluation de-
scribed in Section 10.4, the analysis would operate at full capacity after
receiving load from only four monitored applications. In general, this
number is determined by the amount of monitoring and the hardware of
the analysis node. However, eventually every node will be fully utilized if
the workload rises to some point.

Application-level monitoring tools, e.g., Kieker [van Hoorn et al. 2012],
typically offer three configurable strategies, what should be done when
the analysis cannot process the current monitoring data. The first strategy
simply terminates the monitoring. Since this requires a manual restart of
the application to start monitoring again, this behavior is undesirable for a
high monitoring quality. However, this typically does not affect the SLAs of
the monitored applications.
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The second strategy discards new monitoring records until a space in
the monitoring queue becomes available. Therefore, this behavior is similar
to sampling which only monitors method calls on a defined interval, e.g.,
every 10th request. This strategy typically imposes no SLA violations at
the expense of a reduced monitoring quality. However, it can automatically
recover when the workload drops and thus is typically preferable over the
first strategy and therefore, often employed in practice.

The third strategy uses blocking until a free space in the monitoring
queue becomes available. While this behavior seems appealing on first sight,
it can violate the SLAs when the analysis node takes a long time to recover
from its high workload. The SLA violations are caused by the waiting of
the application for finishing the writing of the monitored data. Therefore,
it is not processing user requests often leading to loss in revenue due to
annoyed customers.

This situation can become even more expensive, if the capacity man-
ager utilizes the waiting user requests for its upscaling condition for the
applications. Since only one analysis node is employed, the newly started
application would also wait for the analysis node to finish. Therefore, the
capacity manager might keep starting new instances until some node limit
is reached and the service provider has to pay for application nodes that
are waiting for the analysis of the monitoring data.

Based on the chosen strategy, either the quality of the SLAs or the
monitoring quality is reduced with a fully utilized analysis node. One way
to postpone this problem is an analysis node with a high number of CPU
cores and a high amount of RAM. However, the analysis must be designed to
utilize an potentially infinite number of cores and if the workload rises, the
number of cores must be increased according to the peeks in the workload.
Hence, they become superfluous during low workload.

6.3.2 Idea

Figure 6.4 illustrates the basic idea of our elastic trace processing approach.
When the analysis master impends to become overutilized, a new worker
level is dynamically added in front of it. Similar to the MapReduce pattern
[Dean and Ghemawat 2010], each worker on the new level analyzes one part
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Figure 6.4. Basic idea of dynamic worker levels

of the monitoring data. To circumvent an overutilization of the workers,
the associated worker applications are scaled within their worker level.
With this preprocessing step, the Master is only required to combine the
analysis results. Eventually with rising workload, the merging of the results
impends to overload the Master again. Then, a second level is dynamically
inserted between the first level and the Master. In theory, this behavior can
continue to even more levels.

6.3.3 Scalable Architecture

Next, we show our general scalable architecture. Figure 6.5 displays this
architecture including our capacity manager CapMan1 and one master
node. Therefore, it represents the initial state when only a small amount
of monitoring data has to be analyzed. In our architecture, the capacity
manager includes the workload generation and its load balancing due to
convenience reasons. Therefore, the applications are accessed by CapMan to

1https://github.com/ExplorViz/capacity-manager
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Figure 6.5. Our scalable trace processing architecture

simulate user requests. A System Monitor records the CPU utilization of the
application nodes and sends this utilization to CapMan. CapMan uses these
values, in addition to the outstanding request count from the workload
generation, for scaling the applications. This cycle forms the employed load
generation on the applications and their automatic elastic scaling.

Each involved application contains a Monitoring component. At its
start, it requests an IP address from the Monitoring LoadBalancer.2 This
request contains a loadbalancing group property to determine the kind of
application which the Monitoring component wants to access. For example,
the applications use analysis to reflect their wish to write monitoring data on

2https://github.com/ExplorViz/load-balancer
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Figure 6.6. Filters in the analysis component (worker and master)

an analysis node. In Figure 6.5, the shown state only exists of one analysis
node, i.e., the master node. Therefore, the Monitoring component receives
the IP address of the master node and sends its monitoring data to the
master analysis application.

After a defined interval, the Monitoring component again fetches an IP
address from the Monitoring LoadBalancer and if necessary connects to the
newly received IP address. Therefore, the monitoring data is distributed to
different nodes when multiple nodes (e.g., on a worker level) are available.
This results in an approximate equal utilization of the target nodes. Similar
to the application nodes, the CPU utilization of the analysis nodes is sent by
a System Monitor to CapMan which uses these values for scaling the analysis
nodes. If a new analysis node is started by CapMan, the IP address of the
newly started node is registered in the Monitoring LoadBalancer under a
defined loadbalancing group property.

6.3.4 Analysis Approach

To enable a series connection of the different worker levels, the analysis
component follows the filters shown in Figure 6.6. The monitoring data is
received and a record reconstruction step creates the monitoring records
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Figure 6.7. Initial state before scaling

objects. The records are passed to the trace reconstruction step which
links the loose method call records to an execution trace representing the
full execution path of one user request. Afterwards, the traces are passed
to a trace reduction filter. The chance of same traces typically increases
when multiple user requests are conducted. For example, most of the users
will access the main page of a website which will often generate the same
execution trace in an application. To save network bandwidth and CPU
cycles on the next analysis node in the chain, similar traces are reduced to
one trace class. For monitoring how many times the trace class was called, it
contains an attribute called times and runtime statistics (e.g., minimum and
maximum duration) for the monitored method calls. To be able to identify
which host might behave differently, the runtime statistics are formed on a
per host basis.

If an analysis node is started as a worker node, the trace classes are
sent to the next analysis node in line via a connector which sends these
trace classes as serialized monitoring records again. If the analysis node is
running as the master node, it creates or updates the landscape model.

6.3.5 Scaling Process

In Figure 6.7, the state from Figure 6.5 is visualized in a simplified form.
The boxes with dashed lines represent one scaling group, i.e., a group of

106



6.3. Trace Processing

applications which is scaled independently by a capacity manager. The
name of each scaling group is displayed at the top. There are two scaling
groups: Application and Master. Arrows illustrate accesses to the target
scaling group. The label of an arrow is the loadbalancing group name used to
request an IP address from the Monitoring LoadBalancer. In the initial state,
the applications access the Master scaling group by using the loadbalancing
group name analysis. Decoupling the scaling group name and the loadbal-
ancing group name enables the worker levels to get dynamically inserted
or removed between each processing level.

Upscaling

Figure 6.8 illustrates the process of dynamically adding one worker level.
After the CPU utilization of the Master rises over a defined threshold, this
process is triggered. At first, a new loadbalancing group is created which
is named worker-1 and contains the Master. Then, two new worker nodes
are started. We assume the same configuration on each analysis node.
Therefore, starting only one worker node would result in the same high
CPU utilization encountered on the Master. The new worker nodes send
their data to the scaling group which is resolved by the loadbalancing
group name worker-1. This state is visualized in Figure 6.8a. After the
worker application on the nodes are started, the two workers are added to
the loadbalancing group analysis and the Master is removed from it. The
final state is illustrated in Figure 6.8b. Notably, the order of adding and
removing loadbalancing groups is important because the analysis should
not be paused during the scaling process.

Downscaling

The downscaling process follows the upscaling process in reverse order.
However, we employ a different scaling condition. Our first approach was
using the analogous CPU utilization of the Master when it falls below a
defined threshold. However, this condition is independent from the amount
of nodes in the previous worker level. Therefore, it would also trigger when
the previous worker level contains, e.g., 10 nodes and shutting down all of
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Figure 6.8. Activities forming the upscaling process
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them would typically result in an overutilization of the Master. This could
be lifted by only downscaling when there are exactly two nodes of the
previous worker level left. However, this still contains no statement about
the utilization of the previous worker level. For example, both workers
might be heavily utilized. Hence, we use the CPU utilization of the previous
worker level as downscaling condition. When only two nodes are left in the
previous worker level and the average CPU utilization falls below a defined
threshold in this scaling group, it is shut down and removed by following
the upscaling process in analogous reverse order. Therefore, downscaling is
not delaying or pausing the analysis either.
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Landscape Model Generation

After processing the traces, the landscape model is generated from the
information contained in the traces. Afterwards, the landscape model
provides the required information to construct the visualization. Notably,
the meta-model represents the sole information of the software landscape
without generated data, i.e., no visualization model.

We start by presenting our landscape meta-model in Section 7.1. Then,
Section 7.2 describes how the traces are mapped to a landscape model.
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Previous Publications

Parts of this chapter are already published in the following work:

1. [Fittkau et al. 2015g] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz:
visual runtime behavior analysis of enterprise application landscapes.
In: Proceedings of the 23rd European Conference on Information Systems
(ECIS 2015). AIS, May 2015
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7.1 Landscape Meta-Model

Figure 7.1 displays our landscape meta-model. A Landscape class represents
the top-level entity of the meta-model. It contains a timestamp attribute to
represent the timestamp of the landscape model’s creation. Furthermore,
it has a list of landscape events, e.g., “Node Demo1 has been added” and
a list of exceptions which occurred in the landscape. The Landscape class
has a reference list of Systems. In our terms, a System represents a logical
union of multiple applications and servers. The System class contains a
name attribute representing the actual name of the system. Furthermore,
System holds a reference list of NodeGroups.

A NodeGroup forms a logical abstraction from the servers and applica-
tions by representing servers which have the same application configuration.
An equal application configuration typically occurs in, for instance, cloud
environments. A NodeGroup contains an attribute name which is formed
by the range of the lowest IP address and the highest IP address in it.
Furthermore, A NodeGroup has a reference list to Nodes. One Node has
a name (hostname) and an IP address. In addition, it contains attributes
to represent the current utilization of the server, i.e., free and used RAM
amount, and the current average CPU utilization. A Node holds a reference
list of Applications running on it.

An Application has the attributes name, last usage representing the last
timestamp where activity was monitored, whether it is a database or not,
and the programming language. In addition, it holds a list of DatabaseQueries
which represent one database query, i.e., its SQL statement, the return value,
and the execution time. An Application contains a reference list to Components.
Components represent logical organization units of classes. For example,
packages can be Components in the context of Java. A Component has the
attributes name and full qualified name. The latter represents the full name
including the names of parent Components. Furthermore, a Component
contains a list of Components, i.e., its children, and a list of Classes.

A Class represents the lowest level entity in our meta-model. It has
a name, a full qualified name representing its name and including parent
components’ names, and an instance count attribute representing how many
instances were active.
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The Landscape class also holds a list of Communication paths which exist
between Applications. In addition, the source and target class are referenced
by the Communication. A Communication has the attributes requests which
can also be zero, an attribute technology meaning the actual technology used
to conduct the RPC, and an average response time of the RPCs.

An Application also contains a list of Communications but on the Class
level. The CommunicationClass class contains a method name attribute and
has a source and target Class. To be able to visualize the actual traces in
the application-level perspective, it also holds a reference map between a
trace identifier and a Runtime Information. A Runtime Information provides
the information about how many times the trace was called, the overall trace
duration, the request amount of the method, the average response time, and a
list of order indexes representing the position in the trace.

7.2 Trace-to-Model Mapping

In this section, we describe how the information contained in the processed
traces are used to create a landscape model. Each trace includes HostApp-
licationMetaDataRecords which contain information about the originating
system, the IP address and hostname of the server, the application name,
and the programming language. Since the traces are generated in a dis-
tributed system and potentially each monitoring record might be processed
on different analysis servers, every operation monitoring record contains
such information. The contained information are used to create the counter-
part in the landscape model. For example, the existing systems are iterated
and if the current system is not found, a new instance for the new system
is created. This procedure also applies to nodes and application instances.
After inserting a new node or application into the model, the node groups
get updated accordingly.

For generating the components, classes, and communication on the
application level, the operation monitoring records of the trace are iterated.
The contained method signature is used to create or update components
and classes. The method call is used to create or update the communication
on the class level. In addition, the Runtime Information is created as part of
this communication.
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Beneath this normal mapping of the traces, there exist separate records
for special purposes. As already described in Section 6.2, the special
caller and callee records for RPC monitoring are matched to create the
communication on the landscape level. Another special record is the System-
MonitoringRecord which contains information about the CPU utilization
and RAM usage. This record is used to update the utilization of a node.
Furthermore, the record for monitoring database calls is used to generate a
list of database queries for each application.
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ExplorViz Visualization

In this chapter, our live trace visualization approach for large software land-
scapes is presented. It consists of two perspectives, namely a landscape-level
perspective and an application-level perspective. The former perspective
uses a 2D visualization employing a mix of UML deployment and activity
diagram elements. The latter perspective consists of a 3D visualization fol-
lowing the city metaphor. For best accessibility, our live trace visualization
is web-based.

At first, four investigated use cases for our visualization are described.
Then, we present basic concepts and forces which influenced our design
of the visualization. Afterwards, the landscape-level perspective and the
application-level perspective are introduced. Our VR approach for provid-
ing an immersive experience in the application-level perspective is described
in Section 8.5. Finally, Section 8.6 details our approach to provide physical
models of the application-level perspective.
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8.1 Use Cases

We investigated four use cases for our visualization which are detailed in
the following.

8.1.1 System and Program Comprehension

As already noted in the goals, the system and program comprehension con-
text is our main use case for the designed visualization [Fittkau et al. 2013b;
2015, a; h]. The knowledge about the communication and usage of the
applications forming a large software landscape often gets lost. Therefore,
our visualization aims to support the efficient recovery of this knowledge
by providing abstractions for easier comprehension of the software land-
scape. Furthermore, it supports in the program comprehension process of
each application in combination with the landscape level. In a distributed
environment, investigating one isolated application can be insufficient. For
example, when a performance anomaly occurs, it is essential to find the
root cause of the anomaly which might have resulted from the interaction
of the applications.

8.1.2 Control Center

A further use case for our visualization is building a control center for
detecting and solving performance anomalies [Fittkau et al. 2014b]. When
an anomaly is detected, we feature different perspectives for analyzing the
root cause, planning countermeasures, and visualizing the actual execution
of the plan. The concept and implementation for such a control center are
presented in Chapter 12 as part of the extensibility evaluation.

8.1.3 Performance Analysis

Performance analysis is another use case for our trace visualization [Fittkau
et al. 2015g]. Our monitoring collects the response times of each monitored
method and how often it was called. Based on this information, the visu-
alization providing an overview of the system, and a special performance
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analysis dialog, the software engineer is able to conduct a performance
analysis. For instance, she can limit the visible communication lines to only
show the communication where the response times were high.

8.1.4 Architecture Conformance Checking

The last use case, which we investigated for our visualization, is architec-
ture conformance checking on the landscape-level perspective [Fittkau et al.
2014a; Simolka 2015]. It can either be conducted manually or also compared
automatically to a target architecture model. For automatic conformance
checking, we feature a special perspective to model the target architec-
ture model featuring our visualization as graphical modeling language.
Then, the differences of the actual landscape architecture and the target
architecture are visualized in the landscape-level perspective.

8.2 Basic Concepts

There are several basic concepts and forces that influenced the design of
our visualization. These are detailed in the following.

8.2.1 Interactive Exploration

In a large software landscape, information must be presented in a limited
time span. Hence the presentation of the information must be quickly
comprehensible and only show information on the required level. Therefore,
the major concept of ExplorViz is based on revealing additional details,
e.g., the communication on deeper levels, on demand. This interactive
exploration principle provides the visual scalability of our approach.

8.2.2 Grouping

A further consequence of the described limited time span is that entities
that do not add to the overview in the comprehension process get grouped
and aggregated. For example, often servers with the same application
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Figure 8.1. Time series of the overall activity in the landscape

configuration get started in cloud environments. Thus, an overview should
provide the information which classes of application configurations exist
and not show each server as one entity at the start. This concept of intro-
ducing abstractions plays an important role in our visualization to support
an effective and efficient system and program comprehension process.

8.2.3 Time Shift

For some analyses, particular traces or situations are of interest. During a
live trace visualization the software engineer can only analyze a situation for
a short duration before the visualization updates itself. ExplorViz supports
the analysis of specific situations and traces through a time shift mode. The
user can pause the visualization to switch into an offline mode where she
is able to go back to a particular past visualization. A switch back to a
live visualization is always possible resulting in a combination of live and
offline trace visualization.

An exemplary time series for the time shift feature is shown in Fig-
ure 8.1. It provides the timestamps for the available past visualizations
in combination with the overall activity which happened in the software
landscape. This overall activity is an indicator for the software engineer
to look for special circumstances, for instance, low or high activity in the
software landscape.

8.2.4 Restricted Access

Since often not everyone in the network should be able to access the visual-
ization, we feature a login system such that every user must authenticate
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Figure 8.2. One step of our interactive tutorial

before accessing it. This authentication also lays the foundation for future
integration of, for instance, access roles (only seeing authorized information)
and team-based distributed program comprehension processes.

8.2.5 Based on Dynamic Information

Our approach is not relying on upfront static information, since it would
be necessary to conduct a static analysis for every single application in the
software landscape. Therefore, we take only the dynamic information into
account. Another advantage is that unused classes are not displayed which
adds to providing an easier overview of the actual system.

8.2.6 Interactive Tutorial

Instead of showing hints for the usage and semantics in the visualization,
we provide an interactive tutorial mode [Finke 2014] upfront for the user.
The tutorial is started at the first login of a user. Figure 8.2 shows one
step of the tutorial. In addition to the explanatory text, the visualization is
enhanced by a marker which points at the entity that should be interacted
with.
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8.3 Landscape-Level Perspective

This section introduces our landscape-level perspective. At first, the seman-
tics of the visualization are presented. Then, we describe related features
and aspects of the landscape-level perspective, i.e., the layout, an event
and exception viewer, and how we visualize the results of an architecture
conformance check.

8.3.1 Semantics

Figure 8.3 shows the modeled infrastructure of the GEOMAR’s Kiel Data
Management Infrastructure for ocean science1 on the landscape level. The
large gray boxes with, e.g., PubFlow (Ê) [Brauer and Hasselbring 2013a],
represent the systems present in the software landscape. They can also be
minimized such that only the system and its communication are visible,
without their interior. Thus, providing abstraction on the level of systems
and only visualizing systems currently in focus.

The smaller green boxes in one system represent the contained node
groups (Ë) or nodes (Ì). Node groups are labeled with a textual repre-
sentation of their contained nodes, for example, “10.0.0.1 – 10.0.0.7”. We
introduced node groups because in cloud computing, for instance, nodes
are scaled for performance reasons, but typically keep their application con-
figuration. For providing an overview, these nodes are grouped. However,
they can be extended with the plus symbol near the node group.

A node can contain different applications (Í). The communication
between applications is visualized by lines. In accordance to their call
count, the line thickness changes, i.e., higher amount of communication
leads to thicker communication lines (Î). The user can navigate to the
application-level perspective by choosing one application.

As already stated, we feature a time shift mode to analyze specific
situations (Ï). To provide an indication, when large amounts of calls are
processed, the call count of the entire landscape is shown on the y-axis. A
configurable time window is shown on the x-axis.

1https://portal.geomar.de
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Figure 8.3. Landscape-level perspective modeling the Kiel Data Management Infras-
tructure for ocean science
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Figure 8.4. Event viewer for the software landscape

8.3.2 Layout

We employ auto-layout algorithms to ensure that the user does not need
to manually layout the nodes which can be infeasible in large software
landscapes. The employed flow-based auto-layout, named KLay Lay-
ered2 [Schulze et al. 2014], orders the nodes and applications in accordance
to our defined communication flow direction, i.e., from left to right. Future
work should make the flow direction configurable in the GUI.

8.3.3 Event and Exception Viewer

We provide an event viewer to log changes of the software landscape. An
example log is displayed Figure 8.4. When new nodes or applications get
detected, an event entry is generated. Therefore, the software engineer can
quickly locate changes which happen in the software landscape.

In a similar fashion to the event viewer, exceptions are shown. Since
exceptions should point out that some part is misbehaving and should not
be the normal behavior of an application, exceptions are visualized at the
landscape-level perspective and not on the application-level. Therefore, if
any exception occurs in the software landscape, the software engineer is
able to quickly notice and view the exceptions.

2http://rtsys.informatik.uni-kiel.de/confluence/x/joAN
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Figure 8.5. Conceptual architecture of the example software landscape in the mod-
elling perspective (taken from [Simolka 2015])
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Figure 8.6. Landscape-level perspective showing the differences in the conceptual
architecture and actual architecture of the software landscape (taken
from [Simolka 2015])
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8.3.4 Architecture Conformance Checking

When a software architect intends to check whether the actual software
landscape architecture still conforms to the conceptual architecture, she first
models the conceptual architecture in the modeling perspective of ExplorViz.
Then, she switches to the landscape-level perspective and the differences
between the runtime model and the conceptual model are automatically
displayed [Simolka 2015].

Figure 8.5 presents an example conceptual architecture and Figure 8.6
shows the resulting landscape-level perspective visualizing the differences
of the conceptual and the actual architecture. Again, we model the GEO-
MAR’s Kiel Data Management Infrastructure in the actual architecture.
The convergent communication and entities are visualized in their normal
color. Absent communication and entities are drawn in shades of blue (for
example, the AbsentSystem system) and divergent ones are shown in shades
of red (e.g., the PubFlow system). For easier accessibility, a small legend in
the lower right corner presents this semantic to the user. For details about
the checking process, we refer to [Simolka 2015].

8.4 Application-Level Perspective

Our application-level perspective is based on the 3D city metaphor [Knight
and Munro 2000; Wettel and Lanza 2007]. After introducing the semantics
of the application-level perspective, different features and aspects of this
perspective are discussed.

8.4.1 Semantics

In Figure 8.7a, the structure of a mockup of Neo4j3 is visualized as an
example. The smallest, purple boxes represent classes. The height of each
class maps to its active instance count in the last monitored interval and the
width of a class is defined as one unit.

3http://neo4j.com
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(a) Mockup of Neo4j with closed Kernel component

(b) Mockup of Neo4j with opened Kernel component

Figure 8.7. Application-level perspective of a mockup of Neo4j
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The green boxes represent the components of the application. Notably,
to be programming language independent as far as possible, we only specify
components to be an organizing unit, for example, packages can be used for
Java. However, also folders can be components. The height of a component
is the maximum height of its contained classes or components, i.e., the
highest instance count. The width property maps roughly to the amount of
classes contained in it. The interaction amount of the components or classes
is visualized by the thickness of the connecting lines.

Contrary to other approaches utilizing the city metaphor, we do not
visualize the whole application in class-level detail at once. We follow an
interactive top-down approach, where only top-level components and their
relationships are shown, i.e., hiding internal details of those components.
Our navigation concept bases on focusing the entities and interactions that
are currently of interest. This concept is visualized by the transition from
Figure 8.7a to Figure 8.7b. After analyzing the interaction between the
top-level components, we might want to get more information by opening
the Kernel component to find the root cause of high interaction. Therefore,
we provide two kinds of components, i.e., opened and closed components.
Opened components (Figure 8.7a) hide their internal details and closed
components (Figure 8.7b) show their internals.

At the bottom of the visualization is a foundation platform represented
by a gray box. It contains the application name of the visualized program.
The platform is important when multiple top-level packages exist.

To visualize the connection to other applications, we feature in- and
outgoing ports. Notably, a port is only visualized when a connection
exists. Figure 8.8a shows an outgoing connection and Figure 8.8b shows an
incoming connection on the counterpart application. With these ports, the
software engineer is able to follow the trace starting at the class handling the
incoming connection and thus an entry point for the analysis is provided.

8.4.2 Layout

Figure 8.9 shows an overview of the used layout. It is inspired by the
rectangle packing layout algorithm of CodeCity [Wettel 2010, pp. 35–38]
and follows its basic steps. The only difference exists in ordering when two
entities have the same size.
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(a) Showing an outgoing RPC to PostgreSQL

(b) Showing an incoming RPC from Jira

Figure 8.8. Visualizing the in- and outgoing communication in the application-level
perspective
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Figure 8.9. Overview of the application-level layout

Notably, the communication lines are not part of the layout process and
thus are simply drawn after the entities were arranged, leading to overlaps
over other entities. Furthermore, the layout is not stable. When a new
component is detected, it might change the whole layout of the application.

Therefore, we developed other layouts but found no satisfying solu-
tion. The requirements for our new layout were the following. The layout
should be stable, i.e., when a new component is detected, the following
layout should only differ slightly from the previous layout without the
new component. Furthermore, the layout should be compact, since screen
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Figure 8.10. Alternative layout using quadtrees and free space is cut off (taken from
[Barbie 2014])

space is limited and the user should perceive the visualization using as
less scrolling as possible. In addition, it should respect our hierarchical
concept of interactive exploration. Due to this requirement, we can not
use the stable layout of Steinbrückner [2010]. A further requirement is that
the calculation time of the layout should be fast since the visualization is
updated every 10th second as default value and the visualization should
still be perceived as responsive. Since we are using the third dimension, an
optional requirement is that occlusion of the visual entities is minimized.

The best alternative layout for the application-level was developed by
Barbie [2014]. He used quadtrees [Finkel and Bentley 1974] to organize
the components and classes. A quadtree splits the space in four squares
where one square is also a new quadtree. The components and classes
are hierarchically inserted into this quadtree structure. After this, the free
squares in the quadtree get cut off to spare space and make the layout
more compact. The communication lines are routed with 9 pins along one
quadtree. Therefore, the communication lines get a square shape.
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Figure 8.11. Clustered controller component from Kieker

In Figure 8.10, the same Neo4j mockup as in Figure 8.9 is visualized
except that the developed quadtree layout is used. The layout is more visual
appealing since no communication lines overlap other entities. However, it
also gets larger and less compact. Stability is reached in some circumstances
but not in all situations. Unfortunately, the calculation time for medium-
sized applications increases to a few seconds which renders it unusable for
those applications. Therefore, we still use the rectangle packing approach
by Wettel [2010] and a better application-level layout remains as future
work. Details about the quadtree layout can be found in [Barbie 2014].

8.4.3 Clustering

The visual scalability of our approach is provided by the interactive ex-
ploration of the displayed application. A prerequisite for being able to
explore it are the components. If no components or too large components
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exist in the application, our approach does not scale. Therefore, our vi-
sualization features clustering techniques to create synthetic components
[Barzel 2014]. The resulting synthetic components, when clustering the
controller component in Kieker, are visualized in Figure 8.11. For clustering,
we use a weighting of lexicographic, number of instances, and number
of incoming and outgoing communications. For more details about the
clustering approach, we refer to [Barzel 2014].

8.4.4 Database Queries

Performance issues often result from inefficient database queries. Therefore,
we utilize the monitoring probe of Zirkelbach [2015] to gather the execution
time, return value, and SQL statement of each query. The database queries
get visualized by a table for each application. Figure 8.12 shows this table
for a JPetStore instance. The sortable and searchable table shows the SQL
statement, the return value of the query, and the duration of the query in
milliseconds.

8.4.5 Trace Replayer

Since we provide a live trace visualization which updates itself every 10th
second as the default interval, we do not show single traces in our visual-
ization. However, in some circumstances the execution path matters. For
example, when a method call imposes a long response time, the originating
path is of interest. For analyzing one trace, we provide a trace replayer
which is visualized in Figure 8.13. With the trace replayer, the user is able
to conveniently play and pause the execution steps [Kahn 2006] of a trace.
In addition to the position, the caller, the callee, and method name, the
average execution time is displayed. During playback, the view follows the
chosen communication line and then proceeds to the next method call. In
addition, the callee, the caller, and the method name are highlighted in the
3D visualization.
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Figure 8.12. Dialog showing database queries conducted by JPetStore
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Figure 8.13. Replaying a monitored trace originating from Kieker

Figure 8.14. Analyzing the performance in Kieker
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Figure 8.15. Dialog showing the code structure and Version.java of Neo4j

8.4.6 Performance Analysis

Since manually searching for the highest response times in a performance
analysis is cumbersome, we provide a performance analysis tool for this
case [Jähde 2015]. When the user activates the filtering for response times,
every communication, where the average response time is below or equal
to the input threshold value, is hidden. Therefore, only method calls with
an average response time of above the threshold value are shown in the
visualization.

Furthermore, the called times and average response time of an adjacent
communication get shown and highlighted when the user highlights a class
(see Figure 8.14). A further feature of the performance analysis tool is
searching for method names. A software engineer might intend to analyze
the performance of a specific method. Therefore, she can us the search
feature. For further details about the performance analysis tool, we refer to
[Jähde 2015].
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Figure 8.16. Setup for our VR approach (doing a translation gesture)

8.4.7 Code Viewer

Source code viewing is considered important [Koschke 2003] especially
during a program comprehension process. Therefore, our visualization
provides the possibility to open a dialog that displays the source code for
each class, if available. The code viewer in Figure 8.15 displays the source
code structure as a tree and the source code of the Version.java of Neo4j.

8.5 Gesture-Controlled Virtual Reality Approach

Although 3D software visualizations can deliver more information com-
pared to 2D visualizations, it is often difficult for users to navigate in 3D
spaces using a 2D screen and a 2D input device [Teyseyre and Campo 2009].
As a consequence, users may get disoriented [Herndon et al. 1994] and thus
the advantages of a third dimension may be abolished.
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Figure 8.17. View on the city model of PMD through the Oculus Rift DK1

VR can employ the natural perception of spatial locality of users and
thus provide advantages for 3D visualization [Elliott et al. 2015; Delimarschi
et al. 2014]. In addition to stereoscopic [Ware et al. 1993; Ware and Mitchell
2005] display, natural interaction beyond the 2D mouse provides advantages,
e.g., creativity can be enhanced by walking around [Oppezzo and Schwartz
2014]. Therefore, we developed a VR approach for exploring the application-
level perspective with a HMD and gesture-based interaction. The basic
setup of our VR approach is visualized in Figure 8.16. We utilize an Oculus
Rift4 for displaying the city model and use gesture recognition realized with
a Microsoft Kinect v2.5 For implementation details, we refer to [Krause 2015].

We start by introducing the used display and the resulting implications
for the visualization. Then, we discuss the gesture control and the design
of the gestures.

4http://www.oculus.com
5http://www.microsoft.com/en-us/kinectforwindows
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8.5.1 Display

The Oculus Rift is a HMD. Its rotation sensor and larger field of view
provide a more immersive user experience compared to preceding HMDs.
For our VR approach, we utilize the Development Kit 1 (DK1) version of
the Oculus Rift with an overall display resolution of 1280x800 pixels.

Since the Oculus Rift uses one image for each eye, the city model
created on the application-level perspective needs to be rendered twice with
a different 3D transformation, i.e., a slight translation between the eyes.
Figure 8.17 shows a screenshot of the resulting image sent to the Oculus
Rift. The values from the rotation sensor in the Oculus Rift are used to
rotate the viewpoint in the virtual space. Hence, users only need to rotate
their head to view near model elements which enables a higher immersion
experience.

8.5.2 Gestures

For gesture recognition, we use the Microsoft Kinect v2. To enable gesture
control for ExplorViz, a C# application developed by Krause [2015], which
sends the commands after gesture recognition to the browser, needs to be
deployed on every client.

In general, there are two basic concepts for designing gesture-based
actions. The first concept is commonly used by control sticks in game
controllers. A user performs a gesture and holds the desired position
at a boundary of the recognition field. While she holds this position, the
movement is conducted continuously into the implied direction. The second
concept is a direct mapping between the hand movement and the movement
action in the model, similar to how a computer mouse works.

In our prior tests, users familiarized with a direct mapping faster than
with the first concept. Furthermore, users working with the continuous
movement sometimes tried to manipulate the model as if they would use
a direct mapping approach. Thus, we discarded the first concept and
designed our gestures with a direct mapping of hand movement to model
movement.
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(a) Gesture for moving the model

(b) Gesture for rotating the model

(c) Gesture for zooming in and out

Figure 8.18. Gesture concepts for interacting with the city model (taken from
[Krause 2015])
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In the following, we describe the designed gestures for our VR approach.
We discuss different design alternatives and present our final gesture design.
For an example of the execution of these gestures, we refer to the video
recordings [Fittkau et al. 2015b] of the structured interviews conducted by
Krause [2015] for the evaluation of the VR approach.

Translation

Figure 8.18a shows the gesture for translating and thus moving the model.
The user raises the right hand, makes a fist, and then moves the hand. This
gesture is derived from moving an object in reality by graping and then
moving it. Furthermore, the gesture is similar to dragging and swiping on
touch-based devices. Since this gesture was quickly understandable in our
first tests with test subjects, there is no other design for this gesture.

Rotation

The first design for the rotation gesture was derived from holding and
spinning a ball with two hands. A virtual line between the hands formed
an axis used for the rotation. Unfortunately, it was not possibly to detect all
real-world interactions, e.g., rotation of the hands, due to some restrictions
of the Kinect sensor. For example, when the hands overlap in the depth
dimension, the hidden hand joints are not detected correctly. Figure 8.18b
shows the final design of this gesture. It is very similar to the translation
gesture and only differs in using the left hand instead of the right hand.

Zoom

The first design for the zoom gesture used the body tilt as zooming in or
out. Leaning forward with the upper body resulted in zooming in and
leaning backward led to in zooming out. Tests revealed that users tend
to move their head while leaning forward or backward. Hence, they also
rotate the viewpoint due to the Oculus Rift rotation sensor. This rotation
confused the users during the performance of this gesture. The next design
involved walking forward and backward to zoom in and out. Due to the
possible lack of space and some users rotating their body while walking,
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this gesture was also inappropriate to zoom in or out. Figure 8.18c shows
the final design. The gesture is derived from real life interaction similar to
rowing. To zoom in, the user raises her hands, closes both hands, and pulls
them towards her chest. To zoom out, the user raises her hands and pushes
them away from the upper body. Thus, the gesture maps to pulling and
pushing the model towards or away from the user.

Selection

For selecting an entity in the city model, the user raises her right hand,
then closes and quickly opens it. To open or close a package, users need
to do the closing and opening of the hand twice. Since the Kinect might
recognize a half-open hand as closed, it is important to fully open the hand
for this gesture.

Reset

If users get lost in the 3D space by, for instance, translating too far, they can
reset their viewpoint to the origin by performing a jump. The first design
of this gesture required the raising and subsequent closing and opening
of both hands above the head. However, tests revealed that this design is
inappropriate, since users sometimes adjust the wearing of the Oculus Rift
with their hands and thus might trigger this gesture. In contrast, jumping
is completely different to the other gestures and is therefore unlikely to be
triggered unintendedly.

8.6 Physical 3D-Printed City Models

Building architects, but also civil or mechanical engineers often build from
their designs physical 3D models for a better presentation, comprehension,
and communication among stakeholders. Software engineers usually create
visualizations of their software designs as digital objects to be presented on
a screen only. 3D software visualization metaphors, such as the employed
software city metaphor, provide a basis for exporting those on-screen soft-
ware visualizations into physical models. From our virtual city models, we
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create physical 3D-printed models to transfer the advantages of real, physi-
cal, tangible architecture models from traditional engineering disciplines to
software engineering.

First, we discuss potential usage scenarios for those models. Afterwards,
we describe how we build the physical models from virtual ones and finally
the encountered challenges during this process are presented.

8.6.1 Usage Scenarios

We envision several potential usage scenarios for physical models which
we will outline in the following.

Program Comprehension in Teams Gestures support in thinking and
communication processes [Goldin-Meadow 2005]. Since physical models
are more accessible than 2D screens and provide a natural interaction
possibility, they might increase the gesticulation of users. This might lead
to faster and better understanding when applied in a team-based program
comprehension scenario due to its supporting nature. Furthermore, the
advantages might increase when applied in larger teams. Since software
systems are often changing, the model should only be printed for special
occasions, e.g., a new developer team or upcoming major refactorings.

Educational Visualization A further usage scenario is the usage of 3D
models for educational purposes. Like an anatomic skeleton model used
in a biology course, 3D models of design patterns, architectural styles,
or reference architectures could be 3D-printed. Advantages include the
possibly increased interest of the students and due to 3D visualization and
the possibility to touch the model, there might be a higher chance to remain
in long-term memory. Further interaction possibilities with the 3D model
could be developed to support the learning process of the students.

Effort Visualization in Customer Dialog A further potential field of ap-
plication are dialogs with customers. Customers often see the GUI as the
program since the actual program logic code is often invisible for them.
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Therefore, the – possible large – effort to add a feature or to refactor the
code is also often invisible for them. Presenting a physical 3D model of
the status quo and another physical 3D model of the desired state, might
convince the customer of the effort of the required change. Notably, this
could also be achieved with two on-screen software visualizations but a
touchable and solid 3D model might provide higher conviction.

Saving Digital Heritage We envision physical models to be a step toward
saving the digital heritage of 3D software visualizations. Compared to
programs, physical models do not depend on the availability of SDKs,
library versions, or hardware and thus are less vulnerable to changes of the
external environment. Often it is uncertain, whether the code can still be
run in thirty years. In contrast, depending on the material (e.g., resin or
metal), physical models might last hundreds of years. One might argue
that pictures of the 3D visualizations are sufficient. However, they do not
provide interaction possibilities and can suffer from occlusion. Contrary,
physical models still provide the possibility to interact (e.g., rotate) avoiding
possible occlusion.

8.6.2 From Virtual to Physical Models

After creating the on-screen model in ExplorViz by monitoring an applica-
tion run, we export the model as an OpenSCAD6 script file. To fit the build
platform of our low-budget 3D-printer (a Prusa i37 shown in Figure 8.19),
we often have to split the exported model into several jigsaw pieces and
export each piece as an STL8 file as input for the 3D-printer. After printing
each jigsaw piece, we glue the pieces together. Finally, we have to manually
paint the single-colored model.

Figure 8.20 shows a 3D-printed city model of PMD.9 The fully assembled
physical model is 334 mm wide and 354 mm deep. The overall building time
of the physical PMD model sums up to 58 hours and the costs of material

6http://www.openscad.org
7http://reprap.org/wiki/Prusa_i3
8http://www.ennex.com/~fabbers/StL.asp
9http://pmd.sourceforge.net
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Figure 8.19. Prusa i3 used for printing the physical models

are about 9 Euro on our low-budget, self-built 3D-printer. However, 3D-
printing the model on a modern multi-color printer would take only a small
fraction of the building time (a few hours) and save several of the described
working steps.

8.6.3 Encountered Challenges

During the process of creating a physical model from a virtual city model,
we encountered several challenges. In the following, we provide an overview
of these and present how we overcame them.

147



8. ExplorViz Visualization

Figure 8.20. Physical 3D-printed model of PMD
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Figure 8.21. Two jigsaw pieces of our PMD model

3D-Printer Input Format

Since being a new technology in the consumer market, the input format for
3D-printers may still change. To mitigate this risk, we export an OpenSCAD
script files of the virtual models and not a directly 3D-printable formated
file. The script files contain commands how to create entities, for instance,
boxes with their position and size. The compiler of OpenSCAD uses these
script files to render 3D objects. The rendered objects can be exported to six
different file formats, at the time of writing. The currently most popular
3D-printer input format STL is among them.

Mapping Virtual Dimension to Physical Dimension

The virtual city model has its own virtual dimension in ExplorViz but this
dimension has no concrete relation to a physical dimension. To create a
physical model, we had to find a mapping coefficient.
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Figure 8.22. One unpainted jigsaw piece of our physical PMD model

There are two opposing factors. The smallest parts are the buildings
and the labels. Both should be printed as large as possible to avoid fragile
buildings and to ensure readability of the labels. On the opposite, the
overall model should be as small as possible since a huge model would
require more time to grasp the model. After a period of prototyping, we
found a mapping coefficient which is a trade-off between both factors.

Creating Labels

To provide a useful physical model, the components had to be labeled. Our
first approach included a font library for OpenSCAD, which implemented
every letter as a grid of pixels, i.e., boxes. The print result was not satis-
factory since the underlying font was unreadable at the desired size. Since
June of 2014, OpenSCAD directly supports rendering fonts via the text()

command. However, some fonts are harder to print for the 3D-printer and
are less readable at small size. Therefore, we tested some fonts and achieved
the best performance with Consolas.
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Limited Build Volume

We use a Prusa i3 to print our city models due to its rectangular build
platform. It can print objects with a size up to 200 mm3. However, our
models can easily get larger than this volume, as in the case of the PMD
model presented in Figure 8.20. Therefore, we split the physical models into
multiple smaller jigsaw pieces using the PuzzleCut10 library for OpenSCAD.
Figure 8.21 shows two jigsaw piece from our PMD model rendered in
OpenSCAD. After the print, the model is assembled and agglutinated.

Monochromacity

Most of the current consumer 3D-printers, which use the fused filament
fabrication technique,11 create only single-colored objects. Three-colored
objects are possible but the 3D-printer must be upgraded. Our city metaphor
models contain six colors and thus they require a different solution at the
moment. We prime the printed model using a white spray can. Afterwards,
we use table top colors to manually paint the models. An unpainted model
and some used colors can be seen in Figure 8.22.

8.6.4 Meta-Monitoring

A special model created by us is the physical 3D model of the visualization
of ExplorViz. To monitor the monitoring (similar to meta-monitoring
Kieker with Kicker [Waller 2014]) visualization ExplorViz, we first had to
instrument the GWT-generated JavaScript methods. Therefore, we had
to write a monitoring component for JavaScript. As already utilized in
our Java monitoring component, we utilize aspect-oriented programming
to instrument the JavaScript methods of ExplorViz. After gathering the
required information, the records are sent to a server which uses Kieker
to write the monitoring logs onto the disc. Then, the logs are read in with
our monitoring data adapter and visualized in ExplorViz. The resulting
visualization showing ExplorViz in ExplorViz is shown in Figure 8.23. From

10http://nothinglabs.blogspot.de/2012/11/puzzlecut-openscad-library.html
11http://reprap.org/wiki/Fused_filament_fabrication
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this visualization, we exported the OpenSCAD script and followed the
previously described process for creating the physical model which is
depicted in Figure 8.24.
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Figure 8.23. Virtual model of ExplorViz in ExplorViz
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Figure 8.24. Physical 3D-printed model of ExplorViz
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9

ExplorViz Implementation

In order to evaluate our approach in lab experiments and controlled experi-
ments, it has to be implemented first. Therefore, this chapter describes the
realized implementation which forms the basis for each evaluation. Due
to about 32,000 lines of code of ExplorViz without comments and blank
lines – measured with the tool CLOC1 –, we focus on the main activities
and technologies involved. We leave out class diagrams since the contained
details would be too excessive. For further details about the implementation
and its classes, the source code is freely available at the corresponding Git
repository.2

We start by describing the overall architecture of ExplorViz (see Sec-
tion 9.1). Then, the implementation of the Monitoring component is pre-
sented in Section 9.2. Afterwards, Section 9.3 presents an overview of the
implementation of the Analysis component. In Section 9.4, we describe the
implementation of the Repository component. Finally, the components used
in the implementation of our web-based visualization are presented (see
Section 9.5).

1http://cloc.sourceforge.net
2https://github.com/ExplorViz
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Previous Publications

Parts of this chapter are already published in the following works:

1. [Fittkau et al. 2013c] F. Fittkau, J. Waller, P. C. Brauer, and W. Hassel-
bring. Scalable and live trace processing with Kieker utilizing cloud
computing. In: Proceedings of the Symposium on Software Performance: Joint
Kieker/Palladio Days 2013 (KPDays 2013). Volume 1083. CEUR Workshop
Proceedings, Nov. 2013

2. [Fittkau et al. 2015g] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz:
visual runtime behavior analysis of enterprise application landscapes.
In: Proceedings of the 23rd European Conference on Information Systems
(ECIS 2015). AIS, May 2015
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Figure 9.1. Overall architecture of our ExplorViz implementation

9.1 Overall Architecture

Figure 9.1 depicts an overview of the overall architecture of our core com-
ponents in ExplorViz. To enable a better comprehension, the execution
environments and servers are also denoted. It starts with monitoring of
the existing application utilizing the Monitoring component. The generated
monitoring records are sent to an Analysis component running on a Trace
Processing Server. As already described in Section 6.3, this worker is only
started if the master analysis node impends to be overutilized.

After preprocessing the traces, they are sent to the Analysis component
running on the Visualization Server. The Analysis component is part of the
Visualization Provider. This provider – deployed with a WAR-file – runs
inside an application server, such as Jetty.3 A part of this Analysis component

3http://www.eclipse.org/jetty
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Figure 9.2. Overview of the monitoring component

is the Repository component which handles the creation and update of the
landscape model. The landscape model is passed to the client, i.e., the Web
Browser, via HTTP when the client requests it.

9.2 Monitoring

In this section, we describe the implementation of our monitoring compo-
nent which aims to provide high-throughput monitoring for live monitoring
data analysis.

In Figure 9.2, an overview of our Monitoring component is presented.
The Monitoring Probes are integrated into the monitored code by aspect
weaving using AspectJ.4 They collect the method’s information and write
the gathered information sequentially into an array of bytes realized by
the Java native input/output class ByteBuffer. The first byte represents
an identifier for the class that is later constructed with these information
and the following bytes contain information like, for instance, the logging
timestamp. Then, the ByteBuffers are sent to the Monitoring Controller which
in turn puts the ByteBuffers into a Ring Buffer for synchronization since

4https://eclipse.org/aspectj
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Figure 9.3. Overview of the analysis component

every probe can have different execution threads. For realizing the Ring
Buffer, we utilize the disruptor framework.5 The Monitoring Writer, running
in a separate thread, receives the ByteBuffers and writes them to the Analysis
component utilizing the Java class java.nio.channels.SocketChannel and the
transfer protocol TCP. We use TCP since Beye [2013] evaluated that TCP is
the fastest technology for this purpose.

Contrary to most other application-level monitoring tools, for example,
Kieker [van Hoorn et al. 2012], we do not create record objects in the probes,
but write the data directly into a ByteBuffer. This usually results in less
garbage collection and the time for the object creation process is saved. For
monitoring the CPU utilization and memory consumption on the servers,
we utilize the Java class com.sun.management.OperatingSystemMXBean which
is available since Java version 1.7.

9.3 Analysis

In Figure 9.3, an overview of our Analysis component is presented. Con-
cerning the overall architecture, we follow the pipes and filters pattern.

The sent bytes are received from the monitoring component via TCP.
From these bytes, Monitoring Records are constructed and passed into the

5http://lmax-exchange.github.io/disruptor/
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first Queue. The queue implementation is a bounded single-producer-single-
consumer queue provided by the JCTools.6 It provides the advantage of
lower synchronization overhead in comparison to the Ring Buffer used in
the Monitoring component.

The Trace Reconstruction filter receives the Monitoring Records and re-
constructs the execution traces. Then, these traces are forwarded into the
second Queue.

The Trace Reduction filter receives these traces and reduces their amount
by utilizing the technique of equivalence class generation also called trace
summarization. This technique is used since Weißenfels [2014] evaluated
possible trace reduction techniques, and trace summarization was rated
as the best technique for our live trace processing purpose. The filter
is configured to output reduced traces each four seconds. Each trace is
enriched with runtime statistics, e.g., the count of summarized traces or the
minimum and maximum execution times. The resulting reduced traces are
put into the third Queue.

If the Analysis component is configured to be a worker, the reduced
traces are sent to the Connector. This connector then writes them to another
chained Analysis component, either further workers or the master. If the
Analysis component is configured to be the master, the reduced traces
are passed to the Repository component where they are used to create the
landscape model.

Each filter runs in a separate thread and is therefore connected by a
Queue. This design decision is made because every filter has enough work
to conduct when millions of records per second must be processed.

9.4 Repository

Figure 9.4 displays an overview of the Repository component. For easier
deployment, it is embedded in the Analysis component if it is configured
as a master. It receives the reduced traces from the Trace Reduction step
and generates a Landscape Repository Model from the incoming traces in the
Landscape Repository Sink. After a defined interval – default is ten seconds –,

6https://github.com/JCTools
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Figure 9.4. Overview of the repository component

the internal model is duplicated and a clone is passed outside of the sink
to the Landscape Preparer. Only a clone is passed outside since the internal
model keeps track of the already discovered entities and just resets the
conducted communication calls and number of instances.

The Landscape Preparer adds and sets properties of the Landscape Reposi-
tory Model which would slow down the insertion of elements in the Landscape
Repository Sink. For example, it sets the foundation component for each
application and sets the alternating colors of the components. After prepar-
ing the landscape model, it is passed to the exchange service. Due to
technical reasons, the request to the exchange service for the model actually
originates from the client (web browser) which then receives the new or
updated landscape model.

9.5 Visualization Provider

After creating or updating the landscape model representing the current
software landscape, the next step is visualizing the model. As front end,
we utilize web browsers, since live monitoring the landscape should be
accessible on different clients without further software installation. Since our
application-level perspective is a 3D visualization, we chose Web Graphics
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Library (WebGL)7 as the basic rendering technology. WebGL provides the
advantage that no additional plug-ins must be installed and mobile devices
can also access our visualization in the same way as desktop PCs do.

Since WebGL requires to write extensive JavaScript code, we use the
GWT8 to be able to write the largest part of our source code in Java. After
creating the Java source code, GWT generates the JavaScript code from this
source code.

Since GWT utilizes many Java callbacks for the handling of asyn-
chronous events, we furthermore use Xtend9 to ease the implementation of
the callbacks. Xtend is usable in combination with GWT since it actually
generates Java classes from the Xtend sources. In summary, the generation
chain for most of the implemented classes is: Java source code is gener-
ated from the Xtend classes and then this Java source code is translated to
JavaScript code.

In Figure 9.5, the components and their relationships taking part in
the visualization are shown. The Main component triggers the rendering
process in the Engine component. The Engine component sets up the
Landscape Exchange to periodically poll for new available landscape models.
After execution, the Landscape Exchange also triggers the Timeshift component
to fetch the new timeshift history.

When a new landscape model is received, the Engine component is
responsible for passing the model through several components. At first, the
new landscape model is passed to the Clustering which generates clusters
when packages contain more classes than a configurable threshold value.
Then, the Layout component calculates the size and position for each draw-
able model entity. Afterwards, the actual visual entities get created by the
Rendering component. For example, gray boxes for each system. Finally, the
Interaction component binds interaction handlers to these visual entities.

Beneath smaller interaction handlers, e.g., opening a package, five larger
components can be triggered through interaction means. The first compo-
nent is the Code Viewer which visualizes the source code of the application
under study. The second component is the Database Queries component. It

7http://www.webgl.org
8http://www.gwtproject.org
9https://eclipse.org/xtend
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Figure 9.5. Overview of the components involved in the visualization

lists the monitored database SQL queries in a sortable and searchable table.
The Export component handles the export of the OpenSCAD script used to
create the physical 3D models. The Highlighting component is responsible
for the highlighting of objects, e.g., clicking on a class reveals the in- and
outgoing communication lines, and also the replaying of traces is handled
in it. The last component is the Performance Analysis component which starts
the performance analysis mode.

Since all those features are implemented at the client-side and not on
the server-side, the browser executes the corresponding JavaScript. Notably
this means that all features – also some that might become compute intense
such as the layout – are run on the client and not on the server. Thus,
the server can focus on analyzing the incoming traces and provides better
scalability when more users are connected. A further implication is that the
user has the possibility to go offline after receiving the landscape model
and is still able to analyze the model.
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Monitoring and Trace Processing
Evaluation: Lab Experiments

As already stated, large software landscapes often consist of hundreds of
applications. Monitoring the applications and analyzing the huge amount
of resulting data is challenging for the actual monitoring and analysis
approach. In this chapter, we evaluate the monitoring and analysis part of
our ExplorViz approach with the aim to show their feasibility for monitoring
a large software landscape. For this purpose, we split the evaluation into
three parts which follow three goals of having a low overhead, providing
a live trace processing capability, and being able to scale the monitoring
solution with the monitored applications in an elastic fashion using cloud
computing.

At first, the goals for the evaluations are defined. Afterwards, three
evaluations following the three goals are presented. Finally, we summarize
them and evaluate if our approach is feasible for monitoring large software
landscapes.
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Previous Publications

Parts of this chapter are already published in the following works:

1. [Waller et al. 2014a] J. Waller, F. Fittkau, and W. Hasselbring. Appli-
cation performance monitoring: trade-off between overhead reduction
and maintainability. In: Proceedings of the Symposium on Software Perfor-
mance 2014 (SOSP 2014). University of Stuttgart, Nov. 2014

2. [Fittkau et al. 2013c] F. Fittkau, J. Waller, P. C. Brauer, and W. Hassel-
bring. Scalable and live trace processing with Kieker utilizing cloud
computing. In: Proceedings of the Symposium on Software Performance: Joint
Kieker/Palladio Days 2013 (KPDays 2013). Volume 1083. CEUR Workshop
Proceedings, Nov. 2013

3. [Fittkau and Hasselbring 2015b] F. Fittkau and W. Hasselbring. Elastic
application-level monitoring for large software landscapes in the cloud.
In: Proceedings of the 4th European Conference on Service-Oriented and Cloud
Computing (ESOCC 2015). Springer, Sept. 2015
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10.1 Goals

For the evaluation of our monitoring and analysis solution, we define three
aspects of our solution as goals which we target to evaluate through several
lab experiments. These are detailed in the following.

Mon-G1: Showing Low Overhead

Application-level monitoring imposes an overhead to the actual execution
of the program since data, e.g., the called method name, has to be collected
during the execution. Since this overhead adds to the response time of
an application, it is desirable to keep the monitoring overhead as low as
possible.

Mon-G2: Showing Live Trace Processing Capability

Since our approach provides a live trace visualization, the analysis compo-
nent must provide the capability to analyze the monitoring data on-the-fly
and especially should not slow down the actual monitoring phase.

Mon-G3: Showing Scalability and Elasticity

Providing a low overhead monitoring and live trace processing analysis is
not sufficient when monitoring large software landscapes. The monitoring
and analysis solution still needs to scale with the possible large number of
monitored applications. Furthermore, it is desirable to have a cost efficient
solution which frees unused resources and therefore provides an elastic
solution.

10.2 Monitoring Overhead Evaluation

In [Waller et al. 2014a], we conducted several performance tunings starting
on the code base of a Kieker 1.8 nightly release (Kieker 1.8 in the following)
and ended with a project written from scratch which imposes the basis of
our current monitoring component of ExplorViz.
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Table 10.1. Throughput of the ExplorViz’ Monitoring Component (Traces per Sec-
ond)

No Instrumentation Deactivated Collecting Writing

Mean 1 190.5k 763.3k 145.1k 141.2k
95% CI 2.0k 4.0k 0.2k 0.3k

Q1 1 187.4k 747.0k 144.2k 139.4k
Median 1 191.4k 762.5k 146.1k 142.7k
Q3 1 195.2k 778.4k 146.8k 144.2k

In this section, we show the results of the evaluated monitoring com-
ponent of ExplorViz in comparison to Kieker 1.8. We utilized MooBench1

developed by Waller et al. [2014a] as a benchmark to determine the through-
put of generated traces per second. MooBench splits the application-level
monitoring into four phases and benchmarks each phase. Afterwards, the
comparison of the phases reveals which phase adds significant overhead in
comparison to the execution without the phase. The gathered data of the
evaluation is available online as a dataset package [Waller et al. 2014b].

10.2.1 Throughput of the ExplorViz’ Monitoring Compo-
nent

Table 10.1 displays the throughput measured by MooBench of our moni-
toring component. The absolute numbers are tied to the actual hardware
configuration which was a X6270 Blade Server with two Intel Xeon 2.53
GHz E5540 Quadcore processors and 24 GB RAM with Solaris 10. Therefore,
the comparison between the actual phases is more meaningful than the
actual absolute number.

The Deactivated phase actually measures the impact of using an instru-
mentation framework such as AspectJ. The Collecting phase adds the actual
gathering of information like the called method name. The impact on the
overall overhead is rather large in this phase (from 736.3k traces per second

1http://kieker-monitoring.net/research/projects/moobench
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Figure 10.1. Overview of the MooBench benchmark results in response time

down to 145.1k traces per second). The following Writing phase, which
writes the gathered data to another host using a TCP connection, only
negligibly adds to the monitoring overhead of our monitoring component.

10.2.2 Comparison to Kieker

By comparing these values of ExplorViz to the Kieker 1.8 base, we are
able to identify differences in the performance of each phase. Furthermore,
we can qualitatively evaluate the overhead imposed by the monitoring
component of ExplorViz, since other researchers already compared Kieker
to other monitoring tools [Eichelberger and Schmid 2014; Waller 2014] and
concluded that Kieker imposes a low overhead.

Figure 10.1 shows the results for the conducted performance tunings
(PT), the Kieker 1.8 base, and ExplorViz’ monitoring component measured
in response times. PT1 is similar to the results of Kieker 1.9 [Waller 2014].
PT2 and PT3 show potential versions for future Kieker releases. Since out
of scope of the current discussion about monitoring overhead, we refer to
[Waller et al. 2014a] for the actual differences in the versions.
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In comparison to Kieker 1.8, PT1, and PT2, we achieved a large decrease
in the Collecting phase with ExplorViz of about 50 % in the response times.
Compared to PT3, ExplorViz still provides a decrease of about 20 % in the
Collecting phase. We attribute the improvements in the Collecting phase
mainly to our design decision that no Java objects are created for each
recorded method call. Instead we directly write the gathered information
into a plain array of bytes.

In the performance tunings PT1 and PT2, there is a constant enhance-
ments of the Writing phase compared to Kieker 1.8. However, our monitor-
ing component in ExplorViz still outperforms those tunings. In comparison
to the base version, we achieved a decrease of about 99.5 % in the response
times. Only PT3 also imposes such a large decrease. Therefore, future
releases of Kieker might also have such a fast Writing phase which was
mainly achieved due to enhancing the monitoring with a fast RingBuffer.

The total monitoring overhead of Kieker 1.8 is about 59.07 µs. The
monitoring component of ExplorViz imposes a monitoring overhead of
about 6.37 µs. Therefore, we achieved a decrease of about 89 % in the
monitoring overhead. For the throughput, we achieved a speedup of
roughly factor 9.

10.3 Live Trace Processing Evaluation

In the former evaluation, we showed that our monitoring component in
ExplorViz imposes only low overhead on the monitored application. Since
it only involved generating the required information, we add the analysis
of this information in this evaluation to show the live trace processing
capability of ExplorViz. For replicability and verifiability of our results,
the gathered data are available online [Fittkau et al. 2013a]. For reasons
of simplicity, when referring to ExplorViz in this section, we mean the
monitoring and analysis solution of ExplorViz.

We start by describing our experimental setup. Afterwards, we discuss
the results and threats to validity.
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10.3.1 Experimental Setup

For our evaluation, we employ an extended version of the monitoring over-
head benchmark MooBench [Waller et al. 2014a] which was described in the
previous section. In the case of live analysis, we can extend the benchmark’s
measurement approach for the additional performance overhead of the
analysis of each set of monitoring data. Specifically, we can quantify the
additional overhead of the phases Trace Reconstruction and Trace Reduction
within our analysis component.

We use two virtual machines (VMs) in our OpenStack2 private cloud for
our experiments. Each physical machine in our private cloud contains two
8-core Intel Xeon E5-2650 (2.8 GHz) processors, 128 GB RAM, and a 500 Mbit
network connection. When performing our experiments, we reserve the
whole cloud and prevent further access in order to reduce perturbation. The
two used VMs are each assigned 32 virtual CPU cores and 120 GB RAM.
Thus, both VMs are each fully utilizing a single physical machine. For our
software stack, we employ Ubuntu 13.04 as the VMs’ operating system and
an Oracle Java 64-bit Server VM in version 1.7.0_45 with up to 12 GB of
assigned RAM.

MooBench is configured as single-threaded 4 000 000 measured execu-
tions with Kieker 1.8. We increased the number of measured executions
to 100 000 000 for ExplorViz since it processed the 4 000 000 executions too
fast to have reliable results. In each case, we discard the first half of the
executions as a warm-up period.

10.3.2 Results and Discussion

First, the throughput results are discussed. Afterwards, the response times
are covered.

Throughput The throughput for each phase is visualized in Table 10.2 for
Kieker 1.8 and in Table 10.3 for our monitoring and analysis solution in
ExplorViz. In both versions, the no instrumentation phase is roughly equal
which is to be expected since no monitoring is conducted.

2https://www.openstack.org
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Table 10.2. Throughput for Kieker 1.8 Monitoring and Analysis (Traces per Second)

No instr. Deactiv. Colle. Writing Reconst. Reduc.

Mean 2 500.0k 1 176.5k 141.8k 39.6k 0.5k 0.5k
95% CI 371.4k 34.3k 2.0k 0.4k 0.001k 0.001k

Q1 2 655.4k 1 178.0k 140.3k 36.7k 0.4k 0.4k
Median 2 682.5k 1 190.2k 143.9k 39.6k 0.5k 0.5k
Q3 2 700.4k 1 208.0k 145.8k 42.1k 0.5k 0.5k

Table 10.3. Throughput for our ExplorViz Monitoring and Analysis Solution (Traces
per Second)

No instr. Deactiv. Colle. Writing Reconst. Reduc.

Mean 2 688.2k 770.4k 136.5k 115.8k 116.9k 112.6k
95% CI 14.5k 8.4k 0.9k 0.7k 0.7k 0.8k

Q1 2 713.6k 682.8k 118.5k 102.5k 103.3k 98.4k
Median 2 720.8k 718.1k 125.0k 116.4k 116.6k 114.4k
Q3 2 726.8k 841.0k 137.4k 131.9k 131.3k 132.4k

ExplorViz manages to generate 770 k traces per second with deactivated
monitoring, i. e., the monitoring probe is entered but left immediately.
Kieker 1.8 performs significantly better with 1 176 k traces per second. Both
versions run the same code for the deactivated phase. We attribute this
difference to the change in the number of measured executions with each
tool. ExplorViz runs 20 times longer than Kieker 1.8 which might have
resulted in different memory utilization. As future work, this observation
should be researched by running 100 million method calls with Kieker 1.8 –
which takes a few weeks to finish the benchmark.

In the collecting phase, Kieker 1.8 performs 141.8 k traces per second
whereby ExplorViz achieves 136.5 k traces per second which is roughly the
same with regards to the different number of measured executions of both
experiments.
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Figure 10.2. Comparison of the resulting response times

ExplorViz reaches 115.8 k traces per second while Kieker 1.8 achieves
39.6 k traces per second in the writing phase. In this phase, our performance
tunings take effect. Notably, the trace amount is limited by the network
bandwidth in the case of ExplorViz.

In the trace reconstruction phase, Kieker 1.8 performs 0.5 k traces per
second and ExplorViz reaches 116.9 k traces per second. We attribute the
increase of 1.1 k traces per second in ExplorViz – in comparison to the writ-
ing phase – to measuring inaccuracy which is confirmed by the overlapping
confidence intervals. In this trace reconstruction phase, ExplorViz performs
about 250 times better than Kieker 1.8. We attribute this observation to
the old pipes and filters architecture of Kieker 1.8 which has bottlenecks
in handling the pipes resulting in poor throughput. Future releases of
Kieker will use TeeTime3 [Wulf et al. 2014] for this purpose. Therefore, the
experiment should be conducted again when TeeTime will be integrated in
the Kieker releases.

Kieker 1.8 reaches 0.5 k traces per second and ExplorViz achieves 112.6 k
traces per second in the reduction phase. Compared to the previous phase,
the throughput slightly decreased for ExplorViz which means that the trace
summarization slightly slows down the analysis.

3http://teetime.sf.net
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Response Times In Figure 10.2, the resulting response times are displayed
for Kieker 1.8 and ExplorViz in each phase. The response times for the
instrumentation is again slightly higher for ExplorViz. In the collecting
phase, the response times of both tools are equal (6 µs). Kieker 1.8 has 18.2 µs
and ExplorViz achieves 1.2 µs in the writing phase. The comparatively high
response times in Kieker 1.8 suggests that the Monitoring Writer fails to
keep up with the generation of Monitoring Records and therefore the buffer
to the writer fills up resulting in higher response times. In contrast, in
ExplorViz, the writer only needs to send out the ByteBuffers, instead of
object serialization. In the reconstruction and reduction phases, Kieker 1.8
has over 1 000 µs (in total: 1 714 µs and 1 509 µs), and ExplorViz achieves
0.0 µs and 0.3 µs. The response times of ExplorViz suggest that the filters are
efficiently implemented such that the buffers are not filling up. This result
is achieved by the utilization of threads for each filter. We attribute the high
response times of Kieker 1.8 to garbage collections and the aforementioned
bottlenecks in the pipes and filters architecture.

10.3.3 Threats to Validity

We conducted the evaluation only on one type of virtual machine and also
only on one specific hardware configuration. To provide higher external
validity, other virtual machine types and other hardware configurations
should be benchmarked which is future work.

Furthermore, we ran our benchmark on a virtualized cloud environ-
ment which might resulted in unfortunate scheduling effects of the virtual
machines. We tried to minimize this threat by prohibiting over-provisioning
in our OpenStack configuration and assigned 32 virtual CPUs to the in-
stances such that the OpenStack scheduler has to run the virtual machines
exclusively on one physical machine.

10.4 Scalability and Elasticity Evaluation

In this section, we present an experiment for evaluating the scalability
and elasticity of our application-level monitoring and analysis approach
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for monitoring several, scaled JPetStore instances using cloud computing.
Stelzer [2014] already conducted a preceding experiment which showed
that our worker concept functions for eight JPetStore instances and a firm
count of two analysis worker levels. Our evaluation utilizes a dynamic
count of worker levels and peeks at 160 JPetStores instances running in
parallel.

We start by describing the used workload curve and the experimental
setup. Then, the results of the experiment are discussed. At last, we identify
threats to validity.

10.4.1 Workload

Our employed workload curve is shown in Figure 10.3. It was derived
by monitoring a real web application from a photo service provider [Rohr
et al. 2010]. The workload curve represents a day-night-cycle workload
pattern which can be considered typical for regional websites. It starts with
a rising workload until six o’clock when about 1,000 requests per second are
conducted. Then, the load peaks at nine o’clock with about 8,000 requests
per second. Afterwards, it slightly decreases to about 7,000 requests per
second. In the evening at around eight o’clock p.m., the request count peaks
with about 14,000 requests per seconds. Then, it falls to about 1,000 requests
per second at midnight and shortly behind this point in time, it drops to no
requests for our experiment.

10.4.2 Experimental Setup

We utilize our private cloud running OpenStack containing seven servers.
Each server has two Intel Xeon E5-2650 (2.8 GHz, 8 cores) CPUs, 128 GB
of RAM, and a 400 GB SSD. Therefore, the total amount of resources are
112 CPU cores, 896 GB of RAM, and 2.8 TB of disc space. Since every core
also features Hyper-threading, we configured our cloud to have a maximum
of 224 virtual cores (VCPUs).

As object system, we utilize the web application JPetStore4 written in
Java. As the name suggests, it is a software for setting up a small web

4http://ibatisjpetstore.sf.net
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Figure 10.3. Employed workload curve for the evaluation of the sclability and
elasticity of our monitoring approach

shop for pets. We monitor all method calls in the com.ibatis package which
contains source code written by the authors of JPetStore and all method
calls in the org.apache.struts package which significantly contributes to the
generation time of one web page.

Two flavors – resource configurations in OpenStack terms – are used
in our experiment. The first one is a small flavor which is used by every
dynamically started instance (Master, Worker, and JPetStore nodes). It
consists of one virtual CPU (VCPU), 3 GB of RAM, and 10 GB disc space.
With this configuration, we are able to start a total count of 224 possible
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instances. The second flavor is only used by the capacity manager node.
Since this node also contains the Monitoring LoadBalancer and generates the
workload, it should be guaranteed to have sufficient resources for its tasks.
Therefore, the capacity manager node runs with 8 VCPUs, 16 GB of RAM,
and 80 GB disc space which reduces the maximum count of dynamically
started instances of the small flavor to 216.

A large setup cost for this experiment was imposed by tuning the
operating system of the physical server to process the large amount of
requests per second. In the default configuration, this request amount
is detected as potential denial of service attack and thus the requests are
dropped. For example, we had to tune the number of usable TCP ports, TCP
state timeouts, the maximum open files, and the NAT connection tracking
tables. Some settings also had to be changed on the virtual machine image.
For potential replications, our supplementary data package [Fittkau and
Hasselbring 2015a] contains the relevant configuration files and all settings
we changed. Furthermore, we provide the virtual machine image used for
all our instances to reduce the setup costs.

The configuration of our capacity manager CapMan contains three scaling
groups, i.e., for the Master, the workers (as prototype for dynamically
started levels), and the JPetStores. The Master scaling group uses a threshold
of 40 % average CPU utilization to trigger the insertion of a new worker
level. CapMan always calculates the average CPU utilization over a time
window of 120 seconds to reduce the impact of short utilization spikes.
The prototype of a worker scaling group is configured with a downscaling
condition of a value below 15 % average CPU utilization.

A new instance is started if the average CPU utilization is above 45 %.
In the JPetStore scaling group, an instance is shut down when the average
CPU utilization falls below 27 %. For upscaling, the outstanding requests
are counted and when these are above 200, a new instance is started. In
contrast to the other scaling groups, the start time of a new instance is not
negligible. Therefore, 16 seconds are waited during booting since Jetty must
be started and JPetStore must be deployed.
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Figure 10.4. JPetStore instance count and average CPU utilization of Master node

182



10.4. Scalability and Elasticity Evaluation

10.4.3 Results and Discussion

Figure 10.4 shows the resulting JPetStore instance count and the average
CPU utilization of the Master node in our experiment. In general, the
count of the JPetStore instances follows the workload curve and peaks at
160 instances. The only exception is the instance count not reducing after
the first peak in the workload at hour nine. This is caused by the 27 %
average CPU utilization downscaling condition which could be further
reduced to also scale down in this situation.

Notably, since the workload curve is reflected in the JPetStore instances,
the general scaling in accordance to the imposed workload is functioning.
For the evaluation of our elastic monitoring approach, we take a closer look
at the average CPU utilization of the Master, the started worker levels, and
the monitored method calls per second.

With the constantly rising workload, the CPU utilization of the Master
also constantly increases until approximately hour three. At this time, a
new worker level is started since the average CPU utilization of the Master
rises above 40 %. The started analysis nodes are visualized in Figure 10.5
where this circumstance can also be seen. After the successful insertion
of the worker level, the CPU utilization of the Master drops to about 3 %.
Notably, at this point in time only two JPetStore instances are started which
suffice to utilize our Master node with a 40 % CPU utilization.

After hour three, the CPU utilization of the Master node only rises
slightly to 11 % while the JPetStore instance count drastically increases to
about 40 instances in hour ten. The work induced by the analysis of the
monitoring data is distributed to the workers in the first worker level where
the instance count increases to 20 instances till hour ten.

In hour 15, a short peak of about 62 % in the Master CPU utilization can
be seen. Since it only occurred for about one minute and has a difference of
about 50 % to the previous and following values, this peak is an anomaly.
During other runs on our private cloud, we often observed this behavior
when another instance is started on the same physical host. Therefore, we
implemented a linear anomaly detection algorithm in our capacity manager
for this circumstance and thus no new worker level is started in hour 15.
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Figure 10.5. Analysis nodes and number of instances in each analysis level

The JPetStore instance count is rising again from hour 15 till hour 20
peaking in 160 instances. Therefore, the instance count of the workers in
the first worker level is also increasing which peaks at about 50 instances
in hour 20. Since the Master has to receive and merge the traces from
those instances, its CPU utilization also rises until hour 19. Then, the
CPU utilization is once again above the 40 % threshold which results in a
newly inserted worker level. Afterwards, the Master CPU utilization drops
to about 17 %. This drop is not as large as the previous one but still it
circumvents the overutilization of the Master node.

In hour 20, the workload approximately decreases until hour 24. This
leads to a reduction of the JPetStore instances and therefore, also the analysis
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Figure 10.6. Average monitored and analyzed method calls per second

nodes are reduced. At first, the second worker level is completely removed
in hour 22 resulting in an increase of the CPU utilization on the Master
node. The worker instances in the first worker level are also reduced until
hour 24 is reached. Then, also the first worker level is removed resulting
in the initial configuration where only the Master node is analyzing the
monitored data.

Figure 10.6 visualizes the monitored and analyzed method calls per
second. In general, it follows the requests per second of the workload and
peaks in about 20 million analyzed method calls per second. The only
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exception is a short spike in hour 22. This resulted from a too fast shutdown
of one analysis node in the second worker level which can be circumvented
by increasing the shutdown delay of analysis nodes in higher worker levels.

10.4.4 Threats to Validity

We conducted our experiment on our private cloud with the scaling of
JPetStore instances. For external validity, it should also be evaluated in
other environments and with other applications. The same applies to the
employed workload curve and the amount of conducted monitoring.

Our experiment involved two worker levels since only 216 VCPUs were
available. The results for a third worker level might be different. Further
experiments are required to show whether the third worker level still
circumvents the overutilization of the Master node.

Furthermore, similar traces are generated by accessing JPetStore. We
assume that our monitoring approach will behave differently if this assump-
tion is not satisfied. This should be also investigated in further experiments.

10.5 Summary

From our monitoring overhead evaluation, we conclude that the monitoring
component of ExplorViz provides low overhead, since Kieker has already
been shown to have low overhead in comparison to other monitoring
tools [Eichelberger and Schmid 2014; Waller 2014]. With our monitoring
component of ExplorViz, we were able to even speedup the maximal trace
monitoring capability by a factor of 9 and decreased the overhead by 89 %.

ExplorViz outperformed the employed Kieker 1.8 version with a speedup
of about factor 250 when adding an analysis of the gathered monitoring
information. Furthermore, the impact on the throughput when adding
analysis steps was negligible small. Therefore, the analysis only negligibly
impacts the monitoring component. Thus, we conclude that our monitor-
ing and analysis approach is capable of providing the required live trace
processing for our approach.
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Summarizing the results of our scalability and elasticity evaluation, our
distributed application-level monitoring approach showed feasible to cir-
cumvent the overutilization of the Master node in spite of a rising workload.
Furthermore, the Master node employs only a single VCPU. Therefore,
during low workload on the monitored applications, the minimum costs
for monitoring incur. Thus, our monitoring and analysis approach showed
its scalability and elasticity capability.

Concluding, we successfully evaluated each requirement for the moni-
toring and analysis part to enable live trace visualization. Therefore, our
approach showed feasible to monitor several applications in a large software
landscape and to analyze the resulting traces on-the-fly as required for the
visualization.
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11

Visualization Evaluation:
Controlled Experiments

In this chapter, we present an evaluation of our visualization approach. We
split the visualization evaluation into three parts, namely the evaluation
of the application perspective, the physical 3D models, and the landscape
perspective. If we would have conducted an all-in-one evaluation, we would
have required an approach that is comparable as the whole. To the best
of our knowledge, there is no such approach combining landscape and
application perspective in a similar fashion. Therefore, we would have had
to combine other approaches into one tool, which imposes several threats
to validity on its own. Thus, we compare each part of our visualization
approach to a comparable, already established visualization.

After defining the goals, we start by describing a controlled experiment
and its replication where we compare our application perspective to the
trace visualization tool Extravis. The next section describes a controlled
experiment for evaluating our physical 3D models approach by comparing
them to on-screen models. Then, we present a controlled experiment
to evaluate the landscape perspective by comparing it with an APM tool
visualization. In the last section, we briefly outline the qualitative evaluation
of our VR approach and conclude with a summary.
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Previous Publications

Parts of this chapter are already published in the following works:

1. [Fittkau et al. 2015a] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller.
Comparing trace visualizations for program comprehension through
controlled experiments. In: Proceedings of the 23rd IEEE International
Conference on Program Comprehension (ICPC 2015). IEEE, May 2015

2. [Fittkau et al. 2015j] F. Fittkau, E. Koppenhagen, and W. Hasselbring.
Research perspective on supporting software engineering via physical
3D models. Technical report 1507. Department of Computer Science,
Kiel University, Germany, June 2015

3. [Fittkau et al. 2015h] F. Fittkau, A. Krause, and W. Hasselbring. Hier-
archical software landscape visualization for system comprehension: a
controlled experiment. In: Proceedings of the 3rd IEEE Working Conference
on Software Visualization (VISSOFT 2015). IEEE, Sept. 2015
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11.1 Goals

To evaluate new visualization approaches, they should be compared to al-
ready existing ones to show that they provide actual benefits in comparison
to the old ones. Important benefits in the context of program and system
comprehension are an increased efficiency and/or effectiveness in solving
comprehension tasks. Empirical studies, such as controlled experiments,
are required to assess them.

As major goal of our evaluations, we target to show that our ExplorViz
visualization is more efficient and effective for solving program and system
comprehension tasks in comparison to already established approaches. To
achieve this goal, each experiment defines hypotheses as subgoals which
are described in the corresponding sections. Furthermore, the usability of
our ExplorViz tool – including stability of our tool – is implicitly evaluated
by the diverse participants in our controlled experiments.

11.2 Application Perspective Evaluation

In this section, we present a controlled experiment comparing our trace
visualization ExplorViz on the application perspective with the already
established visualization Extravis by Cornelissen et al. [2009] in the context
of program comprehension. Therefore, we defined typical program compre-
hension tasks and used PMD1 as object system. To validate our results, we
replicated [Lindsay and Ehrenberg 1993] our experiment by conducting a
second controlled experiment using a different-sized object system named
Babsi.2 We measured the time spent and the correctness for each task. These
measures are typically used in the context of program comprehension [Ra-
jlich and Cowan 1997]. After the experiments, we analyzed the benefits of
using Extravis with circular bundling or ExplorViz with the city metaphor
on the defined tasks.

To facilitate the verifiability and reproducibility for further replica-
tions [Crick et al. 2014], we provide a package containing all our experimen-

1http://pmd.sourceforge.net
2http://babsi.sourceforge.net
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tal data. It contains the employed version of ExplorViz v0.5-exp (including
source code and manual), input files, tutorial materials, questionnaires,
R scripts, datasets of the raw data and results, and 80 screen recordings
of the user sessions. We explicitly invite other researches to compare their
trace visualizations with ExplorViz and we provide as complete material as
possible to lower the effort for setting up similar experiments. The package
is available online [Fittkau et al. 2015c] with source code under the Apache
2.0 License and the data under a Creative Commons License (CC BY 3.0).

After presenting the used visualizations, we describe both controlled
experiments by their design, operation, data collection, analysis, results,
discussion, and threats to validity. Afterwards, we share lessons learned
and give advice on avoiding some observed challenges.

11.2.1 Used Visualizations

Figure 11.1 displays the used Extravis visualization for our experiments.
For the description of the semantics, we refer to Section 3.3.

In Figure 11.2, the employed application perspective visualization of
ExplorViz version 0.5 is shown. In contrast to the current visualization,
the height of the packages and buildings is slightly smaller. However, this
change had cosmetic reasons for the physical 3D models and should not
invalidate the results for the current visualization. Furthermore, we have
disabled the trace replayer and the time shifting for the experiments since
there are no similar features in Extravis. Similarly to the these features,
we have disabled the source code viewer for the experiments due to its
absence in Extravis. Since we only utilize the application perspective, we
have disable the landscape perspective for this experiment.

11.2.2 Experimental Design

In addition to general software engineering experimentation guidelines [Kit-
chenham et al. 2002; Jedlitschka and Pfahl 2005; Di Lucca and Di Penta
2006; Di Penta et al. 2007; Sensalire et al. 2009], we follow the experimental
designs of Wettel et al. [2011] and of Cornelissen et al. [2009]. Similar to
these experiments, we use a between-subjects design. Thus, each subject only
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Figure 11.1. The recorded execution trace of PMD for the first controlled experiment
visualized in Extravis
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Figure 11.2. The recorded execution trace of PMD for the first controlled experiment
represented in ExplorViz v0.5
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solves tasks with either Extravis or ExplorViz and therefore, uses one tool
only. Following the GQM approach [Basili and Weiss 1984], we define the
goal of our experiments as quantifying the impact of using either Extravis

or ExplorViz for program comprehension.

Research Questions & Hypotheses

We define three application perspective research questions (App-RQ) for
the comparison:

B App-RQ1: What is the ratio between Extravis and ExplorViz in the time
required for completing typical program comprehension tasks?

B App-RQ2: What is the ratio between Extravis and ExplorViz in the
correctness of solutions to typical program comprehension tasks?

B App-RQ3: Which typical sources of error exist when solving program
comprehension tasks with Extravis or ExplorViz?

Accordingly, we formulate two null hypotheses:

B App-H10: There is no difference between Extravis and ExplorViz in the
time spent for completing typical program comprehension tasks.

B App-H20: The correctness of solutions to typical program comprehension
tasks does not differ between Extravis and ExplorViz.

We define the following alternative hypotheses:

B App-H1 Extravis and ExplorViz require different times for completing
typical program comprehension tasks.

B App-H2 The correctness of solutions to typical program comprehension
tasks differs between Extravis and ExplorViz.

For App-RQ3, we conduct an in-depth analysis of the results and analyze
the recorded sessions of each subject in detail.
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Dependent and Independent Variables

The independent variable in both experiments is the employed tool used
for the program comprehension tasks, i.e., Extravis or ExplorViz. We
measured the accuracy (correctness) and response time (time spent) as depen-
dent variables. These are usually investigated in the context of program
comprehension [Wettel et al. 2011; Rajlich and Cowan 1997; Cornelissen
et al. 2009].

Treatment

The control group used Extravis to solve the given program comprehension
tasks. The experimental group solved the tasks with ExplorViz.

Tasks

For our task definitions, we stuck to the framework of Pacione et al. [2004]
which describes categories of typical program comprehension tasks. It
focuses on dynamic analysis [Wettel et al. 2011] providing a good match
for our task definitions. In addition, Cornelissen et al. [2009] used this
framework.

For our first experiment, we selected a medium to large-sized object
system and adhered to the tasks defined by Cornelissen et al. [2009] as
close as possible to prevent bias toward ExplorViz. Preliminary experi-
ments with their object system Checkstyle revealed only a small amount
of used classes (41). PMD provides similar functionality to Checkstyle, i.e.,
reporting rule violations on source code. Analyzing a single source code
file (Simple.java by Cornelissen et al. [2009]) with the default design.xml of
PMD version 5.1.2 revealed 279 used classes and 421,239 method calls in
the resulting trace.

Table 11.1 shows our tasks including their context and achievable max-
imum points. We adapted the tasks from Cornelissen et al. [2009] to the
context of PMD. Notably, we dismissed two original tasks to restrict our
experiment to one hour. However, the dismissed tasks are redundant to
the remaining tasks with regard to the program comprehension activity
categories which are still completely covered. The categories (A1 to A9)
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Table 11.1. Description of the Program Comprehension Tasks for the First Applica-
tion Perspective Experiment (PMD)

ID Category Description Score

Context: Identifying refactoring opportunities
App-T1 A{4,8} Name three classes (from different packages)

that have high fan-in (at least 4 incoming com-
munications) and almost no fan-out (outgoing
communication).

3

Context: Understanding the checking process
App-T2.1 A{3,4,5} Write down all constructor/method calls be-

tween RuleChain and JavaRuleChainVisitor.
3

App-T2.2 A{1,2,5,6} In general terms, describe the lifecycle of
GodClassRule: Who creates it, what does it do
(on a high level)?

3

Context: Understanding the violation reporting
process

App-T3.1 A{1,5} Which rules are violated by the input file using
the design rule set? Hint: Due to dynamic
analysis the violation object is created only for
those cases.

2

App-T3.2 A{1,3} How does the reporting of rule violations
work? Where does a rule violation originate
and how is it communicated to the user? Write
down the classes directly involved in the pro-
cess. Hint: The output format is set to HTML.

4

Context: Gaining a general understanding
App-T4 A{1,7,9} Starting from the Mainclass PMD – On high level,

what are the main abstract steps that are con-
ducted during a PMD checking run. Stick to
a maximum of five main steps. Hint: This is
an exploration task to get an overview of the
system. One strategy is to follow the commu-
nication between classes/packages. Keep the
handout of PMD in mind.

5
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Table 11.2. Description of the program comprehension activity categories defined
by and taken from [Pacione et al. 2004]

Category Description

A1 Investigating the functionality of (a part of) the system

A2 Adding to or changing the system’s functionality

A3 Investigating the internal structure of an artifact

A4 Investigating dependencies between artifacts

A5 Investigating runtime interactions in the system

A6 Investigating how much an artifact is used

A7 Investigating patterns in the system’s execution

A8 Assessing the quality of the system’s design

A9 Understanding the domain of the system

are shown in Table 11.2. All tasks were given as open questions to prevent
guessing. In addition, we changed the order of the tasks compared to
Cornelissen et al. [2009] since in our experiment no source code access was
provided. Our task set starts with less complex tasks (identifying fan-in
and fan-out) and ends with complex exploration tasks. This enabled users
to get familiar with the visualization in the first tasks and raises the level of
complexity in each following task.

To validate our results, we conducted a second controlled experiment
as replication. It investigated the influence of the object system’s size and
its design on the results. The visualization of the city metaphor is usually
more affected by these factors than using the circular bundling approach.
Therefore, we selected a small-sized and not well designed object system.
Both criteria are met by Babsi written by undergraduate students. Babsi
is an Android app designed to support pharmacists in supervising the
prescription of antibiotics. The execution trace generated for our second
experiment utilizes all 42 classes and contains 388 method calls.
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The tasks for our replication are given in Table 11.3. To enable compar-
isons of the subjects’ performance in our experiments, we kept the tasks as
similar as possible. Notably, there is no task similar to App-T3.1 from our
PMD experiment and hence we omitted it in the replication.

Population

We used the computer science students’ mailing lists of the Kiel University
of Applied Sciences (FH Kiel) and Kiel University (CAU Kiel) to recruit
subjects for our PMD experiment. 30 students have participated in the
experiment (6 students from FH Kiel and 24 students from CAU Kiel).
Our replication was conducted with 50 students recruited from the CAU
Kiel course “Software Project” in summer term 2014 with no overlapping
participants.

As motivation, they participated in a lottery for one of five gift cards
of 50e. Additionally, the best three performances received a certificate. The
students in the replication had the additional motivation of supporting their
task of understanding the software (Babsi) to be used in their course.

The subjects were assigned to the control or experimental groups by
random assignment. To validate the equal distribution of experiences,
we asked the subjects to perform a self-assessment on a 5-point Likert
Scale [Likert 1932] ranging from 0 (no experience) to 4 (expert with years of
experience) before the experiment. The average programming experience
in the control group was 2.33 versus 2.46 in the experimental group. Their
experience with dynamic analysis was 0.41 and 0.69, respectively. Due to
the similarity of the self-assessed results, we conclude that the random
assignments resulted in a similarly distributed experience between both
groups. The same holds for our replication (Java experience: 1.68 and 1.79;
dynamic analysis experience: 0.28 and 0.25).

11.2.3 Operation

In the following, we detail the operation of our experiments.
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Generating the Input

We generated the input for ExplorViz directly from the execution of the
object systems. ExplorViz persists its data model into files which act as a
replay source during the experiments. Extravis requires files conforming
to the Rigi Standard Format (RSF). To the best of our knowledge, there were
no suitable RSF exporter tool for traces of our Java-based object systems.
Therefore, we implemented such an exporter in ExplorViz.

Two traces were generated for PMD. The configuration of PMD is
conducted in the first trace while the rule checking is performed in the
second trace. Both traces are equally important for program comprehension.
However, Extravis is limited to visualize only one trace at a time. Thus,
we had to concatenate the two generated traces. Alternatively, the users of
Extravis could have manually loaded each trace when needed. However,
this would have hindered the comparison between Extravis and ExplorViz.
Similar circumstances applied to our replication.

Tutorials

We provided automated tutorials for Extravis and ExplorViz where all
features were explained. This enhanced the validity of our experiments
by eliminating human influences. For ExplorViz, we integrated a guided
and interactive tutorial. Since Extravis is not open-source, we could only
provide an illustrated tutorial where the user is not forced to test the
functionality. However, we advised the subjects in the control group to
interactively test it. Subsequent evaluation of the user recordings showed
that all of the subjects have adhered to our advice.

Questionnaire

We used an electronic questionnaire rather than sheets of paper. An elec-
tronic version provides several advantages for us. First, the timings for each
task are automatically recorded and time cheating is impossible. Second,
the user is forced to input valid answers for some fields, e.g., perceived
difficulty in the debriefing part. Third, we omit a manual and error-prone
digitalization of our results.
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Table 11.3. Description of the Program Comprehension Tasks for our Application
Perspective Replication (Babsi)

ID Category Description Score

Context: Identifying refactoring opportunities
App-RT1 A{4,8} Name three classes that have high fan-in (at

least 3 incoming communications) and almost
no fan-out (outgoing communication).

3

Context: Understanding the login process
App-RT2.1 A{3,4,5} Write down all constructor/method calls be-

tween gui.MainActivity and comm.Sync.
3

App-RT2.2 A{1,2,5,6} In general terms, describe the lifecycle of
data.User: Who creates it, how is it used?
Write down the method calls.

3

Context: Understanding the antibiotics display
process

App-RT3 A{1,3} How does the display of antibiotics work?
Where and how are they created? Write down
the classes directly involved in the process.

6

Context: Gaining a general understanding
App-RT4 A{1,7,9} Starting from the Mainclass gui.MainActivity

- What are the user actions (e.g., Login and
Logout) that are performed during this run
of Babsi. Write down the classes of the activ-
ities/fragment for each user action. Stick to
a maximum of seven main steps (excluding
Login and Logout). Hint: This is an explo-
ration task to get an overview of the system.
One strategy is to follow the communication
between classes.

7
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Pilot Study

Before the actual controlled experiment, we conducted a small scale pilot
study with experienced colleagues as participants. According to the received
feedback, we improved the material and added hints to the tasks which
were perceived as too difficult. In addition, a red-green-color-blind impaired
colleague used both visualizations to asses any perception difficulties. In
the case of ExplorViz, existing arrows in addition to the colors for showing
communication directions were sufficient. In the case of Extravis, we added
a tutorial step to change the colors.

Procedure

Both experiments took place at the Kiel University. For the first experiment,
each subject had a single session. Therefore, most subjects used the same
computer. Only in rare cases, we assigned a second one to deal with
time overlaps. In our replication, six to eight computers were concurrently
used by the participants in seven sessions. In preliminary experiments, all
systems provided similar performance. In all cases, the display resolution
was 1920x1080 or 1920x1200.

Each participant received a short written introduction to PMD/Babsi
and was given sufficient time for reading before accessing the computer. The
subjects were instructed to ask questions in case of encountered challenges
at all times. Afterwards, a tutorial for the respective tool was started.
Subsequently, the questionnaire part was started with personal questions
and experiences, followed by the tasks, and finally debriefing questions.

The less complex tasks (App-T1, App-T2.1, App-T3.1, App-RT1, App-
RT2.1) have a time allotment of 5 minutes, while the more complex tasks
(App-T2.2, App-T3.2, App-T4, App-RT2.2, App-RT3, App-RT4) have 10 min-
utes. The elapsed time was displayed during the task and highlighted when
reaching overtime. The subjects were instructed to adhere to this timing but
were not forced to do so.
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11.2.4 Data Collection

In addition to personal information and experience, we collected several
data points during our experiments.

Timing and Tracking Information

All our timing information was automatically determined within our elec-
tronic questionnaire. Furthermore, we recorded every user session using
a screen capture tool (FastStone Capture3). These recordings enabled us
to reconstruct the user behavior and to look for exceptional cases, e.g.,
technical problems. In the case of such problems, we manually corrected
the timing data.

Correctness Information

We conducted a blind review process due to the open questions format. First,
we agreed upon sample solutions for each task. A script randomized the
order of the answers of the subjects. Thus, no association between answers
and group was possible. Then, both reviewers evaluated all solutions
independently. Afterwards, the arising small discrepancies of maximal 1
point were discussed.

Qualitative Feedback

The participants were asked to give suggestions to improve their used tool.
We restrict ourselves to listing the three most mentioned suggestions for
each tool. Ten participants suggested hiding not related communication
lines when marking a class in Extravis. Four users missed a textual search
feature, which is not available in Extravis and ExplorViz, and four other
users suggested that the performance of fetching called methods should be
improved. In the case of ExplorViz, ten subjects suggested to resolve the
overlapping of communication lines. Seven users found it difficult to see
class names due to overlapping. Five users wished for an opening window
containing a list of method names when clicking on communication lines.

3http://www.faststone.org/FSCaptureDetail.htm
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Table 11.4. Descriptive Statistics of the Results Related to Time Spent (in Minutes)
and Correctness (in Points) for PMD Experiment

PMD
Time Spent Correctness

Extravis ExplorViz Extravis ExplorViz

mean 47.65 34.27 8.42 13.58
difference -28.06% +61.28%
sd 9.96 3.14 4.29 2.46
min 23.04 29.43 3 4
median 48.89 33.84 7 14
max 65.07 38.99 16 18

Analyzed users 12 12 12 12
Shapiro-Wilk W 0.8807 0.9459 0.9055 0.9524
Levene F 2.4447 2.0629
Student’s t-test

df 22 22
t 4.4377 -3.6170
p-value 0.0002 0.0015

11.2.5 Analysis and Results

Table 11.4 and Table 11.5 provide descriptive statistics of the overall results
related to time spent and correctness for each experiment.

We removed the users with a total score of less than three points from
our analysis. This effected five users for our first experiment, i.e., three
users from the control group and two users from the experimental group.
A single user from the experimental group of our second experiment was
effected. In total, three users did not look at the object systems. Hence, they
guessed all answers. Two users did not use the “Show full trace” feature in
Extravis, thus analyzing only 0.02% of the trace. One user did not take any
look at method names as required for the tasks. For similar reasons, one
user for our first experiment and two users in our replication had missing
values and are omitted from the overall results but included in the single
results.
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Table 11.5. Descriptive Statistics of the Results Related to Time Spent (in Minutes)
and Correctness (in Points) for Replication

Babsi
Time Spent Correctness

Extravis ExplorViz Extravis ExplorViz

mean 31.55 29.14 9.40 13.04
difference -7.64% +38.72%
sd 7.25 6.48 3.60 3.23
min 18.94 19.38 3 6
median 31.27 27.19 9 13.5
max 43.20 41.56 18 18

Analyzed users 24 23 24 23
Shapiro-Wilk W 0.9618 0.9297 0.9738 0.9575
Levene F 0.4642 0.0527
Student’s t-test

df 45 45
t 1.2006 -3.6531
p-value 0.2362 0.0007

In Task App-T3.1, most users searched for a non-existing class design file
before giving up. This hints at an ambiguous task. Thus, we removed Task
App-T3.1 from our overall analysis. We use the two-tailed Student’s t-test
which assumes normal distribution. To test for normal distribution, we use
the Shapiro-Wilk test [Shapiro and Wilk 1965] which is considered more
powerful [Razali and Wah 2011] than, for instance, the Kolmogorov-Smirnov
test [Pearson and Hartley 1972]. To check for equal or unequal variances, we
conduct a Levene test [Levene 1960]. For all our analysis tasks, we used the
64-bit R package in version 3.1.1.4 In addition to the standard packages, we
utilize gplots and lawstat for drawing bar plots and for importing Levene’s
test functionality, respectively. Furthermore, we chose α = .05 to check for
significance in our results. The raw data, the R scripts, and our results are
available as part of our experimental data package [Fittkau et al. 2015c].

4http://www.r-project.org
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Figure 11.3. Overall time spent and correctness for both experiments

App-RQ1 (Time Spent)

We start by checking the null hypothesis App-H10 which states that there is
no difference in time spent between Extravis and ExplorViz for completing
typical program comprehension tasks. Figure 11.3, left-hand side, displays
a box plot for the time spent in both experiments. In Table 11.4 and Ta-
ble 11.5 the differences between the mean values of Extravis and ExplorViz
for each experiment are shown. For our first experiment, the ExplorViz
users required 28.06% less total time for completing the tasks and in our
replication they required 7.64% less total time.
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The Shapiro-Wilk test for normal distribution in each group and each
experiment succeeds and hence we assume normal distribution. The Levene
test also succeeds in both experiments and hence we assume equal variances
between both groups.

The Student’s t-test reveals a probability value of 0.0002 in our first
experiment which is lower than the chosen significance level. Therefore,
the data allows us to reject the null hypothesis App-H10 in favor of the
alternative hypothesis App-H1 for our first experiment. Thus, there is a
significant difference in timings (-28.06%) between Extravis and ExplorViz
(t-test t=4.4377, d.f. = 22, P = 0.0002).

In the replication, the Student’s t-test reveals a probability value of
0.2362 which is larger than the chosen significance level and we fail to reject
the null hypothesis in this case.

App-RQ2 (Correctness)

Next, we check the null hypothesis App-H20 which states that there is no
difference in correctness of solutions between Extravis and ExplorViz in
completing typical program comprehension tasks.

Figure 11.3, right-hand side, shows a box plot for the overall correctness
in both experiments. Again, Table 11.4 and Table 11.5 shows the differences
between the mean values of each group and each experiment. For our first
experiment, the ExplorViz users achieve a 61.28% higher score and in our
replication they achieve a 38.78% higher score than the users of Extravis.

Similar to App-RQ1, the Shapiro-Wilk and Levene tests succeed for both
experiments. The Student’s t-test reveals a probability value of 0.0015 for
our first experiment and 0.0007 for our replication which is lower than the
chosen significance level in both cases. Therefore, the data allows us to
reject the null hypothesis App-H20 in favor of the alternative hypothesis
App-H2 for both experiment. Hence, there is a significant difference in
correctness (+61.28% and +38.72%) between the Extravis and ExplorViz
groups (t-test t=-3.6170, d.f. = 22, P = 0.00015 and t-test t=-3.6531, d.f. = 45,
P = 0.0007).
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Figure 11.4. Average time spent and correctness per task for PMD experiment

11.2.6 Discussion

The time spent in our first experiment is significantly lower using ExplorViz.
The results for the time spent in our replication are not significant, hence
there is no statistical evidence for difference in the time spent. However, due
to the median of 31 minutes for Extravis and 27 minutes for ExplorViz, the
box plot, and the fact that our first experiment had a significant difference
in time spent, it is unlikely that the time spent with Extravis is much less
than with ExplorViz. Therefore, we can interpret our results such that using
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either Extravis or ExplorViz had only a negligible effect in time spent in the
replication. Thus, we focus on the correctness in our following discussion.

The analysis of the results reveals a significant higher correctness for
users of ExplorViz in both experiments. We conclude that the effect of
using ExplorViz for solving typical program comprehension tasks leads to
a significant increase in correctness and in less or similar time spent on the
tasks in comparison to using Extravis.

We conducted an in-depth analysis of each user recording to investigate
the reasons for the drawn conclusions. We focus on our PMD experiment
and briefly describe any differences in our replication. The results for each
task are shown in Figure 11.4. For our replication, the graphics for each
task are contained in our provided experimental data package. We omit the
discussion of Task App-T3.1 due to its unclear task description.

App-T1

Most Extravis users investigated the classes with incoming red lines. They
evaluated each of the found classes for the amount of incoming connections
by counting the method calls. This was hindered by the large amount of
displayed method calls and hence they had to restrict the shown trace using
the massive sequence view. A source of error was the used color coding.
Some users confused the incoming color and the outgoing color, i.e., they
searched for green lines. In the smaller object system of our replication, the
method call counting was easier.

Most of the ExplorViz users used random searching for a class. However,
the amount of incoming and outgoing method calls of a class was directly
perceivable.

App-T2.1

The Extravis users searched for the first class by closing unrelated packages.
Then, the second class was searched. Due to the large amount of method
calls, the users had to filter them with the massive sequence view. The last
call visitAll was sometimes missed due to being a thin line in the massive
sequence view.
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In ExplorViz, the users searched for the first class and marked it. For
the second class, the users opened two packages and hovered over the
communication to get the method names. With both tools, the users were
faster due to a smaller object system in our replication.

App-T2.2, App-T3.2, App-T4

Each of these three tasks required an exploration of the system. For Ex-
travis, the users started at the class from the task assignment. They marked
the class to view its communication and used the massive sequence view
to filter it. Therefore, they often divided the trace into arbitrary sequences.
Then, the users investigated the method names in each sequence. During
this process, some users skipped sequences since Extravis provides no
hints on already viewed sequences. This resulted in misses of method calls
and called classes.

The ExplorViz users started with the class described in the task. They
looked at the incoming and outgoing method calls. Upon finding a method
name of interest, they marked the called class and investigated further
communication.

Summary of the Discussion

In our experiments, the massive sequence view of Extravis led to missing
method calls, if the trace is large. This is caused by missing hints on already
viewed sequences and by single method calls being visualized by thin lines.
Furthermore, the color coding of directions became a source of error. We
attribute this circumstance to easily forgettable semantics of color coding
while concentrating on a task. Thus, some users had to regularly look up
the semantics.

Some users of ExplorViz had difficulties in hovering the communication
lines. Some users tried to hover the triangles used for displaying the
communication direction instead of the required lines. Furthermore, the
overlapping method names and communication lines resulted in taking
more time to get the required information.
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11.2.7 Threats to Validity

In this section, we discuss the threats to internal and external validity [Wohlin
et al. 2012; Shadish et al. 2002; Juristo and Moreno 2010] that might have
influenced our results.

Internal Validity

Subjects The subjects’ experience might not have been fairly distributed
across the control group and the experimental group. To alleviate this threat,
we randomly assigned the subjects to the groups which resulted in a fair
self-assessed experience distribution as described in Section 11.2.2.

Another threat is that the subjects might not have been sufficiently
competent. Most participants stated regular or advanced programming
experience in our first experiment involving PMD. For the replication, most
subjects stated beginner or regular programming experience which should
be sufficient for the small-sized object system Babsi.

The subjects might have been biased towards ExplorViz since the experi-
ments took place at the university where it is developed. To mitigate this
threat, the subjects did not know the goal of the experiments and we did
not tell them who developed which tool.

A further threat is that the subjects might not have been properly mo-
tivated. In our first experiment, the participants took part voluntarily.
Furthermore, we encountered no unmotivated user behavior in the screen
recordings – except for the subjects scoring below three points that we have
excluded from our analysis (Section 11.2.5). Therefore, we assume that the
remaining subjects were properly motivated. In our replication, the student
subjects had the additional motivation to understand the object system. Its
maintenance and the extension of Babsi was the main goal of their upcom-
ing course. Hence, we assume that they were properly motivated. This is
also confirmed by the screen recordings.

Tasks Since we – as the authors of ExplorViz – created the tasks, they
might have been biased towards our tool. We mitigated this threat by
adapting the tasks defined by Cornelissen et al. [2009] as similar as possible.
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The tasks might have been too difficult. This threat is reduced by the
fact that users from both groups achieved the maximum score in each
task except for the last. Furthermore, the average perceived task difficulty,
shown in Table 11.6, is between easy (2) and difficult (4), and never too
difficult (5).

To reduce the threat of incorrect or biased rating of the solutions, we
used a blind review process where two reviewers independently reviewed
each solution. The seldom discrepancies in the ratings were at most one
point which suggests a high inter-rater reliability.

Omitting the unclear Task App-T3.1 might have biased the results. As
can be seen in Figure 11.4, this task had similar results as the others tasks.
Thus, not omitting Task App-T3.1 would result in only a small difference
of one percent in time spent (27 percent) and two percent in correctness
(63 percent).

Miscellaneous The results might have been influenced by time constraints
that were too loose or too strict. This threat is reduced by the average
perceived time pressure which are near an appropriate (3) rating for both
groups.

The tutorials might have differed in terms of quality. This might have led
to slower subject performance with one tool. In both groups, the subjects
had the possibility to continue to use the tutorial until they felt confident in
their understanding.

Users of Extravis had to switch between the questionnaire application
and Extravis. This could have let to a disadvantage of the Extravis group.
This threat is mitigated by the fact that the users had only to switch to enter
answers and both applications were tiled on the screen. In addition, the
users of ExplorViz had also to click into the input field.

For reasons of fairness, we disabled some features in ExplorViz for the
experiment. This might have influenced the results since the participants
had less features to learn. The impact of the disabled features should be
investigated in a further experiment.
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External Validity

To counteract the threat of limited representativeness of a single object
system, we conducted a replication and varied the system. We chose an
object system that differed in size and design quality. However, there might
be more attributes of the object system that impacted the results. Therefore,
further experiments are required to test the impact of other systems.

Our subjects were only made up of students. Thus, they might have
acted different to professional software engineers. Further replications are
planned with professionals to quantify the impact of this threat.

The short duration of the tool’s usage endangers the generalizability
of the results. To investigate the impact of this threat, longer experiments
should be conducted.

Another external validity threat concerns the program comprehension
tasks, which might not reflect real tasks. We adapted our tasks from
Cornelissen et al. [2009] who used the framework of [Pacione et al. 2004].
Thus, this threat is mitigated.

11.2.8 Lessons Learned and Challenges Occurred

We consider the user recordings very useful. They enabled us to analyze
the users’ strategies in detail. Furthermore, we can investigate unsuitable
answers as in the case of the users, who did not access the visualization of
the correct object system. Thus, the user recordings are a method of quality
assurance resulting in more confidence in the data set.

However, we also experienced some challenges during our experiments.
Implementing a generator for the input files of tools should be superfluous
for using the tool. Therefore, we advise other visualization tool developers,
who use externally generated input files, to bundle a working input file
generator and a manual with their distribution (if the license permits this).
External tools might change or become unavailable, rendering it hard for
others to employ the tool.

Furthermore, tutorial material and source code for Extravis were un-
fortunately not available. Therefore, we had to create our own tutorial
materials which might have influenced the experiment. With the source
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Table 11.6. Debriefing Questionnaire Results for our PMD Experiment
(1 is better – 5 is worse)

Extravis ExplorViz
mean stdev. mean stdev.

Time pressure (1-5) 3.67 0.78 2.62 0.50
Tool speed (1-5) 3.08 0.90 2.15 0.99
Tutorial helpfulness (1-5) 2.75 1.14 1.92 0.86
Tutorial length (1-5) 3.58 0.67 3.00 0.41
Achieved PMD comprehension (1-5) 3.42 0.79 3.15 0.90

Perceived task difficulty (1-5)
App-T1 2.33 0.65 2.42 1.00
App-T2.1 3.17 0.72 2.31 0.75
App-T2.2 3.58 0.67 3.46 1.05
App-T3.1 3.83 0.58 3.54 0.88
App-T3.2 3.75 0.75 3.38 0.65
App-T4 3.75 0.87 3.54 0.88

code, we could have, for instance, integrated an interactive tutorial into
Extravis. To facilitate a better and easier comparison of visualization tools,
research prototypes should be developed as open source.

Tool developers should contribute to overcome those challenges and to
lower the hurdle for comparison experiments.

11.2.9 Summary of the Application Perspective Evaluation

In this evaluation, we presented two controlled experiments with different-
sized object systems to compare our ExplorViz application perspective
visualization and the trace visualization tool Extravis in typical program
comprehension tasks. We performed the first experiment with PMD and
conducted a replication as our second experiment using the Babsi system.

Our first experiment resulted in a significant decrease of 28 percent of
time spent and increase in correctness by 61 percent using ExplorViz for
PMD. In our replication with the smaller-sized system, the time spent using
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either Extravis or ExplorViz was similar. However, the use of ExplorViz
significantly increased the correctness by 39 percent.

Our in-depth analysis of the used strategies revealed sources of error
in solving the tasks caused by, for instance, color coding or overlapping
communication lines. In addition, we identified common challenges for
controlled experiments to compare software visualization techniques. For
instance, available visualization tools miss sufficient tutorial material.

Our results provide guidance towards ExplorViz for new users who
search for a trace visualization tool and have similar tasks as we examined.
Since our experiments investigated first time use, the results might be dif-
ferent in long term usage. This should be addressed in further experiments.

11.3 3D-Printed City Model Evaluation

In this section, we present a first preliminary evaluation of our physical
models. We compare the impact of using either an on-screen model or a
physical model to solve typical program comprehension tasks. Gestures
support in thinking and communication processes [Goldin-Meadow 2005]
and thus can enhance program comprehension in groups. We hypothe-
size that physical models support in gesticulation and thus the program
comprehension tasks shall be solved in a team-based scenario (pairs of two
participants). As object system we use PMD again and measure the time
spent and correctness for each task. Afterwards, we analyze the employed
strategies and possible differences between both groups.

As in the previous evaluation, we provide a package [Fittkau et al.
2015e] containing all our experimental data to facilitate the verifiability
and reproducibility for replications. It contains the employed version of
ExplorViz v0.6-exp (including source code and manual), input files, STL files
for 3D-printing the used models, tutorial materials, questionnaires, R scripts,
dataset of the raw data and results, and 112 screen and camera recordings
of the participant sessions.

After presenting the employed visualizations, we describe the design of
our controlled experiment, its operation, data collection, analysis, results,
discussion, and threats to validity.
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11.3.1 Used Visualizations

Figure 11.5 displays the on-screen visualization of our application perspec-
tive used by the control group in the experiment. In contrast to our current
visualization, we disabled some features in the on-screen visualization since
we wanted to investigate the impact of using a 3D model instead of an
on-screen visualization. Otherwise, we would only have tested the current
limitations of the physical models.

For the experiment, we hide class names and communication lines, since
the physical model cannot provide this information at the moment. We also
disabled the highlighting feature, since the physical model does not provide
such capabilities. The interactive opening and closing of packages to show
or hide their internal details is also disabled. Again the time shifting and
the source code viewer feature are disabled since the physical model is
static and does not provide such capabilities.

The physical model of PMD is depicted in Figure 11.6. Since we wanted
to investigate the impact of using a physical 3D model compared to an on-
screen visualization, we kept the semantics and appearance of the physical
model as close as possible to the on-screen visualization.

Since we disabled some interaction possibility of the on-screen model,
the comparison seems unfair at first sight. However, our goal of the prelim-
inary evaluation is to investigate if there is any difference in using physical
models compared to on-screen visualization. If we would not have disabled
some interaction possibilities, we would have tested for the current short-
comings of our physical model rather than investigating if physical model
provide any benefits.

11.3.2 Experimental Design

In addition to general software engineering experimentation guidelines [Kit-
chenham et al. 2002; Jedlitschka and Pfahl 2005; Di Lucca and Di Penta 2006;
Di Penta et al. 2007; Sensalire et al. 2009], we again follow the experimental
designs of Wettel et al. [2011] and of Cornelissen et al. [2009]. Similar to
these experiments, we use a between-subjects design. Thus, each subject
only solves tasks with either using the on-screen or the physical model.
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Figure 11.5. On-screenapplication-level perspective of ExplorViz v0.6 visualizing
PMD
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Figure 11.6. Physical 3D-printed and manually painted city metaphor model of
PMD (334mm wide and 354mm deep)
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Following the GQM approach [Basili and Weiss 1984], we define the goal
of our experiment as quantifying the impact of using either the on-screen
model or the physical model for program comprehension.

We name the control group On-Screen Model and the experimental
group Physical Model. Due to space constraints, we abbreviate the groups
as On-Screen and Physical in figures and tables. To circumvent confusion
with the control group and experimental group, we name each group of
two participants (a pair) as a team and not as a group.

Research Questions & Hypotheses

We define three physical model related research questions (RQ) for this
evaluation:

B Phy-RQ1: What is the ratio between On-Screen Model and Physical
Model in the time required for completing typical program comprehension
tasks?

B Phy-RQ2: What is the ratio between On-Screen Model and Physical
Model in the correctness of solutions to typical program comprehension
tasks?

B Phy-RQ3: Which typical program comprehension tasks benefit more
from using the on-screen model and which benefit more from using the
physical model?

Accordingly, we formulate two null hypotheses:

B Phy-H10: There is no difference between On-Screen Model and Physical
Model in the time spent for completing typical program comprehension
tasks.

B Phy-H20: The correctness of solutions to typical program comprehension
tasks does not differ between On-Screen Model and Physical Model.
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We define the following alternative hypotheses:

B Phy-H1 On-Screen Model and Physical Model require different times
for completing typical program comprehension tasks.

B Phy-H2 The correctness of solutions to typical program comprehension
tasks differs between On-Screen Model and Physical Model.

For Phy-RQ3, we conduct an in-depth analysis of the results and analyze
the recorded sessions of each team in detail.

Dependent and Independent Variables

The independent variable is the model employed for the program com-
prehension tasks, i.e., on-screen model or physical model. We measured
the accuracy (correctness) and response time (time spent) as dependent vari-
ables. These are usually investigated in the context of program compre-
hension [Wettel et al. 2011; Rajlich and Cowan 1997; Cornelissen et al.
2009].

Treatment

The control group used the on-screen model to solve the given program
comprehension tasks. The experimental group solved the tasks utilizing the
physical model.

Tasks

Again, we used the framework of Pacione et al. [2004] to create our task
set and selected a medium to large-sized object system (PMD) for our
experiment since it provides a well designed software architecture. The
function of PMD is reporting rule violations on source code. Therefore, it
takes source code and a rule configuration as input parameters. To generate
our city metaphor visualization of PMD, we monitor the analysis run of
PMD on a simple source code file (Simple.java by Cornelissen et al. [2009])
and the default design.xml of PMD version 5.1.2. The resulting model
visualizes 279 used classes of PMD.
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Table 11.7. Description of the Program Comprehension Tasks for the Physical Model
Experiment

ID Category Description Score

Context: Metric-Based Analysis
Phy-T1 A{3,5,6,8} Find the package containing the one class having

the most instances in the application. How is
the package named? How many classes (and
subpackages if existing) does it contain? Please
write down the full package path.

2

Context: Structural Understanding
Phy-T2 A{6,8} What are the names of the three packages di-

rectly containing the most classes (without their
subpackages)? Please order your answer by be-
ginning with the package containing the most
classes and write down the full path.

4

Context: Concept Location
Phy-T3 A{1,3,7} Assuming a good design, which package could

contain the Main class of the application? Give
reasons for your answer.

2

Context: Structural Understanding
Phy-T4 A{3,4} Which package name occurs the most in the ap-

plication? In addition, shortly describe the distri-
bution of these packages

3

in the system. Hint: Have a look at the different
levels of the packages. There are exactly two
types of distribution.

Context: Design Understanding
Phy-T5 A{1,2,3,9} What is the purpose of the lang package and

what can you say about its content regarding
PMD? Are there any special packages? Do they
differ by size? Ignore the xpath and dfa pack-
ages and name three facts in your answer. Hint:
Remember the received paper about the intro-
duction to PMD.

3
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In Table 11.7, our defined tasks including their context and achievable
maximum points is displayed. Furthermore, the covered categories of the
framework of Pacione et al. [2004] are shown. To prevent guessing, all
tasks were given as open questions. Our task set starts with less complex
tasks (identifying the highest class) and ends with a more complex design
understanding task. This enabled each team to get familiar with the model
in the first tasks and raises the level of complexity in each following task.

Population

The participants were students from the course “Software Engineering”.
They received one exercise point for successfully solving each task. For the
exercise points, they received bonus points for their exam at the end of the
term. To further motivate the participants for the experiment, they could
win one of ten gift cards over 10e for the sole participation. Furthermore,
the best eight teams each received a gift card over 20e.

The teams were assigned to the control or experimental groups by ran-
dom assignment. To validate the equal distribution of experiences, we asked
the teams to perform a self-assessment on a 5-point Likert Scale [Likert
1932] ranging from 0 (no experience) to 4 (expert with years of experience)
before the experiment. The average programming experience in the control
group was 1.89 versus 1.8 in the experimental group. The average software
architecture experience was 1.11 in the control group and 1.00 in the experi-
mental group. Since the experience was self-assessed and both values are
within a close range, we assume that random assignment succeeded.

11.3.3 Operation

Next, the operation of our experiment is detailed.

Generating the Input

We generated the input for the control group directly from the execution
of PMD. ExplorViz persists its data model into files which act as a replay
source during the experiment. How we build the physical model from this
on-screen model, was already detailed in Section 8.6.
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Figure 11.7. Physical model of a mockup of Neo4J used during the tutorial

Tutorials

We provided automated tutorials for both groups of the experiment. This
enhanced the validity of our experiments by eliminating human influences.
For the tutorial system, we used a small mockup of Neo4J to make the
teams familiar with the visualization. For the control group, we integrated
an interactive tutorial such that the teams can directly test the functionality
on-screen. As tutorial, the experimental group received a physical tutorial
model which can be seen in Figure 11.7. Their explanation text was shown
on a screen in addition to a photo of the model.

Both groups had the same explanation text for the tutorial except how
the control group could interact with the on-screen model, i.e., rotation,
panning, and zooming.
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Questionnaire

As in the last evaluation, we utilized an electronic questionnaire for both
experiment groups. An electronic version provides three advantages over
using sheets of paper for us. First, the teams are forced to input valid
answers for category fields, e.g., existing experience. Second, manual digi-
talization can be error-prone in itself and we avoid this by direct electronic
capture. Lastly, the timings are automatically recorded for each task and
thus time cheating by the teams is impossible.

Pilot Study

Before the controlled experiment took place, we conducted a pilot study
with four experienced colleagues as participants forming two teams. The
received feedback helped us in improving the material. Furthermore, we
added hints to the tasks which were perceived as too difficult.

Procedure

Our experiment took place at the Kiel University. Each team had a single
session of up to one hour. Therefore, all teams used the same computer.
The display resolution was set to 1920x1200 and prior benchmarking had
shown that ExplorViz runs smoothly on this computer.

In order to have recordings of the conducted gesticulation, a Full HD
camera recorded all team sessions. At the beginning, the control and the
experimental group were told that the table is recorded such that only
hands are visible on the video. Furthermore, we explained them that their
faces – if they came into the recording area – get pixelated. Afterwards, each
team received a sheet of paper containing a short introduction to PMD and
its features. They were given sufficient time for reading before accessing
the computer.

After telling the teams that they can ask questions at all times, a tutorial
for the respective model was started and the Physical Model group were
given the physical tutorial model. Subsequently, the questionnaire part was
started with personal questions and experiences. Afterwards, the program
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Table 11.8. Descriptive Statistics of the Results Related to Time Spent (in Minutes)
and Correctness (in Points)

Time Spent Correctness
On-Screen Physical On-Screen Physical

mean 28.11 29.39 11.28 11.62
difference +4.55% +3.01%
sd 5.94 8.46 1.88 1.47
min 16.24 14.54 7 8.5
median 28.46 27.72 11 12
max 40.97 53.48 14 14

Shapiro-Wilk W 0.9894 0.9436 0.9326 0.9566
Levene F 0.6387 0.7095
Student’s t-test

df 50 50
t -0.6326 -0.7283
p-value 0.5299 0.4698

comprehension tasks part begun and the experimental group were handed
the physical PMD model. The session ended with the debriefing questions.

The less complex tasks (Phy-T1, Phy-T2, Phy-T3) had a time allotment
of 5 minutes and the more complex tasks (Phy-T4, Phy-T5) had 10 minutes.
During the task, the elapsed time was displayed beneath the task description.
The teams were instructed to adhere to this timing but were not forced to
end the task. If they reached overtime, the timer was only highlighted.

11.3.4 Data Collection

We collected several data points during our experiment.

Timing and Tracking Information

Our electronic questionnaire automatically determined the timing infor-
mation for each task. In addition to the camera recordings, we directly
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capture the screen of every team using a screen capture tool. The screen
recordings enabled us to reconstruct the behavior of the teams and to look
for exceptional cases, for instance, technical problems. If we found such a
case, we manually corrected the timing data.

Correctness Information

Since we chose an open question format for each task, we conducted a blind
review process to rate the answers. After agreeing upon sample solutions,
a script randomized the order of the solutions. Thus during the review
process, no association between the answers and a team was possible for
the reviewers. After both reviewers evaluated all solutions independently,
any discrepancies in the ratings were discussed and resolved.

Qualitative Feedback

The participants were asked to give suggestions to improve the model they
used for solving the tasks. We only list the top 3 of each experiment group.

Three teams from the control group missed a feature to highlight entities.
Furthermore, three teams would like to have more readable labels at a higher
zoom distance. One team disliked that the camera was not resetable.

In the experimental group, two teams wanted to have an always visible
legend explaining the meaning of the entities. One team would like to have
more readable labels. Another team proposed that the amount of instances
of a class should be color-coded.

11.3.5 Analysis and Results

Table 11.8 provides descriptive statistics of the overall results related to time
spent and correctness for our experiment.

We removed the teams with a total score of less than six points from
our analysis. This effected four teams, i.e., one team from the control group
and three teams from the experimental group. After watching the recorded
sessions, we came to the conclusion that the teams did not understand the
semantics of the visualization and thus the given answers to the tasks seem
guessed.
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Figure 11.8. Overall time spent and correctness for our physical model experiment

For our analysis, we use the two-tailed Student’s t-test which assumes
normal distribution. To test for normal distribution, we use the Shapiro-Wilk
test [Shapiro and Wilk 1965] which is considered more powerful [Razali
and Wah 2011] than, for instance, the Kolmogorov-Smirnov test [Pearson
and Hartley 1972]. We conduct a Levene test [Levene 1960] to check for
equal or unequal variances. We used the 64-bit R package in version 3.1.2.
for the analysis. In addition to the standard packages, we utilize gplots and
lawstat for drawing bar plots and for importing Levene’s test functionality,
respectively. Furthermore, we chose α = .05 to check for significance.
The raw data, the R scripts, and our results are available as part of our
experimental data package [Fittkau et al. 2015e].
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Phy-RQ1 (Time Spent)

We start by checking the null hypothesis Phy-H10 which states that there is
no difference in time spent between On-Screen Model and Physical Model
for completing typical program comprehension tasks.

On the left side of Figure 11.8 a box plot for the time spent is displayed.
In Table 11.8 the differences between the mean values of On-Screen Model
and Physical Model are shown. The Physical Model group required 4.55%
more total time for completing the tasks on average.

The Shapiro-Wilk test for normal distribution in each group succeeds
and hence we assume normal distribution. The Levene test also succeeds
and hence we assume equal variances between both groups.

The Student’s t-test reveals a probability value of 0.5299 which is larger
than the chosen significance level and we fail to reject the null hypothesis
Phy-H10.

Phy-RQ2 (Correctness)

Next, we check the null hypothesis Phy-H20 which states that there is
no difference in correctness of solutions between On-Screen Model and
Physical Model in completing typical program comprehension tasks.

On the right side of Figure 11.8 a box plot for the overall correctness
is displayed. The Physical Model group achieved a 3.01% higher average
correctness score.

Similar to Phy-RQ1, the Shapiro-Wilk tests and Levene test succeed. The
Student’s t-test reveals a probability value of 0.4698 which is larger than the
chosen significance level and we fail to reject the null hypothesis Phy-H20.

11.3.6 Discussion

The time spent in the experimental group is slightly higher than the time
spent in the control group. However, since we failed to reject Phy-H10, this
could also be caused by chance. The analysis also reveals a slightly higher
correctness in the experimental group. However, since we failed to reject
Phy-H20, this could also be caused by chance.
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Figure 11.9. Average time spent per task and average correctness per task
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Since time spent and correctness of the solutions are in a close range, we
conclude that there is only a non-determining overall impact when using
physical models for our task set. However, analyzing each task reveals
that there is an actual impact in four tasks as can be seen in Figure 11.9.
However, the effects of each task compensate each other for our chosen task
set resulting in a close ranged overall result.

To investigate the impact of using physical models in each task and the
reasons for this impact, we conducted an in-depth analysis of the camera
and screen recordings. In the following, used strategies and possible
differences between the two groups are described.

Phy-T1

The control group often used the rotation feature to find the highest class.
However, they sometimes rotated the model longer than required for the
task. Since the experimental group has never seen anything similar to our
physical models, the participants often first investigated the whole model.
We assume that this is the reason for the increased time needed.

The correctness in the experimental group is increased by 15%. We at-
tribute this fact to an easier navigation to find the highest class. Furthermore,
the control group often missed the second part of the task, i.e., counting the
classes in the contained package. In comparison, the experimental group
was more attentive to the task description.

Phy-T2

Often the On-Screen Model group turned the model to have a bird’s-
eye view for a better view of the packages and their contained classes.
Furthermore, often the gestures (if any were conducted) were only implied
such that the monitor screen was not touched.

In the Physical Model group, the gesticulation was more pronounced.
One team partner often touched the physical model and showed his team-
mate the package he was talking about. Furthermore, the package path
was often dictated to the partner for writing down the answer, while going
through the path having the fingers on the labels (see, for instance, camera
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recording of Team 6). However, the task might have been too small or easy
to show any effect of the gesticulation in the experimental group.

Phy-T3

We often observed decisions via exclusion procedure in both groups. How-
ever, the experimental group outperformed the control group by 19% in
average correctness while using roughly the same time. In the control
group, the team partner often had to search for the package name that the
teammate was talking about.

In contrast, the experiment group often used gestures to show the
package under investigation. Furthermore, all packages could be clearly
seen without scrolling or rotating. A further reason for the outperformance
might be that the package hierarchies were more clear to perceive with the
physical model.

Phy-T4

Finding the most occurring package name was more difficult for the experi-
mental group, which needed more time for a lower correctness. We assume
that the uneven size of the labels on the physical model causes problems in
reading. Especially, the solution package name “rule” is harder to read on
the physical model. In contrast, the labels in the on-screen model all have
the same size.

Phy-T5

The control group required more time for roughly the same correctness
score as the experimental group. We often observed that both team partners
used gestures during discussion in the Physical Model group – also in
parallel. In contrast, it was harder for the On-Screen Model group to
use gestures in parallel since one arm often occludes the screen. These
parallel gestures could have increased the efficiency to solve the task in the
experimental group.
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Summary of the Discussion

In summary, we observed a higher amount of gestures in the experimental
group compared to the control group. These were used to communicate
with the team partner and reading the package paths. Difficulties with the
physical model were encountered due to less readable labels.

To summarize the impact of using physical models in our task set:
Two tasks (Phy-T3 and Phy-T5) were positively influenced by the physical
model. In contrast, Phy-T4 was negatively influenced. Phy-T2 did not show
any differences in using either the on-screen or the physical model. The
achieved correctness in Phy-T1 increased with the physical model but also
the time spent increased, leading to no clear statement of the impact.

11.3.7 Threats to Validity

In this section, we discuss the threats to internal and external validity [Shadish
et al. 2002; Juristo and Moreno 2010; Wohlin et al. 2012] that might have
influenced our results.

Internal Validity

We split the internal validity into three parts for our experiment: threats
concerning the subjects, the tasks, and miscellaneous threats.

Subjects One threat is that the subjects’ experience might not have been
fairly distributed across the control group and the experimental group. To
mitigate this threat, we randomly assigned the subjects to the groups. These
random assignment resulted in a fair self-assessed experience distribution
as described in Section 11.3.2.

Another threat is that the subjects might not have been properly moti-
vated. In addition to the lottery, the students received only bonus points
for the participation and thus were not forced to take part. Furthermore,
we encountered no unmotivated user behavior in the screen recordings
with the exception of the four teams scoring below six points that we have
excluded from our analysis (Section 11.3.5). Hence, we assume that the
remaining teams were properly motivated.
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Table 11.9. Debriefing Questionnaire Results for our Physical Model Experiment
(1 is better – 5 is worse)

On-Screen Physical
mean stdev. mean stdev.

Time pressure (1-5) 2.04 0.65 2.04 0.79
Tool speed (1-5) 1.48 0.64 – –
Tutorial helpfulness (1-5) 2.11 0.85 2.20 1.08
Tutorial length (1-5) 3.30 0.47 3.20 0.50
Achieved PMD comprehension (1-5) 3.00 0.83 3.08 0.76

Perceived task difficulty (1-5)
Phy-T1 1.74 0.66 2.12 0.73
Phy-T2 2.07 0.73 2.08 0.57
Phy-T3 2.74 0.71 2.88 0.53
Phy-T4 3.56 0.70 3.68 0.48
Phy-T5 3.41 0.69 3.60 0.65

A further threat is that the subjects might not have been sufficiently
competent. At the beginning of the questionnaire, most teams stated
beginner or regular programming experience. This should be sufficient for
our rather easy task set.

Tasks The tasks might have been biased towards one kind of model. We
mitigated this threat by disabling some features in the on-screen model
such that both models provide equal functionality.

A further threat is the incorrect or biased rating of the solutions. We
reduced this threat by conducting a blind review where two reviewers
independently reviewed each solution. There were seldom discrepancies in
the ratings with at most one point suggesting a high inter-rater reliability.

Another threat is that the tasks might have been too difficult. Teams
from both groups achieved the maximum score in each task. Furthermore,
the average perceived task difficulty, shown in Table 11.9, is never between
difficult (4) and too difficult (5).
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Miscellaneous The results might have been influenced by time constraints
that were too loose or too strict. In contrast, the average perceived time
pressure was slightly above little (2) for both groups and thus the time
pressure was not too loose or too strict.

The experimental group had to switch between the physical model and
the keyboard. This could have led to a disadvantage of this group. This
threat is mitigated by the fact that one team member could stay at the
keyboard and the other one could tell him what he should write.

Another threat concerns the possible different quality of the tutorials.
This might have led to slower performance with one model. In both groups,
the teams had the possibility to continue to use the tutorial until they
felt confident in their understanding of the semantics. Furthermore, both
groups had the same tutorial text except the explanation of interaction with
the on-screen model.

External Validity

Experimenting with only one single object system is not representative
for all available systems. Therefore, further experiments with different
object systems should be conducted. Another threat concerns the program
comprehension tasks, which might not reflect real tasks. We used the
framework of Pacione et al. [2004] to define the task set and to mitigate this
threat.

Our subjects were made up of students. Therefore, they might have
acted differently to professional software engineers. Replications with
professionals should be conducted to quantify this impact. Furthermore,
the teams were made up of only two persons. The impact of using physical
models in larger teams should be investigated in further experiments.

11.3.8 Summary of the Physical Model Evaluation

In this section, we evaluated the impact of using our physical models
on program comprehension in a team-based scenario by conducting a
controlled experiment.
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We identified two tasks that benefit from using physical models in
comparison to using on-screen models. However, our experiment resulted
in no overall impact neither on time spent nor on correctness of solutions to
the program comprehension tasks, since the effects of each task compensate
each other for our chosen task set.

Our in-depth analysis of the used strategies supports our hypothesis that
physical models provide an appropriate, complementary communication
basis and increase interaction when solving comprehension tasks in small
teams. In the analysis, we observed an increase in the amount of performed
gestures when using the physical model.

11.4 Landscape Perspective Evaluation

In this section, we present our controlled experiment for evaluating the
landscape perspective. In the experiment, we compare the usage of a
flat, state-of-the-art landscape visualization to our hierarchical landscape
visualization in typical system comprehension tasks. As object landscape
we use a model of the technical IT infrastructure of the Kiel University and
measure the time spent and correctness for each task. Afterwards, we analyze
the employed strategies and possible differences between both groups.

To facilitate the verifiability and reproducibility for replications and
further experiments, we again provide a package [Fittkau et al. 2015d]
containing all our experimental data. Included are the employed version of
ExplorViz v1.0-exp (including source code and manual), input files, tutorial
materials, questionnaires, R scripts, dataset of the raw data and results, and
29 screen recordings of the participant sessions.

After presenting the employed visualizations, we describe the design of
our controlled experiment, its operation, data collection, analysis, results,
discussion (including reasoning about the different performances in each
task), and threats to validity.
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Figure 11.10. An excerpt (29 of 140 applications) of the model of the technical IT
infrastructure of the Kiel University in the flat landscape visualization
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11.4.1 Used Visualizations

This section introduces the flat software landscape visualization used in the
experiment by the control group to solve system comprehension tasks.

Current landscape visualizations can mostly be found in application
performance management (APM) tools, for instance, AppDynamics,5 Fog-
light,6 or Dynatrace.7 Those tools are often driven by commercial interest
and thus are not free to use or – if they have an evaluation phase – it is
explicitly prohibited to conduct studies with these versions. Therefore, we
had to create our own implementation of the visualization which follows
the concepts of current landscape visualizations available in APM tools.
By implementing the visualization into our ExplorViz tool, we assure that
interaction capabilities are the same between both groups in the experiment.
This leads to a higher reliability of the presented results.

After surveying the available visualizations, we implemented the visual-
ization depicted in Figure 11.10 which is a mixture of the concepts we rated
as best suitable for system comprehension. The figure shows an excerpt
of the used object landscape, i.e., a model of the technical IT infrastruc-
ture of the Kiel University. Nodes are visualized as green boxes (Ê) with
white labels representing the hostname of each node at the bottom. The
applications running on the nodes are visualized by purple boxes (Ë). A
white label shows the application name at the center. Besides the label, the
programming language or – in the special case of a database – a database
symbol is depicted. The communication between applications is represented
by orange lines (Ì). The conducted request count is shown next to a line in
black letters in the abbreviated form of, e.g., 10 req.

Figure 11.11 displays the same excerpt as it is present in Figure 11.10
but visualized in our current landscape perspective visualization.

5http://www.appdynamics.com
6http://www.foglight.com
7http://www.dynatrace.com
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Figure 11.11. An excerpt of the model of the technical IT infrastructure of the Kiel
University in our hierarchical landscape visualization
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11.4.2 Experimental Design

In addition to general software engineering experimentation guidelines [Kit-
chenham et al. 2002; Jedlitschka and Pfahl 2005; Di Lucca and Di Penta
2006; Di Penta et al. 2007; Sensalire et al. 2009], we follow the designs of
Wettel et al. [2011] and of Cornelissen et al. [2009]. Similar to them, we use a
between-subjects design. Thus, each subject solves tasks either using the flat
or the hierarchical visualization. Following GQM [Basili and Weiss 1984], we
define the goal of our experiment as quantifying the impact of using either
the flat visualization or the hierarchical one for system comprehension.

We name the control group Flat Group and the experimental group
Hierarchical Group. Due to space constraints, we abbreviate the groups as
Flat and Hierarchical in figures and tables.

Research Questions & Hypotheses

We define three landscape perspective related research questions (Land-RQ)
for our evaluation:

B Land-RQ1: What is the ratio between Flat Group and Hierarchical Group
in the time required for completing
typical system comprehension tasks?

B Land-RQ2: What is the ratio between Flat Group and Hierarchical Group
in the correctness of solutions to typical system comprehension tasks?

B Land-RQ3: Which typical sources of error exist when solving system
comprehension tasks with either of the two visualization types?

Accordingly, we formulate two hypotheses:

B Land-H1 Flat Group and Hierarchical Group require different times for
completing typical system comprehension tasks.

B Land-H2 The correctness of solutions to typical system comprehension
tasks differs between Flat Group and Hierarchical Group.

The null hypotheses Land-H10 and Land-H20 follow analogously. For
Land-RQ3, we conduct an in-depth analysis of the results and analyze the
recorded sessions of each participant in detail.
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Dependent and Independent Variables

The independent variable is the visualization used for the system com-
prehension tasks, i.e., flat or hierarchical visualization. We measured the
accuracy (correctness) and response time (time spent) as dependent vari-
ables. These are usually investigated in the context of program comprehen-
sion [Wettel et al. 2011; Rajlich and Cowan 1997; Cornelissen et al. 2009]
and thus should also be applicable in the context of system comprehension.

Treatment

The control group used the flat visualization to solve the given system
comprehension tasks. The experimental group solved the tasks utilizing the
hierarchical visualization which includes the abstractions of systems, node
groups, and the communication lines representing the conducted requests
by the line’s thickness.

Tasks

We selected a medium-sized software landscape (140 applications) for our
experiment. Our model of the technical IT infrastructure of the Kiel Uni-
versity landscape represents services of our working group, computing
center services, examination services, information services, system operat-
ing group services, and management services. We modeled the landscape
by available information from the Internet and prior knowledge, and thus
the model might not reflect the real deployment in detail. However, this is
unimportant for the actual tasks.

In Table 11.10, our defined tasks including their context and achievable
maximum points are displayed. To prevent guessing, all tasks were given
as open questions. Our task set starts with less complex tasks (identifying
applications with a high fan-in) and ends with a more complex risk manage-
ment task. This enabled each subject to get familiar with the visualization
in the first tasks and raises the level of complexity in the following ones.
We chose only five tasks since we aimed to stay in a one hour time slot and
prevent exhaustion issues.

240



11.4. Landscape Perspective Evaluation

Table 11.10. Description of the System Comprehension Tasks for the Landscape
Experiment

ID Description Score

Context: Identification of Critical Dependencies
Land-T1 Name three applications that have a high fan-in (at least

two incoming communication lines). The two incoming
communication lines should be on one node and not dis-
tributed over multiple nodes.

3

Context: Potential Bottleneck Detection
Land-T2 Name the Top 3 communications with the highest request

count in descending order. Write down the start applica-
tion and the end application.

4

Context: Scalability Evaluation
Land-T3 Which applications are duplicated on multiple nodes? The

answer should contain all 8 duplicated applications which
are all named differently. Hint: The hostname of the
nodes, where the applications are running, are numbered,
e.g., Server 1, Server 2,...

4

Context: Service Analysis
Land-T4 What is the purpose of the WWWPRINT application in

your opinion? How does the process might work to
achieve the functionality for the user?

4

Context: Risk Management
Land-T5 What are the consequences of a failure of the LDAP appli-

cation? Name all affected applications and briefly describe
their purposes. Hint: Remember the received paper about
the introduction to the university landscape.

7
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Population

The subjects were students from the master course “Software Engineering
for Parallel and Distributed Systems”. For successfully solving one task,
they received bonus points for the final exam of the course. As further
motivation, the students could win one of ten gift cards over 10e for the sole
participation and the best five subjects each received a gift card over 30e.

The subjects were assigned to the Flat Group or Hierarchical Group
by random assignment. To validate the equal distribution of experiences,
we asked the participants to perform a self-assessment on a 5-point Likert
Scale [Likert 1932] ranging from 0 (no experience) to 4 (expert with years of
experience) before the experiment. The average programming experience in
the control group was 2.5 versus 2.6 in the experimental group. The average
dynamic analysis experience was between no experience and beginner in
both group. Since the experience was self-assessed, we assume that random
assignment succeeded.

11.4.3 Operation

Generating the Input

We generated the input for the experiment by modeling the object landscape
in ExplorViz by means of a modeling editor using our visualization as
Domain-Specific Language (DSL). Afterwards, we exported the model as a
script file. This file contains one entry for each application that should be
started. We have written a small configurable RPC application which acts
as a server and connects to different servers configurable on the command
line. This small application can pass off as the application names from
the modeled landscapes which is also a part of one entry in the script.
Therefore, the script imitates the real object landscape without having the
need to instrument the productive applications. After executing the script
and receiving the monitored data of the remote procedure calls, ExplorViz
persists its created landscape model into a file which acts as a replay source
during the experiment.
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Tutorials

We provided automated tutorials for both groups of the experiment. This
enhanced the validity of our experiments by eliminating human influences.
For the tutorial system, we used a small-sized model of the Kiel Data
Management Infrastructure for ocean science [Fittkau et al. 2015g] to make
the subjects familiar with the visualization. Both groups had the same
explanation text for the tutorial except information about the abstractions
in the hierarchical visualization which were only available to the associated
group.

Questionnaire

Like in the other evaluations, both groups answered the questions on an
electronic questionnaire. An electronic version provides three advantages
over using sheets of paper for us. First, time cheating by the subjects is
impossible since the timings are automatically recorded. Second, we avoid
a possible error-prone manual digitalization by direct electronic capture.
Lastly, the participants are forced to input valid answers for category fields,
e.g., their experience.

Pilot Study

To check whether the material and questions are understandable for the
target population, we conducted a pilot study with two master students as
participants before the actual experiment. After this study, we improved the
materials based on the feedback. In addition, we added hints to the tasks
which were perceived as too difficult or which were misunderstood. While
the hint for Land-T3 might hinder the visual query in the Hierarchical
Group, the hint for Land-T5 does not favor any group.

Procedure

Our experiment took place at the Kiel University. Each participant had a sin-
gle session of up to 45 minutes. All subjects used the same computer which
had a display resolution of 1920x1200. Before the experiment took place,
we benchmarked the computer to ensure that both types of visualization
run smoothly.
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At the beginning of each session, each subject received a sheet of paper
containing an introduction to the object landscape and a description of
selected applications which might be unknown. We gave the subjects
sufficient time for reading before they could access the computer. After
telling the participants that they can ask questions at all times, a tutorial for
the respective visualization type was started. Then, the questionnaire was
started with personal questions and experiences. Afterwards, the system
comprehension tasks begun. The session ended with debriefing questions.

The less complex tasks (Land-T1, Land-T2, Land-T3, Land-T4) had a
time allotment of 5 minutes. The more complex task Land-T5 had an
allotment of 10 minutes. The elapsed time was displayed beneath the task
description during each task. The subjects were instructed to adhere to this
timing. However, if they reached overtime, the timer was only highlighted
in red and they were not forced to end the task.

11.4.4 Data Collection

Timing and Tracking Information

The timing information for each task is automatically determined by our
electronic questionnaire. In addition, the computer screen of every session
is captured using a screen capture tool. With the screen recordings, we
could analyze the behavior of each participant. Furthermore, it enabled us
to look for exceptional cases, for instance, technical problems encountered
by the participant. The recordings become important in the case of technical
problems since the timing data must manually be corrected and it must be
reconstructed how long the subject actually worked on the task.

Correctness Information

The open question format implies to conduct a blind review for rating the
given answers. The two reviewers first agreed upon sample solutions and a
maximum score for each task. A script randomized the order of the solu-
tions so that no association between the answers and the originating group
could be drawn. Then, both reviewers evaluated all solutions independently.
Afterwards, any discrepancies in the ratings were discussed and resolved.
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Table 11.11. Descriptive Statistics of the Results Related to Time Spent (in Minutes)
and Correctness (in Points)

Time Spent Correctness
Flat Hierarchical Flat Hierarchical

mean 23.49 23.45 17.07 19.5
difference -0.17 % +14.24 %
sd 3.87 5.29 3.27 2.93
min 15.03 15.93 9 11
median 24.64 23.14 17.25 20.5
max 29.68 33.16 22 22

Shapiro-Wilk W 0.9232 0.9605 0.9156 0.7933
Levene F 2.1048 1.2307
Student’s t-test

df 27 27
t 0.0251 -2.4102
p-value 0.9802 0.02303

Qualitative Feedback

The participants were asked to give suggestions to improve the visualization
they used for solving the tasks. We only list the Top 3 for each group.

In the Flat Group, five users noted that some labels representing the
request count overlapped such that they were forced to get the count by
hovering over the communication line. Two users suggested to implement
a sortable table for Task Land-T2. Furthermore, two subjects disliked that
the font size is not increasing when zooming out.

In the Hierarchical Group, three subjects suggested to use animations for
opening and closing the systems or node groups. Two users would like to
be able to highlight nodes or connections. As in the flat visualization group,
one subject disliked that the font size is not increasing when zooming out.
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11.4.5 Analysis and Results

Descriptive statistics for the results of our experiment are shown in Ta-
ble 11.11. Although we had three outliers, we did not remove any subjects
from our analysis since the errors were comprehensible and did not result
from exceptional cases as also advised by Wohlin et al. [2012]. We use the
two-tailed Student’s t-test for our analysis which assumes normal distri-
bution and depends on equal or unequal variances. To test for normal
distribution, we use the Shapiro-Wilk test [Shapiro and Wilk 1965] which
is considered more powerful [Razali and Wah 2011] than, for instance, the
Kolmogorov-Smirnov test [Pearson and Hartley 1972]. We conduct a Levene
test [Levene 1960] to check for equal or unequal variances.

We used the 64-bit R package in version 3.1.3. for the analysis. As sup-
plementary packages, we utilize gplots and lawstat for drawing bar plots
and for importing Levene’s test functionality, respectively. Furthermore, we
chose α = .05 to check for significance. The raw data, R scripts, and results
are available as part of our experimental data package [Fittkau et al. 2015d].

Land-RQ1 (Time Spent)

We start by checking the null hypothesis Land-H10 which states that there
is no difference between the flat and the hierarchical visualization in respect
to the time spent on the system comprehension tasks. The box plot for the
time spent is displayed on the left side of Figure 11.12. Table 11.11 shows
the differences between the mean values of Flat Group and Hierarchical
Group.

The Shapiro-Wilk test for normal distribution in each group succeeds
and hence we assume normal distribution of our data in each group. The
Levene test also succeeds and thus we assume equal variances between
the Flat Group and the Hierarchical Group. The Student’s t-test reveals a
probability value of 0.98 which is above our chosen significance level of 0.05.
Therefore, we fail to reject the null hypothesis Land-H10.
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Figure 11.12. Overall time spent and correctness for our landscape experiment

Land-RQ2 (Correctness)

Next, we check the null hypothesis Land-H20 which states that there is no
difference between the two groups in respect to correctness of the solutions.
A box plot for the overall correctness in each group is shown on the right
side of Figure 11.12.

The Shapiro-Wilk test for the Flat Group succeeds and hence we assume
normal distribution in this group. The test fails for the Hierarchical Group.
Therefore, we plotted a histogram and looked at the actual distribution.
Most points are near 100 % and the rest follows a normal distribution to
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the left side. Since 100 % imposes a natural cutoff for the task correctness
and the rest of the values are normally distributed, we also assume normal
distribution for this group. The Levene test succeeds and thus we assume
equal variances between both groups. The Student’s t-test reveals a proba-
bility value of 0.02 which is below our chosen significance level of 0.05. As
a result, we reject Land-H20 in favor of the alternative hypothesis Land-H2
(t-test t = -2.4102, df = 27, p = 0.02303).

11.4.6 Discussion

The results for the time spent are not statistically significant. Hence, there is
no statistical evidence for a difference in the time spent meaning it could be
equal or even be different. However, it is likely that the impact of using a flat
or hierarchical visualization is negligible in terms of time spent. Whether
one group took a few seconds less, is typically out of interest. In terms of
task correctness, the Hierarchical Group outperformed the Flat Group by
14 %. This difference is statistically significant in our experiment.

Since the time spent is negligibly different or equal, and the correctness
of the solutions are higher in the hierarchical visualization, we conclude
that using the hierarchical visualization provides more benefits than the
flat visualization. To investigate the reasons for this circumstance, we
conducted an in-depth analysis of the recorded user sessions and looked
for the employed strategies and typical sources of error. In the following,
these findings are described.

Land-T1

Both groups used the same strategy to find the three applications with a
high fan-in. At first, the subjects got a general idea of the software landscape
looking at its coarse-grained structure. Then, they zoomed in such that they
can read the application labels and moved the view until they discovered
the wanted applications. Some of the participants began their search from
one side (left or right) such that they only needed to go over the landscape
once. Others started at a random position and therefore, had to go over the
landscape twice if they did not find the wanted applications.
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Figure 11.13. Average time spent per task and average correctness per task
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A source of error in this task was the distinction between applications
and nodes. We observed this confusion more in the Flat Group than in
the Hierarchical Group which could be a reason for the 17 % higher task
correctness in the hierarchical visualization group. Since the hierarchical
visualization group uses more hierarchies, the participants in this group
might be more aware of the differences between each abstraction level.

A further possible reason for the higher task correctness might be that
the hierarchical landscape visualization is more compact since node groups
are closed and thus take less space.

Land-T2

Since the presentation of request labels are different in the groups, each
group used a different strategy. Subjects in the Flat Group again started
from one side of the landscape visualization searching for the label with the
highest request count. Sometimes the labels overlapped and the participants
hovered over the communication line to get the number as popup.

The Hierarchical Group zoomed out to get an overview where the
thickest communication lines are located. They hovered over these lines to
get the actual request count and to form the descending order. Interestingly,
the subjects often only distinguished between small and larger lines (4 steps
of line thickness were visualized). Therefore, they also looked at medium
sized lines instead of only looking at the largest lines.

In respect to time spent and task correctness, the Hierarchical Group out-
performed the Flat Group in both metrics. One reason for this circumstance
might be that in the flat visualization the manual search for the highest
request count can be error-prone in respect to finding and in respect to the
descending order.

Land-T3

In this task, both groups used the same strategy to find duplicated appli-
cations at the beginning. Participants from both groups formed the visual
query for applications that are named equally and run on different nodes.
The Flat Group succeeded with this query since the visualization only con-
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tains nodes and applications and no closed node group entities. In contrast,
the Hierarchical Group did not find such applications since the node groups
are closed by default. Often they realized this circumstance after going
through the whole landscape without finding any duplicate applications
and then looked for node groups. Only a few subjects in the hierarchical
visualization looked for the node group entity right from the start.

From our expectations, the Hierarchical Group should have outper-
formed the Flat Group. However, the opposite happened. While the task
correctness is roughly equal, the time spent was larger due to the wrong
visual query in the beginning. Therefore, the introduced node groups
abstraction confused the subjects in this task. We attribute this to a first
time use and properly this behavior changes in long-term usage.

A further reason for the good performance of the Flat Group originates
from our layout which visually grouped nodes running duplicated applica-
tions instead of distributing the nodes over the whole landscape. Otherwise,
the comparison of applications would have been much harder in this group.

Land-T4

Both groups followed the same strategy for describing the purpose of
the WWWPrint application. First, the subjects had to search the application.
After finding it, they looked at the communication lines and the connected
applications. Then, they reasoned about the purpose on the basis of the
application names and their connections. Additionally, the introduction
sheet provided hints about the meaning of, e.g., LDAP.

n average, the Hierarchical Group required 30 seconds more time for
this task. Since the visualization of the WWWPrint node is similar – except
communication lines –, we expected an equal timing for this task. Therefore,
we also looked at the median which actually reveals an roughly equal
time spent. The average is influenced by two outliers (User 5 and User 25
– both taking around six minutes). One source of error in this task was
overlooking the connection to LDAP and thus not detected that WWWPrint

requires authentication. We observed this behavior more often in the Flat
Group than in the Hierarchical Group which might be a reason for the
higher task correctness.

251



11. Visualization Evaluation: Controlled Experiments

Land-T5

Again, both groups had the same strategy. First, they searched for the LDAP

application. Afterwards, they followed the communication lines backward
to find the services which would fail when LDAP fails.

Similar to Task Land-T4, we expected an equal or lower time spent
in this task since the layout is more compact in the Hierarchical Group.
However, the time spent is 25 seconds higher in average. In the median, it
is actually 25 seconds lower than the time spent by the Flat Group, again
influenced by User 25 who took about 16 minutes.

A typical source of error in this task was not describing the purpose of
the potentially failing services. We did not observe any difference in the
occurrence of this behavior between the two groups which possibly led to
the similar task correctness.

Summary of the Discussion

In summary, we observed three issues leading to a higher time spent or
lower task correctness in the Flat Group. The subjects mistook nodes
for applications. This happened also in the Hierarchical Group but less
frequently. Furthermore, when space became narrow, the request labels
overlapped. This led to manually hovering over the connection to get
the actual request count. The third issue is related to the layout that was
inherently larger due to the absence of abstractions, i.e., especially a node
group abstraction. Therefore, the Flat Group often required more time to
find entities.

Subjects in the Hierarchical Group often did not utilize the node group
abstraction efficiently right from the start. Therefore, this abstraction im-
poses a non-zero learning curve.

One general issue which affected both groups was that some participants
mixed up the direction of the communication which goes from top to bottom
in our layout. They sometimes thought it would go from bottom to top.
This issue could probably be solved by an always visible legend.
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11.4.7 Threats to Validity

In this section, we discuss the threats to internal and external validity [Wohlin
et al. 2012; Shadish et al. 2002; Juristo and Moreno 2010] that might have
influenced our results.

Internal Validity

We split the internal validity into three parts for our experiment: threats
concerning the subjects, the tasks, and miscellaneous threats.

Subjects The subjects might not have been sufficiently competent. Most
participants rated themselves as having regular programming experience
which should be sufficient for our task set.

A further threat is that the experience of the subjects might not have been
fairly distributed across the Flat Group and the Hierarchical Group. This
threat is mitigated by randomly assigning the participants to each group.
We checked that the random assignment resulted in a fairly distributed
self-assessed experience. The concrete numbers were already described in
Section 11.4.2.

The subjects might not have been properly motivated which imposes
another threat to validity of our experiment. The students were not forced
to take part in the experimenter since in addition to the lottery, the students
received only bonus points which are not required to pass the exam. Fur-
thermore, while watching the recorded user sessions, we did not encounter
any unmotivated user behavior.

Tasks One task-related threat is that the solutions were incorrectly rated
or a reviewer might have been biased towards one experiment group. We
mitigated this threat by employing a blind review process. Before the actual
reviewing process took place, the solutions were mixed by a script such that
no trace to the originating group was possible for the reviewers. Then, two
reviewers independently reviewed each solution. Afterwards, the seldom
discrepancies in the ratings were discussed. These discrepancies were at
most one point suggesting a high inter-rater reliability.
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Table 11.12. Debriefing Questionnaire Results for our Landscape Experiment
(1 is better – 5 is worse)

Flat Hierarchical
mean stdev. mean stdev.

Time pressure (1-5) 2.14 0.77 2.20 0.94
Tool speed (1-5) 2.07 1.00 1.60 0.83
Tutorial helpfulness (1-5) 2.21 0.58 1.6 0.51
Tutorial length (1-5) 3.21 0.70 3.00 0.65
Achieved comprehension (1-5) 2.50 0.85 2.20 0.68

Perceived task difficulty (1-5)
Land-T1 2.36 0.84 2.20 0.77
Land-T2 2.64 0.93 2.00 0.53
Land-T3 2.64 0.63 3.00 0.76
Land-T4 3.00 0.78 2.93 0.70
Land-T5 2.93 0.73 3.00 0.53

The tasks might have been too difficult which imposes another threat to
validity. However, subjects from both groups achieved the maximum score
in each task. The average perceived task difficulty is shown in Table 11.12.
Since the average rating of each task is never difficult (4) or too difficult (5),
we conclude that the difficulty of each task was appropriate.

Another threat is that the tasks might have been biased towards one
type of visualization. Since the average perceived task difficulty only differs
significantly in Land-T2 and Land-T3 between both groups, at least the
other tasks are not biased towards one type of visualization. Task Land-T2
was perceived easier in the Hierarchical Group and Task Land-T3 was
perceived harder in this group. Therefore, we conclude that this potential
bias is fairly distributed between the two experiment groups.

Miscellaneous A possible different quality of the tutorials impose another
threat to validity. In both groups, the teams had the possibility to continue
to use the tutorial until they felt confident in their understanding of the

254



11.4. Landscape Perspective Evaluation

semantics. In addition, both groups had the same tutorial text except the
hierarchical abstractions in the Hierarchical Group.

Too loose or strict time constraints might have influenced the results of
our experiment. However, the average perceived time pressure was slightly
above little (2) for both groups. Therefore, we assume that the time pressure
was well fitted for the tasks.

External Validity

Our experiment only involved one single object landscape. Since this is
typically not representative for all available software landscapes, further
experiments with different object landscapes should be conducted.

Another threat concerns the system comprehension tasks, which might
not reflect real tasks. Unfortunately, we did not find any task frameworks
for composing system comprehension tasks for software landscapes. We
also took a look at program comprehension task frameworks, e.g., the
framework by Pacione et al. [2004]. However, we could not adapt the tasks
in a reasonable way. Therefore, we used our present knowledge about
software landscapes to made up tasks in interesting contexts from real
usage scenarios.

Only students participated in our experiment. Professionals might act
differently which could result in a different outcome of our experiment.
To investigate the impact of this threat, further controlled experiments
should be conducted. To lower the setup effort for such experiments, our
experimental design can be reused.

11.4.8 Summary of the Landscape Perspective Evaluation

In this section, we presented a controlled experiment to investigate which
landscape visualization, i.e., current APM or ExplorViz, supports solving
typical system comprehension tasks more effectively or efficiently.

Our experiment resulted in a statistically significant increase of 14 %
task correctness in the hierarchical visualization group for system compre-
hension tasks. The time used by the participants on the tasks did not differ
significantly. Since the time spent is approximately equal and the task cor-
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rectness is improved by our hierarchical visualization, it provides a valuable
enhancement to the current state of the art in landscape visualizations in
the context of system comprehension.

During our analysis, we identified some challenges encountered by the
participants in both visualizations types. Some subjects mistook nodes for
applications. This happened more frequently in the Flat Group than in the
Hierarchical Group. Furthermore, some participants from the Hierarchical
Group did not utilize the node group abstraction efficiently right from the
start. A further challenge was imposed by the flow-based layout. Some
participants from both groups sometimes mixed up the direction of the
communication.

11.5 Summary

In this section, we conclude the results of the evaluations for our visualiza-
tion approach.

In the application perspective evaluation, our city metaphor-based ap-
plication visualization was more efficient and effective than the established
Extravis tool. The replication confirmed that our application perspective
provides benefits in solution correctness but the time spent on the task was
roughly the same for both visualizations. Notably, all participant could
finish the tasks since no tool crashes occurred and no bugs hindered the
subjects from solving the given tasks. Therefore, the evaluation also showed
that our tool provides good usability in the context of program compre-
hension tasks. We conclude that our application-level perspective provides
benefits over a current established trace visualization. However, a compar-
ison to other trace visualization techniques – such as the one of Trümper
et al. [2010] – should also be conducted in future work.

Due to our task set, the preliminary evaluation of the physical 3D-
printed models resulted in no significant overall effect since the impact on
the tasks compensated each other. However, two tasks – which involved
the most team discussion – were positively affected by using the physical
models. Therefore, the evaluation confirmed that physical models posses
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the potential to enhance the team-based program comprehension process
and can provide a beneficial future research direction.

The experiment comparing our landscape perspective and a state-of-
the-art visualization of a mixture of APM tools resulted in an increase of
solution correctness while the time spent on the tasks was roughly the
same. Therefore, our addition of further hierarchical abstractions to current
landscape visualizations showed beneficial and usable.

The evaluation of the VR approach is not detailed in this chapter since it
was conducted in a bachelor’s thesis by Krause [2015]. Therefore, we only
briefly summarize the qualitative results of the eleven structured interviews
and refer to [Krause 2015] for details. The participants of the interviews
rated the developed gestures for translation, rotation, and selection as
highly usable. However, the zooming gesture was less favored. In general,
the subjects see potential for virtual reality in program comprehension.
Therefore, also the VR approach imposes a potential beneficial research
direction to utilize the advantages of immersive VR experience in software
visualization.

In respect to our approach and its implementation, the object systems
(PMD and Babsi) and the object landscape (the IT infrastructure of the
Kiel University) were generated from program executions and were not
artificially modeled without actual monitoring. Therefore, the evaluations
also show that our approach and implementation is functioning correctly
starting from the monitoring information gathering until the actual visual-
ization of the information. Notably, this includes the correct generation of
our landscape meta-model presented in Chapter 7 which was therefore not
explicitly addressed in a dedicated evaluation.

Since all parts of our visualization approach were evaluated and ei-
ther showed as beneficial research direction (VR and physical 3D-printed
models), or they proved more effective or efficient than the current state-of-
the-art (application and landscape perspective), our visualization approach
shows feasible, usable, and beneficial in a program and system comprehen-
sion context as a whole. Therefore, the visualization approach proved as a
valid addition to and advancement of the current research body.
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12

Extensibility Evaluation:
Integrating a Control Center

Concept

After evaluating the external quality attributes of ExplorViz in the last two
chapters, we now focus on the internal quality attributes of our implemen-
tation. For this purpose, we developed a semi-automatic control center
concept [Fittkau et al. 2014b] and let project-external developers integrate
this concept into ExplorViz and thus extend it. This approach tests several
internal quality attributes of our ExplorViz tool.

First, we define the goals. Then, we describe the envisioned control cen-
ter concept in Section 12.2. Afterwards, Section 12.3 presents the case study
where project-foreign developers integrated this concept into ExplorViz.
Finally, we summarize the results of our extensibility evaluation.
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Previous Publications

Parts of this chapter are already published in the following work:

1. [Fittkau et al. 2014b] F. Fittkau, A. van Hoorn, and W. Hasselbring.
Towards a dependability control center for large software landscapes.
In: Proceedings of the 10th European Dependable Computing Conference
(EDCC 2014). IEEE, May 2014
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12.1 Goals

To enable other researchers to modify or extend our ExplorViz approach
and tool, a high internal quality is crucial. To evaluate the internal quality,
we let project-external developers integrate a control center concept. With
this approach we aim to show that our ExplorViz implementation has high
internal quality aspects such as its software architecture, documentation,
interface definitions, and coding style.

12.2 Control Center Concept

From our experience, users often mistrust fully-automatic capacity man-
agement tools. Building trust is an open research challenge [Salehie and
Tahvildari 2009] in this area. Users are missing the control of the automatic
changes conducted to the software landscape. To tackle this problem, we
envision a semi-automatic control center.

This section introduces our semi-automatic control center concept based
on a common threat and management strategy for system dependability:
software aging and rejuvenation. Software aging denotes the phenomenon
that software components, when executed over a longer period of time,
tend to show degradation effects [Avizienis et al. 2004]. These can manifest
themselves in slightly increasing response times or memory consumption.
Possible causes are, for instance, unreleased resources, whose impact ac-
cumulates over time. A common reactive or proactive resolution strategy,
known as software rejuvenation, is the restart of selected system compo-
nents.

As an example software landscape to demonstrate our concept in a
usage scenario, we utilize a system that provides publication workflows
for scientific data, called PubFlow1 [Brauer and Hasselbring 2013b]. It
comprises a heterogeneous architecture of distributed applications and
hence provides a well-fitting example system for our usage scenario. We
assume that the response times of one PubFlow service increase over time
and threaten the fulfillment of SLAs. The responsible application needs

1http://www.pubflow.de
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Figure 12.1. Cycle of the four activities in our control center

to be determined, and a restart of this application needs to be planned
and executed. In the remainder of this section, we describe our envisioned
control center concept according to the activities involved in maintaining
the dependability of software landscapes (see Figure 12.1), i.e., viewing
the symptoms (symptoms perspective), determining the root cause (diagnosis
perspective), planning a countermeasure (planning perspective), and executing
it (execution perspective).

12.2.1 Anomaly Detection

The symptoms perspective is the control center’s starting perspective. It
provides an overall view on the software landscape, including notifications
provided by control center plug-ins. The user can observe the execution
of the monitored applications and monitor their status with respect to
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Figure 12.2. Mockup of the symptoms perspective visualizing PubFlow

dependability. Using ExplorViz’ interactive visualization approach, it is
possible to dive into single applications – similar to [Ehlers et al. 2011] – to
get an application-level view of its components. This will be exemplified in
the following diagnosis perspective.

Figure 12.2 shows a mockup of the symptoms perspective including a
visualization of the PubFlow system. When an abnormal state is detected by
a plug-in, the corresponding application is marked with a warning symbol.
In this case, we see that both the Neo4J and the Provenance application are
marked with a warning sign as a hint for further investigation.

12.2.2 Root Cause Analysis

As we want to find the root cause of this warning, we open the control
center’s diagnosis perspective. Here, the user is guided by automatic tools
to find the root cause of a dependability problem – as opposed to the
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previously described perspective which only showed its symptoms. Similar
to the symptoms perspective, notifications are provided by respective plug-
ins.

In our scenario, a diagnosis tool marks the Neo4J application as the
root cause of the abnormal behavior. We want to further investigate this
circumstance and thus jump into the application to get a detailed view
which component of Neo4J is causing the abnormal response times. Fig-
ure 12.3 shows a mockup of the application-level perspective of Neo4J. The
component kernel is marked with a warning sign. By jumping further into
the kernel, we can see that the subcomponent impl is responsible for the
warning.

To get further insights, we analyze the average response time of the
impl component. The average response time and its corresponding anomaly
score are sketched in Figure 12.4. The gray bars represent the average
response times in time windows of five minutes. The green series in the
plot represents the predicted response time basing on past behavior. The
anomaly score is shown by a blue line chart above the bar chart. The
thresholds for a warning and for an error are displayed in yellow and red.
From the current rising response times and the normal nearly constant
response times – assuming other parameters like the workload intensity to
be constant – we conclude that a software aging problem exists and thus we
have to trigger proactive countermeasures to ensure the Quality of Service
(QoS).

12.2.3 Resource Adaption Planning

After the diagnosis, we want to act proactively to ensure that a failure
will not occur. For this purpose, we envision a semi-automatic planning
perspective for defining or changing an adaptation plan.

Two possibilities for the opening of the planning perspective will exist.
The first one is by manually creating a reconfiguration plan. The second one
is an automatic suggestion by a plug-in on how to reconfigure the software
landscape if needed. When the plug-in has a suggestion after detecting a
low QoS, a dialog is displayed to the user. It first shows the low QoS results
and a short summary of how it is suggested to adapt the landscape. As a
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(a) Application-level perspective of Neo4J with warning sign on com-
ponent kernel

(b) Opened kernel component with warning sign on component impl

Figure 12.3. Mockup of application-level perspective of Neo4J in the diagnosis
perspective
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Figure 12.4. Mockup of average response times (bars) and corresponding anomaly
scores (upper part) for the impl component

further indicator, the new QoS results and the resulting costs are displayed,
e.g., by using model-based software performance prediction techniques
[Cortellessa et al. 2011]. The user has the ability to directly execute this plan
or to manually refine it.

In our scenario, a dialog is shown reading “The software landscape violates
its requirements for response times. It is suggested to start a new node of type
’m1.small’ with the application ’Neo4J’ on it. After the change, the response time
is improved and the operating costs increase by 5 Euro per hour”. In our usage
scenario, we choose to manually adapt the plan which opens the planning
perspective. After opening the planning perspective, the reconfiguration
plan that was computed by a plug-in is visualized (see Figure 12.5).

In the planning perspective, the user has the possibility to manually
refine the reconfiguration plan. The possibilities in the planning perspective
are sketched in Figure 12.6. The user can, for instance, restart, terminate,
or replicate applications. In our scenario, we have expert knowledge about
the situation such that we know that the existing Neo4J application can
simply be restarted to act against the software aging. Thus, we rely on our
knowledge that the Neo4J application is not critical and can be restarted
without violating the SLAs.
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Figure 12.5. Mockup of planning perspective

(a) Node context menu (b) Application context menu

Figure 12.6. Mockup of reconfiguration options in the planning perspective
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12.2.4 Adaption Plan Execution

The actual execution of the reconfiguration plan is triggered by pressing
an execute button in the planning perspective. The plug-in used for this
execution should act in a transactional fashion for this step. If the transaction
fails, it should rollback the transaction and a message to the control center
should be triggered.

After triggering the execution, the execution perspective is opened au-
tomatically. During the actual execution of the reconfiguration plan, the
execution perspective shows what is planned and what steps of the plan
have already been conducted. In our example, a restart of the Neo4J appli-
cation is triggered and during the restart of the application, the perspective
shows a blinking Neo4J application indicating that the application is cur-
rently starting.

12.3 Case Study

After presenting the concept, we now describe a case study where project-
external developers integrated this concept into ExplorViz. At first, we
describe the setup. Afterwards, the results are discussed.

12.3.1 Setup

The task to integrate the previously described control center concept was
given by us to three bachelor students and four master students. The task
had to be solved in the context of a bachelor’s project in the case of the
bachelor students and in the context of a master’s project in the case of the
master students. Both projects had to solve the task as joint work.

The success of the project and the created plug-ins form the basis of
our evaluation. In addition, we employed a debriefing questionnaire after
the project took place to rate the students’ experiences with extending
ExplorViz. The questionnaire was given to the students after their final
presentation. A research assistant collected the filled-in questionnaires and
also created the average ratings from the results such that the students from
the project could give their ratings and comments anonymously.
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Figure 12.7. Time series showing a detected anomaly

12.3.2 Results and Discussion

There are two artifacts that provide crucial information for our extensibility
evaluation. At first, these are the created plug-ins of the students and
secondly, the results from the debriefing questionnaire.

Created Plug-Ins

In this section, we describe the created plug-ins. For verifiability, they are
available in the “control center”-branch of the ExplorViz’ Git repository.

For detecting anomalies in the symptoms perspective, the students used
an adapted version of OPADx [Frotscher 2013] and integrated the source
code of it into ExplorViz. Furthermore, they eliminated the R script server
dependency for reasons of end user convenience. Detected anomalies are
visualized by a warning or error sign as was already presented in the
concept (see Figure 12.2). Figure 12.7 shows a time series over the response
times of the application DemoD. The anomaly score is represented by the
blue line in the upper part of the screenshot. It further visualizes a detected
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Figure 12.8. Diagnosis perspective on the application level

anomaly at the start of the abrupt rising response times. Details about the
actual used algorithms can be found in [Mannstedt 2015].

After detecting the anomalies, the diagnosis perspective provides details
about the root cause. For this root cause detection, the students utilized
RanCorr [Marwede et al. 2009] and also integrated its source code into
ExplorViz. Figure 12.8 displays the marking of a potential root cause. It is
marked with an addition of a color gradient field from green to red (less
probable and highly probable for causing the anomaly). For details about
the root cause detection algorithm, we refer to [Michaelis 2015].

After analyzing the root cause, an automatic capacity plan suggestion
dialog is shown (see Figure 12.9). The suggestion originates from our
capacity manager CapMan which was integrated and extended to first
suggest the plan and not automatically conducting it. For details about
this integration and extension, we refer to [Gill 2015]. After the suggestion
dialog, the plan can be manually refined and executed. The execution
perspective opens up automatically and shows what is currently executed
and what is still planed by blinking when a server is started or restarted.
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Figure 12.9. Automatic capacity adjustment suggestion dialog
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Table 12.1. Debriefing Questionnaire Results for our Extensibility Evaluation

mean stdev.

Java experience (1-5) 2.63 0.48
Software architecture experience (1-5) 2.13 0.60
ExplorViz experience (1-5) 0.13 0.33

How much changing interfaces/classes (1-5) 2.63 0.86
Difficulty in changing interfaces/classes (1-5) 2.00 0.71
Difficulty integrating features (1-5) 2.63 0.99
Overall project impression (1-5) 1.50 0.50

Debriefing Questionnaire Results

The results of the debriefing questionnaire are shown in Table 12.1. The
questionnaire is provided in Appendix A.1. The average self-rated pro-
gramming experience with Java and the average self-rated experience with
software architectures was between Intermediate and Advanced. All students
had no or only little experience with ExplorViz. From our personal expe-
rience, we know that none of them had programmed in ExplorViz before.
The tendency of how much they had to change the interfaces/classes was
slightly towards none from the neutral center. The difficulty for changing
the interfaces/classes was rated with easy. Whereas the difficulty for inte-
grating the features was between easy and the neutral center. The overall
impression of the project was between very good and good. As the only
qualitative feedback, the students wished for more comments in the source
code.

12.4 Summary

In summary, the students succeeded to implement the control center concept.
One large challenge during the project was the comprehension of the
existing tools (OPADx, RanCorr, and CapMan) for each phase which should
be integrated into ExplorViz. Furthermore, since the students had only
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little knowledge about cloud computing before the project, the execution
of a demo scenario took a large amount of time. In respect to ExplorViz,
they only had few questions and often only an attribute name of a data
class was misleading. Since the students succeeded – in spite of the two
aforementioned challenges –, this shows that the actual integration and
extension of ExplorViz did not take too much time.

Furthermore, the students self-rated that they did not have to change
many interfaces or classes of ExplorViz and when they had to, this was
easy for them. In general, the integration of features into ExplorViz was
rated as rather easy and the students enjoyed the project altogether. If the
internal quality of ExplorViz would be poor, this would probably not let to
an enjoyable project.

Due to the aforementioned points, we conclude that ExplorViz is exten-
sible and provides a good internal quality which is important when other
researchers intend to modify or extend our tool.
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13

Related Work

In this chapter, we discuss related work for our thesis. We start by describing
related work to our monitoring and trace processing approach (Section 13.1).
Then, related work to our visualization approach is presented (Section 13.2).
Finally, we discuss related work to our evaluations (Section 13.3).
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13.1 Monitoring and Trace Processing

The related work to our monitoring and trace processing approach are
detailed in the following.

13.1.1 Monitoring

Kieker [van Hoorn et al. 2012] provides application-level monitoring and
separates the process into monitoring and analysis. It is developed as a
framework and therefore, provides, e.g., several different methods for writ-
ing the monitoring logs to the analysis component. In contrast, ExplorViz
only provides one TCP writer since we target out-of-the-box usage of our
monitoring solution.

SPASS-meter [Eichelberger and Schmid 2014] also provides application-
level monitoring. A special feature of SPASS-meter is the monitoring of
resource consumption of self-defined components or services. Contrary, we
focus on the conducted method calls to support in the program and system
comprehension process.

Dapper [Sigelman et al. 2010] is used for Google’s production distributed
systems tracing infrastructure and provides scalability and application-level
tracing in addition to remote procedure call tracing. Instead of using sam-
pling techniques, our ExplorViz approach uses entire invocation monitoring.
Furthermore, contrary to us, they did not present any detailed description
of how they actually provide scalability.

A further distributed tracing tool is Magpie [Barham et al. 2003]. It
collects traces from multiple distributed machines and extracts user specific
traces. Then, a probabilistic model of the behavior of the user is constructed.
Again, we did not find a detailed description of their architecture how they
monitor and process traces.

X-Trace [Fonseca et al. 2007] provides capabilities to monitor different
networks, including, for instance, VPNs, tunnels, or NATs. It can correlate
the information gathered from one layer to the other layer. In contrast to
network monitoring, we target application-level monitoring.

APM tools, such as AppDynamics, dynaTrace, or CA Wily Introscope, in-
herently also provide monitoring capabilities. In contrast to our approach,
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they often feature sampling techniques to reduce and adapt the monitoring
overhead. Furthermore, since most tools are commercial, the employed
techniques for the monitoring are often not described.

13.1.2 Trace Processing

Brunst and Nagel [2003] present a parallel analysis infrastructure. They
focus on massive parallel systems with thousands of processor cores. In
contrast, we focus on the monitoring and analysis of applications running
on typical business servers or in cloud environments.

Meng et al. [2010] propose a Monitoring-as-a-Service solution for moni-
toring cloud infrastructures. To monitor the complex infrastructure of Cloud
data centers, they developed a scalable and flexible monitoring topology
consisting of different services. Compared to our trace processing approach,
they focus on monitoring the virtualized data center environment.

Hilbrich and Muller-Pfefferkorn [2012] describe a concept of a scalable
job centric monitoring infrastructure. Their approach features multiple
layers of short and long time storage of the monitored data. Contrary, we
directly analyze the monitored data after gathering it without a persistent
storage.

Vierhauser et al. [2014] target Systems-of-Systems architectures with
their flexible monitoring and analysis framework. In contrast to our mon-
itoring and analysis approach, they do not dynamically insert or remove
preprocessing levels in the analysis.

The ECoWare Infrastructure [Baresi and Guinea 2013] consists of three
types of components, i.e., the execution environment, processors, and a
dashboard. In contrast to our trace processing approach, they use a message
bus for their analysis and do not provide multiple analysis levels.

In general, our trace processing approach exhibits similarities to the
MapReduce pattern [Dean and Ghemawat 2010] and approaches using this
pattern for data processing such as [Aher and Lambhate 2015]. However,
in contrast, it does not dynamically insert or remove preprocessing levels
according to the actual workload.

Capacity management approaches utilizing the monitored data for their
scaling decisions, e.g., SLAstic [van Hoorn et al. 2009a], are also related
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to our approach, since they must analyze the monitored data just after it
was observed. To the best of our knowledge, none of these approaches
utilizes dynamically inserted or removed worker levels as used by our trace
processing approach.

13.2 Visualization

In this section, related work concerning our visualization is discussed. We
start by describing related work to our landscape-level perspective and our
application-level perspective. Then, related work to our VR approach is
presented. Finally, related work in the domain of Enterprise Architecture
(EA) and Enterprise Model (EM) are shown.

13.2.1 Landscape-Level Perspective

Web Services Navigator [De Pauw et al. 2005] provides 2D graph visualiza-
tions of the communication of web services. Streamsight [De Pauw et al.
2008] visualizes cooperating distributed components of streaming appli-
cations. In contrast to both tools, our approach aims at general software
landscapes and introduces interactive explorable hierarchies to provide a
higher visual scalability.

APM tools also often provide a visualization of a software landscape.
Most APM tools do not provide different abstraction levels at the software
landscape visualization. Furthermore, if the APM tool allows detailed
analysis of one application, the used visualization often is a tree-based
viewer, which can hinder the analysis of traces with thousands of events.

Briand et al. [2006] utilize UML sequence diagrams to visualize RPCs
by adding a hostname to the object representation. Single method calls
are shown in the diagrams. In contrast, we provide a single relation
entity between communicating applications and therefore a higher visual
scalability.

RanCorr [Marwede et al. 2009] visualizes the dependencies between
applications in a root cause analysis scenario. The root cause probability of
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each application is visualized by a color-coding. In contrast to them, our
approach uses hierarchies to provide a higher visual scalability.

VisuSniff [Oechsle et al. 2002] shows the communication between servers.
In contrast to our approach, they visualize every communication path on
each port and protocol. Therefore, communicating servers often have several
connected communication lines and thus the visualization does not scale to
large software landscapes.

13.2.2 Application-Level Perspective

Since a large amount of approaches for the visualization of single application
exist, we focus on the 2D-based and 3D-based visualization of execution
traces.

2D-Based Visualization of Execution Traces

Jive and Jove [Reiss and Tarvo 2012] visualize Java applications during their
execution. They use a 2D visualization to achieve live trace visualization.
Contrary to these tools, our approach utilizes the city metaphor to visualize
execution traces.

Extravis developed by Cornelissen et al. [2007] visualizes single execu-
tion traces in two synchronized views, namely a circular bundle view and a
massive sequence view. The former view utilizes hierarchical edge bundles
to display the interaction of the execution trace. Trümper et al. [2012]
visualize traces in a sequence visualization with sub ranges for details. In
contrast to both approaches, ExplorViz uses an exploration-based approach
for displaying execution traces by utilizing the software city metaphor.

A large part of trace visualization approaches are similar to UML se-
quence diagrams [Briand et al. 2004]. Inherent to UML diagrams, they often
do not provide a large visual scalability. Therefore, we use the software city
metaphor for visualizing the gathered execution traces in our approach.

3D-Based Visualization of Execution Traces

Balzer and Deussen [2004] provide a visualization of relations in 3D using
a landscape metaphor based on hemispheres. They define the concept of a
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Hierarchical Net which substitutes a group of entities with a single entity to
display relations. Call Graph Analyzer [Bohnet and Döllner 2006] combines
the static structure and dynamic properties of a software system in a single
3D view. Traces are visualized in a live fashion during the runtime of the
software system. TraceCrawler [Greevy et al. 2006] visualizes prerecorded
execution traces for one feature based upon a 3D graph metaphor. Caserta
et al. [2011] utilize the hierarchical edge bundling technique for visualizing
relations in the city metaphor of a single software system. In contrast to
the former approaches, ExplorViz substitutes groups of objects by single
objects for interactively exploring relations and structures.

EvoSpaces [Alam and Dugerdil 2007] represents the underlying appli-
cation utilizing a 3D city metaphor. An important feature is the day view
for static analysis and the night view for dynamic analysis. We also use
two perspectives to visualize different properties. However, we visualize
landscape and application-level issues.

DyVis [Wulf 2010] uses the city metaphor to visualize the structure and
an execution trace of an application. In contrast to our ExplorViz approach,
DyVis requires an upfront static analysis of the application and it only
visualizes one trace at a time.

SynchroVis [Waller et al. 2013] developed by Döhring [2012] aims for
visualizing concurrent behavior of an application. Similar to DyVis, it uses
the city metaphor to visualize the static structure of a program. In addition,
it uses special buildings to show, for instance, locked objects. Contrary
to our approach, it requires an upfront static analysis and does not use
interactivity to provide visual scalability.

13.2.3 Virtual Reality for Software Visualization

In this subsection, we describe related work of VR and augmented reality
approaches for software visualization.

Imsovision [Maletic et al. 2001] represents object-oriented software in a
VR environment. Electromagnetic sensors, which are attached to the shutter
glasses, track the user and a wand is used for 3D navigation. In contrast to
them, we use a hands-free gesture recognition in our VR approach.
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SykscrapAR [Souza et al. 2012] aims to represent software evolution
by utilizing an augmented reality approach employing the city metaphor.
The user can interact with a physical marker platform in an intuitive way.
Contrary to our VR approach, the user only sees the 3D model on a monitor.

Delimarschi et al. [2014] introduce a concept of natural user interfaces
for IDEs by using voice commands and gesture-based interaction with
a Microsoft Kinect. In contrast, they do not utilize HMDs to create an
immersive VR experience.

Young and Munro [1998] developed FileVis which visualizes files and
provides an overview of the system. Although they aim for virtual envi-
ronment, no technological approach is described, e.g., no HMDs or gesture
recognition sensor.

13.2.4 Enterprise Architecture and Models

In this section, we describe related work in the domain of EA and EM.
Surveys on EA tools [Matthes et al. 2008; Roth et al. 2014] are provided

by the research community around Matthes. To gather information for an
EM, they propose – similar to use – to extract data from existing information
sources within an enterprise [Hauder et al. 2012]. To analyze the resulting
EMs, they provide ad-hoc analyses means [Roth and Matthes 2014]. In
contrast to their approach, we advocate that also details about the visualized
applications matter, for example, in a performance analysis.

The research community around Leymann also investigates the gather-
ing and visualization of infrastructure information [Binz et al. 2013]. For
this purpose, they use Enterprise Topology Graphs [Binz et al. 2012]. In
contrast to our approach, they do not provide details in the event of a
potential bottleneck in the software landscape.

Many other researchers investigate EMs. For example, Frank [2011]
presents a multi-perspective view on EMs. Fischer et al. [2007] gather
information from different stakeholders for their EM. However, they do not
provide details about how to efficiently gather the information.

Breu et al. [2011] present “living models” aiming to provide a coherent
management, design, and operations of IT. The created artifacts are viewed
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separately. In contrast, our approach enables to bring design and operation
together by, for instance, architecture conformance checking.

13.3 Evaluation

In this section, we discuss related work on experiments with software
visualization tools in a program comprehension context.

13.3.1 Experiments Comparing to an IDE

In this subsection, we list related experiments that compare visualizations
to an IDE. In general, contrary to the experiments, we compare two visual-
ization techniques without the use of an IDE to investigate the efficiency
and effectiveness of the visualization techniques in comparison. Further
differentiations are presented in each experiment discussion.

Marcus et al. [2005] present a controlled experiment comparing Visual
Studio .NET and sv3D for program comprehension. The usage of sv3D led
to a significant increase in the time spent. In contrast to our experiments,
they compared a visualization basing upon static analysis.

Quante [2008] assessed whether additionally available Dynamic Object
Process Graphs provide benefits to program comprehension when using
Eclipse. The experiment involved two object systems and for the second
system the results were not significant. In contrast to our experiments, the
author investigated only the additional availability of a visualization.

Wettel et al. [2011] conducted a controlled experiment to compare the
usage of Eclipse and Excel to their tool CodeCity with professionals. They
found a significant increase in correctness and decrease of time spent using
CodeCity. They compared a single software visualization basing upon
static analysis to Eclipse and Excel, contrary to our comparisons of different
software visualizations.

Sharif et al. [2013] present a controlled experiment comparing Eclipse
and the additional availability of the SeeIT 3D Eclipse plug-in using eye-
tracking. The experimental group with access to SeeIT 3D performed
significantly better in overview tasks but required more time in bug fixing
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tasks. In contrast to our experiments, they investigated only the additional
availability of SeeIT 3D basing on static analysis.

Cornelissen et al. [2009]; Cornelissen et al. [2011] performed a controlled
experiment for the evaluation of Extravis to investigate whether the avail-
ability of Extravis in addition to Eclipse provides benefits. The availability
of Extravis led to advantages in time spent and correctness. In contrast,
we compare different software visualization techniques in our experiments.

13.3.2 Experiments Comparing Software Visualizations

Storey et al. [1997] compared three static analysis tools in an experiment.
The authors performed a detailed discussion of the tools’ usage but provided
no quantitative results.

Lange and Chaudron [2007] investigated the benefits of their enriched
UML views by comparing them with traditional UML diagrams. In contrast,
we compared trace visualization techniques.

Stevanetic et al. [2015] also investigate the effect of hierarchies on pro-
gram comprehension by using three different documentations with UML
diagrams. The first group received a low-level documentation, the second
group used a high-level documentation, and the third group utilized a
hierarchical documentation. They also conclude that hierarchies increase
the quality of the solutions.
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14

Conclusions

In this thesis, we presented our live trace visualization approach, named
ExplorViz, for large software landscape. In addition, we showed how to
tackle the challenge of monitoring and processing the typical huge amount
of conducted method calls in such large landscapes. Furthermore, we
developed alternative display and interaction concepts for the software
city metaphor. In this chapter, we summarize the thesis according to the
monitoring and trace processing, and the visualization. Afterwards, the
results of our evaluations are summed up.
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14.1 Monitoring and Trace Processing

A low overhead and fast trace processing for the monitoring and analysis
approach are prerequisites for our live trace visualization. In this thesis,
we presented how we monitor the method calls using minimal invasive
aspect-oriented concepts as provided by, for example, AspectJ. Furthermore,
we described the general approach how we monitor the communication be-
tween applications, i.e., RPCs, using a backpacking strategy for correlating
the trace identifiers.

For providing a scalable, elastic analysis of the monitored data and to
enable a live processing of the traces, we defined an approach similar to the
MapReduce pattern where we use worker nodes as preprocessors for one
master node. In contrast to the MapReduce pattern, our approach dynami-
cally inserts and removes preprocessing worker levels during runtime of
the analysis. Therefore, elasticity is provided and costs for the analysis of
the monitored data are reduced, when only a small amount of method calls
occur in the monitored software landscape.

14.2 Visualization

In this thesis, we presented our live trace visualization for large software
landscapes which enables the visualization of a software landscape in
combination with the details of each application. Therefore, we feature
two perspectives, namely the landscape-level and the application-level
perspective.

The landscape-level perspective uses 2D entities similar to UML deploy-
ment diagrams to visualize the communication, nodes, and applications
contained in a software landscape. In addition, we use hierarchies to pro-
vide visual scalability. Nodes running the same application configuration
are grouped into node groups. Furthermore, nodes and node groups are
visualized in their virtual organization unit namely systems. Systems and
node groups can be interactively opened and closed such that only details
of interest for the current analysis are visualized.
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To provide visual scalability on the application level, we feature the
software city metaphor on the application-level perspective to visualize one
application and its runtime information. Components, e.g., packages in
the context of Java, provide the hierarchical districts of our city metaphor.
They can either be opened – showing their internal details – or they can
be closed and thus hiding their internal details. Again, this interactivity
provides visual scalability. In our city metaphor, classes are represented by
buildings and the active instance count maps to their height.

Since we provide a live trace visualization, we also feature a time shift
mode where the user can jump to previous landscape visualizations. Then,
she is able to analyze a specific interval and traces of the software landscape.
For instance, she can look at several applications to understand the situation
why a performance anomaly occurred.

To enable other researchers to build up on the gathered monitoring data,
we described our landscape meta-model. The generated software landscape
model could be used, for instance, to adapt the current instances in the
software landscape or to generate reports of the landscape health.

Furthermore, we presented new concepts to display and interact with
models following the software city metaphor. We showed a VR approach
utilizing an Oculus Rift DK1 display and a Microsoft Kinect v2 to enable
gesture-based interaction with the city model. In addition, we described our
approach to create physical 3D-printed models following the software city
metaphor. Four potential usage scenarios were shown for these physical
models, inter alia, a team-based program comprehension scenario.

14.3 Evaluation

We implemented the aforementioned approaches and evaluated each for
several aspects. Every component is available as open source software on
Github.1

To evaluate our monitoring approach, we used the monitoring bench-
mark MooBench to compare our monitoring component to the monitoring
framework Kieker. Eichelberger and Schmid [2014] already showed that

1https://github.com/ExplorViz
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Kieker imposes a low overhead. Therefore, if our approach imposes a lower
overhead, our monitoring component also provides a low overhead. The
comparison showed that our monitoring approach achieves a speedup of
about factor nine and decreases the overhead by about 89 %. Therefore, our
monitoring imposes a low overhead to keep the impact on the production
systems as low as possible.

A second lab experiment evaluated whether our analysis approach – in-
cluding the steps trace reconstruction and trace reduction – is capable of
processing the monitored data in a live fashion, i.e., not or only minimally
decreasing the throughput, if the analysis is added after the monitoring
component. Therefore, we extended the monitoring benchmark MooBench
by adding both analysis steps as extra phases. Again, we compared the
results to the benchmark results of Kieker to provide a quantitative relation-
ship of our enhancements. The evaluation showed that adding our analysis
after the monitoring only negligibly impacts the processed throughput.
Therefore, our analysis approach is capable of live processing the gathered
monitoring data which is an important prerequisite for a live trace visual-
ization. Furthermore, our analysis approach provides a speedup of about
factor 250 in comparison to the analysis of Kieker.

The third lab experiment concerning the monitoring and trace processing
approach had the goal of showing the scalability and elasticity of our
analysis approach. Therefore, we utilized our private cloud to elastically
scale and monitor up to 160 JPetStore instances. During the 24 hours
experiment, two worker levels were inserted and removed dynamically
without pausing the actual analysis. In the peak, the analysis processed
20 million monitored method calls per second. Since the analysis elastically
scaled in accordance to the JPetStore instances, the evaluation showed that
our analysis approach provides a scalable, elastic, and live processing of
the monitored data.

Since we showed that our developed monitoring and analysis approach
is capable of elastically processing the gathered data, our goal G2 of the
thesis (see Chapter 4) is fulfilled.

Concerning the visualization, we conducted four controlled experiments
to show that our visualization approach enhances the current state-of-the-
art. The first experiment compared our application-level perspective to the
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trace visualization tool Extravis in typical program comprehension tasks
analyzing the architecture of PMD. The experiment resulted in a significant
decrease of 28 % of time spent and an increase in correctness by 61 %, using
our application-level perspective.

We replicated the design of our first controlled experiment in a second
controlled experiment. In contrast to the first controlled experiment, we
changed the object system to the smaller-sized Android application Babsi.
The time spent for solving the program comprehension tasks were similar
in both groups. However, the use of ExplorViz significantly increased
the correctness by 39 %. Therefore, the application-level perspective of
ExplorViz showed more effective in both experiments and more efficient in
the PMD experiment.

In the third controlled experiment, we evaluate whether physical 3D-
printed models provide benefits in a team-based program comprehension
scenario. For this evaluation, one group used a physical model of PMD
and the other group used the virtual model at the computer screen to solve
program comprehension tasks. Since the effects of each task compensated
each other, there was no overall effect of using physical models. However,
two tasks were positively influenced and one task was negatively influ-
enced. Thus, physical models have beneficial effects on some program
comprehension tasks which should further be investigated in future work.

Since we developed and evaluated different display and interaction
concepts for the software city metaphor, our goal G3 of the thesis is fulfilled.

A fourth controlled experiment investigated whether the hierarchical
landscape-level perspective provides benefits compared to current flat land-
scape visualization for solving system comprehension tasks. Since most
landscape visualizations are part of commercial APM tools, we surveyed
them and implemented a mix of the best concepts for comparing the re-
sulting flat visualization to our hierarchical visualization. The time spent
was similar between both groups. However, the correctness of the solutions
increased by 14 % showing that our hierarchical additions provide benefits.

The controlled experiments revealed that our live trace visualization
supports in the program and system comprehension of large software
landscapes. Therefore, our main goal G1 of the thesis is fulfilled.
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To evaluate the internal quality of our implementation, we let exter-
nal developers extend our implementation by a prescribed control center
concept. They succeeded in this task although they had only little knowl-
edge about the technologies which should be used in the control center.
Therefore, we conclude that our ExplorViz implementation is extensible by
external developers which is important when other researches intend to
change or experiment with our implementation.
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15

Future Work

In this chapter, we describe possible future work. At first, work regarding
the monitoring and trace processing is detailed. Afterwards, possible future
work for the visualization is listed. Finally, further work regarding the
evaluations is described.
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Previous Publications

Parts of this chapter are already published in the following works:

1. [Fittkau et al. 2015j] F. Fittkau, E. Koppenhagen, and W. Hasselbring.
Research perspective on supporting software engineering via physical
3D models. Technical report 1507. Department of Computer Science,
Kiel University, Germany, June 2015

2. [Fittkau et al. 2015f] F. Fittkau, A. Krause, and W. Hasselbring. Exploring
software cities in virtual reality. In: Proceedings of the 3rd IEEE Working
Conference on Software Visualization (VISSOFT 2015). IEEE, Sept. 2015

3. [Fittkau et al. 2015i] F. Fittkau, E. Koppenhagen, and W. Hasselbring.
Research perspective on supporting software engineering via physical
3D models. In: Proceedings of the 3rd IEEE Working Conference on Software
Visualization (VISSOFT 2015). IEEE, Sept. 2015
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15.1 Monitoring and Trace Processing

Future work lies in supporting the monitoring of more programming lan-
guages since our monitoring adapter adds an overhead to the actual mon-
itoring. To impose a monitoring overhead as low as possible, a direct
implementation for monitoring more programming languages, e.g., C, C++,
C#, or Perl, should be provided. Regarding the RPC monitoring, more
technologies should be supported to cover more technologies present in
current software landscapes and thus to increase the applicability. Mining
log files or even adapting monitoring data in a universal fashion is also
future work. With this adaption, existing monitoring methods can be reused
and thus already approved solutions can provide a higher user acceptance.

Furthermore, our described analysis approach should be enhanced with
caching techniques and tested with hardware load balancers. Koppenhagen
[2013] evaluated different cloud scaling strategies. Those strategies should
also be implemented and tested in combination with our scalable and elastic
trace processing approach.

15.2 Visualization

We structure the future work for the visualization according to the gen-
eral approach, the landscape-level perspective, and the application-level
perspective.

15.2.1 General Approach

A future research direction for our visualization is enabling collaborative
working. Therefore, views should be savable and sharable with other users.
Furthermore, users should be able to comment on entities and situations,
and also be able to share such comments. One prerequisite is the already
implemented user-based authorization and thus only the visual features
need to be integrated and evaluated.

This user-based authorization should be further enhanced and devel-
oped to a real user management. This includes permission concepts for
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who can access which entities. A possible extension could be a temporary
role for external maintenance access. For example, if an application behaves
abnormally or an exception is thrown, an external software engineer could
access the visualization to investigate the circumstances under which the
abnormal behavior occurred.

Further configuration options of our visualization should also be im-
plemented. For example, a configuration option for the displayed interval
and how long the history over the past landscapes should be persisted. A
further option could be the configuration of the used colors. Then, users
with a red-green-blindness would be able to configure different colors if
they find the current color schema hard to perceive.

In general, our approach could be integrated in a continuous integration
environment such as Jenkins.1 With this integration, the visualization could
always display the current state of the development. Furthermore, the
architecture conformance checking could pass the differences between the
actual and the conceptual architecture to Jenkins after each software build.

15.2.2 Landscape-Level Perspective

Our visualization can further be enhanced by featuring animations when
new entities are added. In addition, an animation should be used when, for
example, node groups get opened or closed. The animations will probably
support in the comprehension process by providing context between the
two states. Investigating this circumstance remains as future work.

According to our VR approach, the display should be extended from the
application-level perspective to the landscape-level perspective. A possible
implementation could visualize the landscape-level perspective by a curved
cinema screen. Navigation could be achieved using the head rotation.

In respect to the control center concept, a what-if analysis could be
integrated. For instance, the visualization could show the effected services
when switching to an instance with a lower hardware specification. Fur-
thermore, the what-if analysis could reveal critical infrastructure similar to
RanCorr [Marwede et al. 2009] and perhaps even show countermeasures to
circumvent the failure of the applications.

1https://jenkins-ci.org
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15.2.3 Application-Level Perspective

Further future work lies in the layout for the application-level perspective.
As already stated in Chapter 8, we did not find a satisfying layout solution
which is compact, stable, and hierarchical. A first idea is adapting the
approach of Wang and Miyamoto [1996] to achieve the hierarchical aspect.

The architecture conformance checking currently only operates at the
landscape level. It should also be implemented for the application level to
check the architecture conformance of individual applications.

Our clustering approach names synthetic components with “cluster”
and a following increasing number. A naming according to the applied
clustering criteria could further enhance the comprehension process of the
synthetic components.

The performance analysis tool can also be enhanced with more config-
urable metrics, e.g., using the median instead of the mean for the response
times. Furthermore, the components and classes could be colored according
to their response times.

Further future work lies in finding approaches to overcome current
limitations of our physical models. For instance, the naive mapping of
communication lines to the physical models creates a set of confusing,
overlapping lines – since missing the possibility to interactively hide com-
munication. Creating physical models of other 3D software visualization
metaphors, e.g., botanical trees [Kleiberg et al. 2001], spheres [Balzer et al.
2004], or solar systems [Graham et al. 2004], might also provide benefits.

Our VR approach should further be tested with other HMDs and with
other display resolutions which should enable a higher immersion. Fur-
thermore, the implementation of other input methods, e.g., brain interfaces,
could achieve an even more immersive user experience.

15.3 Evaluation

Regarding the monitoring and trace processing, other application and hard-
ware configurations should be tested. Especially, whether our elastic and
scalable trace processing approach also functions with three and more dy-
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namically inserted worker levels. Furthermore, our monitoring component
should be directly compared to other monitoring tools with MooBench.

We listed four potential usage scenarios for our physical models of
the application-level perspective. Since we only investigated one of them,
the other three usage scenarios should also be evaluated. Furthermore,
physical models could be compared to our VR approach to investigate
which technique better supports the program comprehension process.

For each controlled experiment, future work should replicate the ex-
periment with professional software engineers. Furthermore, we only
investigated first-time usage in the experiments. Therefore, longer studies
and experiment should investigate the long-term usage when a user already
knows the features of the visualizations.

In respect to the application-level perspective evaluation, several other
trace visualization techniques can be compared to it, for instance, the tech-
nique used by Trümper et al. [2010]. The physical model evaluation should
be replicated with a larger team size where gesticulation and communica-
tion can have a higher impact.
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Rigi Standard Format

SLA

Service Level Agreement

SQL

Structured Query Language

VR

Virtual Reality

WebGL

Web Graphics Library
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